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E C O N O M E T R I C A  

VOLUME43 March, 1975 NUMBER2 

A STOCHASTIC DECENTRALIZED RESOURCE 

ALLOCATION PROCESS: PART 1 


BY LEONID HURWICZ,ROY RADNER, AND STANLEYREITER 

This is Part I of a paper concerning an iterative decentralized process designed to 
allocate resources optimally in decomposable environments that are possibly charac- 
terized by indivisibilities and other nonconvexities. Important steps of the process involve 
randomization. In Part I we present the basic models and results, together with examples 
showing that certain assumptions can be satisfied in both classical and nonconvex cases. 
Part I1 will go further with such examples in showing that our process yields optimal 
allocations in environments in which the competitive mechanism fails, as well as show 
how abstract conditions used in Part I can be verified in terms of properties of preferences 
and production functions that are familiar to economists. 

1.0. General Introduction 

IN THIS PAPER we construct an iterative decentralized process (to be called the 
B process because it involves bidding) designed to allocate resources optimally 
in environments that are decomposable, i.e., free of externalities, but possibly 
characterized by indivisibilities (in commodities) or nonconvexities (in preferences 
or production). We have largely confined ourselves to situations where either all 
goods are indivisible or all goods are divisible, although similar methods could 
also be applied to mixed cases.2 Important steps of the process involve randomi- 
zation, hence the designation "stochastic" in the title.3 

To understand the motivation for constructing such a new process, one must 
look at the limitations of the known allocation processes. 

The decade of the fifties saw a rigorous formulation of the relationship between 
Pareto optima and competitive equilibria. In the realm of statics, the results due 
to Arrow [I], Debreu [S], and Koopmans [ l l ] provide conditions under which a 
competitive equilibrium is Pareto optimal4 ("nonwastefulness") and a Pareto 
optimum is capable of substaining a competitive equilibrium5 ("unbiasedness"). 
These two results are, e.g., Koopmans' Propositions 4 and 5, respectively [ll]. 

Both results presuppose the absence of externalities (i.e., external economies 
or diseconomies) and local nonsaturation of preferences. The second result 

' This research was supported by the National Science Foundation, the Office of Naval Research, 
and the General Electric Company. 

Indivisible goods are available only in integer-valued amounts. (Actually, all that is required is 
that therebe only a finite number of feasible allocations.) In fact, one of our results, that of Section 3, 
does apply to mixed cases as well. 
'The use of randomization in adjustment processes was studied in Reiter [16] and provided a 

stimulus for the development of the B process. Radner first formulated and studied the B process for 
indivisible goods in an unpublished note in 1960. 

In the terminology of [8], the competitive process is non-wasteful. 

In the terminology of [8], the competitive process is unbiased. 
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(unbiasedness) uses additional assumptions, in particular the convexity of pref- 
erences and production. Further assumptions are needed to assure that the 
competitive equilibrium is stable. 

If one believes that these restrictive classical assumptions are significantly 
violated in situations of some importance, and if one believes that economics 
should be concerned with the possibility of having satisfactory economic institu- 
tions for non-classical environments, one is naturally interested in resource 
allocation mechanisms for environments in which these restrictive classical 
assumptions are not all satisfied. Pursuit of this interest in a normative spirit 
requires study of mechanisms other than perfect competition, for there are examples 
showing that these classical assumptions cannot be dispensed with if competitive 
equilibria are to have their desirable performance properties. For instance, it 
has been shown that competitive equilibrium need not be Pareto optimal when 
all goods are indivisible. Similarly, there are examples in which non-convexity of 
preferences or production sets results in optimal allocations that cannot be 
attained through the competitive p r o c e ~ s . ~  

Economists are, of course, familiar with processes other than perfectly competi- 
tive, which operate under conditions of non-convexity or indivisibility. Many of 
these, classified as monopolistic, lack the attributes of non-wastefulness and 
unbiasedness because their equilibria are typically non-optimal. Others fail to 
qualify as informationally de~entralized.~ 

One is then led to try to design new allocation mechanisms that would meet our 
standards of performance (non-wastefulness and unbiasedness) in non-classical 
environments and still qualify as informationally decentralized. 

The design and analysis of such mechanisms form part of the theory of economic 
institutions. For, just as the competitive model is an abstract specification of a 
system of institutions (markets together with other economic relationships), 
so the abstract specification of another allocation mechanism characterizes an 
alternative, possibly new, set of economic institutions. 

Clearly, to avoid dreaming up mere utopias in designing new mechanisms with 
good theoretical performance characteristics, one must take account of those 
informational and incentival attributes without which an allocation mechanism 
would be infeasible, extremely costly, or otherwise undesirable. The present paper 
is focused on designing a mechanism possessing the desired optimality charac- 
teristics for a broad class of decomposable environments, i.e., those free of exter- 
nalities, but also qualifying as informationally decentralized.* Now a mechanism 
of this type, suggested in [8] under the name of "greed process," suffers from 
several defects; in particular, on the side of performance, it lacks stability, and on 
the informational side its structure is quite burdensome for those participating 

Such examples appear, for instance, in Chapter 4 of Quirk and Saposnik [14, pp. 134 and 1391. 
See [8] for a definition of informational decentralization. Alternative definitions have been pro- 

posed in [IS] and elsewhere. 
The modified Lagrangian gradient process proposed by Arrow and Hurwicz in [2 and 31 con-

stitutes such a mechanism for environments with non-convexities (increasing returns) but without 
indivisibilities. (See, in particular, "Optimal Allocation through Imperfect Competition," [3, Section 
IV.D, pp. 95-1001.) 
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in the process. Thus in designing the B process, our objective is to overcome some 
of the defects of the "greed process" while retaining most of its advantages.' 

While deferring a more detailed comparison to Section 1.1.3 below, we may 
note that the B process constitutes an improvement on the "greed process" in 
that it does converge to equilibrium (i.e., has stability), although in a probabilistic 
sense only. Also, its messages are significantly simpler than those of the "greed 
process" so that it is informationally less burdensome. On the other hand, the class 
of environments covered is slightly narrower, but it still includes indivisibilities 
and nonconvexities. 

The probabilistic nature of the B process accounts for a difference in the nature 
of the relevant equilibrium concept. While in nonstochastic processes (such as that 
of the Walrasian competitive model) equilibrium is characterized by constancy 
(over time) of proposals or messages, the equilibrium of a stochastic process only 
involves the constancy of a probability distribution based on past agreements. Thus 
at equilibrium in the B process there may be different proposals still coming in, 
but these proposals cannot overcome the standing agreements which do remain 
constant, at least in utility terms. Viewed in computational terms, processes such 
as the competitive mechanism "print out" the final (equilibrium) result-if and 
when reached-and stop; others, like the B process, continue searching for a 
"better" solution indefinitely, but when in equilibrium keep "printing out" the 
answer already found. 

Another noteworthy feature of the B process is the generality of the class of 
objects whose allocation it can help determine. Specifically, the indivisible case of 
the B process can be applied not only to conventional "commodity bundles" but 
to any collection of entities that can be described as a discrete set; in particular, 
there need not be any concept of ("quantitative") measurability associated with 
these objects, nor need these objects be orderable except in terms of the partici- 
pants' preferences. Although individual participants may consider as admissible 
an infinity of such objects of choice. the discreteness of the set, together with our 
other assumptions, requires that only a finite number of objects be jointly feasible. 
As an example of such objects of choice one might think of alternative clauses in a 
proposed labor-management contract referring to qualitatively distinct charac- 
teristics. 

As already indicated, our results for the B process, as those for the competitive 
and the "greed processes," are valid for environments that are decomposable, 
i.e., free of externalities. (Indeed, the B process, like the competitive process, is 
not even well-defined when "non-separable" externalities are present.)'' Whether 
one can hope for the existence of any informationally decentralized process for 
non-decomposable environments is as yet not completely resolved and depends 
very critically on the concept of informational decentralization. 

See [8] for the definition of the "greed process" and a proof of its non-wastefulness and unbiasedness 
for all environments free of externalities (decomposable); its definition implies that it is informationally 
decentralized. Since this was written, Kanemitsu [lo] has constructed a convergent deterministic 
process for divisible environments which is closely related to the "greed process." 

l o  See [4] for a definition of "non-separable" externalities. 



190 L. HURWICZ, R. RADNER, AND S. REITER 

The unbiasedness of the B process is established for all decomposable environ- 
ments. Its non-wastefulness and convergence, on the other hand, have so far only 
been obtained separately for the indivisible (discrete) case and for the divisible 
(continuous) case. It is remarkable, in view of the difficulties encountered in the 
competitive process, that the B process has the desirable performance properties 
(unbiasedness, non-wastefulness, and stability) for all indivisible decomposable 
environments. Among the divisible decomposable environments, where the 
commodity space is a continuum and preferences continuous, the class of environ- 
ments covered is very broad : it includes all cases of monotone preferences whether 
convex or not (provided that the feasible set has certain topological properties), 
but non-monotone preferences are not excluded. Nor is it necessary to assume the 
convexity of production possibility sets either for individual units or in the aggre- 
gate when dealing with models that involve production as well as exchange.! ' 

The applicability of our results to situations involving indivisibiliiics .~ilici 

non-convexities on the production side makes the B process, or a similar mecha- 
nism, an attractive possibility for handling allocation problems involving capital 
goods where both indivisibility and nonconvexity are typically of the essence. A 
further extension of our results to "mixed" (divisible-indivisible) cases would be 
helpful. 

Situations characterized by the absence of some goods from the initial aggregate 
endowment,12 troublesome in perfectly competitive processes, are covered by 
suitable extensions of the main results for the divisible case; the issue does not 
arise in the indivisible case. This is significant from the viewpoint of informational 
decentralization, since an individual agent is only assumed to know that he lacks 
a given good, but not that everyone else is in the same boat. The B process is 
capable of handling allocation under such circumstances. The mathematical 
situation characteristic of initially absent goods is similar to that involving public 
goods, viz., the allocations are confined to a linear variety (a flat) in the commodity 
space. Hence, our techniques, and possibly some of the more general results in 
the section on absent commodities, should be useful in connection with allocation 
problems involving public goods. 

Among problems we have not as yet looked into is the rate of convergence of the 
B process. If speeding up convergence were our objective, one might try varying 
the probability distributions as the process goes on, thus introducing what one 
might think of as "learning." Mathematically, such variations are not ruled out, 
since our proofs do not require that the probability distributions be constant over 
time. 

Before proceeding to a somewhat more detailed outline of the results of the 
paper, the readers' attention may be drawn to the possible methodological, as 
distinct from substantive, interest of the techniques used here. In particular, the 
stochastic aspects are of interest, as well as the exploration of the implications of 

' ' This is of particular interest in situations described by Starrett [17] in which the formal elimination 
("internalization") of externalities accomplished by the introduction of fictitious commodities gener- 
ates non-convexities in the expanded commodity space. 

l 2  The "Arrow case" (see [I, Fig. 3, p. 5281). 
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assumptions that are topological in nature: as contrasted with the customary 
reliance on the algebraic (convexity) properties of economic models. 

1.1. Pure Exchange 

While the results obtained cover both production and exchange, it seems best 
to start by providing an informal description of the workings of the B process for 
the case of pure exchange, a case usually treated in terms of the familiar "Edge- 
worth Box." We shall first present the process as it operates when all commodities 
are indivisible (see footnotes 1 and 3). 

1.1.1. Pure Exchange of Indivisible Commodities 

The process consists of a sequence of bids (hence " B  process") and exchanges. 
Before bidding begins, each participant selects a probability distribution over all 
those exchanges that would leave him at least as well off as he is with his initial 
endowment13 (this is a subset of his admissible trading set, determined by his 
admissible consumption set and initial endowment); using a randomized device 
governed by these probabilities, he makes a bid proposing to trade goods with 
other participants. At this point a "referee" enters the picture to check whether the 
bids made by the participants are compatible, i.e., whether the aggregate net 
demand equals zero. If not, the participants must make new bids choosing from 
the same class of possible trades according to the same probabilities; if the new 
bids are compatible, the participants carry out the proposed trades, thus reaching 
new endowment positions. The bidding process is then repeated with reference 
to the new endowment. Since the set of exchanges that are not inferior to the new 
endowment is in general smaller, the domain from which the bid is picked by the 
randomized device is smaller and the probabilities will be scaled up by a pro- 
portionality factor. 

There may, of course, occur "no deal" phases due to incompatible bid combina- 
tions,'" but when the commodity space is discrete (indivisible commodities), a 
compatible set of bids will occur, with probability one, in a finite number of tries. 
In fact, again with probability one, the process will reach a Pareto optimal alloca- 
tion in a finite time and will remain stationary (at equilibrium) thereafter (Theorem 
4.2). Moreover, every Pareto optimum is an equilibrium of the process (Theorem 
3.1) and vice versa (Theorem 4.1).15 These results presuppose selfish preferences 
(absence of externalities) but no other assumptions need be made concerning the 
preference patterns. The situation is strikingly different from that prevailing under 

l 3  This together with other rules of the process, assures "individual rationality" (Luce and Raiffa 
['2]'; 

The frequency of occurrence of "no deal" phases is in part dependent on the specific probabilities 
used. We have ignored the speed of convergence of the process, and hence also this issue, confining 
attention only to convergence itself. 

l 5  In the terminology of [S], the B process is Pareto satisfactory, since it also is essentially single 
valued. 
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perfect competition where indivisibilities result in difficulties, including the 
occurrence of non-optimal equilibria. 

These attributes of the B process are largely due to the fact that traders ordinarily 
go up (and never down) on their preference scales when exchanges take place. 
Hence, if the initial allocation happens to be Pareto optimal, the utility levels are 
bound to remain stationary. If the initial allocation is non-optimal, the new 
allocation will be at or above the respective previous satisfaction levels. 

1.1.2. Pure Exchange of Divisible Commodities 

When commodities are indivisible, the force that "drives" the system toward 
optimality is the positive probability associated with every trade leading to a 
Pareto superior allocation (as against zero probability associated with Pareto 
inferior allocations). But for divisible commodities an application of the same 
bidding rules would result in a fiasco, since the probability of "hitting" any par- 
ticular point (trade) within the commodity continuum is zero, and so is the prob- 
ability of occurrence of a compatible set of bids. Therefore, to avoid stagnation 
at a non-optimal allocation, it is necessary to modify the rules for the divisible 
case. As in the indivisible case, the participant still picks, according to an ap- 
propriate probability distribution, a trade, the central bid, from among those not 
inferior to his current endowment. But there is a change in what he is required to 
communicate to the referee. He conveys not merely this central bid, but also-as 
alternatives-all trades within a specified "distance" from the central bid that are 
not inferior to the present endowment. Because the bids now contain a continuum 
of alternatives, the referee may be faced with a multiplicity of compatible bid 
combinations. He will then pick one of them at random to serve as the basis for 
trades to take place. 

More explicitly, the participant first constructs a "bidding cube" (in a two- 
dimensional commodity world, a square) centered on the probabilistically selected 
central bid ; the "radius" (half-width) of the cube is chosen arbitrarily, but remains 
fixed th~roughout the bidding process. 

The participant then communicates to the referee as his bid those trades within 
the bidding cube that are at least as good as his current endowment, using the 
current endowment point as the origin. 

As an illustration, in Figure 1.1, let I be the current endowment and a'a" the 
indifference curve through I,with points above it being preferred. Then the central 
bid will be selected probabilistically from among the points on or above a'a". 
Let the fixed size of the bidding square ("cube") be that shown at the right in 
Figure 1.1. 

If the central bid drawn happens to be A, the whole square BCDE (interior and 
perimeter) becomes the bid. On the other hand, if the central bid drawn is K, the 
participant's bid conveyed to the referee is the set bounded by R M N P S R  (interior 
and perimeter); the points of LRS that are below a'a" are excluded because they 
are inferior to the current endowment I. (Since the bids are always conveyed to 
the referee with I as the origin, the referee and the other participants learn neither 
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A a' 

The (fixed1 size oJ 
the "bidding cube 
( here : square 1

current 

endowment-


a'' 
 -

the bidder's current endowment nor the location of his indifference curve relative 
to the commodity space origin 0 ;  this is a feature of informational decentraliza- 
tion.)16 

The referee's role is illustrated in Figures 1.2a and 1.2b. In Figure 1.2a the two 
participants' bidding cubes are completely above their current utility levels. 
If the respective central bids are A l  and A,, the compatible bid combinations 
constitute the rectangle KLMN (the shaded area) and the referee will select at 
random some point of this rectangle. 

l 6  This admittedly cumbersome form of bidding has the merit of producing positive probabilities 
of compatibility essential for driving the process toward optimality in the divisible case. 

Among the various alternatives we considered was a variant of the process in which the whole bidding 
cube would always become the bid, even if a part of it were inferior to the current endowment; thus, in 
Figure 1.1, if the central bid were K, the complete bid would be the square LMNP (rather than the set 
bounded by RMNPSR). This modification would result in an informational simplification, but the 
process would not necessarily result in raising the participant's utility at every stage. Thus cine would 
not expect convergence to Pareto optimality, although some form of convergence to "approximate 
optimality" might be established. 
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In Figure 1.2b, the bid of the first participant is truncated to the set bounded by 
17QNKP and the referee will select at random a point from the set bounded by 
KLMNK which constitutes the compatible bid combinations. 

As in the indivisible case, no assumptions other than decomposability (absence 
of externalities) are needed to guarantee the stationarity of an optimum in the 
divisible case; Theorem 3.1 applies here as well. But to assure the optimality of an 
equilibrium (Theorem 5.1) and the convergence17 toward an optimum (Theorem 
5.2) when goods are divisible, additional restrictions must be imposed on the 
environment. These are topological in nature. 

First, preferences are assumed representable by continuous utility functions. 
Second, the individually feasible trade sets are assumed closed, and such that the 
jointly feasible set of the economy as a whole is bounded." Third, there is an 
assumption ("openness," labeled Assumption ED.6) postulating the existence of 
certain open sets in the space of allocations Pareto superior to a given one. The 
assumption of openness will be satisfied, under certain conditions, for utility 
functions that are strictly increasing in the interior of the consumption set, as, for 
instance, for the CobbDougIas utility functions, but also for many functions 
lacking the usual convexity properties. Finally, there is an assumption guarantee- 
ing the possibility of small displacements from the initial position that would leave 
all participants in the respective interiors (rather than at the boundaries) of their 
individually feasible sets. (This requirement is satisfied in the pure exchange case 

"Again with probability one, but (for non-optimal initial resource allocations) not in finite time. 
This will be the case for pure exchange when the nonnegative orthant const~tutes the consumption 

set. Sufficient conditions, free of convexity, when production 1s present are given in Example 3, Section 
5.4.3. 
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if the consumption set consists of all nonnegative commodity points and there is 
a positive aggregate initial endowment of each good. The latter requirement can 
be weakened, but (as shown by the counterexample of Section 5.5.6) not dispensed 
with, so as to permit the absence of some goods, if, e.g., consumer preferences are 
assumed monotone (see Lemma 5.6*). 

Examples given in Sections 5.4, 5.7, and 5.8 illustrate the range of applicability 
of the results, including cases with nonconvex and disconnected contour sets. 

1.1.3. Comparison with Other Processes 

Thus the B process is Pareto satisfactory and stochastically convergent to an 
optimum in most cases in which the perfectly competitive process is Pareto 
satisfactory and stable (see Section 5.4), but it also retains these properties in cases 
(continuous, non-convex, or indivisible, or the "Arrow case") where the com- 
petitive equilibrium might fail to exist at an optimum or where the competitive 
equilibrium (in a t2tonnement type process) may lack stability.19 

The convergence property of the B process, due to its utility-monotone character, 
points up its close relationship to nontstonnement processes. In the case of pure 
exchange, the B process may be considered to be of the nont2tonnement type, 
since trades take place while the process is going on. However, unlike in the more 
usual nont2tonnement processes, in the B process the exchanges only occur when 
demand and supply are in balance. On the other hand, the exchanges may also be 
interpreted as "virtual" rather than real, thus placing the B process in the tiitonne- 
ment ~a t ego ry . ' ~  

The pure exchange version of the B process, aside from its stochastic nature, 
does conform to the requirements of informational decentralization as defined 
in [a]. As compared with the "greed process" in [8], the B process, while applicable 
to a narrower class of environment, shows two points of superiority: first, the 
B process is not merely statically Pareto satisfactory, but (unlike the "greed 
process") it converges to an optimum ;second, it is informationally better, since its 
messages (bids) can be formed by looking in detail at only a small portion of the 
participant's preferences map (it is informationally "localized") while the "greed 
process" requires a "global" look at the preferences at every stage." 

Still, the construction of the bid in the divisible commodity case can be quite 
complex if the "central bid" falls near points inferior to the current endowment, 
thus requiring a detailed inspection of the local preference pattern." It is an open 

l 9  For example, in cases involving gross complementarity with more than two goods. 
20 It is this latter interpretation that will be appropriate for the B process when production is intro- 

duced, since production activities are treated as virtual rather than real. A nontbtonnement variant of 
the B process including production would merit analysis. 

In fact, the messages of the "greed process" may be regarded as corresponding to a limiting case 
of bids of the B process when the radius of the "bidding neighborhood" becomes infinitely large. 
But it is the finiteness of the radius that makes the B process convergent, while the "greed process," 
even in the two-person case, is characterized by oscillations of constant amplitude. 

2 2  As in Figure 1.1, when the central bid drawn is K, the participant must determine the shape of the 
curve segment RS and then convey it (using the current endowment point I as origin) to the referee. 
Since convexity of preferences is not assumed, this shape might be very complex even when preferences 
are continuous and monotone. 
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question to what extent one could hope to simplify the structure of bids in the 
divisible case and still retain the optimality and convergence properties for 
non-convex en~ironments . '~  

We have remarked earlier that an abstract resource allocation process may be 
viewed as a specification of a set of economic institutions which realize the process. 
Such institutions would not, in general, be uniquely specified by the abstract 
process. It is interesting to consider possible institutional arrangements that 
realize the B process, especially with a view to the informational demands of the 
process. 

We may imagine that each participant is equipped with a random point gener- 
ator which is capable of selecting points of his admissible trade set according to 
a prescribed probability density. The participant makes the binary comparison 
between the random point and the current agreement, deciding thereby whether 
or not he prefers the new point at least as well as the current agreement. If so, it 
becomes the center of his bid and this may also require him to compute his contour 
set locally. If not, he rejects that point and considers another presented by his 
random mechanism. 

According to this realization of the B process, each participant makes only 
binary preference comparisons, possibly also computing a small section of his 
contour set in the bidding neighborhood, and transmits only that information. 

The referee is required to test whether bids add up to zero and to select one 
bid from such a set of bids. This is similar to tests of market clearing. 

1.2. Models with Production 

So far we have been discussing the case of pure exchange. When production is 
present, the process must be so designed that the outcome is technologically 
feasible, both individually and in the aggregate. In the spirit of informational 
decentralization, each producer is only required to check the technological 
feasibility from his own viewpoint of the production plan underlying the exchange 
proposal it conveys to the referee, just as each consumer checks on the feasibility 
of his proposal. (The feasibility is checked by the producers or consumers from 
their individual points of view only, while compatibility of their proposals is 
checked by the referee.) 

From the formal point of view, a producer can be considered as a special 
kind of consumer characterized by indifference among all trades. A producer's 
set of feasible trades would be a "translate" of his production set (i.e., the set of 
sums of feasible input-output vectors plus the initial endowment), while that of a 
conventional consumer is the admissible consumption set (e.g., all nonnegative 
commodity vectors) translated by the initial endowment. 

1.3. Guide to the Remainder of the Paper 

General principles of notation and the definitions of equilibrium and optimality 
are found in Section 2, which also contains the formulation of rules governing the 
formation of bids and agreements in the B process. 

2 3  See footnote 16 above. 
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Section 3 contains a result on the stationarity of optimal distributions valid for 
arbitrary commodity spaces (hence, in particular, divisible, indivisible, and mixed 
commodit y spaces). 

Section 4 contains the main results for the case of indivisible goods, Section 5 
for divisible goods. 

In Section 5, devoted to divisible goods, the basic model and assumptions are 
formulated in Subsection 5.1. Important auxiliary propositions are established in 
5.2 and the basic theorems on non-wastefulness and convergence are given in 5.3 ; 
an extension covering the case where some goods may be missing from the total 
initial endowment is provided in 5.5. Subsection 5.4 has examples showing how 
various assumptions (other than the "openness" assumption, ED.6) underlying 
the theorems of 5.3 can be satisfied both in classical and non-convex models. An 
analysis of an alternative form of the crucial "openness" assumption is found in 
Subsection 5.6, while 5.7 contains examples of applications, non-convex as well as 
convex, including one non-monotone, where commodities are divisible and utility 
functions continuous. Subsection 5.7.4 contains an example illustrating the 
existence of cases with non-convex preferences and increasing returns in production 
satisfying all assumptions (including "openness") of the theorems in Subsection 
5.3. Subsection 5.8 is a summary of the results in Section 5. 

2. THE GENERAL NOTATION AND TERMINOLOGY 

2.1. The B Process 

The B process involves N participants (persons, agents) who, at successive dates 
indexed as t = 0,1,. . . , make bids and arrive at agreements. The bid (proposal) 
made by agent i at date t is a subset B f of the set X i  of i's conceivable actions.24 
(Elements of Xi, i.e., conceivable actions of agent i (whether or not they constitute 
agreements) are generically denoted by yi or xi or, sometimes, x.) 

Given the array (ordered N-tuple), 

of bids made at date t, an agreement y, for date t results.25 This agreement is also 
an ordered N-tuple, 

24 AS will be seen below in the present section, the set X i  may include actions of agent i that are 
not feasible, either individually or jointly. However, the rules of the process formulated in Section 2.3 
will require that the bid Bf, be a subset of the set Yi (to be introduced later in this section) of actions 
that are individually feasible, Yi c X i . It may be helpful to keep in mind an interpretation of this model, 
in which actions are trades among participants; here Yi might be the subset of the commodity space 
that consists of trades leaving person i's consumption within his subsistence set (e.g., a translate of the 
nonnegative orthant), while Xi might conveniently be taken to be the whole commodity space, so that 
Bf is a subset of the commodity space. In this interpretation, yf (defined in this section) is a point of the 
commodity space. 

2 5  The agreement y, for date t is either identical with that for the previous date t - 1, or selected on  
date t ,  and according to the rules of Section 2.4, from a subset ofX?==,B;. Thus y, is the agreement 
currently in force, but it may have been formulated at an earlier date and continued since then. 
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where yf is the action of agent i agreed for date t. This action is an element of set X' 
of i's conceivable actions. Thus the agreement y, belongs to the Cartesian product 

N 

X =  X x i ,  
i =  1 

the set of conceivable joint actions. Elements of X, i.e., conceivable joint actions 
(whether or not they constitute agreements) are generically denoted by y = (yl, 
. . .,fl),or sometimes by x = (x l , .  . . ,x N ) .  

A sample realization of the process is a sequence (yo, B,), (y,, B,), . . . , written 
briefly as {(y,, B , ) ) ~ ,  . The ordered pair (y,, B,) constitutes the state of the process 
at date t. 

Not all joint actions in X are feasible. There are both "individual7' and "global" 
feasibility constraints. To each agent we shall associate a set of actions that are 
individually feasible for him. The set of actions individually feasible for agent i 
will be denoted by Y', a subset of x i .  We shall write 

Y = xN 

Yi. 
i =  1 

We shall further suppose that there is some set Yc E X (not necessarily a subset of 
Y) of joint actions representing those N-tuples (y l , .  . . ,yN) from X that are 
compatible, i.e., satisfy certain conditions of global feasibility. The set of feasible 
joint actions, to be denoted by Y,, is the set of N-tuples (yl , .  . . ,yN), such that the 
yi are both individually feasible and compatible, i.e., 

I N \ 

In Subsection 2.7, we shall provide a specific interpretation of the sets X' ,  Y', 
and Yc in terms of trade, consumption, and production. 

2.2. Preferences 
Agent i has a preference preordering < on Y'. For each yi E Yi, the contour 

'7 
set G'(yi) is the set {yi :yi 2 yi, yi E Yi) of actions in Yi that are at least as good as 

I 

yi for agent i. For y in E; G(y) - Y, n X;' Gi(yi).26 

2.3. Bidding 

Roughly speaking, bids are generated as follows. 
For every i there is given (and left fixed throughout the process) a probability 

distribution2' P i  on Yi. For every yi in Y' define P i ( .  lyi) to be the conditional 
probability distribution induced by Pi  on ~ ' ( y ' ) , ~ ~  and let 

2 6  Usually, preferences are postulated on outcomes of actions rather than the actions themselves. 
However, we shall be primarily interested in cases in which preferences with regard to outcomes can 
be used to define preferences with regard to actions. 
''Pi is called the "initial" distribution. 

This means that P i ( .  ly') gives zero probability to subsets of Y' that are outside Gi(y'), probability 
one to the set Gi(yi), and that for the subsets of Gi(y') the ratio of probabilities according to P i ( .  lyi) 
is the same as according to Pi .  
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Initially, i.e., for t = 0, we set yo = (0,). Given that y, = ( y : ,  . . .,Y y ) ,  t 9 0, 
is the current (most recent) agreement, z:, . . . ,zr are independent "random 
points" in Y ' ,  . . . ,Y N ,respectively, with zf selected according to the distribution 
Pi(. 1~; ) .  

Now for every zi in Y', there is given a set ['(zi)G Y i , the bidding neighborhood 
of zi. Then i's bid is specified as 

In other words, at date t 3 0, agent i chooses, according to a distribution P i ( .  lyf), 
an action z' from among those actions that are at least as good as yf, and makes as 
his bid all those actions in the neighborhood ci(zf)of zf that are for him at least 
as good as y f .  

In the discrete case, i i (z i )will consist merely of the single point zi. In the divisible 
case, illustrated by Figure 2.1, ['(z') will be the cube of fixed "radius" centered 
at zi, intersected with Y i ,the admissible set.29 

I x i  

FIGURE2.1. c(zf)  = ADFHK (shaded =); the "radius" is the length of A C ;  B: = BDE (shaded f ). 

2 9  The reasons for using such bidding neighborhoods in the divisibli case are discussed in Section 
1.1.2 above. 
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2.4. Agreement 

An array B - (B1, . . . ,EN) of bids is feasible if B* - (Xr='=,Bi)n Yc is not 
empty. If B, - (B:, . . . ,B:) is not feasible, then y,,, = y,. If B, is feasible, then 
y,,, is a joint action chosen "at random" from B,* - (XF= ~ f )n Yc. (One may 
imagine that an "umpire" checks the feasibility of B,, and if B,* is not empty, 
chooses y,,, from BF according to the uniform probability distribution.) 

2.5. Optimum 

As usual, a feasible N-tuple 
for all y in Y,, 

(in Y,) is Pareto optimal (or simply optimal) if 

ji$ yi (i = I , .  . . ,N), 

implies 

(where 7 denotes indifference with respect to the preordering 
A bidding distribution P = P ( .  ly) is optimal if y is optimal. 
Suppose all individuals' preferences are representable by real-valued utility 

functions, and denote the ith utility function by Ui. An N-tuple u - (ul , .  . . ,uN) 
of the process through time t, P, = P implies that with probability one, 
yN), ui = Ui(yi), i = 1, . . . ,N, i.e., if u is the image of some optimal joint action y. 

2.6. Equilibrium and Stability 

Define the sequence of bidding (probability) distributions (P,);"=,associated 
with the process ((y,, B,)),"=, ,by 

Pt - [PI( .  ly:), . . . ,PN( .  Iy,N)I = P( . Iyt). 

A bidding distribution P is an equilibrium bidding distribution if, given the history 
of the process through time t, P, = P implies that with probability one, 

P, = P for all s > t 

To define stability we note that corresponding to the stochastic process {y,),"=, 
of agreements, there is also a stochastic process {P,) ,", ,  of bidding distributions, 
and when preferences are representable, a stochastic process {u,),"=, of utility 
N-tuples. 

A process could be defined as stable if the sequence (y,),"=, converged almost 
surely to some point of Y,. But such a definition would be too strong for our 
purposes and we define stability in terms of almost sure convergence of (P,)p",, 

30 If j 7 for all i = 1 , .  . . ,N, we say that y' - (y', . . . ,JN) is noninferior to (at least as good as) 
j- ( j l , .. . ,)iv)in Pareto's sense, and write j y'. We write j- y (Pareto equivalence) if jj y" 
and y' 5j;we write j< y' (y' is Pareto superior to 3 if jj y' but not y' j j. 
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as topologized in terms of the corresponding u,. Thus, when preferences are 
representable, and hence the sequence (u,),"=, is defined, the B process is said to 
be stable if ii = lim,,, u, exists almost surely (with probability one). This limit is a 
random (vector-valued) variable. 

In the discrete case (Yi denumerable and Y, finite), the limit is almost surely 
attained in afinite time; i.e., with probability one, there is some t' < cc such that 
u, = u,, for all t > t'. Of course, here ii = u,, . (In the discrete case one may avoid 
any reference to the utilities and definejinite-time stability of the B process as the 
almost sure existence of t' < a;, such that P, = P,, for all t > t'. This finite-time 
stability is a stronger property than ordinary stability as defined above.) 

A stable process is said to be optimally stable if the ii is almost surely optimal. 
(In the discrete case, the process is optimally (as well as finite-time) stable and the 
distribution P,, is optimal.) 

2.7. Trade, Consumption, and Production 

We now present a particular specification of our model that relates it to the 
usual models of resource allocation. Suppose that there are M commodities, 
each commodity being either "indivisible" or "divisible." An "indivisible7' 
commodity can be traded, consumed, and produced only in integer-valued 
amounts; the corresponding quantities for "divisible" commodities may be any 
real numbers. Thus a point in the commodity space, X, is an ordered M-tuple 
(x,,  . . . , xM), where x j  represents the quantity of commodity j, and is either an 
integer-valued variable or a real-valued variable. In either case, points in the 
commodity space can be added or subtracted in the obvious way: 

~ ( x ~ , . . . , x M ) ~ ( z ~ , . . . , z M ) = ( x ~  kzM).k Z l , . . . , x ~  

Using the notation of Subsection 2.1, let X i  = 3 for i = 1,.  . . , N. A point xi = 
(x;, . . . ,x a )  in 3 represents a trade for agent i ;  a positive coordinate represents a 
net receipt by i, and a negative coordinate a net delivery. 

In general, an agent may be a consumer and a producer, as well as a resource 
holder. Let mi, a point in the commodity space, denote the irtitial endowment of 
agent i. A subset C' of the commodity space is i's consumption set.31 A subset X b  of 
the commodity space is i's production possibility set. Since the actions of particular 
interest are trades, we define the set of actions individually feasible for agent i as 
the set of trades 

y '  = C' - xp - (mi). 

Since usually preferences are postulated on Ci, it is desirable to show how a 
preference relation, say <*,defined on Ci, induces a preference relation 5 on 

7' I 

Yi. This is accomplished by a formulation due to Trout Rader (see Vind [IS, 
p. 471): given two elements x', x" in Yi, it is postulated that 

x1 $ x / ~ ,  

3 1  AS is often done in resource allocation models, we shall, in certain special cases (Sections 5.5 
and 5.71, sometimes take Ci to be the nonnegative orthant of the commodity space. 
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if and only if there exists i E Xk, such that 

x l + i  + m i $ * x l ' + x  +mi ,  forall  X E X ~ .  

2 is a transitive reflexive complete relation on Yi, if 2"has the corresponding 
1 1 

properties on Ci. 
As in conventional competitive equilibrium theory, we often find it convenient 

to rule out the "mixed" consumer-producer agent and to divide agents into 
"pure" consumers and "pure" producers. A consumer has 

Xk = (O,), so that 

and trade jji is preferred (or indifferent) to trade Li (in terms of 2)if and only if 
1 

ji = ci - mi, J i= Ei - mi, and consumption ci is preferred (or indifferent) to 
consumption Z' (in the sense of k*).A producer has Ci = {O,), so that Y' = 

I 

- X i  - (mi), and the preference relation is such that he is indifferent among 
all trades, i.e., such that I 

x' x" for all XI,X" E Yi 

More particularly, a resource custodian may be represented as a producer for 
whom X i  is the set of all points in 9"with nonpositive coordinates (see, e.g., 
Koopmans [Ill) .  

Although a producer is, by definition, indifferent among all trades, we do not 
rule out the possibility that a consumer also exhibits such indifference. Such a 
consumer could still be distinguished from a producer in terms of the properties 
that are subsequently postulated for the set Ci of a consumer as against the set 
-Xk of a producer. 

In order for an N-tuple ( y ' ,  . . . ,y N )  of conceivable trades to be compatible, one 
must have 

where 0, is the origin (0,. . . , 0 )  of 3;the set of such compatible trades will be Y,. 
The set Y, of feasible trades is the set of compatible N-tuples ( y ' ,  . . . ,y N ) ,  such 
that yi is in Yi for each i. 

The development of the theory in Sections 3 and 4 is without reference to this 
particular model of resource allocation, whereas Section 5 deals specifically with 
the resource allocation model of this section in the case in which all commodities 
are divisible. Section 4 deals with the general model, but with the added assump- 
tions that the Yi  are denumerable and that Y, is finite (the discrete case). This 
would cover, in particular, the resource allocation model in the case in which all 
commodities are indivisible and the set of attainable actions of the economy is 
bounded. 
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3. THE EQUILIBRIUM PROPERTY OF OPTIMA 

3.1. An Optimal Bidding Distribution Is an Equilibrium 

Without further specification of the bidding process it is already clear that 
successive agreements y, do not get worse from the point of view of any of the 
individuals, i.e., y, 5 y,, , for all t.32 Hence if y, is optimal, then y, - y, for all 
s 3 t .  It follows that if y, is optimal, then P( . ly,) = P ( .  /y,) for all s 3 t, since if 
x - y (i.e., x i  7 yi for all i) then P( . lx) = P( . ly). Thus we have proved (without 
any specializing assumptions concerning the environment of the bidding process): 

THEOREM3.1 : If a biddirlg (probability) distribution is optimal, then it is an equili- 
brium. 

3.2. Other Propositions 

As indicated in the Introduction, we shall prove two additional propositions 
under alternative sets of additional assumptions. These propositions are : (i) every 
equilibrium bidding distribution is optimal; (ii) the sequence of bidding distribu- 
tions P, converges, in a sense to be made precise, to an equilibrium. The basic tool 
in proving both of these propositions will be the fact that every non-optimal 
bidding distribution is sure to be improved upon eventually. 

In the next sections we consider successively the discrete case (denumerable Yi 
and finite YF, Section 4) and the case of divisible commodities (Euclidean com- 
modity space, Section 5). In each case we first prove the "inevitability of improve- 
ment" starting from a non-optimal agreement, and then prove the other two 
propositions. 

4. THE DISCRETE CASE : THE OPTIMALITY AND STABILITY OF EQUILIBRIA 

4.1. Assumptions 

Of the following four assumption^,^^ Assumptions EN.l and EN.2 define the 
class of environments covered by the results of Section 4, while Assumptions 
PN.l and PN.2 specify the nature of the bidding process of Section 4. 

We make the following assumptions : 

ASSUMPTIONEN. l :  Each set Y' is denumerable (i = 1,.  . . ,N). 

Assumption EN.l is, of course, satisfied in the case where the commodity space 
is finite-dimensional and all components of the commodity vector are integer- 
valued, i.e., where there are finitely many indivisible goods. In this case the prob- 
ability distribution Pi  can be described in terms of a frequency function pi. 

3 2  This is the case because P i ( .ly') gives zero probability to any subset of Y' that is outside Gi(y'). 
3 3  In the symbols designating assumptions, E refers to environment, P to process, N to the discrete 

(non-divisible) case, and D to the divisible case. 
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ASSUMPTIONPN.l : Each of the distributions Pi is strictly positive, i.e., 

(4.1) pi(yi)> 0 for all yi E Yi (i = I , . .  ., N). 

ASSUMPTIONPN.2: The bidding neighborhood li(zi) consists of the point zi 
alone. 

4.2. Improvement 

Consider any feasible joint action j .  Let I ( j )  be the set of feasible joint actions 
that are indifferent to j for all individuals (i.e., Pareto equivalent), and H(j)  be 
the set of all feasible joint actions that are as good as j for all individuals and better 
for at least one (i.e., Pareto superior to j ) ;  i.e., for any j E YF,write 

and 

Clearly, if y, = j ,  then any future action y,(s > t) must be either in I ( j )  or in H(j), 
since G(j) s I(J) u H(J). 

By Assumption PN.l and the definition of the bidding distributions (Sections 
2.2 and 2.3), the bidding distributions P ( .  ly) are strictly positive on G(j), and are 
identical for all y E I(j). That is, 

and 

(4.5) q(ylj) E q(ylj') if j ,  j' E YF, j -- J', and y E G(y). 

Now if j is optimal, then H(y) is empty, and given that y, = y, it follows that y, E 
1 0 )  for all s 3 t, which is a restatement of Theorem 3.1. On the other hand, if j 
is not optimal, then H(j)  is not empty, and therefore 

Inequality (4.6) states that if the most recent joint action is not optimal, then there 
is a positive probability that the next action of the process will constitute improve- 
ment for at least one individual and not harm anyone. 

4.3. An Equilibrium Is an Optimum, and the Process Is Stable 

From (4.6) it is immediate that if j is not optimal, then P ( . ly) is not an equili- 
brium. 

THEOREM4.1 : Under Assumptions EN.1, EN.2, PN.l ,  and PN.2, if a bidding 
distribution is an equilibrium, then it is optimal. 
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The sequence {y,),"=, of agreements is a Markov process, as is the sequence 
{P,},",, of bidding distributions. Since the y, sequence is monotone with respect 
to the pzeferences, i.e., prob {y, 5 y, for all t 6 s} = 1, it follows by (4.6) that if 
y E YF is not optimal, then y is a transient state of the y, process, and corres- 
pondingly P ( .  (y) is a transient state of the P, process. On the other hand, if y is 
optimal, then I(y) is an absorbing set of states. Since YF is finite, the y, process 
must eventually enter some indifference set I(y) for which y is optimal, and cor- 
respondingly P, must eventually reach an optimal distribution, and stay there. 
We summarize this by: 

THEOREM4.2: Under Assumptions EN.l,  EN.2, PN. l ,  and PN.2, with probability 
one, there is some t < co such that (i) P, is optimal; and (ii) P, = P, for all s 2 t. 

Remark: We have shown that in the discrete case the B process is jinite-time 
stable, and in fact, optimally so. The finite-time feature is due to discreteness and 
will not appear when goods are assumed to be divisible. 

5. THE CASE OF DIVISIBLE COMMODITIES : THE OPTIMALITY AND 

STABILITY OF EQUILIBRIA 

5.1. Assumptions and Notation 

5.1.O. Introduction 

In this section we present an analysis of the case of divisible commodities that 
is analogous to the discussion of the discrete case. However, as indicated in the 
Introduction, the argument is considerably more complicated, and the equilibrium 
is not attained in finite time. Furthermore, several additional assumptions are 
made to obtain results corresponding to those of Section 4. 

The basic results for the divisible case are stated in Theorems 5.1 and 5.2 of 
Section 5.3. Section 5.2 contains the fundamental lemmas underlying these 
theorems. The new assumptions are given in 5.1.1 ; those pertaining to the process 
are Assumptions PD.l  and PD.2, while assumptions labelled ED.l through ED.6 
pertain to the environment. (Recall that P refers to the "process," E to the "en- 
vironment," and D to the "divisible" case.) 

The results are generalized in Section 5.5; illustrative examples are provided 
in Sections 5.4 and 5.7, and a counterexample in Section 5.5.6. Sections 5.6 and 
5.7 provide more readily verifiable counterparts of one of the assumptions (As- 
sumption ED.6). A more detailed summary of Section 5 is found in Section 5.8. 

The development in this section takes explicit account of trade, consumption, 
and production, using the model of Section 2.7, with the commodity space X taken 
to be the M-dimensional Euclidean space RM. The reader is referred to Sections 
2.1 and 2.7 for the general notation and terminology. 
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TO define distance in the commodity space we find it convenient to use the norm 

llwll = max{lwjl:j = 1, . . . , M), w = ( w l  , . . . , w M ) e R M ,  

sometimes also written as Iwl 

5.1.1. Assumptions about the Environment and the Bidding Process 

We now state the assumptions to be made in our analysis of the case of divisible 
commodities. (The reader is again referred to Section 2 for general notation and 
terminology3 

ASSUMPTIONED.l : Y i  is a closed subset of X - RM,  for i = 1,2,.  . . ,N. 

ASSUMPTIONED.2: As in Section 2.1, the feasible set is given by 

N 

(5.1) Y c - { y : y = ( y l  , . . . ,y " ) . y ~ Y . ~ y i = O , ) .  
i =  1 

ASSUMPTIONED.3 : YF is bounded. 

ASSUMPTIONED.4: There is n y - ( y l , .  . . ,y N )  in Yc such that,34 for each 
i = 1,.. . ,N ,  yi E ln t  (Yi ) .  

(Note that Assumption ED.4 implies YF # 0where denotes the empty set.) 
Examples in which the preceding assumptions are satisfied are given in Section 

5.4 below. 
We make the further assumptions: 

ASSUMPTIONED.5: For each i = 1, .  . . ,N ,  the preference ordering 5 is repre- 
sentable by a continuous real-valued function U i  on Yi.35 I 

ASSUMPTIONPD. l :  For each i = 1, . . . ,N ,  the distribution Pi is (i) absolutely 
continuous (with respect to Lebesgue measure), and has a corresponding density 
function pi that is (ii) continuous and (iii) strictly positive on Y i ;  

ASSUMPTIONPD.2 : For each i = 1, . . . ,N and each zi E Y',  the "bidding neigh- 
borhood" Ci(z') is given by 

34 For a set A, the interior of A is denoted by Int ( A ) .  
35 Decomposability (absence of externalities) is implied by the requirement in Assumption ED.2 

that Y, = (?=, Yi) n Yc, and the fact that the U iare defined on Y' by Assumption ED.5. 
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where the "radius" 6 is a positive number,jxed throughout the process, and indepen- 
dent of i and of zi. 

Our final assumption (Assumption ED.6 below, called "openness") again 
pertains to the environment. Before stating it we introduce some additional 
notation. Define 

(5.2) P = {y :y E YF, y is Pareto optimal), 

and, for E > 0, 

(5.3) = {y :y E YF. There exists z E ?such that, for all i, ui(zi)- Ui(yi)< E}, 

where \ denotes the set-theoretic difference. Thus P i s  the set of optimal alloca- 
tions; for any positive number E ,  % is the set of all allocations that fall short (in 
terms of everyone's utility) of some optimal allocation by less than E. If y is in -
Y,! then for every optimal allocation z there is some individual i for whom Ui(yi) 6 
U'(zi) - E .  Note that YF is a closed bounded set in Y, and therefore, by the con- 
tinuity of preferences, 

[ (i) P is closed in YF, and hence compact in Y: 

(5.5) { (ii) is open in YF for each E > 0 ;  

kiii) is closedin YF, and hence compact in Y,for each E > 0. 

The utility space images of the sets YF, 2Z, and are illustrated in Figure 5.1. 
In the figure, O(Y,) is the utility space image of YF, e t ~ . ~ ~  

Let K be the set of those agents i for whom Ui is constant on Yi, i.e., for whom 
x 7 y for all x and y in Yi. (K includes or equals the set of "producers.") For every 
i = 1, . . . ,N, every yi in Yi, and every j in YF, define 

{x :x E Yi, Ui(x) > Ui(yi)), for i # K ; 

Yi, f o r i ~ K ;  

(5.6) / and 

Note that G+(y) is open in YF for all y E YF. 
For any subset A of a Euclidean space, by an A-open cube in A we mean a set S 

of the form 

3 6  For typographical reasons, the symbol t is reproduced in this and subsequent figures as E. 
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For a set W! O(W)is the utility space image of W U(Y,): the (closed) area bounded by the curve 
ABCDTSRHA. 0(%):  the (closed) area bounded by RHGFEDTSR. U(8):  the curve ABC (the thick 
curve). U(X): the shaded area bounded by ABCDEFGHA including the perimeter, except for the 
points H and E and the curve HGFE,joining them. 

for some c E A and some (finite) positive number p. The point c is called the center 
of the cube, and the number pits radius. In particular, A may be the whole Euclidean 
space. Corresponding to (5.7) we have the definition of an A-closed cube in A, for 
which the strict inequality in (5.7) is replaced by the weak inequality, I/w- ell 6 p. 
For example, if A is the Euclidean plane, the interior of the dotted square in 
Figure 5.2 constitutes an A-open cube with center at the origin O,, and radius p. 
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For any subset W of Euclidean space let 9 ( W )  denote the smallest linear 
variety3' containing W. We shall be dealing with Y(W)-open cubes. For example, 
in Figure 5.3, the Euclidean space is the plane, W is the line segment AB, 9 ( W )  
is the (infinite) line LL, and the open segment CD is an Ip(W)-open cube with 
center P and radius equal to the length of the segment PE. 

We now state the final assumption of this section, which we shall call the 
assumption of opciwess. 

ASSUMPTIOYED.6: For every E > 0 and y E z, there exists an Li?(Y,)-~pen~~ 
cube S such thnr ( 1 )  S E Gf  (y) and (ii) S n # a. 
Assumption ED.6 (illustrated in Figure 5.4) will play a crucial role in guaranteeing 
the inevitability of improvement from a non-optimal allocation. 

Properties related to the assumption of openness as well as examples of special 
cases are presented in Sections 5.6 and 5.7. 

5.1.2. Bounds on the Content of a Cube in a Linear Variety 

We conclude this section with two facts that will be useful in what follows. 
First, it is easy to show (using Assumption ED.4) that 

Second, we shall need bounds for the content of a cube in a linear variety. Let 
E be a Euclidean space of dimension D; then the E-content of an E cube of 
radius p is ( 2 ~ ) ~  = 1, area for D 2, volume (where E-content means length for D = 
for D = 3, Lebesgue measure in general). Let L be a linear variety of dimension 
d in E, and let S be an L cube (open or closed) with radius p ; then the L-content 
p(S) of S (i.e., the content of S considered as a subset of L) satisfies the inequalities 

where k ,  is a positive number depending only on d. 

PROOFOF (5.9): Without loss of generality we may center the cube S at the 
origin. No two points in S have a greater Euclidean distance than the points (D- 
tuples) (-p,  -p, . . . , -p) and ( +p,  +p ,  . . . , + p ) .  The Euclidean distance of 
these two points is 

3 7  A linear variety is a translate of a linear subspace. Let ijbe any point in W ;  then Y ( W )may be 
characterized as the set of all points of the form 

ij + C a*(wh- ij), 
h 

where H 3 l ; w ' ,  . . . ,d' are any points in W; and a , ,  . . . ,aH are any real numbers. 
3 8  We shall sometimes write L, for Y(Y,) .  



RESOURCE ALLOCATION 

M = 2, N = 2, Y' = S Z :  conventional preference maps; p2: curve 0'02 ; q2: trip'^ below AB 
but above A'B'; z,:closed "triangles" ABC and A'B'C', G:(y):  the lens-shaped area (shaded I l l )  
above 1's indifference curve KK'  but below 2's indifference curve LL';  S , :  the interior of the square 
TPQR (shaded #I). 

Note:  ?,, t,,F,, G:(y), and S, are 2-dimensional (in the "Edgeworth Box") representations of 
the corresponding Cdimensional sets ?, p,, ye,and G+(y). 
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Hence 

AS) 6 [$(2p)ld. 

On the other hand, any point w = (w,, . . . ,wk)E L such that 

is an element of S, i.e., S is a superset of the open d-dimensional Euclidean sphere 
whose L-content is kd(2p)d, where k, is a constant depending on the dimension d 
only (e.g., k, = 1, k, = 4 4 ,  etc.). Hence, 

dS)2 kd(2~)d. 	 Q.E.D. 

5.2. Improvement 

5.2.0. Introduction 

As in Section 4, the key step in the argument is the proposition that improvement 
from a non-optimal allocation is inevitable. In the divisible case this proposition 
takes the form of Lemma 5.6 in Section 5.2.2 below, and we lead up to it with 
a series of lemmas in Section 5.2.1. 

5.2.1. Preliminary Lemmas 

LEMMA5.1 : If y E Y, is not optimal, then there is a positive E such that y E E .  

The proof of this lemma is left to the reader. 
From now on, to simplify notation, we write 

(5.10) 	 L, = 9 ( Y F ) .  

For every E > 0 and y E define Y(y, E) to be the set of all L,-open cubes S 
such that 

S c G+(y)n t. 

LEMMA5.2 : For every E > 0 and y E x,Y(y, E) is not empty. 


PROOF: By Assumption ED.6 there exists an L,-open cube S ,  with center c E L, 
and radius p > 0 such that 

(i) S, c G+(y) and 

(ii) S, n 2%. 

Hence there exist z, and z, such that 

(i) / lzl  < P ,  Z I E L ~ ;  

(5.12) I (ii) z, E 9 : and 

(iii) Ui(zi) > Ui(zi)- E, i = 1,. . . ,N 
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It is easy to show that, for some sufficiently small positive number y, the L,-
open cube with center z ,  and radius y belongs to Y(y, E). 

LEMMA5.3: For any E > 0 and y E %, there is a cube S in Y(y, E) of maximum 
radius. 

PROOF: For any E > 0 and y in f;i, ,  consider the set of pairs (c,p) such that the 
L,-open cube with center c and radius p is in Y(y, E). Using the compactness of 
Y, (from Assumptions ED.l and ED.3), it is straightforward to show that the set 
of such (c,p) pairs is compact, from which the statement of the lemma follows 
immediately. 

(5.13) o(y, E) m max {p :S E Y(y, E), S has radius p} . 

LEMMA5.4 : For every jxed E > 0, o( . , E)is lower semicontinuous on x. 
PROOF: Suppose that E > 0 is fixed, and that 

jj = limy,, 
n'm 

where y, E E, n = 1,2, . . . . Since x is closed, jj E also. We wish to show that 

(5.14) o(J, E) 6 lim inf a(y,, E) 
n+ m 

(where a(y, E) is defined by (5.13)). 
By Lemma 5.3, there exists an L,-open cube S E Y(jj, E) with the (maximal for 

J and E) radius ,? = o(jj, E). Let e be the center of S.  (C depends on jj and E, but the 
notation will not indicate this.) 

For any number p, 0 < p < o(J, E), denote by T, the L,-open cube of radius p 
with center also at E. (See Figure 5.5.) 

Using the continuity of preferences (Assumption ED.5), it is easy to show that 
there exists a positive integer H ,  such that 

T, E Y(y,, E), for n 3 H ,  ; 

and so, because o(y,, E) is defined as the maximum radius of cubes in Y(y,, E), 

o(y,, E) 3 p, for n 3 H,. 

In summary, for every p such that 0 < p < p, there exists an integer H ,  such 
that n 3 H ,  implies o(y,, E) 3 p. Inequality (5.14) follows immediately. 

LEMMA5.5 : For any E > 0 there exists a p > 0 such that for any y E E there is a 
cube in Y(y, E) of radius p. 

PROOF: Let E > 0 be fixed. is compact and, by Lemma 5.4, o ( .  ,E) is lower 
semicontinuous; hence, a ( .  , E) attains a minimum in y ,  say at jj. By Lemma 5.3, 
p = o(J, E) > 0. Again by Lemma 5.3, for any y E T;i,, there is an S E Y(y, E) with 
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radius a(y, E) and center, say, c. But a(y, E) 2 p,  so that the L,-open cube Sf with 
center c and radius p is also in Y(y, E), which completes the proof of the lemma. 

5.2.2. Inevitability of Improvement from a Nonoptimal Allocation 

LEMMA5.6: For every E > 0 there is a y > 0 such that for all y, y G Y,, 

(5.15) prob (y,+, E % I y ,  = y) 2 y .  

(Note that the number y does not depend on y.) 

PROOF: When N = 1, YF = (0,) is a one element set. Hence in this case Y = 

% = Y, and y, E for all t, so that the conclusion of Lemma 5.6 holds with :,= 1. 
Hence, without loss of generality, we shall henceforth assume that N > 1. 

Let E > 0 be fixed. If y, = y E x , then the probability in (5.15) equals unity, 
because the utility of successive agreements is non-decreasing. It remains to 
consider the case y E x.39 

Lemma 5.5 guarantees the existence of a cube S1 in Y ( y ,E )  whose radius p > 0 
is independent of y (but dependent on E )  and whose center shall be denoted by 
c(y, E). We now construct the L,-open cube S with the same center c(y, E) and the 
radius 

where 6 is the radius of the bidding neighborhood (see Assumption PD.2). It follows 
that S is also in 5"(y, E), so that 

Let Yk denote the projection of Y, into Yi. By (5.17), 

(5.18) z E S implies zi E G+'(yi)n YL 	 ( i  = 1, . . . , N). 

Now let T be the RMN-open cube with center c(y, E) and radius q. (S and T have 
the same center and radius, but S = T nL,.) We shall show that 

(5.19) 	 z E Timplies zi G G+i(yi)n Y; (i = 1,.  . . ,N) .  

We first note that, using (5.8) and ED.4, 

(5.20) S = T n LF = T n Y, 

39 Note that y E implies N > 1 
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Write c(y, E )  = (cl, . . . ,cN). 
Let z be any vector in IT; and i any integer between 1 and N. Define zkby4' 

One can easily verify that 

Hence, by (5.20), Z is in S. But 2' = zi,so by (5.18), 

Thus we h3ve shown that (5.22) holds for any z E T and i = 1,.  . . ,N: i.e., we have 
demonstrated (5.19). 

We shall now show that there exists a number /Z > 0 such that 
N 

(5.23) n pi(z'ly) 3 AN, for all z E T. 
i =  1 

First, each Yb is a coordinate projection of the compact set Y,, and is therefore 
compact. Hence there exists 2 > 0 such that 

(5.24) $(zi) 3 /Z for all z' E Y $ ,  

where pi is the "initial" density function. To see this, for each i let ,Ii = min [p'(zi) : 
z' E Yk] ; this minimum exists and is positive because of the compactness of Yb 
(Assumptions ED.l and ED.3) and the continuity and positivity of pi (Assump- 
tion PD.l). 

Take /Z = min {/Zi:i = 1,.  . . ,N}. Since Gi(Y') G Yi, the construction of con- 
ditional probabilities (see Section 2.3) ensures that 

(5.25) pi(zily)8 p'(zi), for all zi E Gi(y'). 
Therefore, (5.24) and (5.25) together yield 

(5.26) pi(zily) 2 A, for all z' E Gi(yi)n Y k .  

Hence, by (5.19), for all i ,  

pi(z'ly) 2 2, for all z = (z l , .  . . ,zN)E T, 

so that (5.23) follows. 

40 Recall that N > 1 
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Now note that 
N 

prob { Z , E  Tly,  = y)  = pi(zily) dzl  . . . d z N  
T i = l  

Hence, by (5.23), 

(5.27) 
 prob ( Z ,E Tly,  = y )  3 IN1:'
 . . . dzX 

-- y 1  > 0 ,  

where the term (2yYNis the content of the RMN-cube T of radius y. 
Adopting temporarily a more explicit notation in which B: = B*(Z,) and 

B, = B(Z,),we shall show that 

(5.28) Z ,  E T implies B*(Z,) 2 S 


Let Z ,  E T and x E S. Then, by the definition of S, 7;and y, 


Since Z ,  is the "center" of the set ( (Z , ) ,and jlx - Z, / /  < 6 , it follows that x E i(Z,) .  
But x E S G Yc n G ( y ) ;hence x E Yc nB(Z,) = B*(Z,),which completes the proof 
of (5.28). 

From (5.28)it follows that 

(5.29) prob (B: 2 Sly, = y )  3 prob { Z ,E Tly,  = y ) .  

In conjunction with (5.27),this implies 

(5.30) prob {B: 2 sly, = y )  3 1'1 

Denoting by T/T: the umpire's choice, we have 

content of S s 
prob ( Y ESIB: 2 S )  = 3 - = y z > O ,content of B: b -

where by (5.9), 

d - dimension of L,. 

We observe that by (5.8)and Assumption ED.l, d = (N - l ) M  3 1. Therefore: 

prob {qE Sly, = y )  3 prob {YE SIB: 2 S) ,  

prob{B: 2 Sly, = y )  3 y l y 2  -- y > 0 .  
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A fortiori, since S c x ,  
prob {y,,, E Rly, = y )  2 prob {W,ESIY,= y )  

(Note that y does not depend on y, although it does depend on 8.)  

This completes the proof of Lemma 5.6. 

5.3. An Equilibrium is an Optimum, and the Process is Stable 

5.3.1. An Equilibrium Bidding Distribution is Optimal 

THEOREM5.1 : Under Assumptions PD.l, PD.2, and ED.l through ED.6 of Section 
5.1, if a bidding distribution is an equilibrium, then it is optimal. 

PROOF: Proof is immediate from Lemmas 5.1 and 5.6. 

5.3.2. The  Utility Process 

As in the finite case, the sequence {y,),",, of agreements is a Markov process, 
and so is the sequence {Pi),"=,of bidding distributions. We define 

The sequence {u,),"?, is also a Markov process, and is (coordinate-wise) non- 
decreasing. Furthermore, since Y, is compact, and the utility functions are con- 
tinuous, the sequence {u,),"=,is bounded. Hence 

(5.32) lim u, = ii 
i-cc 

exists almost surely. This limit a is a random (vector-valued) variable. 

5.3.3. The  Utility Process Converges to an Optimum 

Our stability theorem, corresponding to Theorem 4.2, is that ii is almost surely 
optimal (see definition at end of Section 2.5 above). 

THEOREM5.2: Under Assumptions PD.l, PD.2, and ED.l through ED.6 of Section 
5.1, ii = lim,,, u, is optimal with probability one. 

PROOF: Define, for any point y E E: y = ( y l , .. . ,yN) , its utility space image 

and, for any set W c Y , its utility space image 

U(W) = { u : u  = U ( y )for some Y E  W ]  
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Corresponding to Y,, and we define 

By Lemma 5.1, 

From Lemma 5.6 one easily sees that. for any n, 

prob { a E Vlin}= 0, 
since 

prob {u ,E: V1,"j 6 - f (lllz)lf, 

where f (8)  = y of Lemma 5.6, and u, .$ Vlln implies us-$ V,,, for all s 3 t (almost 
surely). Hence 

prob {ii E (vF\P)j = 0. 

5.4. Ver$cation of Assumptions ED.l  through ED.4 :Some Special Cases 

5.4.0. lntroduction 

It is important to verify that the B process, while designed to handle cases where 
some of the conventional assumptions are violated, does work in the conventional 
cases as well. We therefore provide in this section examples in which Assumptions 
ED.l through ED.4 are satisfied when some of the traditional postulates are 
adopted.41 We use here the notation and terminology of Section 2.7, referring 
specifically to consumers, producers, and trade. Let J be the set of consumers, and 
K be the set of producers, so that J u K = {I , . . . ,N ) ;  recall that Cj is the con- 
sumption set of consumer j E J ;  Xk, is the production set of producer k e K ;  
(w',,. . . ,wk) = oiis the initial resource endowment of agent i (i in J or K), and 
W, = Cr= w; ( m  = 1, .  . . ,M).  

We define further : 

N 

w = 1wi (aggregate initial resource endowment), 
i =  1 


X ,  G 1 X: (aggregate production set), 
kaK 

SZ = nonnegative orthant of RM, 

( o , ,  . . . ,a,) = o >> 0, means that every component omis positive, 
m =  1 , 2, . . . ,  M .  

41 The conditions under which the assumption of openness (Assumption ED.6) is satisfied are 
discussed in Sections 5.6 and 5.7. 
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5.4.1. Example 1 : Pure Exchange 

Suppose that there are no producers (K = @), N 3 1, and that CJ = 0 ,  all j, 
w >> Ox.42 It is clear that YJ = Cj  - {oj)  is closed for each j: hence Assumption 
ED.l is satisfied. L;et43 

Note that, constructing YF according to Assumption ED.2, 

hence YF is bounded (Assumption ED.3). To show that Assumption ED.4 is 
satisfied, let 

then, for each i, 

iiJ - wi E Int (Ci - {wi)). 

Thus Assumptions ED.l through ED.4 are satisfied even though no convexity 
or non-saturation assumptions are made with regard to consumer preferences. 

5.4.2. Example 2 : Production and Exchange 

This example covers the previous one as a special case with K = @. The 
assumptions include some of those commonly made in the theory of competitive 
equilibrium. Let N 3 1 and assume 

(5.33) (i) Cj is closed and (ii) Cj  has a lower bound43 for Q , for all j in J ;  

(5.34) (i) X, is (i') closed and (i") convex: (ii) ~ ,k is closed for every k in K ;  

(5.35) Xp  n 0 = {Ox) ("impossibility of outputs without inputs"); 

(5.36) 	 X, n (-X,) = {Ox) ("irreversibility of production") or K is a one-ele- 
ment set (only one producer) ; 

(5.37) Xk, + ( - 0 )  c Xk,,a11 k in K ("free disposal in production"): 

(5.38) there exists a c in Xj,, Int Cj such that Cj,, cJ E X p  + {w). 

Because of (5.33a) and (5.34b), Assumption ED.l is clearly satisfied. In view of 
(5.33b), (5.34a), (5.35), and (5.36), and for Y, constructed according to Assumption 
ED.2, the boundedness of Y, (Assumption ED.3) follows from Proposition (2), 
Chapter 5, Section 4 of Debreu [5]. 

42 In Section 5.5 below, Assumption ED.4 is replaced by Assumption ED.4* which permits the 
replacement of the requirement o >> 0, by o 2 0, in the presence of other assumptions. 

43  Here 6 represents the vectorial ordering of the commodity space. 
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That Assumption ED.4 follows from (5.37) and (5.38) can be shown by using 
the following fact: if A is a set in R M  such that A + (- 52) c A, x is a point in A, 
and z is a point in lZM,z>> 0,, then x - z is in the interior of A. 

Thus, again, Assumptions ED. 1through ED.4 hold, even though no assumptions 
are made as to convexity or non-saturation of consumer preferences. The assump- 
tion that the aggregate production set is convex can be relaxed; see Example 3 
of Section 5.4.3. 

A special case of this example is obtained by replacing (5.33) and (5.38) respec- 
tively by the following: 

(5.33') Cj = 52, all j in J. 

(5.38') There exists an x in X, such that x + o >> 0,. 

An analogue of Example 1 is obtained when it is further assumed that X, = 

-52 = Xk,forall ~ E K .  

5.4.3. Example 3 : A Model Free of Convexity Requirements 

The model of Example 2 can be so modified as to avoid any convexity require- 
ments. To accomplish this, it suffices to replace (5.34iU), which is the only condition 
of Example 2 involving convexity.44 In fact, (5.34") is used, in conjunction with the 
assumptions in (5.33b), (5.35), and (5.36), to assure (along the lines of (5.4.2) in 
Debreu [5,pp. 77-78]) the boundedness of the set Y,. 

It can be shown, however, that the above set of assumptions could be replaced 
by the following set of condition^:^^ 

(5.35') the set X, n [C - o]is bounded: 

(5.33bf) AC n(- AC) = (0) or there is only one consumer; 

(5.36') AX, n (-AX,) = (0) or there is only one producer. 

Condition (5.35') is implied by, but not equivalent to, 

(5.35") AX, nAC = (0) 

The following example shows that (5.35") is in fact stronger than (5.35'): 
Example 3, : M = 2 (two goods); one consumer, C = C1 = 52; one producer, 

with x ,  as the output and x ,  as the (negative) input. Here we have increasing 
returns and X, is non-convex. (5.35") is violated because the positive half-axis Ox, 
is in AXp, but (5.35') is satisfied. (The theorems used in this section concerning the 

44 Example 3 also replaces (5.38b) by its generalization of (5.38b'), although (5.33b) does not imply 
convexity. Cf. Debreu [6, p. 259, condition (2.1)]. 

45 We write C = C,,, CJ. AS denotes the asymptotic cone (see Debreu [5, 1.91, and Fenchel [7]) of 
the set S. 
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boundedness of the feasible set without the assumption of convexity have been 
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