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1. INTRODUCTION 

This paper sets forth a fairly simple model that, we hope, captures the 
salient points of many managerial dilemmas. Consider a manager who is 
in charge of several activities. At each point in time, he either devotes his 
effort to an activity or disregards it. Unattended activities tend to deterio- 
rate (stochastically) while attended activities tend to improve (also 
stochastically). The manager’s problem is to decide how to allocate his 
effort-which is available only in limited amounts-among the various 
activities. 

There are two distinct approaches that economists could use to analyze 
such a model. The first would be to describe or derive the manager’s 
preference ordering over all possible outcomes of the process, to find the 
strategy that maximizes this preference (or its expectation), and then 
finally to analyze the characteristics of this optimal strategy. The second 
approach, and that which we follow here, is simply to derive the properties 
of certain plausible, but not necessarily optimal, behavioral rules. Our 
preference for this latter approach rests on the conviction that it is simply 
not tenable to maintain that managers in complex situations, like those 
which our model describes, formulate complete preference orderings, find 
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optimal strategies, and pursue them. Competing and imperfectly 
articulated goals, limits on computational ability, organizational slack, 
and possibly pure sloth combine to make it reasonable that real decision- 
makers follow attractive, simple rules rather than optimal strategies. These 
matters are, of course, more complicated than these brief remarks imply. 
Here it should suffice to say that these notes are an example of the analysis 
of economic systems in terms of “bounded rationality”-a viewpoint 
which one of us has described more fully elsewhere [5]. 

Our model is as follows: There are finitely many activities. Each activity 
has two modes of evolution. When attended, an activity is a random 
walk with positive drift. When neglected, it is a random walk with negative 
drift. We assume that in each period the manager has but one unit of effort 
to allocate to the various activities and that it makes sense to speak of 
fractional allocations of effort. A behavior is a rule that determines the 
current allocation of effort among the activities as a function of the past 
history of performance. 

For example, consider the task of a purchasing agent. The agent must 
buy a number of items each period. We can assume that, unless renegoti- 
ated, contracts of the preceding period tend to stay in effect. In each period 
the purchasing agent may search for new and better suppliers or attempt 
to negotiate for improved terms with old suppliers. Although in a sto- 
chastic world there is no guarantee that attempts to improve will not lead 
to temporary setbacks-new materials may work less well than hoped and 
new suppliers may prove unreliable-it is reasonable that these activities 
should be productive on the average. On the other hand, it is plausible 
that unattended contracts tend to deteriorate. For example, general price 
decreases may not be passed along, or quality may decline when a customer 
does not evince a continuing interest in improving the terms on which he 
buys. 

Another example is provided by a manager in charge of several indepen- 
dent productive processes. In each period he may devote effort to main- 
tenance of one part of this system. Parts that are maintained tend to 
improve, while those that are neglected deteriorate. As a third example, 
consider the situation of a researcher who tries to keep up with the several 
branches of his field. He is limited to reading one article at a time and 
finds the reward from time spent examining recent work to be quite 
variable. However, if he neglects an area for too long, he loses touch 
with it. 

The model obviously has many other applications. We would stress 
that it can be understood to apply at any of several levels of abstraction. 
Thus, the activities themselves may be strategies of rules of thumb. 

In many of its interpretations, it may not be reasonable to suppose that 
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the manager knows the parameters that govern the process or even 
completely understands the nature of the process itself. Accordingly, we 
have emphasized in our analysis (particularly in Sections 5 and 6, below) 
behavioral rules that can be pursued when such knowledge is absent. 

In such a model, performance of the several activities will not typically 
approach a steady state, even in a stochastic sense, except for very special 
values of the parameters. We examine the effects of different behaviors on 
asymptotic performance with respect to two criteria: 

(i) the probability of survival, i.e., the probability that performance on 
one or more activities never falls below certain prescribed levels; 

(ii) the long-run average rate of growth per unit time. 

The analysis will be concentrated on three types of behavior: 

(i) “constant proportions,” in which the allocation of effort is constant 
over time; 

(ii) “putting out fires,” in which all effort at any date is allocated to 
those activities that have the worst performance at that date; 

(iii) “staying with a winner,” in which all effort at any date is allocated 
to those activities that have the best performance at that date. 

2. A FORMAL MODEL OF CONTROLLED RANDOM WALK 

Consider an agent who supervises several activities, indexed by 
i = l,..., l.Ateachdatet=0,1,2 ,..., and for each activity i, the individual 
perceives a measure of performance, vi(t). As a function of the history of 
the vector U(n) = (U&z)) for n = O,..., t, the agent allocates to each 
activity i some fraction al of his effort during the coming period of time. 
The vector a = (ai) of fractions is nonnegative, and the sum of its coor- 
dinates is unity (the individual devotes all of his effort to the I activities). 

Given past history up through date t, the conditional distribution of the 
next vector, U(t + l), of performance levels depends upon the vector u(t) 
of allocations at date t. Define 

2(t + 1) = U(t + 1) - U(t). (2.1) 

The sequence of vectors Z(t) is the sequence of successive increments in 
the vectors of performance levels, U(t). Roughly speaking, we shall 
assume that, given the allocation vectors, the successive increments are 
independent random vectors. The larger the allocation of effort to any 
activity, the larger will be the expected increment in its performance. If the 
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agent allocates all of his effort to a particular activity, then its expected 
increment will be positive; if he allocates none of his effort to the activity, 
then its expected increment will be negative. In other words, the sequence 
of performance levels is a controlled random walk, with the expected 
values of the successive increments depending on the corresponding 
allocations of effort. 

To be precise, we shall make the following assumptions about the 
conditional distribution of Z(t + I), given the sequence U(O),..., U(t) and 
the allocation a(t): 

The distribution of Z(t + 1) depends only on a(t). 

EZi(t + 1) = ai vi - [1 - ai( & , where & and rli 
are given positive parameters. 

(2.2a) 

(2.2b) 

Var &(t + 1) = s:[ai(t)], where si is a given strictly 
positive continuous function. 

(2.2c) 

The coordinates of Z(t + 1) are mutually independent. (2.2d) 

To minimize technical complications, we also assume the following: 

The coordinates of Z(t + 1) are integer-valued and (2.2e) 
uniformly bounded. 

It will be useful to have a compact notation to denote partial histories 
of the process of performance levels and allocations. Following standard 
practice in probability theory, we regard all random variables as 
measurable functions on a common probability space, which is endowed 
with a sigma field F of (measurable) subsets. Corresponding to each date t 
is a sigma field 9t of subsets representing all events that can be observed 
up to and including date t. Each g$ contains the preceding one, 9*-I , and 
all gt are contained in S. For any s < t, the random vectors U(S), Z(s), 
and a(s) are measurable with respect to 9f . 

A behavior is a sequence of random allocation vectors a(t) such that 
each a(t) is measurable with respect to gf . A constantproportions behavior 
is one in which the allocations a(t) are the same for all t, i.e., a behavior 
such that the allocation of effort is the same at all dates and for all histories 
of the process. 

In subsequent sections we shall discuss the consequences of different 
behaviors for the (random) sequence of performance vectors. However, 
this is a good place to point out that there is a particular way of measuring 
“average performance” such that expected increments in average per- 
formance do not depend on the agent’s behavior. 
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Define a vector w  = (wi) of “weights” by 

(2.3) 

These weights are positive, and their sum is unity. Define the corresponding 
weighted averages of performance and performance increments by 

U(t) = c wJ.qt), Z(t) = c W+z~(t). (2.4) 
a i 

Notice that 

Z(t + 1) = o(t + 1) - Q(t). (2.5) 

It is easy to verify from (2.2b) that for any behavior the conditional 
expected value of Z(t), given the past history of the system up through 
date (t - l), is 

This parameter, 5, of the performance process, which does not depend on 
the agent’s behavior, will have an important role in the subsequent analysis. 

Remark. The model just formulated falls within the framework of 
Markovian dynamic programming. One may take U(t) to be the state of the 
system at date t and a(t) to be the action. What we have called here a 
behavior is what is usually called a policy; we have adopted the former 
term in order to avoid any connotation of optimization. Nothing has been 
specified to correspond to the usual “immediate return function” of 
dynamic programming. 

3. SURVIVAL 

By survival, we shall mean staying away from unacceptably low levels of 
performance. This statement is clearly imprecise, and there are many 
alternative ways to make it precise. In this section we shall concentrate on 
one particular alternative, in which all of the performance indices are 
required to be kept above prescribed levels. 

“Survival” is perhaps too dramatic a word for what we have in mind 
here. For the situations that our model describes, the consequence of 
failure to survive is often not death but reorganization. That is, if a process 
fails to maintain a certain standard of performance, then the way in which 
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it is managed will be changed, but if its performance is acceptable its 
management will be allowed to continue unchanged. 

By convention, we shall take zero to be the unacceptably low level of 
performance for each index. Define 

M(t) = mjn Ui(t). (3.1) 

We shall define survival by the condition, 

M(t) > 0 for all t. (3.2) 

In other words, the agent fails to survive as soon as any one index of 
performance falls to zero (or lower). 

In the model of the previous section it will not be possible to guarantee 
survival with probability one. One may at least ask whether there is any 
behavior for which the probability of survival is positive. The next proposi- 
tion states that this is possible if and only if 5 > 0, and that in this case 
some fixed proportions behavior (with suitably chosen proportions) is 
adequate for the purpose. 

For the remainder of this section, all of the assumptions of the model 
of the previous section are maintained, unless notice is given to the 
contrary. Furthermore, it will be assumed that, for every activity i, the 
initial performance level, Vi(O), is strictly positive. 

THEOREM 1. The following three statements are equivalent: 

(i) 5 > 0. 

(ii) There exists a behavior for which the probability of survival 
is positive. 

(iii) There exists a constant proportions behavior for which the prob- 
ability of survival is positive. 

Proof. We first prove that (i) implies (iii). With a constant proportions 
behavior, the sequences (vi(t)) are mutually independent, and each 
sequence is a random walk. Define the (constant) allocation vector 
d = (&) by 

(3.3) 

Since c > 0, Bi > 0. Furthermore, xi ~3~ = 1; hence, 6 is an allocation 
vector. It is easy to verify that, for this allocation, for every i, E&(t) = c. 
Hence, for every i, the probability that Ui(t) remains positive for all t is 



364 RADNER AND ROTHSCHILD 

positive [7, p. 1891. Since the performance indices are mutually 
independent, the probability of survival is the product of these 
probabilities, and hence is also positive. 

Since (iii) implies (ii), it remains only to show that (ii) implies (i) or, 
alternatively, that if 5 < 0 then there is no behavior for which the 
probability of survival is positive. Note first that M(t) < U(t), and there- 
fore it suffices to show that, with probability one, U(t) eventually becomes 
nonpositive. This will be done using a martingale argument. Observe that, 
in general, D(t) will not be a random walk for arbitrary behaviors. How- 
ever, it was pointed out at the end of the previous section that, for any 
behavior, the conditional expected value of o(t + I), given the history 
of the system up through date f, is equal to U(t) + [; hence, if 5 < 0, then 
D(t) is a supermartingale. 

Thus, assume that % < 0, and fix any behavior. Let T be the first date t 
such that U(t) < 0; T may, in principle, be infinite, but our task is to show 
that, with probability one, T is finite. Let s(t) be the so-called “stopped 
process” corresponding to U(t); i.e., s(t) is equal to D(t) for t < T, and 
equal to n(T) for t 3 T. The process s(t) is also a supermartingale and is 
bounded below. Therefore, s(t) converges almost surely (a.s.).’ 

It remains to show that s(t) cannot converge to any positive number, 
and for this it suffices to show that B(t) cannot converge. For the case 
$ < 0, this is implied by the following law of large numbers, which is, in 
turn, an immediate consequence of Theorem 40 of Freedman’s paper [l]. 

PROPOSITION 1. Let { Yt} be random variables, with Yt St-measurable, 
and let pt = E{ Y, / 9&}. If, for some strictly positive b, 

for all t, a.s., and if 

p = pJllt)(p1 + ... + pt) 

exists a.s., then 

kl (llo(yl + . . . + Yt) = F;, a.s. 

To apply Proposition 1, take Yt = D(t) - D(t - 1); then pLt = %. By 

1 For facts about martingales used in this proof, see, e.g., Neveu [4, Chaps. II and 
IV]; in particular, for this convergence theorem, see 14, Proposition 11-2-9, p. 251. 
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assumptions (2.2c)-(2.2e) the hypotheses of the proposition are satisfied, 
and hence 

If 5 < 0, then U(t) diverges to -co. 
If 5 = 0, then D(t) is a martingale with uniformly bounded increments 

(assumption (2.2e)) and with 

g1 Var [U(t) - U(t - l)] 4-J = cc 

(assumptions (2.2~) and (2.2d)). Hence by Corollary 4.5 of [2], sup, U(t) = 
+ co and inf, U(t) = - co, a.s. Thus, B(t) diverges a.s. also in the case 
5 = 0. This completes the proof of Theorem 1. 

If an agent were concerned solely with survival, he would seek a behavior 
that maximized the probability of survival. We know of no simple charac- 
terization of behavior that is “optimal” in this respect, even for the special 
case of two activities and simple (one-step) random walks. 

We close this section with some remarks about alternative definitions 
of survival. Survival might be defined as keeping positive some given 
subset of performance indices. The preceding analysis would then be 
applicable directly to that given subset. In particular, with the assump- 
tions that have been made here, a positive probability of survival is always 
attainable with respect to any given single performance index. 

Survival could also be defined as keeping some performance index 
positive, i.e., keeping maxi vi(t) positive. But with the present assump- 
tions, this, too, is possible with positive probability by allocating all effort 
to any one single activity. 

4. RATE OF GROWTH 

For a given behavior in the controlled random walk model that we have 
been studying, the vector U(t) of performance indices typically has no 
steady-state distribution, even in the limit as t increases. However, a 
measure of performance that may converge, as the horizon increases, is the 
average rate of change per unit time. For example, in the case of a con- 
stant proportions behavior, each performance index, Ui(t), is a random 
walk, so the strong law of large numbers implies that (l/l)[Ui(t) - U,(O)] 
converges almost surely to E&(t), which is the same for all t. 

In the case of a random walk, it is natural to consider the average rate 
of change per unit of time in conjunction with the probability of survival. 
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Consider for the moment a single activity, so that U(t) is a scalar, and 
with a fixed effort allocated to that activity. Then U(t) is a random walk 
with EZ(t) = 5, a constant. Let S(t) denote the “stopped” process cor- 
responding to U(t), as defined in the previous section, but assume that 
c > 0. After a sufficiently long time has elapsed, the process S(t) is very 
likely to be either “stopped” (S(t) 5 0) or quite large. In the latter case, 
5’(t)/t will be close to 5. If U(t) is aperiodic,2 then the probability of 
survival, given U(0) = U, goes to 1 like 1 - e-U as u gets large.3 Since U(t) 
is Markovian, this implies that the probability of survival after date t, 
given that U(t) = U, goes to 1 like 1 - e-” as u gets large. Thus, the larger 
U(t), the larger the probability of survival beyond date t. In other words, 
once the hurdle of initial survival has been overcome and U(t) has grown 
large, failure is no longer a serious threat, and the rate of growth could 
compete more effectively for attention. 

In the multiactivity case, with a general behavior, the process U(t) will 
not typically be a random walk. However, as we have shown in (3.4), the 
law of large numbers holds for the “natural weighted average perfor- 
mance,” U(t). We show in Theorem 2(b) that the law of large numbers 
also holds for an individual index, if the fraction of the time that effort is 
allocated to that activity converges, a.s. 

If, for a given behavior, 

Ri = fixix (l/t)[ Ui(t) - U,(o)] 

exists a.s., then we shall say that Ri is the rate of growth of Ut(t) for 
activity i. As already noted, for constant proportions behaviors the rates 
of growth are particularly easy to determine. For a constant proportions 
behavior with allocation vector a = (q), EZ,(t) = aivi - (1 - ai) ti , so 
that, by the strong law of large numbers, 

Ri = air), - (1 - ai) fi, a.s. (4.2) 

It is easy to verify that the constant proportions behavior that maximizes 
mini Ri is exactly the one with the allocation ci in Eq. (3.3) of the proof of 
Theorem 1 in the previous section. We shall call this the balanced growth 
(constant proportions) behavior. For this behavior, of course, Ri = c for 
every i. 

2 U(t) is called aperiodic if 1 is the greatest common divisor of the support of the 
distribution of Z(t). 

3 We use here the fact that, for an aperiodic random walk U(t) with positive mean, 
the conditional probability that U(t) < 0 for some t, given that U(0) = x, approaches 
0 exponentially in x as x increases without limit (see Spitzer [7, pp. 217-2181). 
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THEOREM 2. (a) For any behavior 

lim ‘tt> - ‘(O) = 5 
t 

a.s. t+cG 

(b) Let Ai(t) = &1: ai( Suppose ai = lim,,, &(t)/t exists almost 
surely; then Ri exists and is equal to aiTi - (1 - ai) SC a.s. 

Remark. Ri and ai are random variables. We discuss in Section 6 
behaviors such that the Ri are nondegenerate random variables. Of course, 
with constant proportions behavior, ai and Ri are constants. Another 
interesting example in which a, and Ri are constants is given in Theorem 3 
of Section 5, below. 

Proof of Theorem 2. Part (a) is a restatement of (3.4). To prove 
part (b), apply Proposition 1 by taking 

Yt = Ui(t) - Ui(t - 1)~ 

/Lt = Uj(t - 1) 7ji - [l - a,(t - l)] 5.i . 

5. “PUTTING OUT FIRES” 

We now examine the consequences of pursuing some common admini- 
strative behaviors. In this section we consider “putting out fires,” which 
connotes dealing with crises. In the following section we analyze “staying 
with a winner.” An important feature of both behaviors is that they can 
be pursued without any knowledge of the probability laws that govern the 
performance processes. This is of considerable significance for these 
behaviors as examples of bounded rationality. In the context of the present 
model, we shall define as putting out fires a behavior such that at every 
date effort is allocated only to the worst performing activity or activities. 

Putting out fires would appear to be a “conservative” behavior, 
motivated more by the desire to survive than the desire to grow rapidly, 
perhaps even more conservative than the balanced-growth constant 
proportions behavior of the preceding section. Whether putting out fires 
has a higher probability of survival than balanced-growth behavior 
is not known to us. However, putting out fires can survive if and only if 
balanced growth can survive, and if survival is possible then putting out 
fires and balanced growth have the same growth rate (see Theorem 3, 
below). To provide a formal definition, let 

M(t) = mjn vi(t), (5.1) 
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and define putting outfires by the following: 

(a) If U<(t) > M(t), then q(t) = 0. 

(b) If U<(t) = M(t) and ai(t - 1) = 1, then q(t) = 1. 0.2) 
(c) If neither (a) nor (b) holds, then ai = 1 for i = the 

smallest j such that Uj(t) = M(t). 

THEOREM 3. If there are I activities, if [ > 0, and if 

P{.z,(t + 1) = 0 I c&(t)} > 0, 

P(&(f + 1) = I j q(t) = 1) > 0, 

P(z,(t + 1) = -1 1 a,(t) = O} > 0, 
(5.3) 

then with putting outjires (i) each activity has ubnost surely the same rate of 
growth US does u(t), namely, %, (ii) the long-run average proportion of effort 
allocated to each activity is almost surely the same us with balanced-growth 
(constant proportions) behavior, and (iii) survival is possible with positive 
probability. 

The proof of Theorem 3 is based on the following proposition, which is 
of independent interest. Consider the Markov chain4 

G(t) = tm(t>, Al,..., v,(f)l, 

where m(t) is the activity to which effort is allocated at time t and 

vi(t) = u&t) - M(t). 

PROPOSITION 2. % > 0 implies fhat the Murkov chain C,(t) is positive 
recurrent. 

Remark. This result shows how putting-out-fires behavior differs 
from balanced growth even though, if 5 > 0, all activities grow at the 
same asymptotic rate when either behavior is adopted. Under balanced 
growth the various activities tend to spread out. The difference, Dii(t) = 
U<(t) - Uj(t), is a random walk without drift. Thus the distribution of 
Dii(t) tends to no limit, and the expected time of D<,(t)‘s first return to 
zero is always infinite. In contrast, if putting out fires is followed, activities 
tend to stay close together. Since I&(t) = Vi(t) - Vj(t), Proposition 2 
implies that Dij(t) has an asymptotic distribution and that the expected 
time to return to zero is finite, whatever the current value of Dii(t). The 
proof of Proposition 2 is given after that of Theorem 3. 

4 It is to be understood that the state space of any chain considered in the connection 
with putting out fires is to include only states that are consistent with this behavior. 
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Proof of Theorem 3. Since C,(t) is positive recurrent, the long-run 
relative frequency of the events m(t) = i converges almost surely to the 
invariant probability of that event. Let these probabilities be ai . By 
Theorem 2(b), lim,+&l/t)[Ui(t) - U,(O)] converges almost surely to 

Ri = aiTi - (1 - ai) & . (5.4) 

Suppose Ri # R, for some i and j; consider 

Vi(Z) = U,(f) - MO) 3 I Ui(f> - uM - 

If Ri > Rj , this last quantity diverges to fee a.s., which contradicts 
Proposition 2. Thus all activities grow at the same rate, which must equal 
[, which proves (i). TO prove (ii), solve (5.4) for ai , with Ri = f. 

We now prove (iii). We have shown in (i) that limt,,(Ui(t))/t = 5 > 0 
a.s., so that 

$I Uj(t) = +CD a.s., i = 1, 2 ,..., I. 

Hence 
‘,‘rg M(t) = fm a.s. (5.5) + 

Denote (ul ,..., UJ by U, and let T(u) be the first t such that M(t) 5 0 given 
that U(0) = u and M(0) > 0. We must show that P{T(u) = LX} > 0. 

Let H be the set of u for which (maxiui - min& 2 1 and miniui > 0. 
One can verify that for the Markov chain [m(t), U(t)] the set H’ of states 
for which U(t) is in H can be reached (with positive probability) from any 
state, and that this can be done while keeping min+i strictly positive 
if the point of departure is strictly positive. Furthermore, from any 
state in H’ one can reach any other state in H’ without leaving H’. (This 
shows, incidentally, that the chains [m(t), U(t)] and Cl(t) each have a 
single class). Therefore, if there is some U* in H from which the probability 
of survival is positive, then the same is true for every u for which miniui 
is positive. To demonstrate the existence of such a U* in H, suppose to the 
contrary that for every u in H the probability of survival from u were zero, 
i.e., that 

P{T(u) < co I f10 . U(0) = u} = 1. 

Since the chain C1(t) is positive recurrent (by Proposition 2), it would 
follow that, starting from any U, and given any t, there would be a finite 
T’ 2 t for which U(T’) would be in H, and therefore there would be a 
subsequent finite T” 2 T’ with M(T”) 5 0 In other words, starting from 
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any u the probability of survival would be zero, which would imply in 
turn that lim inf, M(t) would be S 0, contradicting (5.5). 

Proof of Proposition 2. The proof is by induction. Clearly the pro- 
position is true for Z = 1. The induction step-that if it is true for Z = l,..., 
J - 1, then it is true for Z = J-is accomplished in three lemmas. The 
first uses the fact, established above, that if Proposition 2 is true for 
I=J-lthenTheorem3istrueforZ=J-1. 

LEMMA 1. Suppose that Z is anyproper subset off = {I, 2,..., J}, that 
X’ is the complement of X in $, and that putting out fires is practiced on 
the activities in X while no effort is allocated to those in .K’. Then there is 
a (nonrandom) T such that 

E g$ Uk(t) > I& U,(O) + 1 for all t 3 T, (5.6a) 

E p~n$ U,(t) < k~$~ U,(O) - 1 for all t 2 T. (5.6b) 

T can be chosen so that (5.6) holds for any X properly contained in $. 

Proof. If we consider the activities in X alone, then, in an obvious 
notation, the rate of growth of Bx(t), the natural weighted-average 
process, is 

(5.7) 

Comparing (5.7) and (2.6), we see that cj, > 0 whenever r > 0. Define 

C./It) = bk(t>, { ~~iWh4 

where mx(t) is the activity in X to which effort is allocated at date t, and 

V&t) = U3(t) - M,(t), j in X, 

The process {Cxd(t)} is a Markov chain and, by the induction hypothesis, 
is positive recurrent. The long-run relative frequency of the events mx(t) = 
k converges a.s. to the corresponding invariant probabilities. By the 
induction hypothesis and (i) of Theorem 3, for every k in &, Uk(t)/t 
converges to Es ; hence, 

1 & t rnim Uk(t) = Zjy, a.s. ( ! 
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Recalling that the increments of Uk(t) are uniformly bounded, we con- 
clude from the last limit and the Lebesgue dominated convergence theorem 
that 

so that 

Eg$ Uk(t)-+ +co. 

Thus there exists Ty such that t > TX implies 

Eg$ C&(t) > I& U,(O) + 1. 

If no effort is allocated to the activities in .K’, then the law of large 
numbers implies that Uk(t)/t converges a.s. to (-&) for all k in Z’, and 
hence 

Appealing again to Lebesgue, we conclude that 

so that there is a TX’ such that t 2 TX’ implies 

Letting T = maxx(max(TX , TX’)) as X ranges over all proper subsets 
of $ completes the proof. 

LEMMA 2. Let D(t) = maxi V,(t), and G = 2JT(b + 1); if D(0) > G, 
then ED(T) < D(0) - 2, where T is as in Lemma 1. 

ProojI Recall that b is the uniform bound on the Zi(t)‘s. Let p be a 
permutation of { l,..., J} such that 

~dl,(O) 2 U&)(O) 2 .-. > U,(,)(O), (5.8) 

and let Ai = U,(i-l)(t) - U&t). Then (5.8) implies d,(O) > 0. Since 
D(0) = cf,, d,(O), D(0) > G implies Oj(0) > 2T(b + 1) for some j. For 
this j, d,(t) > 0 for t < T. Thus if .%? = {k 1 p-l(k) > j}, X’ = 
{k I p-l(k) < j}, and effort is allocated among activities I,..., Jaccording to 
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putting-out-fires behavior for T periods, then all effort is devoted to the 
activities in % and none to those in X’. Since 

D(T) = g$i U,(T) - ?n$ U,(T), 

the conclusion follows immediately from Lemma 1. 

LEMMA 3. Suppose D(0) > G; let T* be thefirst t such that D(T*) < G. 
Then ET* < 00. 

Proof. Let D = D(0) and consider the random variables 

A’, = D[nT] - D[(n - 1) T]. 

If we let 9, = FnT, then Sn is an increasing sequence of sigma fields and 
X, is 8,-measurable. Furthermore, if Y, = CT X, , then D(nT) = 
D + Y, . Let C = G - D. If Y, < C, then D(nT) < G. Define N* as the 
first n such that Y, < C. Since N*T > T*, to prove ET* < co we need 
only show 

EN* < co. (5.9) 

The random variables X, and Y, have the following properties: 

I xn I -=I & (5.10) 

where B = 2JTb, and Lemma 2 implies that 

E[X, 1 9+1. Y,-l > C] < -2. (5.11) 

To prove that (5.10) and (5.11) imply (5.9), we use an inequality due to 
Freedman [l]. Let 

W, = (X, + B)/2B, 

&z = E[Wn I g’,-,I. 
Suppose 

n>-C; (5.12) 

if N* > n, then Y, > C and R, < (-2 + B)/2B for m = l,..., n, so that 
S, > (C + nB)/2B E a, and CT R, < n(-2 + B)/2B E b, . Since (5.12) 
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implies a, > b, , we may use (4.b) of Freedman [l, p. 91 l] to conclude that 

Note that 
P{N* > n} < exp[-(a, - b,J2/2a,]. (5.13) 

(a, - b,J2/2a, = (C + 2n)2/4B(C + nB) > n2/4nB2 = n/4B2, 

because of (5.12). Thus (5.13) may be replaced by 

P{N* > n} < exp[-n/4B2]. 

This implies EN* < co, which completes the proof of Lemma 3. 
Proposition 2 is an immediate consequence of Lemma 3, which states 

that, if {Cr(t)} ever leaves the finite set of states such that D(t) < G, then 
the expected time to return is finite. This implies {C,(t)} is positive recur- 
rent [3, pp. 98, 99, 135, 1431 (recall that it has a single class). 

If there are only two activities, the above arguments can be straight- 
forwardly adapted to prove that the chain {Cr(t)} is positive recurrent for 
all values of 5. It follows that, for putting out fires with two activities, in 
the long run both activities grow-or decline-at the same average rate, 
namely, c. 

The conclusions of Theorem 3 do not necessarily hold if 5 < 0. Suppose 
that there are three activities, and let cl2 be the growth rate of the natural 
weighted average of the first two activities considered by themselves. If 
all effort were allocated to these two activities and allocated between them 
by putting-out-fires behavior, then each of the first two activities would 
have asymptotic rates of growth equal to cl2 . Suppose that [I2 < -& < 0. 
Then with positive probability U1(t) and Uz(t) could sink below Us(t) and 
remain there forever, even though effort were concentrated entirely on 
activities 1 and 2. Were this to happen, U1(t) and Uz(t) would decline at 
the rate cl,, , while i&(t) would decline at the (distinct) rate -5, . 

Theorems 1 and 3 may be combined to yield the following simple result. 

THEOREM 4. If (5.3) is satisJied, then survival is possible with positive 
probability if and only if survival is possible with putting-out-fires behavior. 

6. “STAYING WITH A WINNER" 

A behavior that is diametrically different from putting out fires is one 
that allocates all effort at any date to the best performing activity or 
activities. Following some colloquial practice, we shall call such behavior 
staying with a winner; its defining property is 

ai = 0 for all i such that Ui(t) < M*(t) = maxi Uj(t). (6.1) 
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The asymptotic performance of staying with a winner is analyzed in 
Theorem 5, below; a rough description is presented at this point. Under 
staying-with-a-winner behavior, the allocation of effort will eventually 
concentrate on a single activity, but which activity that will be cannot be 
predicted with certainty in advance. In other words, for some T and J, all 
effort will be allocated to activity J from date T on, but T and J are 
random variables. The rate of growth of M*(t) will be v., , that is, the 
mean of ZJ(t) if all effort is allocated to activity J. The rate of growth of 
each activity i other than J will be -fi ; in particular, the performance 
levels of all of these other activities will eventually become negative. 

We may contrast staying with a winner with the constant proportions 
behavior that allocates all effort to the (or an) activity for which Q is 
maximum. The rate of growth of M*(t) for this latter activity is equal to 
T* = maxi r]i , whereas the rate of growth of M*(t) for staying with a 
winner (which is qJ, as already noted) cannot exceed q* and will be 
strictly less than q* with positive probability. If the manager were trying 
by experimentation to guess the activity with the highest qi , then he would 
face what is known as a two-armed-bandit problem. It is interesting to 
note that the asymptotic behavior of the optimal strategy in some two- 
armed-bandit problems is identical to that of staying with a winner (see 
Rothschild [6]). 

We turn now to a formal analysis of staying with a winner. We shall 
consider any (finite) number of activities. At any date at which only one 
activity attains the maximum performance M*(t), all of the effort is 
allocated to that activity. At any date at which more than one activity 
attains a performance equal to M*(t), all of the effort is allocated to the 
activity in that subset with the lowest index i. (Any well-defined rule for 
breaking ties would be acceptable, as far as the following analysis goes.) 

We shall rule out cases in which an activity has no possibility of 
“catching up” once it falls behind. For this purpose, we shall say that an 
activity i can compete if, for any date t, any allocation at that date, and any 
other activityj, there is a positive probability that &(t) - Zj(t) is strictly 
positive. 

THEOREM 5. If every activity can compete and is aperiodic, then the 
following statements are true with probability one, for staying with a winner: 
(a) There exists an activity J and a (jinite) date T such that, at all dates 
subsequent to T, all effort is allocated to activity J, note that J and T are 
random variables. (b) For every activity i, there is a positive probability pi 
that J = i. (c) If i = J, then the rate of growth of vi(t) is qi, and there is a 
positive conditional probability that vi(t) never becomes negative; if i # J, 
then the rate of growth of U<(t) is --fi , and the conditional probability that 
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U,(t) eventually becomes and stays negative is unity. (d) The rate of growth 
of M*(t) is 7, , a random variable, and the probability is positive that M*(t) 
never becomes negative. 

It follows that (e) the expected rate of growth of M*(t), which is xi piqi , 
is strictly less than maxi vi , if the rli are not all equal; indeed, vJ < T* a.s. 

Proof. Consider any given vector U(0) of initial performance levels 
and consider any activity i. Since i can compete, for any number d there 
exists some date, says, such that, with positive probability, the performance 
of activity i at date s exceeds that of any other activity by at least d. One 
can choose d sufficiently large so that, for every j # i, the conditional 
probability that vi(t) < Uj(t) for some t > s, given U,(s) 3 U,(s) + d, 
does not exceed &(I - l), where I is the number of activities.” Therefore, 
for such a d, the conditional probability that vi(t) < Uj(t) for some j # i 
and some t 2 s, given U,(s) > U,(s) + d for all j # i, does not exceed 3. 
Let m(t) denote the activity to which all effort is allocated at date t. It 
follows that, for any given vector U(0) of initial performance levels, and 
any activity i, there is some date s such that the probability is positive that 
m(t) = i for all t 2 s. 

Suppose now that m(0) = i, and define 

Q,[U(O)] = P{m(t) = i for all t 1 U(O), m(O) = i), 

qi = inf{Q,[U(O)]: m(0) = i, all U(0) such that Uz(0) = M*(O)}. 

An examination of the preceding argument shows that qi > 0; let q = 
mini qi. Since {m(t), U(t)} is Markovian, it follows that if m(t) = i then 
the conditional probability that m(n) = i for all n > t, given [m(t), U(t)], 
is at least q. Consider any date t such that either t = 0 or m(t - 1) + m(t). 
Call (tk) the sequence of such dates t; t, = 0. Either m(n) = m(tJ for all 
n 3 tl,, or there is some first (finite) t’ after tk such that m(t’) # m(t,J; the 
first case will occur with probability at least q. Since q > 0, the probability 
is one that the first case will eventually occur after some date tk . This 
completes the proof of parts (a) and (b). The remainder of the proof 
is straightforward. 
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