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In a game of a finite number of repetitions of a Cournot-type model of an 
industry, if firms are satisfied to get close to (but not necessarily achieve) their 
optimal responses to other firms’ sequential strategies, then in the resulting non- 
cooperative “equilibria” of the sequential market game, (1) if the lifetime of the 
industry is large compared to the number of firms, there are equilibria correspond- 
ing to any given duration of the cartel, whereas (2) if the number of firms is large 
compared to the industry’s lifetime, all equilibria will be close (in some sense) 
to the competitive equilibrium. 

1. INTRODUCTION 

In 1838 Augustin Cournot introduced his model of market equilibrium, 
which has become known in modern game theory as a noncooperative (or 
Nash) equilibrium [I]. Cournot’s model was intended to describe an in- 
dustry with a fixed number of firms with convex cost functions, producing a 
homogeneous product, in which each firm’s action was to choose an output 
(or rate of output), and in which the market price was determined by the 
total industry output and the market demand function. A Cournot-Nash 
equilibrium is a combination of outputs, one for each firm, such that no 
firm can increase its profit by changing its output alone. 

Cournot thought of his model as describing “competition” among firms; 
this corresponds to what we call today the “noncooperative” character of the 
equilibrium. He showed that, if the number of firms is regarded as a parameter 
of the market, a larger number of firms would lead to a larger industry output 
and a lower price (in equilibrium), and that as the number of firms increased 
without limit, the corresponding equilibria would converge to the situation 
he called “unlimited competition, ” in which marginal cost equaled price. 

If there are at least two firms, then they can make more profit than in the 
Cournot-Nash equilibrium (CNE) by forming a cartel in which the total 
industry output is chosen to maximize total industry profit, and this profit 

136 
0022-0531/80/020136-19$02.00/O 
Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



COLLUSIVE BEHAVIOR IN EPSILON-EQUILIBRIA 137 

is shared equally among the firms. This corresponds to what would be 
called a cooperative solution of the game. 

What determines whether there will be a cooperative rather than a non- 
cooperative outcome in the market situation ? If the market situation were 
repeated a number of periods, then, even in the absence of some institution 
(such as regulation) to enforce cooperation, it would seem that the firms 
would have opportunities to signal their willingness to cooperate. Further- 
more, the larger the number of periods, the greater would be the relative 
loss due to defection from the cartel and a reversion to the CNE outputs 
and profits. On the other hand, the larger the number of firms, the greater 
would be the difficulty of holding the cartel together, at least according to 
conventional wisdom. 

If the market situation is repeated, say T times, then this gives rise to a 
game in which the strategies available to the players (firms) are sequential. A 
sequential strategy is a sequence of functions, one for each period, each of 
which determines the output in that period as a function of the outputs of all 
firms in the previous periods. One can show that every perfect Cournot-Nash 
equilibrium of the T-period game results in each firm producing its one- 
period CNE output in each peri0d.l (For this result, one assumes that each 
firm’s objective is to maximize its average, or total discounted, profit over 
the T periods.) I should emphasize that this property of T-period perfect 
CNE’s is satisfied for any finite T, no matter how large. On the other hand, 
one can show that if T is infinite, and each firm’s objective is to maximize 
its long-run-average profit, then there is a perfect CNE of the (infinite- 
period) game that results in indefinite survival of the cartel2 The result for 
infinite T goes part of the way towards confirming our intuition about the 
determinants of cooperation, but has the unsatisfactory feature that the 
infinite case is not well approximated by the case of large but finite T. 
Another unsatisfactory feature of the result is that it holds for any number 
of firms, no matter how large. 

In this paper I explore the consequences of weakening the strict rationality 
of the Cournot-Nash equilibrium concept, so that each player is satisfied 
to get close to (but not necessarily achieve) his best response to the other 
players’ strategies. Formally, an epsilon-equilibrium is a combination of 
strategies, one for each player, such that each player’s strategy is within 
epsilon in utility (e.g., average profit) of the maximum possible against the 
other players’ strategies. I shall show that, for any fixed positive epsilon, 

’ A perfect equilibrium of a sequential game is defined in Section 3. As will be seen 
there, the restriction that the equilibrium be perfect excludes equilibria based on un- 
convincing threats. The statement in the text is no longer correct if one eliminates the 
condition that equilibria be perfect. 

2 This is a special case of a more general theorem on perfect equilibria of infinite super- 
games, due to Aumann and Shapley (unpublished) and Rubinstein [5, 61. 
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any given number of firms, and any integer k, there is an integer T,, such 
that, for all T exceeding To, there is a perfect epsilon-equilibrium of the 
T-period game in which the cartel lasts exactly k periods. In choosing T,, , 
it is sufficient to make (To - k) larger than some number that depends on 
epsilon and the number of firms. In particular, one can (approximately) 
achieve any desired fraction, k/T, by taking T large enough. 

The effect on perfect epsilon-equilibria of varying the number of firms 
depends on the relationship between the industry demand function and 
the number of firms. (The latter is a parameter of the game.) Suppose first 
that, as we compare markets with different numbers of firms, the demand 
price is the same function of the average industry output per firm; call this 
the replication case. This would be the situation that would obtain if, when 
we doubled the number of firms, we also duplicated the population of con- 
sumers. In the replication case, one can show that, for every fixed positive 
epsilon and T, as the number of firms increases without limit all perfect 
epsilon-equilibria approach competitive equilibrium (Cournot’s “unlimited 
competition”) in the following sense. For every positive E, T, and N (>l), 
there is a number B(E, T, N) such that, in every perfect E-equilibrium of the 
T-period game, each firm’s output and total industry output at each date 
are all within B(E, T, N) of their corresponding one-period CNE values. 
The bounds B(E, T, N) can be chosen so that, (1) for every E and T, the ratios 
B(E, T, N)/N112 are uniformly bounded in N, and (2) for every T and N, 
B(E, T, N) approaches zero as E approaches zero. One can further show 
that, for fixed E and T, as N increases without limit, at every date (1) average 
output per firm approaches the competitive equilibrium output per firm, 
(2) market price approaches marginal cost, and (3) every firm’s relative 
share of total industry output approaches zero. Finally, under the same 
conditions, the difference between each firm’s profit and its one-period CNE 
profit is uniformly bounded in N, and approaches zero as E approaches 
zero. 

Leaving the replication case, suppose now that the industry demand func- 
tion is fixed as we compare markets with different numbers of firms; call this 
thejixed-demand case. In this case, one can show that, for any fixed number 
of periods, T, there is a number B (depending on epsilon and T) such that, 
in all perfect epsilon-equilibria of the T-period game, the outputs and profits 
of all firms, total industry output and profit, and market price are all within 
B of their corresponding one-period CNE values, un$.wmly in the number 
of firms. Furthermore, the bound B tends to zero as epsilon tends to zero, 
with T fixed. This implies that, in the fixed-demand case, for any fixed 
number of periods and small epsilon, all perfect epsilon-equilibria are 
“close” to competitive equilibrium in terms of outputs, profits, and prices, 
for a sufficiently large number of firms. 

Note that the effect of increasing the number of firms on reducing the 
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possibilities for cooperation is observed in the replication case, but not in the 
fixed-demand case. In both cases, reducing epsilon reduces the possibilities 
for cooperation (i.e., keeps all perfect epsilon-equilibria closer to the CNE), 
and increasing the number of firms brings the CNE closer, of course, to the 
competitive equilibrium. Thus, for the replication case, one can paraphrase 
the results of this paper as follows: if firms are satisfied to get close to (but 
not necessarily achieve) their optimal responses to other firms’ strategies, 
then in the resulting noncooperative “equilibria” of the sequential market 
game, (1) if the lifetime of the industry is large compared to the number of 
firms, there are equilibria corresponding to any given duration of the cartel, 
whereas (2) if the number of firms is large compared to the lifetime of the 
industry, all equilibria will be close (in some sense) to the competitive 
equilibrium. 

Although the replication case is the one of central interest here, I shall use 
the fixed demand case (Section 5) as a stepping-stone in the analysis of the 
replication case (Section 6). 

As will be seen below, several alternative definitions of perfect epsilon- 
equilibria may be reasonably considered. I shall begin the analysis with the 
simplest one (Section 4). A more satisfactory definition, is introduced in 
Section 7. An important behavioral implication of this second definition 
is that cooperation will tend to break down as the industry approaches the 
horizon T. In Section 8, I discuss some alternative interpretations of epsilon. 

The entire analysis in the present paper is carried out only for a special 
model, in which the market demand function is linear, and all firms have the 
same linear homogeneous cost function (average and marginal costs are equal 
and constant). However, the analysis can be extended easily to the case in 
which each firm has a fixed (setup) cost of production, and in which there is 
free entry. In this case, the number of firms in the industry is endogenous.3 
This extension will be discussed in a forthcoming paper. 

2. THE ONE-PERIOD COURNOT GAME 

Consider an industry producing a single homogeneous product, with N 
firms. The cost to a single firm of producing a quantity Q is JJQ. If firm j 
produces quantity Qj , the market-clearing price P is determined by the 
industry demand function 

P= a- fi 3$ Q3 3 (2-l) 

3 For this situation, Cournot-Nash equilibria in the one-period game have been studied 
by Novshek [2] and by Novshek and Sonnenschein [3]. 
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if this is positive; otherwise it is zero. The profit to firm i is therefore 

K?i - rQi = (a - B j$ Qj) Qi - rQi 

= (a - Y - S c Qi) Qi - BQi”. 
Gi 

Assume that 01 > y, and define 

Q; = c Qj, 6ra-y; (2.2) hi 
then firm i’s profit can be expressed as 

P(Q~ 3 Qi> E (6 - PQi> Pi - BQi”. (2.3) 

Equations (2) and (3) define a game with iV players, in which the pure strategy 
of player i is a nonnegative number Qi , and his utility is p(Qi , Q;). 

It is easily verified that, given Ql: , the Qi that maximizes i’s profit is 

= 6 - BQi’ 

r(Q;) - 2fl ’ 
if this is nonnegative, 

FE 0, otherwise. (2.4) 

I shall call r(Q$ firm i’s best response to Qi . If the best response is positive, 
firm i’s corresponding maximum profit is 

g(Q’) = (6 -  Be;>.” 
e 

48 ’ 
(2.5) 

otherwise it is zero. A Cournot-Nash equilibrium (CNE) is an N-tuple (Qi) of 
outputs such that, for each i, Qi is the best response to Cj,i Qj . In other 
words, a CNE is a solution (QJ of 

r (1 Q,) = Qi , 
i#i 

i + i ,..., N. 

It is easily verified that the unique CNE is given by 

and the corresponding CNE profit per firm is 

/l(N’; 1)2 * 

(2.6) 

(2.7) 
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Note that the total industry CNE output is 

(N Yl) B ’ 

and the total industry CNE profit is 

(N $2 p . 

(2.8) 

(2.9) 

Therefore, as N increases without bound, total CNE industry output ap- 
proaches S/p, total industry CNE profit approaches zero, and CNE price 
approaches 01 - 6 = y (i.e., marginal cost), all of which conditions charac- 
terize a competitive equilibrium. 

If the industry acts as a cartel to maximize total industry profit then the 
cartel output is (6/2/I), and the corresponding cartel profit is (a2/4/3). If the 
cartel output and profit were divided equally among the firms, then the 
corresponding cartel output per firm would be 

and the cartel profit per firm would be 

82 
7jW (2.11) 

Note that if N > 1, then the cartel profit per firm is strictly greater than the 
CNE profit per firm, so that (from the point of view of the firms) the CNE is 
not Pareto optimal. 

If the capacities of the firms are sufficiently large, then no coalition of 
fewer than N firms can guarantee itself more than a zero profit. That is to say, 
for any output of the coalition, there is an output of the other firms such that 
the coalition’s profit is not greater than zero. Hence in this case, the core is 
the set of all nonnegative allocations of the cartel profit among the firms.4 
Given the symmetry among the firms, the equal division of the cartel profits 
is a “reasonable” target for cooperation, and in any case is the one to which 
attention will be given in this paper. 

In what follows, I shall simplify the formulas by taking p = 1 and 6 = 1, 
unless notice is given to the contrary. This normalization will not entail any 
essential loss of generality. 

4 For a characterization of the core with arbitrary capacities, see Radner [4]. 
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3. THE SEVERAL-PERIOD COURNOT GAME 

Consider now a sequential, T-period, game in which the one-period game is 
repeated T times (T finite). The resulting utility to a firm is assumed to be the 
average of the T one-period profits. Let Qit denote the output of firm i at 
date t(1 < t < T), i.e., during the ith one-period game. A pure strategy for 
firm i is a sequence of functions, git , one for each date t; the function for 
date t determines i’s output at t as a function of the outputs of all firms at all 
previous dates. A Cournot-Nash equilibrium of the T-period game is a 
combination of strategies, one for each firm, such that each firm’s strategy 
is a best response to the combination of the other firms’ strategies. 

The concept of perfect equilibrium of the T-period game has been intro- 
duced by Selten (1975) to rule out equilibria in which players use threats that 
are not credible. For every data t, let Ht denote the history of all the firms’ 
outputs through t, i.e., the array of outputs Qik , i = I,..., N, k = l,..., t. 
For any sequential strategy ui for firm i, any date t and any history H,-, 
let q[t, H,-,] denote the continuation of ui from date t on, given the history 
Ha-_, . A strategy combination (q) is a perfect CNE if, for every date t and 
history H,-, , the strategy combination (oi[t, H,-,I) is a CNE of the sequential 
game corresponding to the remaining dates t,..., T. Note that in the definition 
of a perfect CNE one must test, for each t, whether the combination of 
continuations is a CNE for all possible histories H,-, , not just the history 
that would be produced by the strategy combination (crJ. 

It is easy to verify that in every perfect CNE of the T-period game, each 
firm produces output Q* at each date, where Q* is given by (2.6). This can be 
seen by “working backwards,” since at the end of period t the firms face a 
(T - t)- period game. The resulting utility to each firm is, from (2.7), 
l/(iV + 1)“. (Recall that p = 6 = 1.) 

On the other hand, if each firm were to produce its cartel output & at 
each date (see (2.10)), then the resulting utility to each player would be 
1/4N. Since there are several periods, the firms have the opportunity to react 
differently to cooperative and noncooperative moves by the other firms. 
For example, consider the following strategy: firm i produces output Q in 
each period as long as every other firm has been doing the same; thereafter 
firm i produces Q* in each period. Call this strategy C, . Formally, define 
Di as follows: 

& = *’ 
if Qit = & for all t and all j # i, 

= min(t: Q,, # Q for some j # i}, otherwise. 

The pure strategy C, is defined by: 

(3.1) 

=Q 

Qit = Q* 

if t < Di, 

if t > Di. 
(3.2) 
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More generally, for any integer k between 0 and T define the pure strategy C, 
by: 

Qit = 
Q if I < min(D, , k), 

(3.3) 
= Q* if t > min(Di , k). 

Note that if i uses the strategy C,, , then he always produces the CNE output 
Q*. 

The strategy C, is a special case of a slightly more general class, which I 
shall call trigger strategies of order k. Let Di be defined again as in (3.1) and 
let QD be some output. If Di 2 k, then 

If DC < k, then 

Q 
Qit : Q* 

if t < k, 

if t=k+l, 
z= Q* if t 3 k $ 2. 

Qit = 
Q if t < Di, 

= Q* if t > DC. 

(3.4) 

(3.5) 

One might call Q* the defection output, which i uses once only if all other 
firms have stayed with the cartel for (at least) k periods. 

Suppose now that all firms other than i use the same trigger strategy of 
order k > 0, with some defection output Q* > Q. I shall show that i’s best 
response is a trigger strategy of order (k - l), with a defection output equal 
to 

& E r[(N - 1) Q] = y . 

Note that & is the best one-period response to a total output of (N - l)Q 
by all the other firms, and yields a one-period profit of 

(N + II2 
16N2 . (3.7) 

To prove this, first observe that if at some date t any firm i produces an 
output different from Q, then at all subsequent dates all firms other than i 
will produce Q*, and it will be optimal for firm i to do the same. Hence 
firm i’s best response has the property that 

Q,t f Q for some j implies 

Q,t, = Q* for all t’ > t. 
(3.8) 
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It follows that firm i’s best response to the given trigger strategies of order k is 
a trigger strategy of some order 12. It is straightforward to verify that if y1 < k 
then the optimal defection output is s, with resulting total profit 

T&r+ (N + 1)2 I T - n - 1 
16N2 ’ (N + 1)” . (3.9) 

If n = k, then the optimal defection output is r[(N - l)QQD], and the 
corresponding total profit is 

& + gW - 1) QDl + ;;: ;2’ . (3.10) 

Finally, if n > k, then i’s defection output is irrelevant and the corresponding 
profit is 

& + P@, W - 1) QDl + ;;: 02’. (3.11) 

In (3.10) and (3.1 I), if k = T, then it is to be understood that the final term in 
the equation is zero. Since QD > &, 

= dW - 1) &I > dW - 1) QDl 2 P@, W - 1) Q”1. 

Hence since (3.9) is increasing in n, it follows that i’s optimal response has 
n = (k - 1). Th is completes the proof that i’s optimal response to a trigger 
strategy of order k > 0 with defection output QD > & is a trigger stragegy 
of order k - 1 with defection output &. The resulting average profit for i is 

T-k 
$$- + (+)2 + (N + 1)” ’ 1 (3.12) 

Note that neither i’s optimal response nor his resulting average profit depend 
on the other firms’ defection output. 

In particular, if all firms j(#i) use the trigger strategy C, , then i’s best 
response gives him an average profit of 

-L [* + (q&q’], T 

whereas if all firms use C, , then every firm’s average profit is (1/4N), which is 
the cartel profit (per firm). The difference between (3.13) and the cartel profit 
per firm is 

(3.14) 

Hence, as Tincreases without limit, the advantage to any one firm of defecting 
from the cartel one period before the end of the game approaches zero. 



COLLUSIVE BEHAVIOR IN EPSILON-EQUILIBRIA 145 

4. EPSILON-EQUILIBRIA 

In the previous section it was noted that, in the T-period game, all perfect 
Cournot-Nash equilibria have the property that each firm produces the 
one-period CNE output in each period. On the other hand, the advantage 
to any one firm of defecting from the cartel approaches zero as T gets large, 
provided the other firms use trigger strategies of order T. 

These considerations suggest a weakened form of the Cournot-Nash 
equilibrium concept. For any positive number E, an +equiZibrium is an 
N-tuple of strategies, one for each firm, such that each fiirm’s average 
profit is within E of the maximum average profit it could obtain against the 
other firms’ strategies. In this and the following sections I shall explore 
some of the properties of epsilon-equilibria in the T-period Cournot game. 
I do not, however, have a complete characterization of epsilon-equilibria 
in this game. 

The first candidate for an epsilon-equilibrium is the situation in which 
each firm uses the trigger strategy C, (with defection output Q*). From (3.10) 
and (3.12) we see that the difference in average profit between the best 
response and C, , for an individual firm, is 

(4 rG3” - -&I = (+)(q&q. 
Hence the N-tuple (C,) is an E-equilibrium with k > 0 if and only if 

(--&)(q)” < E or T > (+)(*)‘. (4.2) 

Note that (4.2) is independent of k, so that either (C,) is an E-equilibrium for 
all k mu= I,..., T, or for none. Note, too, that for fixed E, (4.2) is satisfied 
uniformly in N for sufficiently large T. Of course, (C,,) is a Cournot-Nash 
equilibrium, so it is an e-equilibrium for all E. 

The concept of perfect CNE can be extended to epsilon-equilibria as fol- 
lows. A strategy combination (oj) is a perfect E-equilibrium if for every date 
t, every history H,-, , and every firm i, the continuation of i’s strategy from 
date t on, given the history H,_, , is within E of being the best response to the 
corresponding continuations of the other firms’ strategies. In this definition, 
the utility of a continuation of a strategy is the average of the profits in all T 
periods. (For an alternative definition, see Section 7.) 

It is easy to verify that (4.2) is a necessary and sufficient condition for the 
combination (C,) of trigger strategies to be a perfect E-equilibrium. Hence, 
for any E > 0 there is a T, such that, for all T > T, and all k = O,..., T, there 
is a perfect +equilibrium in which each jirm produces its cartel output for 
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exactly k periods. Furthermore, one can take T, to be independent of the 
number of firms. 

An examination of (3.9)-(3.11) shows that one can get similar results for 
N-tuples of trigger strategies that use defection outputs other than Q*, and 
even for N-tuples of trigger strategies that differ among firms in both the 
orders of the trigger strategies and the defection outputs. No attempt will be 
made here to characterize all such perfect epsilon-equilibria, but it is clear 
that for fixed E, the larger T is the larger, in some sense, is the set of perfect 
E-equilibria. 

In the rest of this paper, all epsilon-equilibria are to be understood as per- 
fect, unless specific notice is given to the contrary. 

5. LARGE NUMBER OF FIRMS: THE FIXED-DEMAND CASE 

In the last section I considered how the set of (perfect) c-equilibria varied 
with T, the number of periods, with the number of firms fixed. In this section 
I consider the effect of increasing N, the number of firms, with the horizon, T, 
fixed. I first analyze the case in which the total industry demand function 
remains fixed as the number of firms varies. The results for this case will be 
used to analyze the more interesting, but slightly more complicated, replica- 
tion case (Section 6). 

To begin the analysis of the fixed-demand case, first observe that, by 
(4.2), for fixed T, there is no (C,) E-equilibrium (k 3 1) for E sufficiently 
small. 

I shall prove, in addition, a result that is in some ways stronger. Roughly 
speaking, I shall show that if E is small then all E-equilibria are close to the 
CNE, uniformly in N. To be precise I shall show: for every E > 0 and T 2 1 
there is a number B(E, T) such that for every N > 1 and every E-equilibrium 
the following are all bounded by B(E, T): 

for i = I,..., N, t = 1 ,..., T. In addition, for every T 

1:~ B(E, T) = 0. (5.2) 

The first line of (5.1) is the difference between firm i’s output in period t and 
CNE output; the second line is the difference between total industry output 
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in period d and industry CNE output; and the third line is the difference 
between firm i’s profit in period t and CNE profit per firm. It follows that, 
for any positive number d, and any horizon T, there is a positive E such that, 
for all N and all E-equilibria of the T-period game with N firms, industry 
outputs and market prices in all periods t = I,..., T will be within d of their 
corresponding one-period CNE values (note that E does not depend on N). 
In particular, as N increases without limit, the corresponding one-period 
CNE values will converge to their respective competitive equilibrium values, 
and hence any corresponding sequence of E-equilibria will approach the 
“neighborhood” of competitive equilibrium defined by the distance d, with 
respect to total industry output and price. 

To prove (5.1) and (5.2), I shall first do the one-period case, and then 
make an induction on T. For the one-period case, an E-equilibrium is an N- 
tuple (0, ,..., QN) satisfying 

P (Qi v zi Q,) 3 g (zi Qj) - E, i = I,..., N. (5.3) 

Define new variables xi and xi by 

xi se Qi - Q; = Qi - ’ 
Nfl’ 

Using (2.3) and (2.5) one easily verifies that (5.3) is equivalent to 

(xi + (xX2))” < E, i=l ,..., N, 

or to 

where 

j Xi + X. j < 212, i = I,..., N, 

N 

X. z 1 Xjy h s (~)lfz. 
j=l 

Summing the inequalities (5.5) one gets 

2Nh 
lx. I ‘<‘-p-q+ 

this and (5.5) imply 

lxil G 
2(2N + 1) h 

Nfl ’ 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) , xi , < 2(3N + 1) h \ N+l . 
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LEMMA. If j x 1 ,( b and 1 x’ 1 <b, then 

IAQ;+x,W- ~)Q$+x’I-P[Q:,(N- 1)Q;ll +-& -I- 2b2. 

(5.9) 

Proof. The inequality can be verified using (2.3), (2.6), and (2.7). 
Note that the right-hand sides of inequalities (5.6)-(5.8) are all dominated 

by 6h. Hence, by the lemma, one can take 

B(E, 1) = max [6/r, & + 2(6/1)~]. (5.10) 

For E sufficiently small ((E)I/~ < l/18), the right side of (5.10) is 6/1 = 6(e)'j2. 
Now make the induction hypothesis that the main result is true for any 

number of periods up to and including T. Fix E, and consider any (T -I-- I)- 
period c-equilibrium. Given the initial outputs Q, , i == I,..., N, the re- 
maining T-period strategies constitute, a fortiori, a T-period, E’-equilibrium, 
where 

Let i be any particular firm, which will remain fixed for the time being, let 
Q = Qi, be i’s output in period I, and let S denote the strategy that i 
follows during periods 2 through (T -+ 1). Given the strategies of the other 
firms, one may denote i’s average profit as 

p$Q;-~’ + f”(Q, S) = T(Q, S), (5.12) 

where Q’ is the total output in period one of all the firms other than i. 
The induction hypothesis is that all of the quantities in (5.1), for i -:=- I,..., 

N and t = 2,..., T + 1, are bounded by b EE B(E’, T). Actually, I shall 
strengthen the induction hypothesis to add the following inequalities: 

/ zi Q,t - (N - 1) Q: ( < b, i = I,..., N, t = 2 ,..., T + 1. (5.13) 

The definition of epsilon-equilibrium implies that 

where 
dQ, S> 3 M - E, 

M = n$tx 7r(q, s). 
(5.14) 
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(In the definition of M, (q, s) ranges over all (T + I)-period strategies for 
firm i, holding constant the E-equilibrium strategies of the other firms.) 
This last is equivalent to 

P(Q, Q’) 
T+ 1 

+ P’(Q, S) ,, A4 - E, 

p(Q, Q’> 2 (T + l)[M - E - VP> 91. (5.15) 

By the induction hypothesis, 

G’- + 1) v<Q, 9 _ 
T (N -: 1)” G b. 

To get a bound on M, note that 

where 
U’t l)M 2 s<Q’> + Tm, 

m = m;x rn$r {p(X, Y): j Y - (N - 1) Q$ j < b}. 

One easily verifies that 

m = g[(N - 1) Q; + bl = tN ; 1j2 - (A$,) +: (5.18) 

Putting together (5.15)-(5.18), one has 

where 

E 
c - TW -t 2) b + (T + 1) E* 

--. (Iv + 1) (5.19) 

The inequality (5.19) holds for all firms i. In other words, in a (T + I)- 

P(Q, Q’> 2 g(Q’) - ~“3 

(5.16) 

(5.17) 

period c-equilibrium, the first-period outputs constitute a one-period E”- 
equilibrium, where E” is given by (5.19) and 

b = B [(T f ‘) E, 7’1. (5.20) 

Hence, by the one-period case, the quantities in (5.1) and (5.13), with t = 1, 
are all bounded by 

b’ EC 6(~“)1/2 = fj [ ‘K ; ;; b + (T + 1) ~]l’~, (5.21) 
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provided that •“~1~ < l/18. If we take 

B(E, T + 1) = max{b’, B(E, T)}, (5.22). 

then the induction step is completed, as far as the inequalities (5.1) and (5.13) 
are concerned. Furthermore, (5.20)--(5.22) determine a recursion formula for 
the bounds B(E, T), which with the formulas (5.5) and (5. IO) for B(E, 1) prove 
(5.2), i.e., that B(E, T) tends to zero as E tends to zero, for fiyed T. 

6. LARGE NUMBERS OF FIRMS: THE REPLICATION CASE 

In the replication case, the demand function depends on the number of 
firms, so that corresponding to (2.1) we have 

where Q is the total industry output, P is the demand price, and p1 is a 
parameter that is independent of N, the number of firms. One may motivate 
this formulation in terms of replicating an industry. Consider an industry 
with 1 firm and a given population of M potential buyers, whose demand 
function is given by 

ol-P 

Q=7-e 
(6.2) 

1 

The N-fold replication of this industry is made up of N firms, together with a 
population of NM potential buyers with the same per capita demand at 
any price as the original population. The resulting demand function is then 

Q Cl---P -=-3 iv t% 
which is equivalent to (6.1). Without essential loss of generality, 1 shall take 
fll = 1 and 6 = cy-y = 1. 

Corresponding to the formulas of Section 2, one has the following for- 
mulas, obtained by everywhere replacing /I by 1 /N. Firm i’s profit function is 

p(Qi , Q;) = (1 - $) Qi - $. 

Its optimal response to Q; is 

N- Q: 
2N ’ 

if this is positive, 
r(Q3 

= 0, otherwise, 

(6.3) 

(6.4) 
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and its corresponding profit is 

(N - Q;>" g(Q:> = 4N 7 (6.5) 

if this is nonnegative, and zero otherwise. 
The one-period CNE output and profit per firm are given by 

Q; =N 
Nfl’ 

gW - 1) Q;l = (j& 1>2’ 

The one-period cartel output and profit per firm are 

&N = 45 (6.8) 

P@N 7 W - W&l = a. (e-9) 

Firm i’s best response if each other firm produces the cartel output is 

with 

r[(N - 1) &,I = w, 

corresponding profit 

g[(N - 1) &,I = (Nl;N1)2 . (6.11) 

Turning to the T-period game, one easily verifies that the strategy combi- 
nation in which each firm has the trigger strategy C, (cf. Section 4) is an 
E-equilibrium if and only if 

T b (+)(+)‘; (6.12) 

compare this with (4.2). Hence, as in the fixed-demand case, for every E and 
N, every (C,) strategy combination is an E-equilibrium for all sufficiently 
large T. However, in this case one gets the result that, for fixed E and T, 
no (C,) strategy combination (k > 0) is an E-equilibrium for sufficiently 
large N. In other words, for any fixed E and number of periods, the cartel 
cannot survive at all if the number ofjrms is large enough. 

Corresponding to the rest of the analysis in Section 5, one has the following 
results. For every E, T, and N(>l), there is a number B(E, T, N) such that, 
in every E-equilibrium, the following quantities are bounded by B(E, T, N): 

I Qit - QS I) 
(6.13) 

64212212-3 
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for i = l,..., N and t = l,..., P, the bounds B(E, T, N) may be chosen so that, 
for every E and T, 

NE, T, N> 
NW is uniformly bounded in N, (6.14) 

and for every T and N, 
1~~ B(E, T, N) = 0. (6.15) 

It follows from (6.6) that average output per firm approaches 1, and market 
price approaches 1 - 01 = y (marginal cost) as N increases without limit. In 
addition, in every period every firm i’s relative share of total industry output, 
which is 

converges to zero as N gets large. Finally, one can show that, in every period, 
every firm i’s profit is within 

B(E, T, N> + W(E, T, N)12 
Nfl N (6.16) 

of the one-period CNE profit, which is N/(N + 1)2, and this bound is uni- 
formly bounded in N, and goes to zero with E. 

Thus, in these various ways, for large N, c-equilibria are close to competi- 
tive equilibrium. 

I shall omit the proof of these results, which parallels the argument in 
Section 5. The key facts are that, for the one-period case, Eqs. (5.5)-(5.8) 
are still valid, but with 

h = (N+“, (6.17) 

and in the Lemma of Section 5, the right side of (5.9) must be replaced by 

-&+g. (6.18) 

which is less than b for 
N-2 

b < 2(N + 1) ’ (6.19) 

In particular, for the one-period case one can take 

B(E, 1, N) = (N~)112, (6.20) 

(6.21) 

provided that 
N 
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7. AN ALTERNATIVE DEFINITION OF PERFECT EPSILON-EQUILIBRIUM 

As an alternative to the definition of perfect epsilon-equilibrium given in 
Section 4, one can take the utility of the continuation of a strategy to be the 
average of the profits in the remaining periods, rather than the average of the 
profits in all T periods.5 This change leads to a definition of perfect epsilon- 
equilibrium that is more restrictive, in the sense that, for every positive 
epsilon, the set of perfect epsilon-equilibria is smaller. Results analogous to 
those of Sections 5 and 6 can be derived for this definition; I omit the details. 
However, the results in Section 4, on trigger strategies, are changed in an 
interesting way. For a fixed positive epsilon, and a fixed number of firms, 
the combination (C,) of trigger strategies is a perfect epsilon-equilibrium 
for all sufficiently large horizons T and all k not too close to T, namely, if 
and only if 

T-k2(+)($&2- I. 

Thus, for this alternative definition of epsilon-equilibrium, a cartel held 
together by trigger strategies will break down as the industry approaches the 
horizon T. 

8. INTERPRETATIONS OF EPSILON 

Why should a firm be satisfied with a less-than-optimal response to the 
strategies of other firms ? One type of answer refers to the various costs of dis- 
covering and using alternative strategies, and alludes to the possibility that a 
truly optimal response might be more costly to discover and use than some 
alternative, “nearly optimal” strategy. In this interpretation, the “epsilon” 
for a particular firm represents a judgement of the firm that the additional 
benefits from improving its strategy would be outweighed by the additional 
costs. (In the present analysis, all firms were assumed to have the same 
epsilon, but this simplification is not strictly needed for the results.) It 
would be consistent with the spirit of the model for this judgement to be 
in part subjective, rather than necessarily based on some precise calculation 
of benefits and costs. 

A second interpretation of epsilon might be based on the supposition that 
the firms realize that strict optimization of each firm’s response to the other 
firms’ strategies would lead to a breakdown of the cartel. This approach is 
intuitively appealing, but I am not aware of any satisfactory formal model of 
rational behavior on which it could be based. 

Recall that, in the model of the present paper, it is assumed that each firm 
uses the criterion of average profit per period to compare strategies; thus 

6 This alternative was suggested to me by Sanford Grossman and Robert Rosenthal. 
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epsilon is measured in “dollars per period.” This scale of measurement 
would be consistent with the cost-of-decision interpretation of epsilon- 
equilibrium. In a more general treatment, epsilon would be measured in 
units of utility. However, epsilon-equilibria would not be invariant under 
transformations of the utility functions of the firms that change the unit of 
measurement of utility. For example, if the preferences of a firm were scaled 
in terms of a von Neumann-Morgenstern utility function, then epsilon- 
equilibria would not be invariant under all transformations of the utility 
function that leave the firm’s preferences invariant. A solution to this last 
problem would be to adopt a “canonical” utility representation for each 
firm, and then to interpret epsilon with reference to those canonical utility 
functions. This would be equivalent, for each firm, to interpreting epsilon 
as a given percentage of the difference in utility between two reference profits. 
Within this framework, the interpretation of the results of the present paper 
is straightforward, with the proviso that, for those situations in which the 
number of firms increases without limit, some condition of “similarity” 
of the epsilons of the different firms would have to be satisfied (as would 
naturally occur in the replication case). 
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