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PRIVATE INFORMATION AND PURE-STRATEGY 

EQUILIBRIA* 


ROY RADNER AND ROBERT W. ROSENTHAL 

BeN Telephone Laboratories 

In this paper it is proved that in games with a finite number of players and a finite number 
of moves, if each player observes a private information random variable which has an 
atomless distribution and is independent of the observations and payoffs of all other players, 
then the game possesses a pure-strategy equilibrium. Examples are presented that illustrate the 
importance of the assumptions. 

1. Introduction. One of the reasons why game-theoretic ideas have not found 
more widespread application is that randomization, which plays a major role in game 
theory, seems to have limited appeal in many practical situations. If it were the case, 
however, that for the kinds of games that exist in the "real world" randomization could 
be shown to play no useful role, then this difficulty, at least, would be insignificant. It 
is sometimes claimed that in realistic situations games tend to have incomplete 
information (i.e., the rules and/or the payoffs are not completely known by all 
players). It is also sometimes claimed that when information in games is sufficiently 
disparate among the players and when its distribution is sufficiently diffuse, the 
players might as well restrict their attention to pure strategies. If these claims were 
verified then in real-world situations well-modeled by noncooperative games with such 
information features, the case for randomization would not be as compelling as 
students of game theory might otherwise suspect. 

The purpose of this paper is to examine conditions under which diffuse and 
disparate information leads to the existence of pure-strategy equilibria. To illustrate, 
consider a game in which each of a finite set of players privately observes the outcome 
of a personal random variable. Following this the players play a finite game T*.In a 
normal-form-game model T of this situation, the pure strategies for each player are 
functions from the set of his possible observations into the set of his pure strategies in 
T*.(To avoid confusion, from now on the pure strategies of T*will be referred to as 
moves.) If the personal random variables are mutually independent with atomless 
distributions, and if the payoffs of T* are independent of these random variables, then 
it is well known (e.g., Aumann (1974)) that T has a pure-strategy Nash equilibrium. To 
see this, it is sufficient to observe that the independent randomizations needed for a 
Nash equilibrium of T* can be reproduced by pure strategies in r. Such a pure-
strategy combination is an equilibrium of r. 

After establishing notation and supplying definitions in $2, we show in $3 that 
pure-strategy equilibria still exist when the situation just discussed is generalized so 
that each player's own payoff in T*may be correlated with his personal observation. 
(This more general situation does not exclude the possibility that the players may have 
additional, correlated, information.) Under the hypotheses of our main result 
(Theorem 2), we show that to every mixed-strategy equilibrium there corresponds a 
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pure-strategy equilibrium that gives to every player (respectively) the same expected 
payoff. One can also demonstrate that, with the same hypotheses, there exists at least 
one equilibrium (Theorem 3). (These results also generalize some implications of 
Theorems 2 and 4 in Harsanyi (1973). Harsanyi's methods do not extend to our 
setting, however.) In $4, we give three examples of games in which the information 
variables have atomless distributions, and in which there are mixed-strategy equilibria 
but no pure-strategy equilibria. 

If there are any surprises in this paper, we feel that they are in the strength of the 
hypotheses needed to establish existence of pure-strategy equilibria and the ease with 
which examples may be constructed which do not possess such equilibria. Neverthe- 
less, our opinion is that there is some truth in the imprecise claims mentioned in our 
first paragraph. In particular we note that the conditions needed to establish the 
existence of pure-strategy approximations to mixed-strategy equilibria are significantly 
weaker than what we will be assuming here. This subject is treated in Aumann et al. 
(1981). 

2. Notation and definitions. The game r is played by a finite number, I, of 
players. Each player i first observes the realization of a (secret) random variable, Z,, 
and then selects a move, a,, from a finite set, A, = { 1, . . . , K , ) .The choice of this move 
may depend on Z,. The resulting payoff to player i is u,(a, X,), where a = (a,) is the 
combination of moves, and X, is a random variable (the "payoff-relevant" state of 
nature for i ) .  Each player is interested in maximizing his expected utility. 

In order to describe a consistent framework for our probability calculations, we 
need some additional notation. For each i,let (Z,,E,) and (Xi,%,)be measurable 
spaces where 2, and %, are the sigma-fields of measurable subsets of Z, and XI, 
respectively, Let f2 denote the Cartesian product of the sets Z,, XI, . . . , Z,, XI, with 
the corresponding product sigma-field '3 of measurable sets, and let p be a probability 
measure on 5. For a point w = (zI ,xI ,. . . , tI ,xI) in 3,define the coordinate projec- 
tions 

xi(0)= x,. (2.1) 

(In ordinary probability parlance, the "random variable" Z, is the function defined in 
(2.1).) 

In the game r, a pure strategy for player i is a measurable function, say g,, from 2, 
to A,. If the players use the strategy combination gl, . . . ,gI, the resulting expected 
utility to i is 

In order for (2.2) to be well-defined for every pure strategy combination, we assume 
that, for every a = (a,) in A r X ,A , ,  u,[a,X,(.)] is a (real-valued) p-integrable function 
on f2. (This would be the case, for example, if, for every a in A ,  u,(a, .) were a bounded 
measurable function on X,.) We shall usually replace expression (2.2) by the less 
cumbersome notation 

&u,[gl(Zl)?. . . ,g,(Z, ),X,]? (2.3 

and similarly use the "expectation" operator G in other expressions.' 

'For explanatory material on products of measurable spaces see, for example, Chapter VII of Halmos 
(1950), or any other standard reference on measure theory. Chapter 1X of the same book provides a 
measure-theoretic approach to probability. 
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We now introduce randomization over pure strategies. One approach would be to 
endow each player's set of pure strategies with a sigma-field of measurable sets; a 
mixed strategy would then be a probability measure on the set of pure strategies. An 
essentially equivalent approach, but one that involves fewer technical difficulties, is to 
use the concept of a behavior strategy.2 For each i, let S, denote the unit simplex of 
K,-dimensional Euclidean space (recall that K,is the number of moves in A,  available 
to player i). A behavior strategy for i is a measurable function, say b,, from Z, to S,.We 
interpret the kth coordinate bik(zi) as the probability that i uses move k, given that he 
has observed z,. We say that bi ispure if bi(z,) is a unit vector for almost every zi. Let B, 
denote the set of behavior strategies for player i. 

In order to calculate the expected utility to a player resulting from a combination of 
behavior strategies, first note that if, for each player i, si is a point in the simplex S,, 
and a, is a move in A,, then the corresponding probability of the combination a = (a,) 
of moves is 

72(a, 8) =11sia,, 
i 

where s = (s,). Letting S denote the Cartesian product X we can (with a slight 
abuse of notation) extend the utility function u, to S x Xiby 

If, for every j ,  player j uses behavior strategy b,, and if we denote b = (b,) and 
b(Z) = (bl[Zl], . . . ,bIIZf]), then we can express the resulting expected utility to 
player i as 

An equilibrium (Nash) in behavior strategies is defined in the usual way: it is a 
combination such that no player can increase his expected payoff by changing his own 
behavior strategy alone (i.e., each player uses a best response to the behavior-strategy 
combination of all other players). If b* and b are equilibria, we shall say that b is a 
purification of b* if, for every player i, 

b, is pure, (2.7a) 

Thus a purification of an equilibrium b* is an equilibrium that gives every player the 
same expected utility that b* does. Our main positive result ($3) is that, under certain 
hypotheses about the random variables Z,,Xl, . . . ,ZI,XI, every equilibrium has a 
purification; furthermore, the purification b of b* can be chosen so that, for every i, 

&b,(Z,)= &bt(Z,). (2.7~) 

In fact, the same method of proof generates the stronger conclusion that every strategy 
combination b' = (b,!) such that, for every i, b,! is either b, or b,*, is also an equilibrium. 

3. Equilibria in pure strategies. Our main result is Theorem 2, but since the 
hypotheses of that theorem are somewhat complicated, we first introduce the main 
ideas in a simpler setting. This preliminary result (Theorem 1) can, in fact, be used to 
prove almost directly the ostensibly more general result in Theorem 2. 

2For a discussion of mixed and behavior strategies, see Aumann (1964), (1974). However, Aumann's 
terminology differs somewhat from ours. Harsanyi (1973) calls our behavior strategies "normalized strate- 
gies." 
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Recall that a probability measure is atomless if every set of positive measure has a 
subset of strictly smaller, but still positive, measure. We shall say that the distribution 
of Z, is atomless if the probability measure induced by p on Z, is atomless. 

THEOREM If, for every player i, 1 .  
(a) the distribution of Z, is atomless, 
(b) the random variables {ZJg # i }  together with the random variable Y, = (Z,, X,) 

form a mutually independent set, then every equilibrium has a purification. 

Notice that hypothesis (b) implies that the random variables Z,, . . . , Z, are 
mutually independent, but does not require that Z, and X, be mutually independent, 
nor that X,, . . . , XI be mutually independent. The following example satisfies hypoth- 
esis (b). Suppose that X;, X;, . . . , Xi, E,, . . . , E, are mutually independent real 
random variables, and that, for i = 1, . . . , I ,  

In this example, one may interpret X; as a common payoff-relevant variable, Xi' as a 
payoff-relevant variable "private" to player i (i > O), and Z, as a measurement of X,' 
with error El. In Theorem 2 we shall show that hypothesis (b) can be weakened in such 
a way that, in the context of this example, each player could also have information 
about Xh. 

PROOF^ OF THEOREM Using (2.4)-(2.6) we can rewrite the expected utility to 1. 
player i, resulting from the strategy combination b, as 

By hypothesis (b) of the theorem, (3.1) is equal to 

Write b-I for the (I - 1)-tuple of behavior strategies b,(j # i), and write &b, 
E & bJ(ZJ). From (3.2) one sees that the set of best responses by player i to b-I 
depends only on & b-'. 

Suppose that b is an equilibrium, and consider a particular player i .  In order that bl 
be a best response to b-' it is necessary and sufficient that, for almost every z,, b,(z,) 
maximize player i's conditional expected payoff given Z, = z,, or equivalently, from 
(3.2), that &(z,) be a point s, in the simplex S, that maximizes 

CcG(ui(a,xi)IZi = 'i} n&{bj5(ZJ)}. 
a d  j#i 

This expression is linear in s,, so b,(z,) is a convex combination of the set of those unit 
vectors in S, that maximize (3.3); call this set +,(z,). (Keep in mind that +,(z,) also 
depends on b-I.) Since the number of unit vectors in S, is finite, there is a (measur- 
able) partition {Z,,: n = 0,1, . . . ,N,) of Z, such that: 

Prob(Z,,)>O, n = l ,  . . . ,  N , ;  (3.4a) 

for each n > 0, +, is constant on Zin. (3.4~) 

'The method of proof of Theorem 1 was suggested by Schmeidler (1973). It is also reminiscent of 
Dvoretzky et al. (1950). 
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Because of (3.4c), one can, with some abuse of notation, write (Pi(Zin) = +i(zi) for zi in 
Z,. Since the distribution of Zi is atomless, for every n > 0 one can, by (3.4a), 
partition Zin into measurable sets Z,,, one for each unit vector vk in +,(Zin), such that 
for each vk in +;(Zin), 

(Use, e.g., Example 7, p. 100, of Lo6ve (1960).) Define a pure behavior strategy 6by: 

4(zi) = kth unit vector in Si if zi is in Z,,. (3.6) 

To complete the definition of 6 ,  one can let 6(zi) be any single unit vector for zi in Z,. 
Recall that bik(zi) is zero if vk is not in +i(zi); hence, by (3.6) and (3.5), 

6b; = & b,. (3.7) 

In addition, for almost every zi, bi(zi) is in +;(zi), so that 6is a pure, best response to 
b-i 

If we define b; in the corresponding way for each player j ,  then the strategy 
combination 6 has the properties: 

A 

b is pure; (3.8a) 

for each j ,  4 is a best response to b-J; (3.8b) 

Recall that the expected utility to a player j depends on b-J only through & b-J; it 
follows that, for each j ,  b; is a best response to b~ .Hence 6 is a purification of b, 
which completes the proof of Theorem 1. Note, too, that (3.8~) is the same as (2.7~). 

We now turn to our more general result. Suppose that each random variable Zi has 
two components, say Zi and Zy; in other words, Zi is itself a product of two 
measurable spaces, Zi and Z:. Denote by Z"  the I-tuple (Zj",. . . , Z;'). 

THEOREM If for every player i, 2. 

(a') the distribution of Z,' is atomless, 

(aN) the set Z; is finite, 

(b) the random variables {Z,': j # i} together with the random variable Yi E (Z,', Z", 

Xi) form a mutually independent set, then every equilibrium has a purification. 

To illustrate the hypotheses of Theorem 2, consider an example like the one 
following the statement of Theorem 1, in which i's payoff is ui(a,X;,X/), and i's 
information is (Zi, Z y ) ,  where 

and li is a function ("statistic") of the common payoff-relevant variable, X;, with 
finitely many different values. (As before, the random variables X;,X;, . . . , X;, 
E,, . . . , E,, are mutually independent.) 

PROOFOF THEOREM The idea of the proof is to reformulate a new, equivalent 2. 
game whose "moves" for each player i are functions from Z,:' to A,, and then apply 
Theorem 1 to this new game. Thus let ai be the set of all functions from Z: to A,;  
since both Zi and A; are finite, so is &,. Let Si denote the unit simplex in a Euclidean 
space of dimension equal to the number of elements in a i ,  and let $21, denote the set of 
all measurable functions from Zi to Si .  We may interpret a function pi in Bi  as a 
behavior strategy in the new game. Thus, conditional on Z/ = z / , the probability that i 
uses the decision function ai (in a i )  for responding to Zy is Pia,(z,!). 
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To the behavior strategy pi in the new game there corresponds in a natural way, a 
behavior strategy bi in the old game, namely 

On the other hand it is easy to show that to every 6, there corresponds at least one P, 
that satisfies (3.9). Hence 9,generates the set of all behavior strategies for i in the old 
game. 

One can now define, in a straightforward way, the new game corresponding to the 
behavior strategies Fi, and apply Theorem 1; we omit the details. 

L. S. Shapley has observed that the purifications of Theorems 1 and 2 possess a 
stronger feature than has been asserted. If any coalition is unable to gain by a 
coordinated switch from an equilibrium, then that same coalition cannot gain versus 
the purification. In particular, if the original equilibrium were a strong Nash equilib- 
rium, the purification would be as well. 

To assure the reader that our main result is not vacuous, we state, without proof: 

THEOREM Under the hypotheses of Theorem 2 ,  there exists an equilibrium. 3. 

(One method of proof is to consider each player's set a, of behavior strategies as a 
subset of a space of essentially bounded measurable functions, endowed with the 
so-called weak* topology. With this topology, $8, is a compact, convex set, and one 
can show that each player's expected utility is a continuous function of the I-tuple of 
all players' strategies. One can then apply the usual fixed-point method to demonstrate 
the existence of an eq~ilibrium.~) 

4. Examples of nonexistence of equilibrium in pure strategies. In this section we 
give three examples of games that have no equilibria in pure strategies. In the first two 
examples, hypothesis (a) of Theorem 1 is maintained (atomless information), but the 
independence condition of hypothesis (b) is violated. In Example 3, the sets of moves 
are infinite, but the hypotheses of Theorem 1 are otherwise maintained. 
EXAMPLEI. This game, in which there are two players, brings out in a very simple 

context how statistical dependence between the information variables of the two 
players can prevent them from achieving an equilibrium in pure strategies, even if the 
information variables are irrelevant to the payoffs. Suppose that each player has two 
moves ( A , = A ,  = { 1,2)), and that the payoffs are those for the zero-sum game 
"matching pennies." The accompanying table shows the payoff matrix for player 1: 

Player 2's move 
I 2 

pPlayer 1's move 2 

The players' information variables, Z, and Z,, are distributed uniformly on the 
triangle of the unit square defined by 0 < z, ,< z, < 1. 

In order for a pair of behavior strategies to be an equilibrium, it is necessary and 
sufficient that, for each player i and almost every value zi of his information variable 
Z,,the conditional probabilities of the two moves of the other player (given that 

4We are not aware of any theorem that would enable us to prove the existence of equilibrium in the 
general setup of our paper without adding some stronger hypotheses, such as those of Theorem 2. For a 
detailed proof of Theorem 3, see Radner and Rosenthal (1980). For further results on both existence and 
purification, see Milgrom and Weber (1980). 
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Z j  = zi) should be equal. Suppose that there is an equilibrium in pure strategies, and let 
F denote the set of z ,  in the unit interval for which the first player uses move 1, i.e., for 
which b, ,(z,) = 1. The set F, which is measurable, characterizes the pure strategy of 
player 1. The equilibrium condition implies that, for almost every z,, 

Let f(z,) denote the conditional probability on the left-hand side of (4.1), and let X 
denote Lebesgue measure on the line; then 

We shall show that there does not exist a measurable set F such that f(z2) = 1/2 for 
almost all z2 in the unit interval. 

Suppose that there were such a set F. Then, from (4.2), it would follow that, for 
almost every z, 

Note that A(F n [O,z]) is continuous in z, so that (4.3) would hold for all z in the unit 
interval. Since F has positive measure, for any strictly positive number c there is a 
nondegenerate interval, say (c, d), such that 

(see, for example, Halmos (1950), p. 68, Theorem A). We shall take c < 1/2. The 
left-hand side of (4.4) equals 

A(F n [O, d l )  -X(F n [0, C ]  ), 

which by (4.3), equals (d - c)/2. Hence, from (4.4) we would have 

(d - c)/2 > (1 - r)(d - c), 

which is impossible. 
EXAMPLE2. In this example there are again two players and the information 

variables are correlated, but the latter are conditionally independent given the payoff- 
relevant random variables. Suppose again that each player has two moves, and that the 
game is "matching pennies" as in Example 1, except that the diagonal entries equal to 
1 in the payoff matrix are replaced by X, where X is distributed on the unit interval 
with probability density 3x2. Thus the payoff-relevant random variables for the players 
are X, = X2= X, but the realized value of X is irrelevant to the optimal strategies, so 
that, as in Example 1, for each player and almost every value of his information 
variable, the conditional probabilities of the two moves of the other player should be 
equal. 

Suppose that, given that X = x,  the two information variables, Z ,  and Z,, are 
independent and are each distributed uniformly on the interval [0, x]. By a straightfor- 
ward calculation, one finds that the marginal joint density of the information variables 
is 
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and that the conditional density of Z, given Z, = z,  is 

2 
2 ,  6 22, 

, 2 ,  2 z,.
1 - z; 

Suppose that there were a pure-strategy equilibrium. Using the notation of Example 
1, let F denote the set of values of Z, for which player 1 uses move 1. Again, (4.1) must 
hold in an equilibrium, for almost every 2,. Let I denote the indicator function for the 
set F, that is, I(s) = 1 for s in F, and 0 otherwise. It will be convenient to denote 
A(F n [o, ti) by ~ ( t ) ;  thus 

L (t) =1'1(3) ds, 

The equilibrium condition (4.1) requires that, for almost every t, 

Integrating by parts, one can transform (4.7) into 

Differentiating this with respect to t, one gets L(t) = t/2, which is the same as (4.3), 
and hence impossible by the argument given in Example 1. 

EXMLE 3. Again there are two players. Player 1 picks a number p in the unit 
interval and an element from the set {a,  P ) ,  i.e., his move set is [0, 11 x {a, 8 ) .  Z ,  is 
uniform on [0, 11. 2's move is a pair (C,, Cp) where both C, and Cp are Bore1 subsets of 
[O, 11 the sum of the (Lebesgue) measures of which is one. Z, can be any random 
variable which is independent of Z,. If player 1 picks (p, a),the payoff to player 2 is 1 
if p E C, and (-1) if p 4 C,. Similarly, if 1 picks (p, P), 2's payoff is 1 if p E Cp and 
(- 1) is p @ Cp. The payoff to player 1 is the negative of the payoff to player 2 
whenever p = z,, the realization of Z,. Otherwise 1's payoff is (-2). 

Defining strategy spaces for this game raises technical issues which are not of central 
importance. We shall argue informally, therefore, that this game cannot possess a 
pure-strategy equilibrium. First notice that the situation as described is, in the notation 
of 93, one in which XI= Z,, X, is trivial, and (X,,Z,) is independent of (X,,Z,). (A 
simpler version of this game would require p = z ,,but then hypotheses (b) of Theorem 
1 would fail.) 

At an equilibrium, player 1 must set p = z ,  for almost every z,. To any pure strategy 
with this feature, however, player 2's set of pure best responses consists of all pairs 
(C,, Cp) such that C, (resp., Cp) agrees (disregarding sets of measure zero) with the set 
of z ,  values which player 1 assigns to a (resp. 8).Thus any pure strategy equilibrium 
must result in payoffs of (- 1) to player 1 and 1 to player 2. If player 1 setsp = Z,  and 
then picks a! or P with probability 1/2 each, independently of Z,, he guarantees 
himself an expected payoff of zero. This strategy combined with player 2 ignoring his 
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information and setting C, = Cp = [O, 1/21, for example, is evidently an equilibrium 
for any suitably defined spaces of strategies. 
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