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Econometrics, Vol. 51, No. 6 (November, 1983) 

STATIONARY OPTIMAL POLICIES WITH DISCOUNTING IN A 

STOCHASTIC ACTIVITY ANALYSIS MODEL 


BY MUKUL MAJUMDAR AND ROYRADNER' 

We consider optimal capital accumulation in a nonlinear activity analysis model in 
which production and primary resource supplies are affected by a stationary stochastic 
process of exogenous shocks; the optimality criterion is the sum of discounted expected 
future social utilities. Under various "neoclassical" conditions on technology and prefer- 
ences, (i) there exists an optimal policy of investment and consumption expressible as a 
continuous time-invariant function of the capital stocks and the history of stochastic 
shocks, and (ii) there is a stationary stochastic process of capital stocks that is consistent 
with the optimal policy. 

1. INTRODUCTION 

THE DYNAMIC STABILITY of optimal growth in multisector models with uncer-
tainty has been demonstrated under fairly general conditions for the case in 
which future expected social utility of consumption is not discounted, and the 
"overtalung" criterion of optimality is used.' The case in which future expected 
utility is discounted has been less tractable. Brock and Majumdar [4] have 
demonstrated stability in a multisector model that satisfies the following assump- 
tions (among others): (i) the exogenous shocks to the economic system form a 
sequence of independent and identically distributed random variables, (ii) the 
optimal policy of investment and consumption can be expressed as a continuous 
time-invariant function of the state of the economic system, (iii) the random 
vectors of optimal capital stocks belong to a compact set, and (iv) the Hamilto- 
nian system corresponding to the optimal process has suitable "curvature." One 
would like to be able to extend this result by allowing more general stochastic 
processes of exogenous shocks, and by demonstrating that properties (ii)-(iv) 
above are themselves consequences of natural assumptions about the technology 
and preferences of the economy. 

The results in the present paper constitute partial progress in this program. In 
a fairly general nonlinear activity-analysis model, with a stationary stochastic 
process of exogenous shocks, we demonstrate that properties (ii) and (iii) above 
follow from "neoclassical" assumptions about the technology and preferences. 
We also demonstrate the existence of a stationary stochastic process of capital 
stocks that is consistent with the optimal policy function. Our method of analysis 

'The research reported here was supported in part by the National Science Foundation with 
grants to Cornell University and the University of California, Berkeley, and by a fellowship from the 
John Simon Guggenheim Foundation to Mukul Majumdar. Much of the work was done while Roy 
Radner was a faculty member and Mukul Majumdar was a Ford Rotating Research Professor at the 
University of California, Berkeley in 1976. Thanks are due to Professor I. Zilcha for his comments on 
an earlier version. The views expressed here are those of the authors, and not necessarily those of Bell 
Laboratories or the Bell System. 

'See Jeanjean [9], Dana [S], and Zilcha [20].The literature on optimal accumulation in aggregative 
models is reviewed in Majumdar [12]. 
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is an extension of known techniques of Markovian dynamic programming to the 
case in which the stochastic environment is stationary, but not necessarily 
Markovian; this extension may have some independent interest. 

Recall that in a "neoclassical" model with constant technology and a constant 
supply of essential primary resources, an appropriate concept of dynamic stabil- 
ity is that of convergence towards constant consumption, investment, and capital 
stocks. In an economy in which the technology and supplies of primary resources 
are subject to random shocks, one cannot (in general) expect convergence to a 
constant state of the system, but only convergence to a stationary stochastic 
process of consumption, investment, and stocks (see [16]). For example, if the 
successive random shocks are independent and identically distributed, and a 
time-invariant policy function is used to determine consumption and investment, 
then the successive capital stock vectors will form a Markov process. A "steady 
state" of this process is characterized by an invariant probability distribution of 
the capital stocks, which together with the probability transition law of the 
system determines a stationary stochastic process of consumption, investment, 
and capital stocks. If the exogenous shocks are not independent, then one cannot 
expect the successive states of the economic system to be even Markovian, and 
one must be prepared to accept as a "steady state" a general stationary stochastic 
process. The reader should bear in mind that such a process can exhibit 
"stochastic cycles," i.e., fluctuations of varying magnitude and duration. 

A second complication we wish our theory to be able to deal with is the 
multisector nature of the model. In one- or two-sector models, one is constrained 
to consider only the determination of aggregate investment. Thus, while the 
analysis of such a restricted model attempts to capture to some extent the choice 
between present consumption and future consumption (the possibilities of which 
depend on the present level of investment), it does not take into account the 
important question of the distribution of aggregate investment among various 
sectors and indu~tries.~ In our framework, a simple method of treating such 
problems is provided. In principle, the richer structure of our model can be 
helpful in any systematic study of many issues relevant for investment planning 
(e.g., the implications of alternative allocation policies for the distribution of 
employment among various sectors). 

In our multisector model of capital accumulation, we allow both the techno- 
logical process of production and the supply of primary resources (like "labor") 
to depend on the history of the stochastic environment. The evolution of the 
environment is assumed to be a stationary stochastic process, the probabilistic 
law of which does not depend on economic decisions. The production possibili- 
ties are described by a finite number of (possibly nonlinear) activities. The inputs 
needed and the outputs produced by these activities are influenced by the state 

31n the literature on development planning, the importance of these problems has been recognized 
by Dobb, Sen, and others. See, e.g., Sen [17, p. 91. 
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of the environment. The stochastic model of production is specified in detail in 
Section 2. An interesting bound on the set of all feasible activity levels is 
computed (see (2.10)). It is also shown that the compact set of feasible activity 
levels varies in an upper semi-continuous manner with respect to changes in the 
history of the environment and the stocks of producible goods (Proposition 2.1). 
Some other continuity properties of the law of motion of the system are also 
derived (Lemma 2.2). 

The optimal accumulation problem that we study can be viewed as a stochas- 
tic dynamic program with dis~ounting.~ In each period, the planner has to choose 
an "action," which in our context is simply a decision concerning the levels or 
intensities at which the activities are to be operated. Such a decision completely 
specifies the total consumption of all the commodities and the allocation of 
investment among the activities. A policy or a program consists of a sequence of 
decision rules, one for each period, which determines the action in every period 
corresponding to each evolution of the system up to that period. The optimality 
criterion is a discounted sum of expected (social) utilities generated by consump- 
tion in each period. We first prove the existence of an optimal policy that is 
stationary, i.e., that can be described as a "memoryless," time-independent 
optimal decision function (or, optimal policy function). Roughly speaking, cer- 
tain continuity and boundedness conditions on the technology, the environment, 
and the utility function are sufficient to guarantee the existence of such an 
optimal policy function (Theorem 2.1). The optimal policy is also characterized 
in terms of the "functional equation" of dynamic programming (see (2.23)). We 
emphasize that for these results we do not require the standard neoclassical 
conditions on convexity of the technology and concavity of the utility function. 

Under stronger conditions, including convexity of the technology and concav- -. 

ity of the utility function, the optimal policy function is continuous (Theorem 
3.1). 

The optimal policy function is a useful tool in investigating the qualitative 
behavior of the stochastic process of optimal acc~mulation.~ It is shown, for 
example, that if the optimal policy function exists and is continuous, the 
stochastic process of optimal accumulation does have a steady state (Theorem 
3.2). It is also noted that for a wide class of models, the optimal policy will 
actually require that some activities are operated at positive levels (so that 
aggregate investment is positive in each period). 

The results that we use from the theory of dynamic programming are quite 
technical, and are not conveniently available in one or two references. Therefore, 
in the Appendix, we have provided a sketch of the mathematical background 
that we need, together with references to the relevant literaure. 

4Radner [IS]explored the dynamic programming approach in a deterministic context, and 
Jeanjean [8] used dynamic programming methods in a model with uncertainty and discounting. 

5The stability analysis of Brock and Majumdar [4]relies on the assumption of the existence of 
such a policy function. 
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2. AN ACTIVITY ANALYSIS MODEL OF PRODUCTION UNDER 
UNCERTAINTY 

2.1. Notation 

In what follows, if S is a metric space, g ( S )  denotes the Bore1 a-field of S 
(i.e., the smallest a-field containing the open sets). d ( S )  is the set of all 
probability measures on g ( S ) .  On the notion of weak convergence in d ( S ) ,  the 
reader is referred to Billingsley [2]. The set of all real-valued bounded g ( S ) -  
measurable functions on S is denoted by B(S) and the set of all real-valued 
bounded upper semi-continuous (u.s.c.) functions on S is denoted by C,(S). We 
use the sup-norm of B(S) (see Dunford-Schwarz [6, p. 2401). For any f in B(S), 
we let 

For any f in C,(S), we let 

We recall that, endowed with the topologies generated by the norms / /  . 1 1 ,  and 
I /  . / I  the spaces B(S) and C,(S) are complete metric spaces (see Maitra [ l l ,  
Lemma 4.21). 

Finally, a vector x = (xi) in R m  is nonnegative (written x 2 0) if xi 2 0 for all i ;  
x is semi-positive (written x > 0) if x 2 0 and xi > 0 for some i ;  x is strictly 
positive (written x >> 0) if xi > 0 for all i. For a vector x = (xi) in R ", 1 1  x 1 1  
= C?="=Ixil. 

2.2. The Environment 

The environment is described by the set D of all doubly infinite sequences 
s~ = (of),"=-,where each o, belongs to a compact (nonempty) metric space W. 
For example, W can be taken as a closed interval [a,b] of the real line, or more 
generally, a closed bounded set in a finite dimensional Euclidean space. A 
particular o, will be called the environment at date t ;  o will be called a complete 
history of the environment (from the indefinite past into the indefinite future). D 
is endowed with the product topology. Hence, it is a compact metric s p a c e i n  
particular, it is a complete separable metric space (Dunford-Schwarz [6, 1.6.15; 
P 221). 

Let h, be any partial history of the environment up to period t ,  i.e., h, = 
( .  . .  , o - , , .  . . a O , .. . , a,). The partial history h, is the most that can be 
observed about the environment up to date t ,  and decisions at date t can at most 
depend on h,. We denote by H, the set of all such partial histories of the 
evolution of the environment up to period t. Again, endowed with the product 
topology each H, is a compact (hence, a complete, separable) metric space. Note 
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that if we consider the shift transformation 7 mapping any infinite sequence 
o = (a,) into an infinite sequence ~odefined as 

we can verify that T is one-to-one and continuous from H, onto H,,, . Thus, 7 is 
a homeomorphism (Kelley [lo, Ch. 5, no. 8, p. 1411). We shall use h (resp. H )  to 
denote a particular partial history (resp. the set of all partial histories) up to some 
period when the terminal date is unimportant. 

2.3. Commodities, Activities, and the Technology 

There are m producible commodities at each date. In addition, there are 
primary factors, which cannot be produced but the supply of which is exoge- 
nously given. To simplify notation, we concentrate on the case in which there is a 
single primary factor (to be called "labor"), that is essential in production. To be 
sure, we do not use any result like the nonsubstitution theorem in which the fact 
that there is a single primary factor is of importance. What follows can be 
extended to allow for more than one primary factor, with each activity requiring 
at least one of these for operating at positive intensity. 

The production possibilities at each date are described by J activities or 
techniques of production. At each date, the activity j (= 1,2, . . . ,J )  is operated 
at an intensity or level z, (20). To express the idea that the inputs and outputs 
corresponding to any given activity level may be stochastic we postulate that (i) 
the input requirements of these activities at any date t depend on the partial 
history h, of the environment up to that date, and (ii) the corresponding outputs 
available in period t + 1 depend on the history h,+, of the environment up to 
date t + 1. Thus, input requirements at date t are obseryable at date t, but the 
corresponding outputs may only be known at date t + 1. 

Let $(h, z,) be the labor requirement of activity j when operated at an intensity 
zj if the partial history is given by h. The following assumption is a precise 
description of the essential role of labor in production. 

ASSUMPTIONA. 1 : For each j = (1,2, . . . ,J )  the function $(h,zj) defined on 
H x R+ assumes values in R+  ; moreover: (a) $(h, 0) = 0 for all h in H; (b) 
$(h,zj) is strictly increasing in zj and as zj+ co, $(h,zj)+ co; (c) $(., .) is 
continous on H X R,. 

Given a vector z = (zj) of activity levels, we denote by I(h, z) the total labor 
requirement when the activities are operated at z, i.e., 

For any zj 10, let mj(zj) = min, ,,$(h, z,), i.e., the minimum amount of labor 



1826 M. MAJUMDAR A N D  R. RADNER 

needed to run the jth activity at intensity z,, no matter what the partial history is. 
By the continuity and strong monotonicity of 4 and compactness of H, one easily 
gets 

(2.5) mj(0)=O, m,(z~)>m,(z,?) if zj>z; 

To express the idea that the supply of labor may also be a stationary stochastic 
process, we assume that it is exogeneously given by a function M on H satisfying 
a continuity property: 

ASSUMPTIONA.2: The function M from H into R +  is continuous and strictly 
positive. Hence, there are numbers M I ,  M2 such that 

Turning now to the producible commodities, the requirement of the ith 
commodity in the jth activity operated at an intensity zj at date t is specified by a 
function RV(h,, z,) and the output of the ith commodity from the jth activity by a 
function PV(h,+,,zj). Thus, if at date t the vector of activity levels is given by 
z = (zj) in R:, the total input requirement for commodity i is given by 

and the total output of the ith commodity generated by the activities at date 
t + 1 is given by 

We shall denote by R(h,, z) and P(h,+ ,,z) the m-vectors whose coordinates are 
Ri(h,, z) and Pi(ht + ,,z), respectively. These are the vectors of inputs and outputs 
of the producible goods resulting from the operation of the activities at levels 
z = (zj) when the partial histories of the environment up to dates t and t + 1 are 
given by h, and h,+ ,,respectively. The following assumptions are made about the 
nature of the functions RV and PV. Their interpretation (being standard) is not 
spelled out: 

ASSUMPTION each ( i ,j), RV(h,,zj) is a continuous function onA.3: For 
H, x R + with values in R +. RV (h,, 0) = 0 and RV (h,, z,) is nondecreasing in zj for 
each h, in H,. 

ASSUMPTION a onA.4: For each (i, j), P,,(h,+,,zj) is continuous function 
H,, ,  X R+ with values in R+  and PU(h,+,,O) = 0 for all h,,, in H,+,. 
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The feasibility requirements on the possible choice of z = ( z j )at any date t will 
now be specified. Given the stocks of producible commodities resulting from the 
activities in the previous period and the supply of labor, a vector z of activity 
levels is feasible if it satisfies the constraint that the input requirements cannot 
exceed the available supply. Some bounds on feasible activity levels will now be 
derived so that we can conveniently restrict our attention to a compact set of 
feasible activity levels. 

For any feasible activity level z = (z j )  one must have 

The left side of (2.9) is the total labor requirement for z = (z j )  whereas the right 
side is the total supply of labor. The inequality (2.9) leads to the following 
bound: 

Under Assumptions A.l and A.2 there is some p > 0, such that for all feasible 
activity levels z = (zj) ,  

Let us now define 

Clearly the compact set A contains all the feasible activity levels, no matter what 
the environment at date t is. Let + be the correspondence from H x R;2 to A 
defined by: 

(2.12) +(h,k )  = { z  E A : I(h,z )  S M ( h ) ,  R ( h ,  z )  S k ) .  

In other words, +(h,k )  is the set of all activity levels that are feasible given h and 
k ,  in the sense that the input requirements of capital and labor are no greater 
than the available supplies. 

The following proposition is easily proved: 

PROPOSITION2.1 : Under Assumptions A. 1 through A.3, the correspondence 
+(h,k )  from H X R," into A is upper semi-continuous. 

In Section 3, we provide sufficient conditions for + to be continuous. We note 
that for any producible commodity i one has (from 2.8) 

It follows from the continuity of Pq on the compact set H,,, X A that there is 
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some positive constant y' such that for all h, in H and z in A ,  

We denote the compact set of nonnegative m-vectors satisfying the bound 
(2.14) by K, i.e., 

(2.15) K = {k E R m  :k SO, Ilk11 5 y'}. 

Writing S, = H, X K (the product being endowed with the product topology), 
we refer to S, as the state space in period t. Thus, the generic element s, of S, is 
the pair (h,, k,) representing a partial history up to date t and the stocks of 
producible commodities at date t. It is clear that S, is a compact (hence, a 
complete, separable) metric space. Note that for all t, S, and St+,are homeomor- 
phic to each other, and thus in any discussion in which only the topological 
structures are relevant, the subscript can be dropped, and we shall simply let 
S, = S whenever the time-period is unimportant. In what follows the domain of C) 
is restricted to S. 

The optimal resource allocation problem that we study will be treated as a 
variant of the problem of discounted dynamic programming. In the dynamic 
programming terminology (see, e.g., Blackwell [3]), the compact set A is the set of 
all possible actions (see (2.1 1)) whereas +(s) is the set of all feasible actions when 
the system is in the state s. Thus, taking an action in the dynamic programming 
means choosing activity levels in our context. Given the state in period t, say 
s, = s and an action chosen in that period, the system moves to a new state s t+ ,  . 
Let q(. I s,z) be the probability distribution of s t+ ,  = (h,+,,kt+,) given s, = s and 
the action z. Thus, the family q(. I (s, z)) for each (s, z) in S x A describes the 
stochastic laws of evolution of the system. We first note that the evolution of the 
environment is governed by a stochastic law that is exogenously specified and is 
independent of k, or z,. This stochastic law is formally specified by an initial 
distribution A,  on g ( H , ) and the family A(. I h,). A(. I h,) is to be interpreted as 
the distribution of h,+, given h,, whereas A,  is the 'initial' distribution of h,. On 
the other hand, the distribution of k t+ ,  given (h,, k,, z,) is determined according 
to 

Clearly, the distribution of kt+,  given h,, k,, and z, is determined by A(. I h,) and 
the function P in (2.16). Thus, the family q(- ( (s . z)) is well-defined for all s in S 
in z in A (irrespective of whether the feasibility requirements on z are met or 
not). At this stage, we introduce the following regularity condition on the 
stochastic law of the environment that will be assumed in the subsequent 
discussion. 

ASSUMPTIONA.5: If h: converges to h,, the sequence A ( . ]  h:) of probability 
measures on 9(HI+ ,) converges weakly to A(. I h,). 
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Given h,, a partial history up to period t ,  the randomness of h,, , - (h,, w,, ,) is 
solely due to the randomness of a,,, . Let A'(. 1 h,) be the distribution of o,,, 
given h,, a probability measure on g ( W ) .  Clearly, if f is any continuous real 
valued function on H,, ,  , one must have 

From (2.17) one can show that under Assumption A.5, if h: converges to h,, the 
sequence A'(. ,h:) of probability measures on B(W )  converges weakly to A'(., h,) on 
g ( W ) .  To see this let g be any continuous real valued function on W .  Define f 
on H,+, as f(h,, w,+ ,) = g(w,+,). Clearly f is continuous on H,, ,. And by A.5 

(2.18) J 
H I + I  

f (h ,  + ,)A (dh,+ ,,h: ) converges to 
JH,+lf(hr+l)h(dht+lhi).I 

But, by (2.18) we have 

(2.19) Jg( . )h ' (dw,+, lh: )  convergesto g(.)h'(dw,+,lh,). 
W Jw 

Two examples in which Assumption A.5 holds will be mentioned. If (w,) is a 
sequence of independent and identically distributed random variables with a 
common distribution O on g(W ) ,  the conditional distribution A'(. I h,) is also O. 
One can use (2.17) and the Lebesgue dominated convergence theorem to verify 
Assumption A.5. Secondly, if w, is a Markov process with a stationary kernel 
O( . ,  w) which is weakly continuous in w, i.e., if wn converges to G, the sequence 
O(. ,  w " )  of probability measures converges weakly to @(.,G), then Assumption 
A.5 can also be directly verified. In such a verification, and at various steps in 
what follows, the following mathematical lemma is needed (see Yushkevich [19, 
Lemma 21): 

LEMMA2.1: Let X, Y be compact metric spaces, and f be a continuous real 
valued function on X X Y .  Let p " be a sequence of probability measures on g ( Y )  
converging weakly to a probability measure p on g ( Y ) .  For any sequence x n  in X 
converging to x in X ,  

(2.20) J f ( x  " ,  .)pn  (dy)  converges to I,f ( x ,  .)p  (dy 1. 
Y 

We shall now state and prove some useful continuity and measurability 
properties of the family of q ( .  I s , z ) )  of probability distributions. 

LEMMA2.2: Under Assumptions A. 1-A.5, for any sequence ( sn ,  z ") converging to 
(s,z),  the corresponding sequence q ( .  I ( sn ,  z " ) )  of probability measures converges 
weakly to q ( .  I ( s , z ) ) .  
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PROOF: Use Lemma 2.1 (taking Y = W, X = H, x A, and noting the continu- 
ity of P andf) and the remarks following (2.17). Q.E.D. 

LEMMA2.3: For any B in %(H,+,),  q(B I .) is a % ( S  X A)-measurable func- 
tion. 

PROOF: For any B in B(H,+,),  q(B I .) is a function from S X A into [0, 11. 
We shall show that it is the composition of two measurable functions. Let 
4, : S x A into &(H,+,), be defined by: +,(s,z) = q(. I (s,z)). By Lemma 2.2,4, 
is a continuous, hence % ( S  x A)-measurable. Let 4, :&(HI+ ,) into [0, I] be 
defined as: #,(q) = q(B). Measurability of 4, is proved in Varadarajan [18]. 
Then, for any fixed B in % (H,+ ,), q(B I (s, z)) = 4,[4,(s, z)]. Q.E.D. 

For each t 2 1, define the product set 6, as 

The generic element of 6, is indicated by e, = (s,, z, ;s,, z,; . . . sf-,  ,z,- ,;s,). 6, 
is endowed with the relevant product of the Bore1 a-fields of the components. A 
program m of resource allocation (or, briefly, a plan or a policy according to 
the terminology of dynamic programming) is a sequence of functions m = 

(f,, . . . ,f,, . . . ) where each f, (t L 1) specifies the action selected in period t 
(i.e., the levels of the activities chosen in period t) as a (Borel-measurable) 
function of the evolution e, = (s,, z1 ; . . . ,st-,  ,z,- ,;st) of the system; moreover, 
the selection must be consistent with the feasibility requirements given by the 
correspondence +; formally, each f, (t 2 1) is a measurable function from 6, into 
A, satisfying, for each e, r (s,, z, ; . . . ,st- ,,z,-, ;st) in st',,f,(e,) E +(sf). 

We are especially interested in stationary programs or policies m = (f, f, 
. . . ,f, . . . ) z (f ") defined by a single Borel-measurable function f from S into 

A, satisfying for each s in S , f(s) E +(s). Whenever the system is in s, the action 
chosen (i.e., the vector of activity levels selected) is given by f(s), and this is true 
irrespective of how the system moved in the past and arrived at the state s: the 
policy is "memoryless." 

A program of resource allocation m generates a consumption program c = (c,) in 
the following way: for each t 2 1, c, is a functian from H, into RT defined as 

The utility derived from consumption is given by a function u defined on RT . 
We assume that the utility function ("return" or "reward" function in the 
terminology of dynamic programming) has the following properties: 

ASSUMPTIONA.6: The function u : RT +R is bounded and continuous. 
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The relevant continuity properties imply that, if a sequence ( h",k " ,z ") con-
verges to ( h ,k; z) in S X A ,  u ( k n  - R ( k n ,z ")) converges to u(h - R(h ,z)). 

With a discount factor 6, satisfying 0< S < 1 ,  the total discounted expected 
utility derived from any program a from the initial state s = ( h ,k )  is defined as 

where ut is the expected utility in period t generated by T. A program .ir is optimal 
if V,(s) 2 V,,(s) for all s in S, and for every program a'. Our first theorem asserts 
the existence of a stationary program .ir = ( f  ") that is optimal and characterizes 
the optimal program in terms of the "optimality equation" of dynamic program- 
ming. We refer to f as an optimal policy function. A continuity property of V, is 
also established. 

THEOREM Under Assumptions A.l through A.6, there is a stationary pro- 2.1: 
gram .ir = ( f " )  that is optimal; moreover, it satisfies 

V ,  is upper semi-continuous on H X K. 

REMARKS: (i) The proof of Theorem 2.1 is sketched in the Appendix. (ii) It 
should be emphasized that we liave not made any convexity assumption on the 
technology or concavity assumption on the utility function to prove the existence 
of a stationary optimal program.6 

3. THE OPTIMAL POLICY FUNCTION AND THE STOCHASTIC PROCESS OF 
OPTIMAL ACCUMULATION 

In this section, we shall first establish some interesting properties of the 
optimal policy function. Conditions on the utility function and the input require- 
ment functions under which the optimal policy function is continuous will be 
discussed. We shall also examine the stochastic processes of optimal capital 
stocks generated by a continuous optimal policy function. Conditions under 
which the process has a stochastic steady state are spelled out. 

Going back to the "optimality equation" (2.23) which characterizes V,, we 
note that the optimal policy function f is actually a selection from a correspon- 

6Problems of intertemporal allocation when the technology is not convex have recently been 
studied in some detail by Majumdar and Mitra [13]in the framework of a deterministic, aggregative 
model. In particular, they have dealt with optimal growth when future utilities are discounted, and 
noted that the question of existence of a stationary optimal program gets more complicated when the 
production function has an initial phase of increasing returns. To our knowledge, extensions of the 
type of results reported in that paper to the case in which the nonconvex technology is subject to 
random shocks have not yet been achieved. 



1832 M. MAJUMDAR AND R. RADNER 

dence ri/ (see the Appendix, especially L.a.1 and the arguments immediately 
preceeding (a.5)). By the well-known "maximum theorem" (Berge [I]), this 
correspondence ri/ is upper semi-continuous if + is continuous (given the other 
assumptions of our model). Thus, our first task is to strengthen Proposition 2.1 
and to provide conditions under which + is actually continuous. While upper 
semi-continuity of + is rather trivially established, we have been able to prove 
lower semi-continuity only under a more restrictive condition (Assumption A.7 
stated below) on the input-requirement functions. After deriving the continuity 
of +, our next task is to give conditions under which ri/ is itself a single-valued 
function rather than a correspondence. This, of course, means that ri/ (=f )  is 
necessarily continuous. 

To establish the continuity of +, we introduce the following Assumption 8 .7  
which is admittedly somewhat restrictive: 

ASSUMPTIONA.7: (i) For each j ,  $(h, .) is convex on R +  ; for each (i, j), 
RV(h,.) is convex in zj. 

(ii) For any pair (i, j), if RV(h,zj) > 0 for some zj > 0 and some h in H, then 
RV(h,zj) > 0 for all z, > 0 and all h in H. 

The convexity assumption (i) implies that + is convex-valued: We can infor- 
mally describe A.7(ii) as follows: if any capital good i is essential in operating 
activity j at positive intensity in some partial history of the environment, it 
remains so in all partial histories. We can now prove the following Proposition. 

PROPOSITION3.1: Under Assumptions A.1, A.3, and A.7, the correspondence 
+(h, k) from H X RT into A is continuous and convex-valued. 

PROOF: In view of Proposition 2.1, we go to the proof of the lower semi- 
continuity of +. Suppose that (hn, kn )  is a sequence converging to (h, k). Let z be 
an arbitrary element of +(h, k). This means that z 2 0 satisfies 

We want to construct a sequence z n  converging to z such that for all n, z n  
belongs to +(hn,kn). Note that if z = 0, such a sequence can be constructed 
trivially by taking z n  = 0 for all n. Consider, therefore, the case when z > 0. The 
inequalities (3.1) are rewritten as follows: let I, be (the possibly empty) set of 
indices for commodities for which ki = 0, and I, be the set for which ki > 0. Thus 
I, U I, = {1,2, . . . ,m). Clearly one must have 

Ri(h,z) = ki = 0 forall i E I , ,  

R i ( h , z ) S k i ( > O )  forall i € I 2 ,  
I(h, z) d M(h). 
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Consider the sequence (hn, kn), and for each n, define 

(3.3) A, = {A E [O, 11 :R(hfl,Az) 5 k"; 1(hfl,Xz) d M(hfl)).  

Observe that A, is nonempty for each n; indeed it is necessarily a closed interval 
[O,An]. Obviously, A, is closed as the relevant functions are continuous, and 
given their monotonicity property, if A' E A, so does A" where 0 5 A" d A'. Since 
by construction of A,, Anz is in cp(hn, kn), we shall prove that Anz converges to z ,  
i.e., A n  converges to 1. Suppose that the sequence (An) does not converge to 1. 
We can then find a subsequence An '  converging to some A < 1. By convexity, 

(3.4) L )  = R;(h, (1 -A)O + Az) 5 AR,(h, z). 

By strict monotonicity (since zj > 0 for some j )  of 1, (see A.l(b)), 

(3.5) I(h, Xz) < l(h, z) d M(h). 

Hence, we can assert 

R,(h,Az) = k, = 0 for all i E I , ,  

(3.6) 	 IRi(h, h )  5 Aki < k, for all i € I2, 
l(h,Az) < M(h). 

Using a continuity argument, one shows that there is some nh such that n' 2 nh 
implies 

(a) R, (h "',A "z) = 0 5 k:' for all i E I,, 
(3.7) I(b) ~ , ( h " ' ,A"Z)< k:' for all i E 12,  

(c) I(h "',Ant)  < ~ ( h"'). 

From (3.6) it must be true that for all activities j such that zj > 0, RV(h, .) = 0 
for all i E I,.By Assumption A.7, RV(hn, .) = 0 for all hn. Hence (a) of (3.7) is 
satisfied. From (3.7) we get a contradiction to the maximality of A n '  defined 
following (3.3). Q.E.D. 

In addition to Assumption A.6 (continuity and boundedness), we make the 
following assumption on the utility function: 

ASSUMPTION u : R y  -+ R is nondecreasing and concave. A.8: 

We say that a particular commodity i is desirable if for any consumption 
vector c L 0, and any E > 0, u(cl) > U(C) where ci = ci + E,c i  = ck for all k f i. 
In other words, an increase in consumption of the ith commodity leads to an 
increment in utility. Going back to the technology, let us say that an activity j 
uses a commodity i, if for some h in H, RV(h,zj) > 0 for some zj > 0. In other 
words, if the jth activity is operated at some positive level given a partial history 
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h, a positive quantity of commodity i is required as an input. Indeed, by 
Assumption A.7, if the jth activity uses the commodity i, Rij(h,zj) > 0 for all h in 
H and all zj > 0. Thus, by Assumption A.7 if the jth activity uses commodity i, a 
positive quantity of commodity i is always required in order to operate the jth 
activity at any positive intensity, no matter what the partial history is. 

ASSUMPTIONA.9: Each activity j uses at least one producible commodity i 
which is desirable; moreover, Rij(h, .) is strictly convex for all h in H. 

Given a pair (h, k) consider now two distinct feasible activity levels z1  2 0, 
z22 0. Without loss of generality, let us assume z2 Z 0, and that z: > 0 for some 
j. Let i be the desirable commodity that j uses. Thus, Rij(h, zj) > 0 for all h in H, 
and the function Rij(h, .) is strictly convex. In other words, 

for all A in (0,l). By Assumption A.3, we have, for all i, 

and the inequality is strict for the commodity i .  Thus, 

Note that k - R(h,zl) 2 0, k - z2)2 0. Hence, k - ~ ( h ,  A)z2)~ ( h ,  Azl + (1 -
> h[k - z ')I + (1 - ~ ( h ,~ ( h ,  A)[k - z2)]. Since u is nondecreasing and the com- 
modity i is desirable, u[k - R(h,Xzl + (1 -A)z2)]> Au[k - R(h,zl)] + (1 -A) 
u[k - R(h,z2)]. 

If we now go back to (2.23) and use the implications of Assumptions A.7- 
A.9 that have just been spelled out, we can verify that the set of maximizing 
activity levels is necessarily reduced to a single point. This leads to the following 
result: 

THEOREM3.1: Under Assumptions A. 1 through A.9, the optimal policy function f 
is continuous. 

In what follows, we shall study the stochastic process of optimal capital stocks 
generated by a continuous optimal policy function f. Strictly speaking, we 
examine the process ( h ,k, ) = (h,, kt) which has two interesting properties. First, 
the conditional distributions A(. 1 ht) are exogenously given, and satisfy the 
continuity property A.5. Secondly, the sequence kt must satisfy 

wheref is a continuous function from S into A .  The stochastic law of the Markov 
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process (h, k) is determined by an initial distribution, say O,, of (h,, k,) and the 
kernel v(B, (h, k)) which specifies the "one step" transitional probabilities (which 
are stationary since the same function f is involved in (3.8) for every t). Formally, 
v(B, .) is a g(S)-measurable function for every B in g ( S ) ;  and for every (h, k), 
v(., (h, k)) is a probability measure on g ( ~ ) . '  Given O,, the initial distribution of 
(h,, k,), one determines O,, the distribution of (h,, kt) for all t 2 2 from the 
relationship 

(3.9) o,(B) =J ~ B ,  )do,- ,  for all B in .!28(S). 
S 

An invariant distribution O* of the Markov process (h, k) has the property 
that if O* happens to be the distribution of (h,, k,), it is also the distribution of 
(h,, kt,) for all t' > t. Another way of describing the property is to use the relation 
(3.9). Let T* be the operator from d ( S )  into &(S) defined as T*O(B) 
= J, v(B, .)dO for all B in %'(S). T* is the operator mapping the distribution of 
(h,, kt) into the distribution of (h,, ,,k,, ,). An invariant distribution or a steady 
state O* of the process (h,k) is afixedpoint of the mapping T*, i.e., O* = T*O*. 
A standard fixed point argument (see Brock and Majumdar [4, p. 2401) leads to 
the following theorem. 

THEOREM3.2: Under Assumptions A.l through A.9, there exists at least one 
invariant distribution O* of the process (h, k). 

We have not yet ruled out the possibility that f(h, k) = 0, i.e., the optimal 
policy is one of "inaction" and no activity is operated at positive intensity. It is 
not difficult to show that if there is an activity j' which produces a desirable 
commodity by using labor only, this situation cannot arise (note, however, that 
our A.9 used in deriving the continuity off rules this condition out). 

A second, and perhaps more interesting class of models in which inaction 
cannot be optimal can be characterized in terms of an appropriate productivity 
condition. To take the simplest example, suppose there is an activity j that uses 
one unit of a desirable commodity i and some labor to produce p > 1 units of i 
(with certainty). Consider the vector c = (0, . . . ,p, . . . ,0) and suppose Su(c) 
> u(0, . . . , 1, . . . ,0). In this case it will clearly be nonoptimal to use no activity 
at all in all periods. 

Cornell University and Bell Laboratories 

Manuscript received November, I980; final revision received January, 1983. 

'Note that under Assumptions A.l through A.9, convergence of (h:, k:) to (h,, k,) implies weak 
convergence of v(., (h:, k:)) to v(. h,, k,). This is proved by using Lemma 2.1. This continuity 
property can be used to verify that v ( B ,  .) is 37(S)-measurable by following the arguments of 
Lemma 2.3. 
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APPENDIX 


PROOFOF THEOREM
2.1: W e  shall sketch only the main steps leading to Theorem 2.1 since the 
proof relies on the ideas developed by  Maitra [11] and Furukawa [7]. 

Our dynamic programming problem is specified by  ( S ,  A ,  9 ,  q, u )  defined and interpreted in 
Section 2. The following assumptions are made: 

(p.1): S is a complete separable metric space (recall (2.15)). 

(p.2): A is a compact metric space (recall (2.1 1)). 

(p.3): +(s) is a nonempty subset of A ,  and 9 is upper semi-continuous (recall Proposition 2.1) 

(p.4): u is bounded and continuous on S X A (recall A.6). 

(p.5): q (B  / .) is 9 ( S  X A)-measurable for each B in g ( S )  (recall Lemma 2.3) and for each 
( s ,  a )  E S x A ,  q (  I s, a )  belongs to &(S ) .  

(p.6): For any sequence (s,,a,) converging to (s ,a),  the sequence q ( .  1 ( s , , ~ , ) )  of probability 
measures converges weakly to q ( .  I (s ,  a))  (recall Lemma 2.2). 

Define the map Z : S+ R by 

(a.l) Z ( s )  = max u(s ,a) .  
a E+(s) 

L.a.1. Under (p.1) through (p.6), the function Z : S +  R is u.s.c.; the correspondence $ : S+ A 
defined as $ ( s )  = { a  E 9(s): u(s,  a )  = Z ( s ) )  is 9(S)-measurable; moreover, there is a %'(S)-
measurable function f : S+ A such that f(s)  E $(s)  for all s in S .  

PROOF: See Parthasarathy (14, Lemma 2.1, Theorem 2.1). 

L.a.2. Let w : S+ R be in C I ( S ) ;  then g : S x A +R defined as 

is also in C, (S  X A). 

PROOF: See Maitra [ l l ,  Lemma 4.11. 

For any w in C , ( S ) ,  define the function Fw : S+ R as 

( 3  Fw(s) = max [ u ( s , a )+ 8 J w ( . ) d q ( .  / ( s . a ) ] .  
a E+(s) 

By (p.4) and L.a.2, the expression within the square bracket o f  the right side o f  (a.3) is U.S.C. in ( s ,  a), 
and,by (p.3), +(s) is compact for all s E S ;  hence, the maximum is attained for every s, and by  L.a.1, 
Fw is U.S.C. and is clearly bounded. Hence, F maps C l ( S )  into C , (S ) .  By using Maitra [ l l ,  Lemma 
4.31, one gets the following result. 

L.a.3. With 0 < 8 < 1, F is a contraction from C I ( S )  into C I ( S ) ;  hence, F has a unique fixed point 
w* = Fw*. 

T o  complete the proof, let us define, for each g in B ( S )  satisfying g(s)  6 +(s), the operator kg on 
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B(S) which maps w intoLgw defined as 

It is known that V(,-, is the unique fixed point of the contraction operator kg. Going back to L.a.3, 
and using L.a.1, there is some %'(S)-measurable f :  S + A ,  f(s) E #(s) such that Fw* = Lfw* 
= V( fm,,  i.e., 

(a.5) V(f-l(s) = mar [u(s, a )  + SJ V(f-,(.) d q (  I (I, a))]. 
a W s )  

Since w* is in C,(S), the equality w* = Vf(,) also establishes that Vf(,) is U.S.C. on S. Thus, the 
stationary policy v =(f (m) )  satisfies the "odtimality equation" (a.5), and the total discounted expected 
return generated by v in u.s.c. on S (recall (2.23)). 

In order to complete the proof, it remains to show that v is optimal. One uses the steps leading to 
the basic result of Blackwell [3, Theorem 6(f) on p. 2321. The main difficulty is to extend the Lemma 
on p. 228 of Blackwell [3] to our framework, and this is overcome by appealing to Furukawa [7, 
Lemma 3.2 on p. 6151. 
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