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In this note we present an example of a repeated partnership game with imperfect monitoring 
in which all supergame equilibria with positive discount rates are bounded away from full efficiency 
uniformly in the discount rate, provided the latter is strictly positive. On the other hand, if the 
players do not discount the future, then every efficient one-period payoff vector that dominates 
the one-period equilibrium payoff vector can be attained by an equilibrium of the repeated game. 
Thus the correspondence that maps the players' discount rate into the corresponding set of 
repeated-game equilibrium payoff vectors is discontinuous at the point at which the discount rate 
is zero. 

In a repeated game in which after each repetition each player can observe the strategies 
used by the other players (perfect monitoring), there may be Nash equilibria of the 
repeated game-or supergame-that are more efficient (in the Pareto sense) than the Nash 
equilibria of the one-period game. In particular, if the players do not discount future 
utilities then, roughly speaking, the set of equilibrium payoff vectors for the supergame 
will be the same as the set of feasible and individually rational payoff vectors for the 
one-period game. (See Rubinstein (1979) for a discussion of alternative formulations of 
the "no discounting" case, and for further references.) If the players do discount future 
utility, then all supergame equilibria may be inefficient, although there will typically be 
supergame equilibria that are more efficient than any one-period equilibrium, provided 
the players' discount rates are not too small. However, in two-player games with perfect 
monitoring, the supergame equilibria will have the following Continuity Property: one 
can approximate any efficient, individually rational, payoff vector of the one-period game 
as closely as one likes with supergame equilibrium payoff vectors by taking the discount 
rates of the players sufficiently small but still positive.1 

If one departs from the condition of perfect monitoring, then the situation is more 
complex, and has not yet been fully explored. For repeated principal-agent games with 
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discounting, Radner (1985~)  has shown that (under suitable regularity conditions), for 
every efficient behaviour that dominates a one-period Nash equilibrium, every positive 
epsilon, and every pair of discount factors (for the principal and agent) sufficiently close 
to unity, given epsilon, there exists a supergame equilibrium that is within epsilon, in 
normalized discounted expected utility for each player, of the target efficient behaviour. 
In particular, for every pair of discount factors above some critical level there exists a 
supergame equilibrium that is strictly more efficient than any inefficient one-period 
equilibrium. 

In another class of supergames with imperfect monitoring, called partnership games, 
one can also attain efficiency with supergame equilibria, provided the players do not 
discount future utility, and a certain convexity condition is satisfied. (See the preceding 
article in this issue.) More precisely, every efficient one-period payoff vector that dominates 
the convex hull of the set of one-period equilibria can be attained by an equilibrium of 
the supergame (without discounting). On the other hand, in this note we present an 
example of a repeated partnership game in which all supergame equilibria with positive 
discount rates are bounded away from full efficiency uniformly in the discount rates, 
provided the latter are strictly positive. Fudenberg and Maskin (1985) show that this 
example is fully representative of the general case. Thus it would appear that, in the case 
of discounting, repeated partnership games do not have a Continuity Property like the 
one described above for principal-agent supergames. In Section 4 we attempt an informal 
explanation of this discrepancy. (The reader is referred to Radner (1985b, 1986b) for a 
comparison of these two classes of supergames in the context of a more general theory 
of decentralized economic organization.) 

Since partnership games are described fully in the preceding article (Radner, 1986a), 
we shall not give a general definition here, but shall proceed immediately to the example 
that is the subject of this note. 

1. THE ONE-PERIOD CAME 

Two partners each contribute effort to an enterprise. The consequence of their combined 
effort is either success ( C  = 1) or failure ( C  =0). Suppose that the partners choose their 
respective efforts simultaneously, and that neither partner can observe the other's effort. 
This lack of observability introduces an element of "moral hazard" into the situation, 
and motivates the assumption that the sharing of the consequence C depends only on C 
and not on the individual efforts. Assume that the consequence is shared equally between 
them (interpret the units of C as, say, thousands of dollars). Let a,  and a, denote the 
respective (nonnegative) efforts of the two partners, and assume that 

Prob ( C  = 1)=min (a,  +a,, 1) 

= G(a1, a213 

and that the utility to partner i is 

where P is a "utility of money" and qa? represents a "disutility of effort" (q >0). By 
appropriate choice of origin and units in the measurement of utility, one can put (1.2) 
in the form 

ui= c-qa:. (1.3) 
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(Because of the rescaling, the parameter q in (1.3) will typically differ from the correspond- 
ing parameter in (1.2).) Partner i's expected utility is 

The situation just described defines a two-person game with payoff functions W, 
and W,, as in (1.4). The unique Nash equilibrium of this game is 

and yields each player the expected utility 

provided q 2 1. If q > 1 then the Nash equilibrium is not efficient (Pareto-optimal). For 
example, if q >2 an efficient effort-pair that dominates the Nash equilibrium is 

More generally, one can characterize the set fi of efficient outcomes as follows. For 
every pair A =(A,, A,) of strictly positive numbers that sum to unity let [&,(A), fi,(A)] be 
the pair of expected utilities that maximizes A,ul +A,u2 in the set of feasible nonnegative 
expected utility pairs; then the "efficiency frontier" U is the closure of the set of such 
pairs [&(A), &,(A)]. One can verify that l? is characterized parametrically (in A) by the 
equations 

with A , A , 2  1/29. (We omit the details.) 
By putting in zero effort, each partner can guarantee himself an expected utility of 

at least zero; hence it would not be rational for a partner to accept a negative expected 
utility. One can verify that, if q >$,then the nonnegative expected-utility-pairs on the 
efficiency frontier are those pairs (1.8) for which A,A,z$. In what follows we suppose 
that q >$ and consider only the nonnegative part of the efficiency frontier, which is a 
curve in the (u,, u,)-plane, concave towards the origin (see Figure 1). 

2. THE REPEATED GAME 

At each of infinitely many dates t ( = 1,2 , .  .. ,ad infiniturn) the two partners play the 
game described in Section 1. The probability of success at date t depends only on the 
efforts at that date. At the beginning of game t, each partner knows only the history of 
his own previous efforts and the previous consequences, and he can choose his effort in 
game t as a function of that history. 

Formally, let a,,, a,,, and C, denote the efforts and consequence at date t, and let 
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"i 
q = 2.8 

Curved Line is efficiency frontier. 
Equation of straight line is u, + u, = 2( i - 79 

Make the convention that HI,= H2,= Ha is some constant. A strategy for partner i is a 
sequence ai= (ai,)  of functions determining his successive efforts as follows: 

Given the strategies of the two partners the stochastic process of consequences is deter- 
mined by 

Prob (C, = 1IHt-1, all, a2i) = G(ali, a,,) 

=min ( a , ,+a,,, 1). 

Let u, denote partner i's expected utility in game t, i.e., 

(Note that for t > 1 the efforts are random variables.) The payoff for player i in the 
repeated game is defined to be the normalized sum of his discounted expected utilities, i.e. 

(The sum of discounted expected utilities is normalized by multiplying by (1 -6),  so that 
if the terms uit were all equal to u ,  the corresponding payoff would also be ui.) To 
maintain the symmetry of the partners, the discount factor, 6, is assumed to be the same 
for both partners. 
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Equations (2.1)-(2.5) define a game in which the players' respective strategies are 
a, and a,, and the corresponding payoff functions V, are given by (2.5). Following 
standard terminology we shall call this the supergame, to distinguish it from the one-period 
game of Section 1. 

3. AN UPPER BOUND ON THE EFFICIENCY O F  
SUPERGAME EQUILIBRIA 

Let a, and a, be an arbitrary pair of pure supergame strategies, fixed for the time being. 
Let X,(al,  a,) denote i's normalized discounted conditional expected utility from period 
2 on, given that there was a success in period 1, and let Y,(al, a,) denote the corresponding 
conditional expectation, given that there was a failure in period 1. Finally, let ai denote 
i's first-period effort, and let p denote the probability of a first-period success, i.e. 
p = min (a, + a,, 1). By the Markovian recursion formula familiar from dynamic pro- 
gramming," 

(cf. equations (1.3), (2.4), and (2.5)). 
Define: 

then corresponding to (3.1) one has 

Finally, let ? be the supremum of all V(a,, a,) such that (a, ,  a,) is a subgame-perfect 
equilibrium of the supergame. We shall derive an upper bound on ? that is independent 
of the discount factor 6, provided that 6 is strictly less than 1. 

First, if (a , ,  a,) is an equilibrium of the supergame, then for each i, ai  maximizes 
in (3.1), given Xi(a , ,  a2)  and Y,(al, a,) and given aj ( j# i ) ;  this is, of course, only 

a necessary condition for an equilibrium. 
Second, if (&,, 6,) is a supergame equilibrium that achieves ?, and O < p  < 1 (cf. 

(3.1)), then 

Suppose to the contrary that, e.g., X(&,, 6,) > The continuation of (LI, 6,) from period 
2 on, given a success in period 1, is also an equilibrium of the original supergame (from 
period 1 on), since p > 0.Call this continuation (P,, P,); then4 

which contradicts the supposition that (GI, 6,) is a supergame equilibrium that maximizes 
V(a,, a,). Thus we have established (3.3). 

These two considerations motivate the specification of the following constrained 
maximization problem, whose variables are vi, xi, y ,  a, ( i = 1,2), v, x, y, and p:  6=the 
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maximum of u subject to 

vi = ( 1-6 ) ( p-qa:)+ 6 [ p x i  + ( 1- p ) y i ] ,  i = 1,2, (3.5) 

a ,ZO,  a 2 2 0 ,  p = a , + a , ~ l ,  (3.6) 

a, maximizes vi, given xi, yi and a,, subject to (3.6), for i = 1,2 and j # i, (3.7) 

x s v ,  y s v .  (3.8) 

The foregoing discussion shows that for any pure-strategy supergame equilibrium ( a , ,  a,), 
the quantities V,(a, ,  a,), X , ( a , ,  a,), Y , ( a l ,  a,), ai ( i  = l , 2 ) ,  V ( a , ,  a,), etc., satisfy the 
constraints (3.4)-(3.7); furthermore, if (6,,6,) is a supergame equilibrium that achieves 
? then V ( 6 , ,&,), X(CF1,6,), and Y(&, ,6,) satisfy (3.8). Hence 6is an upper bound for 

i.e. 
A Av5 v. (3.9) 

We shall show in the Appendix that 

Note that this upper bound does not depend on the discount factor. Note, too, that 
( 1-914) is each partner's one-period expected utility when each partner's effort is 1 (in 
which case the probability of success is one); recall that u* = (3149) is the one-period 
equilibrium expected utility for each player. Note that if 2 < q < 3, then u^ = 1- ( q / 4 ) ,and 
u^<6=l /q .  

Before proving (3.10) we shall now show that it implies that supergame equilibria 
are "uniformly inefficient" for a nondegenerate interval of values of the parameter q. The 
average expected utility ip the one-period game, ( f ) ( u ,+ u,), attains its minimum value 
in the efficiency frontier U at the end-points of U ;cf. equation (1.8). Thus, if q > $, this 
minimum value is (27/32q) ,and is attained at the two points (27/16q,0) and (0,271169). 
On the other hand, if 

2+(2)1'2<q<3, (3.11) 

then 

In summary, if (3.11) is satisfied, then for any discount factor 6 strictly less than 1, and 
any pure-strategy supergame equilibrium ( a , ,  a,), 

whereas for any efficient expected utility pair (6 , ,  6,) in the one-period game, 

In other words, there is a line of the form u , + u2= c that strictly separates the set of 
supergame equilibrium discounted expected utility pairs ( for  6 < 1 )  from the set of eficient 
one-period expected utility pairs. The situation is depicted in Figure 1. 
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We note that the upper bound (1 -q/4) can actually be attained by a supergame 
equilibrium, with strategies of the following form. Each player puts in effort 1 until the 
first failure, and then puts in effort a*  thereafter, forever. One can show tbat this pair of 
strategies is a subgame perfect supergame equilibrium, provided the discount factor is 
sufficiently close to one. 

Finally, it remains to extend the analysis to supergame equilibria in mixed strategies. 
This can be done, but the argument is lengthy, and is omitted here. 

Abreu, Pearce, and Stacchetti (1984) have also analyzed optimal equilibria in repeated 
games with discounting and imperfect monitoring using techniques similar to those used 
here. 

4. ONE-SIDED VERSUS TWO-SIDED IMPERFECT MONITORING 

As we have noted, in repeated principal-agent games efficient outcomes can be closely 
approximated by equilibria for low discount rates, whereas in repeated partnership games, 
they cannot be, in general. The essential difference between the two classes is that in the 
former there is imperfect monitoring only on one side, by contrast with the latter, where 
neither player can be perfectly monitored. 

Roughly speaking (for the precise argument, see Fudenberg and Maskin (1985)), 
this distinction makes a difference because players Who are imperfectly monitored cannot 
simply be "punished when the outcome in a given period is bad (as in the perfect 
monitoring case), but must also be "rewarded" when the outcome is good. Now if we 
are interested in sustaining the pair (V,, V2) as average equilibrium payoffs of the repeated 
game, these rewards and punishments must average out to (V,, V2). Thus, if player i 
cannot be perfectly monitored, it must be feasible to assign him more than V ,  say V , +X,, 
in periods where he is rewarded. If neither player can be perfectly monitored, therefore, 
the point (Vl+ X , ,  V2+ X2) must be feasible, which means that (V,, V2) must be bounded 
away from the frontier of the feasible set (it can be shown that X, does not depend on 
the discount factor). If, on the other hand, only one player, say 1,is imperfectly monitored, 
the need to reward and punish him imposes no such bound; in periods where player 1 
must be rewarded with V,+XI,we can simply reduce player 2's payoff appropriately to 
remain in the feasible set. 

APPENDIX 

In this Appendix we derive (3.10), the solution of the constrained maximization problem, 
(3.4)-(3.8). It is convenient to introduce the variables 

then from (3.4) and (3.5) 

~ = ( 1 - 6 )  p -  [ ")] +6(pz+ y). 

For the convenience of the reader we repeat the constraints: 

2. For each i = l ,2 ,  ai maximizes 
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given xi,yi, and aj ( jf i ) ,  subject to (A.3).  

3. y + z s u ,  y s v .  

Recall also that 

We define ii to be the maximum of v subject to constraints 1-3. 
Because of the many constraints, it is convenient to examine the behaviour of u in 

a number of regions defined by inequalities on z,, z,, and z. 

Case I. 

Case I. 1 .  1 - 6 + 6 z i 2 0 ,  i=1 ,2 .  

Given z,, z,, y,, and y,, constraint 2 implies that for i = l , 2 ,  

Given z and y, p is also determined by (A.8), and u is maximized with respect to z,  and 
z2 when (a:+ a;) is minimized subject to 

or when z,  = z, = z. One can verify that v is then given by 

3(1-  6 + S Z ) ,  
v = + SY,

4 ( 1 - 6 ) q  
or, from (1.6), since u* = 3/4q,  

Note that, in (A.9),  u is increasing in y, given z. 
If z 5 0, then the binding constraint in ( A S ) is y 5 u, so v is maximized in y (given 

z )  when y = u, which with (A.9)  implies 

(A.10) 

In Case I, 1-6 + 6z 2 0, so (A.lO) reaches a maximum in z subject to 

at z = 0, in which case 

u = u*. (A.12) 
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If z 2 0 ,  then the binding constraint in (AS) is y + z S  v, so v is maximized in y, 
given z, when y = v - z. In this case 

This last expression is a convex function of z, and so attains its maximum at either z =0, 
when v = u*, or at z = (q - 1)(1- 6)/6, when v = 1- (914). Hence the maximum of v in 
the region delimited by Case 1.1 is 

max v = (A.14) 
u*, i f q 2 3 .  

As we shall see, this is in fact the case in which the overall maximum of v is attained. 

Case 1.2. 

1 - s + s z , < o ,  


In this case constraint 2 implies 

Given z and y, 

and one can verify that this last expression is negative if and only if 1 -6 +Sz, is negative, 
which is so in the present case. Hence, given z, v is increased by decreasing z2 and 
increasing z, correspondingly, until 1 -6 +6z, =0. At this point we are in Case 1.1 

Case 1.3. 

In this case, constraint 2 implies that, given z and y, 


a,=O, a2=1 ,  p = 1 ,  
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If we decrease z, and increase z, correspondingly, until we reach either Case 1.1 or Case 
1.2, this last expression remains constant. 

The remaining subcases of Case I are obtained by interchanging z ,  and z, in Cases 
1.2 and 1.3, with corresponding analyses. 

In summary, the maximum of v under Case I is given by (A.14). 

Case II. 

Case 11.1. 1-S+ Sz, 2 0 ,  i = 1,2. 

Here constraint 2 is satisfied if and only if a,+ a, = 1 ,  in which case 

Given z and y, this last is maximized (subject to a,+ a, = 1) when z ,  = z, and a, = a, = $, 
which yields 

One easily verifies that this attains a maximum subject to constraint 3 when z + y = v, so 
that 

Case 11.2 1-S+Sz,SO.  

A fortiori, 

so that constraint 2 implies 

a,=O, a2=1, 

which attains a maximum when z+ y = v, which yields 

Hence v can be increased by moving to Case 11.1. 
The remaining subcase of Case I1 is obtained by interchanging z ,  and z, in Case 

11.2, and is symmetric to it. 

Case III. 1-S+Sz<O. 

A fortiori, in this case z < 0. 



RADNER, MYERSON & MASKIN REPEATED PARTNERSHIP GAME 69 

Case 111.1. 1-S+Sz,SO, i=1 ,2 .  

Here constraint 2 implies 

v = Sy. 

In order for y not to exceed v, y must be nonpositive, in which case the maximum value 
of v is 0, which is less than in Case I. 

Case 111.2. 

Here constraint 2 implies 

Hence, given z, v is increased by decreasing z2 and correspondingly increasing z,, as in 
Case 1.2. This can be done until 1 -6 +Sz25 0 (because 1 -6 +Sz <0), at which point 
we are in Case 111.1. 

This completes the proof of (3.10). 

First version received July 1984; Jinal version accepted July 1985 (Eds.) 

NOTES 
1. The views expressed here are those of the authors, and not necessarily those of AT&T Bell Laboratories. 
2. See Fudenberg and Maskin (1983). The Continuity Property does not always hold in games of more 

than two players. All counterexamples, however, are "degenerate" in the sense that the convex hull of the 
one-period feasible payoff vectors has an empty interior. 

3. It might be thought that Xiand Y,should be conditioned on the actual actions taken at the first period, 
and not just on the occurrence of success or failure. However, for pure strategies it is not necessary to do this, 
because neither player can directly observe the other player's action, and hence the first-period actions can 
influence the future evolution of the game only through the first-period outcome (success or failure). 

4. To be precise, Pi(Hi,) is defined to be equal to @,,,+,(a,,, 1, H,,). 
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