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Summary. In this paper we study a repeated principal-agent situation with moral
hazard. We focus on a class of incentive schemes, called bankruptcy contracts. The
agentis “scored” in each period, and is paid a fixed wage per period until the current
score falls to zero, at which time the agent is terminated and the principal hires a
new agent. The agent’s current score at any time equals an initial score, plus the
total output up to that time, minus an amount that is proportional to the total time.
With standard assumptions about the utility functions of the principal and agent,
we characterize the second-best bankruptcy contracts and show that in such a
contract, the principal pays the agent an efficiency wage. We also demonstrate that
such contracts lead to approximately first-best (Pareto efficient) outcomes if the
principal and agent are sufficiently patient (have small discount rates). Most
importantly, if the two players have a common discount rate J, then the loss of
efficiency under the second-best bankruptcy contract goes to zero at Jeast as fast
as 0(6**In 8). In order to obtain increased precision, the analysis is carried out in
a continuous-time framework.

1 Introduction

A notable feature of many real life principal-agent contracts is that they specify
simple compensation rules; ie., they identify only a small set of contingencies on

* This is a considerably revised version of a manuscript titled “Principai Agent Games in Continuous
Time". We have benelited from the comments of seminar participants (on the earlier version) at
Columbia, Northwestern, Iilinois and Stony Brook. The revised version benefited from a presentation
to the Game Theory Conference at Ohio State, July 1990. We would like to acknowledge helpful .
comments from Dilip Abrey, Tatsuro Ichiishi, Eric Maskin, William Rogerson and Aloysius Siow as
well as an anonymous referee. This paper was begun while the first guthor was at AT & T Bell Laboratories
and compieted while visiting the Department of Economics at the University of Rochester; the two
organizations are thanked for all help rendered.
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which the agent’s rewards are conditioned. This is difficult to reconcile with the
theoretical work on second-best contracts, i.e, the optimal contract when no
restrictions have been placed on the types of incentive schemes that are admissible
(see [16], [21] and [25]). These papers demonstrate that the second-best contracts
should subtly condition on various elements of an agent’s past performance.’
Perhaps this seeming paradox could be resolved by modelling the costs of
contracting explicitly. In this paper we start instead by restricting ourselves to a set
of simple contracts; the contracts we study pay the agent a constant wage and use
the threat of dismissal as an incentive device. Furthermore, a simple statistic of past
performance is employed to determine whether or not the agent is fired. The schemes

studied have some of the stylized features of observable contracts such as managerial

contracts which track past profits to determine tenure. Insurance contracts in which
full indemnity converge is provided only if the number of past claims is no larger
than a prespecified number will be seen to be a second example of the class of
incentive schemes studied in this paper. Sales or franschise contracts which are
renewed only if the volume of past business is sufficiently large, is a third example.?

The simple version of contingent-dismissal schemes that we study here was
introduced by Radner (1986), who called them bankruptcy schemes, He showed
that such incentive schemes generate almost efficient outcomes if the principal and
the agent are sufficiently patient. We add to the analysis of that paper by explicitly
characterizing the optimal contract within the class of bankruptcy schemes. Such a
characterization demonstrates the optimal mix of incentive and insurance con-
sideratations in such contracts.

It is well-known that if the principal and the agent are not infinitely patient,
i.e.,if they do not have discount rates of zero, exact optimality cannot be sustained
even if the agency relationship is infinitely repeated. Consider the case of a
risk-neutral principal and risk-averse agent. Optimal risk-sharing requires that in
any Pareto optimal outcome the agent’s compensation must be constant; hence, no
“punishment” is feasible since compensation is independent of the only observable
variable, the cutput generated by the agent’s action. Since the first-best or efficient
outcome is not sustainable, any result on asymptotic efficiency is necessarily an
approximate one. We know that there are long-term contracts that are approxi-
mately efficient, as the players’ common discount rate goes to zero (for instance,
see Fundenberg-Maskin [9], Radner {18], [19], [20], Rubinstein [22] and
Rubinstein—Yaari [237]).% If we believe, however, that the “true” model involves

! [8],{10] and [12] have however estabiished that under some specifications of preferences for principal
and agent, history-independent short-term contracts are (constrained) optimal. See the discussion in
Section 7.

2 Some observable contracts add bonus provisions {contingent on immediate performance) if the agent
meets his target; managerial compensations typically are of this form. On the other hand, the
performance standard is simplified in certain observable contracts; adequate performance is determined
by the number of periods in which the target was met (with no regard to the amount by which, the
standard was excesded, if it was); an insurance contract based on the number of claims is of this form.
Some of the results that follow can be adapted to these cases — see the discussion in Section 7.

* With no discounting and an infinite horizon, Rubinstein [22] showed that exact optima could be
sustained, whereas Radner {18] established the sustainability of approximate optimality in sufficiently
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discounting, then the natural question is, how good are these approximations? For
any &> 0, how patient do principal and agent need to be in order to sustain
g-optimality, i.e., what is the rate of convergence to optimality in a repeated moral
hazard situation? One purpose of this paper is to give a first answer to this question,
within the restricted class of bankruptcy contracts. To the best of our knowledge,
this is the first such estimate that is available in the literature on optimal contracts
with asymmetric information.

We turn now to a summary of the model and results. We study a repeated
principal-agent situation with moral hazard, in which in each period the observable
“output” is a random variable that is a function of both the agent’s action in that
period and a random factor, neither of which is observed by the principal. We focus
on a particular class of incentive contracts (called bankruptcy contracts), in which
the agent is “scored” in each period as follows: (1) the agent is given an initial
{positive) score, say y; (2) in each period, the current output is added to the score,
and then a fixed “return”, say k, is subtracted from it. The agent is paid a fixed wage
per period, say w, until such time, if ever, as the current score reaches or falls below
zero. At that time the agent's tenure is terminated, and the principal hires a new
agent. The contract thus has three parameters, the initial score (y), the required
“return” per period (k), and the wage per period (w). The agent’s utility per period
depends on both his action and the wage; whereas the principal’s utility equals the
output minus the wage (the principal is risk-neutral}. As usual, we suppose that the
agent’s total utility is the expected value of the sum of his discounted one-period
utilities, and that the principal’s total unity is similarly determined. We further
assume that the principal commits himself to a contract with each agent, and the
agent then acts to maximize his own utility. Note that one interpretation of the
“score” is that of a cash reserve. The agent is given an initial cash reserve, v, and in
each period the principal withdraws from this reserve an amount k which is a “rate
of return” that the agent is expected to maintain on average. When the cash reserve
runs down to zero, the agent loses his job. For concreteness, we will use this
interpretation in all further discussion.*

Within the class of contracts just described, we characterize those that are
optimal for the principal, subject to the constraint that the agent can achieve some
given minimum utility, i.e., we characterize the second-best contracts in this class.
We also examine the efficiency properties of such contracts. A detailed discussion
of the results follows.

Optimal cheice of an agent. The agent’s optimal choice problem is an example of
a more general survival problem in stochastic control {see Dutta [6]). We use results
from the general formulation to give a characterization of the optimal choice when
the set of feasible drift-variance choices is an arbitrary convex, compact set in IR?
(Theorems 3.1-3.3). It is shown that the optimal policy conditions the current action

loag bat finite horizon contexts. Fundenberg—-Maskin [97 and Radner [19], [20] show that there exist
comtracts which approximate efficiency in discounted models, for sufficiently small discount rates.
Indeed in al] of these papers the contracts are additionally incentive compatible for the principal as well.

+ Note that our bankruptcy scheme is also a particular way of using a common measure of managerial
performance, namely “residual income.” (See, for example, [13], pp. 254 1)
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on the current level of the cash reserve alone. The optimal policy progressively
shirks, that is the higher is the cash reserve level the higher is the agent’s
instantaneous utility and (under some additional conditions) the smaller the
expected current output. A risk-neutral principal would like to have the control
with the maximum mean used throughout, and the coasting by the agent at “safe”
output levels is precisely a2 measure of the inefficiency of moral hazard, from the
principal’s point of view. As an illustration of the results obtained in this general
model, we also report, without proof, the explicit form of the optimal policy in the
binary case, in which the agent has only two actions (Theorem 3.4),

Principal’s contract cheice. The principal’s return, with a (stochastic) suceession of
“agents, is derived in Section 4. It is shown that in an optimal contract the initial
cash reserve is the smallest one consistent with individual rationality. This is not
a priori obvious since a lower initial reserve {or equivalently, a smaller acceptable
loss) implies quicker bankruptcies and hence associated inefficiencies for the
principal. On the other hand we get an efficiency-wage result, that the optimal wage
is higher than the minimum wage consistent with individual rationality.

Pareto optimality. The first-best arrangement involves a constant control exercised
by the agent, no dismissal and full insurance by the risk-neutral principal, by way of
paying an outcome-independent wage (Propositions 5.1 and 5.2).

Asymptotic efficiency. We conclude the investigation of bankruptcy contracts by
showing that the values under the optimal bankruptcy contract converge to the first
best at a rate at least as fast as O(5'2 In 8), as 6 — 0, where J is the (common) discount
rate of principal and agent (Proposition 6.1). As an illustration, we compute the
efficiency loss explicitly for a parametric example.

The principal-agent model is described in detail in Section 2. Section 3 discusses
the optimal response of an agent to a bankrupicy compensation scheme. The
principal’s choice-of-contract probletn is analyzed in Section 4. Section 5 contains
the characterization of the Pareto optimal policies, whereas the analysis leading
to a derivation of the rate of convergence to Pareto optimality is in Section 6.
Bibliographic notes and a discussion of possible extensions of the current analysis
may be found in Section 7.

2 The model
2.1 A “discrete-time” motivation

Suppose that the time axis is divided into successive intervals (periods) of length A.
At the beginning of period n the agent chooses an action, which results in a stochastic
output R(nh). Conditioned on the sequence of the agent’s actions, the random
variables R(nh} are independently distributed; however, the (marginal) distribution
of R(rh) depends on the corresponding action. Let y be given and for n > 0 define
the sequence Y(nh} by: Y(0) =y and

Y(nh + k) = Y(nh) + R(nk) — kh. @.1)

Recall that we interpret Y{nh) as the agent’s “cash reserve” at the end of period
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n, y >0 as the agent’s initial cash reserve and k as the “return” per unit time that
the principal requires from the agent. The principal pays the agent a constant wage
w until such time (if ever) that the cash reserve reaches or falls below zero; at that
time the agent is terminated and is replaced by another one.

Note that the sequence Y(nh)is a controlled random walk. If one lets k approach
zero, and suitably adjusts the marginal distributions of the random variables R{nh)
in the passage to the limit, then the sequence Y(nh) approaches a controlled diffusion
which is a continuous time stochastic process with continuous sample paths. (For
amore detailed discussion of the passage to the limit argument see [ 14, pp. 66-711.)

In what follows we work with such a continuous-time formulation of the
problem. The reason for doing so is that while in continuous time an agent goes
bankrupt the instant Y =0, in discrete time he could go bankrupt with any
nonpositive level of cash reserve.-The problem then is, how should the agent’s
continuation value depend on the level of terminal reserve. There is no obvious way
in which to assign this value and any assignment clearly affects in a funamental way
the agent’s optimal choices while on the job. To avoid such “overshooting the
boundary” problems we choose to model the principal agent question in continuous
time. We turn now to the continuous time analog of (2.1), after introducing some
preliminary concepts.

2.2 The continuous time model

Let [Bity:t =07 be a standard Brownian motion on some probability space
(£2, &, P); for a definition see Karatzas—Shreve [14]. Let &, be the smallest family
of sub o-fields generated by the Brownian motion, 1.e. &, is the smallest ¢-field with
respect to which B(s), se[0,t] is measurable. Let [ f(-,£):t = 0] be a # -adapted
process® which further satisfies

i) Foreacht >0, [w: [, fA(w,s)ds <o]=1as.

The stochastic integral [, f(-, s)dB(s) is well-defined for all ¢ > 0 a.e. A stochastic
process [ Y(t):t = 0] is said to be a diffusion if it can be written as:

Yoy =Y(0) + J '

3

t

mis)ds + J 0 2(s)dB(s), (2.2)
0

where [m{t):t = 0] and [v{t):t = 0] are # -adapted and satisfy i), and Y(0) is some

constant. The functions m(-) and v{-) are, respectively, the draft and variance

components of the process.

In the principal-agent model, an agent controls a diffusion (the cumulative
output) process. The agent’s action is the choice of a feasible instantaneous
drift-variance pair [m(z), v(f)]. Let the set of feasible mean-variance choices be
denoted A. A choice at ¢ conditions on the observable history of output during [0, £).
An admissible strategy, «, for the agent is a pair of # -adapted processes [m{):t = 0]
and [v(t):t = 0] in which (m(t, ), v(t, w))e A for all {t, v} and which lead to a solution

* A stochastic process { f{-,1):t= 01 on (42, %) is said to be # -adapted if f(w,!) is jointly measurable
in e and ¢, and i) f{-, 1} is & -measurable, for each t > 0.
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of the following stochastic differential equation (recall that k is the average return
the agent is required to maintain):

t t
Yo =Y0)+ j m( Y{s))ds + J v 2(Y(5))dB(s) ~ kt, t=0.
- ] ]

Note that there are several interpretations possible for the formulation in which
the agent directly picks an instantaneous drift and variance. One interpretation is that
the agent chooses from a menu of available projects or techniques, each involving
different levels of supervision or skill or effort and having a mean and a variance.

To define a termination date, for any strategy n and initial cash reserve y > 0, let

T.(y) = inf {t = 0: Y(2) = 0| Y(0) = y, n}.

Let the constant wage paid be denoted w and let the agent’s instantaneous utility

function be called U. Furthermore, once fired (terminated), the agent receives a

severance pay or a reassignment to a different position. We will normalize the value
of such an option to zero. For any given (w, &, y) the discounted utility over an agent’s
uncertain lifetime, for a strategy =, is

Tu(y)

g.(¥) = Eéj e~ U (w, m(s), v(s))ds.
Q
To complete the formulation of the moral hazard problem let the principal’s

discounted lifetime carnings under a compensation triple (w,k, ) and agent’s
strategy = be denoted H(w, k, y; 7).° (In Section 4 we will explicitly derive H(-).) Let
the agent’s reservation utility be denoted U/. Then the optimal contract choice
problem for the principal is

max H(w, k, y; %),
{w.k,p)
st gy} =gy for any admissible 7, 2.3
.0 =10. (2.4)

Condition (2.3) is the incentive constraint and (2.4) is the individual rationality
constraint.

‘The Pareto-optimality or first-best problem is that of maximizing the principal’s
discounted lifetime earnings H subject to the individual rationality constraint, i.e.,
in the absence of moral hazard. For this problem we shall not restrict the set of
feasible contracts. The precise formulation is discussed in Section 5.

3 Incentive constraint analysis: the agent’s problem

The agent’s best response problem is: given w, k and y, maximize g_(y) over the set
of admissible policies. This is clearly a stationary dynamic programming problem,

® Strietly speaking, since the principal hires a new agent if and when the current agent fails to meet
performance requirements, his returns are derived from 2 succession of compensation schemes offered
and a succession of strategies followed by different agents. As we shall see in Section 4, the Optimality
Principle implies stationarity in the compensation schemes and strategies and allows us to write Hasa
function of a single compensation triple {w, k, y) and a single strategy n.




iF

Optimal principal agents contract 489

and we shall denote its value function by V{(y; w, k). In much of what follows, we
shall concentrate on the effect of changes in the initial cash level, Y(0) (equivalently
changes in the level of losses the agent is allowed to incur). Hence the dependence
of the value function on w and k will frequently be suppressed and it shall be written
simply as ¥(y), where y = Y{0). Any solution will be called an optimal strategy or
policy. If an optimal policy picks controls that depend only on the level of current
cumulative output, it will be called a stationary Markov optimal policy.

We make two assumptions throughout. The first says that there is some action
that the agent can take which gives him a level of utility greater than the utility he
derives after dismissal. Evidently, this is a minimal necessary assumption for a
bankruptcy scheme to have any incentive effects at all. (Recall that we have
normalized the utility Jevel of dismissal to be zero.) The second dssumption says
that the agent’s actions lead to uncertain outcomes, Clearly this is necessary for
the principal’s inference problem to be nontrivial. The assumptions are formally:

(AQ) su)p Ulw, m,v) = U(w)> 0 for ali w> 0.
{(mu)ed
(A1) inf {v:(m,v)cd} >0.
We also assume that

(A2) The set of feasible controls A4 is a convex, compact set.
(A3) The utility function U(w, m, v} is continuous and strictly concave in the
last two arguments.

The agent's best response exercise is an example of a general survival problem
in stochastic control (it is in fact a version of the gambler’s ruin problem}. In the
formulation here, an instantaneous choice is being made simultaneously along three
dimensions: drift, variance and utility. In previous investigations authors have
allowed a choice over drift and variance (holding utility constant) or have allowed
a choice over drift and utility (holding variance constant).” Three dimensional
trade-offs turn out to be extremely difficuit o characterize in a transparent way.
Dutta [6] has investigated the general control problem and we use those results to
describe some basic properties of the agent’s optimal choice. To add to the intuition
we then report, without proof, the optimal policy in the case where the agent has
only two-actions available at every instant.

Let (w, k) be fixed until further notice. The following characterization of the value
function holds: '

Theorem3.1.
i} The value function V(y) is strictly increasing in y.
it} (Bellman equation) Vis C* and satisfies the optimality equation

(ma}.xA {LoV (3} + (m— KWV (y) — SV (y)+ dU(w,mv)} =0, y=0. {3.1)

7 [11] and [17] among others, analyse related versions of the pure survival case where all controls
have the same utility, whereas [3] and [5], among others, analyze problems in which all controls have
the same variance, See [6] for further references.
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iii} The marginal valuation satisfies the following
Vi(y) = V'(0)Ee =0T,
where T*(y) is the termination date under the agemt s optimal policy. Consequently,
the value function is strictly concave.
Remark. The proof of Theorem 3.1 may be found in Dutta [6].

The following comparative statics and boundary properties of the value
function, with respect to the parameters (w, k), are easy to verify:

‘Propesition 3.1

i) The value function V{y;w, k) is increasing in w, provided the utility function is
increasing in w, and decreasing in k. Further, it is continuous in (w, k).

i) lim V(y;w, k)= Ulw), for all k, and V(0:w, k) =90, for all {w, k).
y-reo

Turning to a characterization of the optimal strategy, we first define a stationary
Markov policy f:R, =4 to be interior if f(yieint A for all yelR,. Further,
the utility function is said to be separable if there exist functions &,(m) and ¢ (1)
such that U(w,m,v) =&, (m) — ¢, (v).

Theorem 3.2
i) There is a unique stationary Markov optimal policy f* = (m*,v*: R . - 4, and
this policy is given by the maximizers from (3.1 ). Furthermore, B* is a continuous
function.
it} The optimal strategy has the property that as the cumulative cash reserve grows,
the agent switches to higher variance andjor lower mean options. In other words,
Y >y implies that either or both of the following conditions hold:

a) vMyyzv*(y) or

. L TRY 2 N # —
b) mAy) <mH(y), W) ksm Ok
vy} v¥(y)

iii) Suppose that U is separable and f* is interior. Then, at high cumulative cash
reserves, the agent employs high variance-low mean actions. Furthermore, if U is
decreasing (respectively, increasing ) in m (respectively, in v), then the agent's
actions at higher cash reserves give him higher instantaneous utility. In other
words, y' >y implies that m*(y') <m*(y) and v*(y') > v*(y) and Uf{w,m*(y"),
v*(y)) > Ulw, m*(y), v*()).

Proof. That any selection from the maximizers correspondence of the optimality
equation defines a stationary Markpv optimal policy follows from a standard
argument via Ito’s lemma (e.g. see Krylov [15, 1.1 and 1.4]). By the Maximum
theorem of Berge [2] and the fact that the value function is C2, this correspondence
is upper hemi-continuous. From the strict concavity of the utility function, the set
of maximizers is actually single valued for every y. Hence this function, §*, is
continuous,
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Suppose we denote the optimal choice at y' by (m',v") (respectively the optimal
choice at y by (m,v)). Then it follows from the optimality equation that

o=V =V +m—m) V() - V'(¥)]20 (3.2}

(ﬁli‘ - M)EV'@) — Vi~ 5(,{ - »«‘»;){V(y) _V)I=0. (33)
v U v U

Dutta [6], Theorem 3.1, establishes that V” increases in y. That combined with
Theorem 3.1 and (3.2)~(3.3) vields the second part of the theorem. In the
separable-utility case, first-order conditions yield

Vi(y) == =88 m*(y), V(3= 5¢'"(w*(y)).

The third part of the theorem follows from the strict concavity of V
(Theorem 3.1(ii))). O :

The order of usage of the drifts points directly to the inefficiency, from the
principal’s point of view, that persists under a bankruptcy incentive scheme. At low
cumulative output levels, with the threat of dismissal near, the agent does in fact
forego instant gratification to boost immediate returns for the principal. However
at higher and safer levels, after a run of good luck or “hard work”, the agent rests
on his laurels. Of course, if the principal could renege on his commitment to the
bankruptcy contract, this is precisely when he would like to do so, and dismiss an
agent in order to hire a new one for whom the threat of dismissal is more effective.®

In order to sharpen our intuition, we actually computed the agent’s optimal
policy in the specific case of a binary choice problem; the set of feasible actions
contains two elements {m,,v,) and {m,,v,). The results are reported below and the
relevant computations may be found in [7].? Denote U, = U{w,m;, ), i = 1,2 and
suppose that U, > U,.

The principal result states that faced with a bankruptcy scheme the agent finds
it optimal to employ a switchpoint strategy of the following kind: above a critical
aggregate cash reserve § the agent uses control 2 while below § the agent switches
to the other control in order to improve tenure prospects. As long as the preference
between the two controls is strict, i.e. U, > U, the agent must eventually shirk, i.e.
9 < oo, Typically the higher utility action will also be the control with a lower mean,
and hence that which the principal does not want employed.

Consider the quadratic function v,x* + (m; — k)x — 8 =0, and denote by §;
(resp. A,} the positive {resp. absolute value of the negative) root.

Theorem: 3.3 .
it} There is a unique stationary Markov optimal policy for the agent’s problem, and
this policy is a switchpoint strategy.

8 Such breach of contract brings into the picture further considerations of reputation effects for the
principal. Further, a rational agent foreseeing such a possibility would also adjust his behavior. At some
cost of complexity the present analysis could be extended to generate the commitment of the principal
as a self-enforeing outcome. Given our focus we prefer just to assume that such a breach of contract is
not possible.

* A version of this problem was first studied by Sheng [24]. Since our formulation turned out to be rot
immediately covered by her analysis, we directly computed the optimal policy.
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it) Suppose that U, > U,. Then the optimal switchpoint § is finite. It is zero if and
only if

(U, —-U,)

Ly =1 (3.4

- 2
where &1(1;) = v, (= 1,2 + (m; ~ k)(—A;) — 4.

iti}) Suppose U, == U,. The optimal policy. is: exclusive use of control 1 (ie. )=o)
if Ay > 4, or exclusive use of control 2 (i.e.y=0) if A, > ;. If A, = 4,, the agent
is indifferent between the two controls at all cash reserve levels,

.iv) The value function satisfies all of the properties that hold for the general case
{ Theorem 3.1 ).

Note that, using Theorem 3.3(iv), it can be shown that all of the subsequent
analysis, which is proved for the convex case, will also hold for the binary case,

4 Optimai principal-agent contracts
4.1 The principal’s problem

Given the agent’s best response and the individuval rationslity constraint, the
principal picks a contract triple {w,k, y) to maximize net receipts. The specific
interpretation of the “score”, ¥(t), will determine the exact form of the principal’s
return function. We discuss this issue now.

Consider the cash reserve interpretation of the agent’s score. Recall that in this
interpretation, the specified rate of return k is an actual outflow, The principal pays
the agent compensation w and receives a dividend k — w every period. Hence, the
cumulative index Y(t) is a cumulative cash reserve and when it runs down to zero
the agent is dismissed and the principal hires a second agent. So in this interpreta-
tion, the principal incurs in every period an interest payment on the initial cash y.
Let us suppose the principal’s discount rate is also § (this is unnecessary for the
analysis in the current section but will be required in Section 5). The principal’s net
receipts, denoted H(w, k, y;7), when the agent follows a strategy = and so do
successive agents, is
T

H(w,k,y; 1) = Eéj e™ %[k —w—dylds — Ee"*T[8y — H(w,k, y;7)].

0

Note that there is, of course, no loss in generality in restricting successive agents
to the same best response strategy. Collecting terms,

oy
Hmk—*wmw, 4.1
where
8T T,
1—Ee =EJ' "
0 o

~ is the expected (discounted) time to failure by the agent. No matter which generation
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of agent is currently employed, the principal always gets per period returns of k — w.
However, the expected sum of discounted initial cash outlays, dy/I — Ee™?,
depends on the agent’s best respone. The principal’s probiem is:

oy

max kew———————
(w.k,pelR?, D] — EeTfT'W

st. VipwhkzUz0,
where
T*y) = min {&: Y(t) = 0; Y(0) = y, 7 = f*(k, w)}.

A second interpretation of the score is one in which the rate of return k is not
an actual outflow but is simply used to track the agent’s performance against this
standard. In this interpretation, all of the incremental returns, dY + k accrues to the
principal out of which he pays the agent the constant compensation w. The
conclusions under these two interpretations are similar (indeed as 6 -0, the two

returns converge to the same limit) and so in this paper we pursue only the cash
reserve interpretation.'®

4.2 Individual rationality

The requirement that the agent be able to make at least the reservation utility #]
restricts the set of feasible contracts. Recall that U(w) is defined as the highest
instantaneous utility when the prevailing wage is w. Define the minimum wage w as:

T(w)=U.

Note that the minimum wage is independent of the rate of return k. We know from
Proposition 3.1 that the agent’s value in a bankruptcy scheme is bounded above by
U(w). Clearly, any compensation scheme offered by the principal must pay a wage
at least as large as w. Further, define y*(w, k) as the minimum security level for fixed
{w, k).

Viy*(w, k) w, k)= U, w>w.

¢ In the second formulation
T
H=Ed j e~#[dY +(k —w)ds] + Ee"*TH. )
4]
Using Tto's lemma, (i} can be rewritten as

T .
H=E6J e BEEY(S) 4 ke wlds — Sy + Ee°TH
0
Sy ES{fe®8Y(s)ds
1 Ee™# 1—Ee™®T

()

=k —w e

The difference in the net receipts {4.1) and (i), is the last term in (i) which reflects the fact that in the
“score” approach the principal gets, on average, the dividend k — w plus the excess profits that would
go into the cash reserve,
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Given Theorem 3.1 and Proposition 3.1, y*{w, k) is well-defined, and indeed is
decreasing in w and increasing in k. The set of feasible compensation schemes then is

B={wk yeR%:welw, k], y 2 y*(w, k)}.

4.3 Initial cash level choice

For fixed (w, k), the principal picks an initial cash level y = y*, to minimize the
expected discounted per period setup costs 8y/1 — Ee 7. The initial cash level {or
equivalently, the tolerable loss level) is one mechanism by which the principal
transfers risk to the agent. Note the a priori conflicts: a lower initial cash level implies
smaller interest payments for the principal but also quicker failure on the part of
the agent and hence a more frequent outlay of initial capital by the principal.

Proposition 4.1, For fixed {w, k), the optimal loss level choice is y*(w, k).

Proof. From Theorem 3.1, V'{(3) = V'/(0)Ee~°T"". Since V is CZ, it follows that
V(y) = V'(O)£Ee~*T¥, Dutta [6] (Theorem 3.1) shows that ¥ increases in y. It
then follows that Ee~%""" is a decreasing, convex function, or equivalently that
1 — Ee~%T"0W s an increasing, concave function. Hence y/1 — Ee™*T"® is minimized
over [y*, co), at y*. [

It is somewhat surprising to find that in the model under study, under reasonable
general conditions, the principal finds it optimal to transfer all the risk that can be
feasibly transferred through the choice of initial cash level. The result may not hold
when there are costs to new hires, e.g., when there are training costs for new agents.
However, it is still the case that an optimal level of initial cash will exist in general.
This is so since the principal’s returns tend to — <o, as yT oo, »

4.4 Compensation level choice

Given the results of the previous subsection, the optimal choice of a compensation
level involves the maximization of
Sy*
k—w)— ————,
( ) 1 —Ee %7
A lower compensation w increases the net dividend to the principal, k ~ w (for k
fixed). Since the agent’s value increases in w (Proposition 3.1), in order to guarantee
the agent expected utility U, the tolerable loss level y* has to increase, thereby
raising interest payments for the principal. This is the direct cost of lowering w.
There is a further indirect cost, in that the agent’s best response is affected, and he
may be moved to take actions which lead to (stochastically) more frequent failure,

Proposition 4.2. For fixed k, there is an optimal choice of compensation level w*, with
w<w* <k

Proof. The optimization problem is; Minimize

| Sy*(w)

W TR
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" over win [w, k1], where we write T,,(y) to denote the termination date when an agent
uses his optimal response for wage w and an initial cash level y. It is easy to see that
as w is lowered to w, y*(w) - oo, Since 1 — Ee™?Tw" is bounded between 0 and 1,
the minimand goes to o, as wlw. The agent’s value function V is a continuous
function of w and hence so is y* (and 1 - Ee™*T). So a minimum is achieved over

(w, kL [ :

Lowering the agent’s compensation increases the principal’s dividend linearly
but also increases the expected debt and the latter increases “infinitely” fast as the
compensation is lowered to the minimum wage. The result, that wages are strictly
higher than minimum wage, looks bke an efficiency wage conclusion although the
explanation here is 2 combination of incentive and individual rationality arguments
and therefore different from the standard purely incentive-based argument.

4.5 Rate of return choice and the optimal contract

The final component of the principal’s choice problem is to pick a required average
rate of return k to maximize

ke — 2L

1—Ee %7

The incentive and individual rationality considerations are similar to those involved
in the choice of w. An increase in &k makes the agent more receptive to tenure
considerations (which the principal prefers). On the other hand the (binding)
individual rationality constraint implies that the allowable loss has to be larger. It
is our conjecture that the optimal choice of k lies between the highest and lowest
drifts. We have however not been able to prove this. As is clear from the principal’s
objective function, a determination of the optimal k involves both the expected
discounted time to failure, through 8/[1 — Ee™?T(y*(k))], and the minimum initial
cash reserve, y*(k). The first function in particular depends in an extremely
complicated way on k, since its evaluation involves the entire optimal policy
function f*(v, k). Furthermore, unlike the choice of w, the initial cash level does not
become unbounded as k becomes larger than the highest drift. It appears therefore
that this question may not have a resolution in the full generality of our framework.

5 First-best analysis

The first-best or Pareto-optimality problem is one of maximizing the principal’s net
receipts subject to the individual raionality constraint, but in the absence of moral
hazard. There are consequently two differences: firstly, since the agent’s actions are
observable {and agents are identical) there is no need for dismissal as an incentive
device. Secondly, actions are taken so as to maximize a (weighted) sum of principal
and agent utilities. The principal result of this section shows that if the agent’s utility
is separabie in compensation and action and the agent is averse to risk, then the
Pareto-optimal policy is to choose always the control that maximizes an appropriate
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weighted sum of instantaneous returns. Formally, the first best problem is,

Maximize EJ J e 5] fd Y + kds] — w(s)ds}
0

o}

5.t Eéj e S U wls), (mls), v(s))ds = T,

0

where the compensation scheme [w(t):t > 0] is some # -adapted process. In the

remaining sections we shall strengthen our assumptions on the agent’s instantane-
ous utility.

(Ad4) U is separable in compensation and action; Uiw,m,v) = u(w) + g(m,v).

Further u is increasing and strictly concave, and ‘lt_{rgo u'{w)=0,

Recall that the principal and agent’s discount rates are the same. Given the
agent’s risk-aversion and identical discount rates, standard arguments show that the
principai should completely insure the agent in the first-best strategy.

Proposition 5.1. In the first-best solution, the agent’s compensation is completely
independent of outcomes, i.e. w(w, t) = w, for all {w, 1) in 2 x [0, w).

Proof. See Appendix.
Define the weight first-best problem as

max(l — A}{EéJ‘me"‘”EdY + kds] ~ w} + A{Eéj

4 0

oo

e~ %q(m(s), v{s))ds + u(W)},
(5.1)

where 1isin [0,1].
It is well-known that the principal-agent values generated by the weighted
first-best problem as 4 varies, are exactly the Pareto optimal values. Further we have

Praposition 5.2. For any 4 [0, 1), a solution to (5.1) is a strategy using control (#, 7
exclusively, and a compensation WA} where,

i) (m, Deargmax[{1 — Dm + Aglm, v)],

ii) Wi} is the {unique ) maximizer of Au{w) — (1 — Hw,w > 0.

Proof. See Appendix.

The reason that constant use of a single control is optimal is clear. The principal,
in the formulation of the first-best problem above, is assumed to have an infinite
pocket. Hence principal (and agent) at every instant face an infinite horizon problem
which is invariant over the cumulative profits to date. So myopic optimization, i.e.,
maximization of (weighted) one-period utilities, is dynamically optimal. With firm
bankruptey possible, the simple results here would no longer hold;!! note however

1 Note that the infinite-pocket assumption is also implicit in the moral hazard formulation of Section 4
and hence in order to compare moral hazard and first-best values, as we shall do shortly, we need to
maintain this consistency in assumption.
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that in an optimal solution the probability of the principal and agent accumulating
negative infinite wealth is zero.

6 Convergence-to first-hest utilities

The following result bounds the rate at which principal-agent values under
bankruptey contracts approach first-best efficiency as the discount rate approaches
zero. The analysis (whose details may be found in the Appendix) proceeds as follows:
denote the (discount independent) first-best action (respectively, agent compensa-
tion) as i, #f (respectively, ). Consider a bankruptcy contract that requires the agent

‘to maintain a rate of return k =, pays him W if he does so and allows a discount

dependent initial cash level y(8). This initial cash level has to be chosen as an
appropriate balance between reducing the risk of firing a “good” agent and
maintaining incentives. In the Appendix we show that one choice of initial cash level

. . . né . .
that achieves this balance is , where n is an appropriate constant, Clearly

the rate of asymptotic efficiency of this particular bankruptcy contract is a lower
bound for the rate at which second-best values approach efficiency. It is an open
guestion as to how tight these bounds are.

Proposition 6.1 For any first-best values (G, H), there exist principal-agent contracts
(wW(8), k(8), ¥(8)) such that

_ VLY@ WO K _ i s

! G
. Hﬁ[y(é);;(cs), k(8)] = 054210 8)

Proof. See Appendix.

Remark. The arguments in the proof of Proposition 6.1 are completely independent
of the particular Pareto-optimal point that is being approximated. So, the result is
really a statement on the rate of uniform convergence of the principal-agent value
frontier to the Pareto optimal first-best frontier.

We next report exact computations on the rate of convergence for a parametric
example. Suppose that

25
Ulw,m, v) = — d

+2[o(l — m)]H,
ewrl cd=m]

where z > 0, and suppose further that the set of agent actions is
22
A== {(m,v)e}Ri:m +v<l, Y < v}.

It is straightforward to check that all of the assumptions made above are indeed

* satisfied by U and A. Set the principal and agent weights in the first-best exercise
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to beequal;i.e. 4 = 1/2. Itis then possibie to show (see the Appendix for details) that

| Valyoy Z(é)a o)l NG
- H [ v(8% wi(d), k(6)] < ’:if(z)z]\/glné
H 4
where
5 2
2 25+ 8z

T B—(5+ 85
For example, when z = 1/16, f(z} <2 and hence that rate of convergence is

bounded by 1/8\/3 In é. This particular parameter value is represented in Figures
1-2. Figure 1 plots the efficiency loss associated with discount rates between 1%

Efficiency Loss (%)

1.4‘ ! ) | ] | 2 | ]
2 4 ] 8 10

Discount Rate (%)

Figure 1. Efficiency loss: moderate discount rates, z = 1/16,
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Figure 2, Efficiency loss: very low discount rates, z = /16,
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and 10%,. Note that even at a discount rate of 10%, the size of efficiency loss is less
than 2.3%. Figure 2 reports the efficiency loss for this parameter specification
between discount rates of 0.1% and 3.1%,. It can be seen that the size of efficiency
loss is less than 1% for discount rates of 0.3%; and less.

7 Discussion and extensions

Second-best contracts have been characterized by [16], [217, [12] and [25]. The
work of Rogerson [21] and Lambert [16] has shown that second-best incentive
schemes will, in general, have “memory”; compensations in any period will depend
in a subtle manner on previous compensations and/or outcomes. The theoretical
reason for this is the fact that, although optimal contracts will depend in the
expected manner on the information revealed by observed outcomes, this informa-
tion can be linked quite arbitrarily to the outcomes themselves. Spear—Srivastava
[25] provide some reduction in the dimension of contingent variables. They show
that the second-best scheme conditions on current output and the agent’s expected
continuation value. Unfortunately this last statistic is not easy to relate to any
aggregate of outcomes. As mentioned in the introduction, these results are difficult
to reconcile with the simplicity of observed contracts.

Holmstrom-Milgrom [12] show in a T-period diffusion model that if principal
and agent utilities are multiplicatively separable and exponential then the second-
best contract has the attractive feature of being a succession of short-term contracts
(and indeed is linearly related to observed outcomes). In a two-period model,
Fellingham—Newman-Suh [8] isolated a coupie of other configurations of principal
and agent preferences for which the same conclusion holds. Unfortunately, the
linear short-term characterization is very delicately predicted on the constant
absolute-risk-aversion specification of preferences.

As described in the introduction, & line of research has indeed Jooked at some
simple schemes, and shown that any single-period efficient utility level can be
attained arbitrarily closely by such schemes in the limit (Radner [18], [19], [20],
Rubinstein {22] and Rubinstein—Yaari [23]). This is the literature that motivated
us directly. In particular, we have tried in this paper to complement the findings of
this line of inquiry by providing a direct analysis of the optimal principal-agent
contracts (within a class of simple schemes) and by providing an estimate of the rate
of approach to efficiency. Note also that Fudenberg-Maskin [9] employ ideas used
in the oligopoly context by Abreu—Pearce-Stachetti [1] to study the entire set of
sustainable payoffs in settings of imperfect information more general than the
repeated moral hazard problem. They establish the asymptotic sustainability of all
individually rational payoffs (and hence first-best payoffs) under some conditions.

In an interesting paper, Fudenberg~Holmstrom—~Milgrom [10] argue the
general point that if the agent is allowed to insure himself, then some of the insurance
that the principal has to provide in standard contracts without this feature becomes
unnecessary. In particular they show that when the preferences of principal and
agent are additively separable and of the constant absolute risk aversion class, then
long-term contracts can be replaced with a succession of second-best short-term
contracts. In this context it is worth noting that Yaari [26] has shown that, for
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some specifications of bankruptcy, a patient risk-averse agent subject to income
fluctuations finds it optimal to consume every period the expected income; ie. to
behave as a risk-neutral agent. This suggests the conjecture that if the agent is
allowed to self-insure and is made the residual claimant in our model, then the
resulting outcomes would again approximate the first-best, provided principal and
agent are sufficiently patient.!?

In a recent paper, Brock—Evans [4] have pointed out that in our model the
principal can gather additional information on the agent’s variance choice. They
discuss results from statistical estimation theory which have the following implica-
tion: if the principal samples the (stochastic) cash-reserve process sufficiently

frequently over a time-interval [r,r+g), and if the agent’s actions over that
time-interval change sufficiently slowly, then the principal can get precise estimates
-of the true variance choices made by the agent. This additional information couid
be utilized by the principal in the design of optimal contracts. Furthermore, it may
be possible to also utilize this additional information to improve the rate of
convergence to Pareto efficiency.

Two possible generalizations of the model can be attempted. First one can study
compensation schemes in which the agent’s compensation is linked directly to
immediate performance (as well as indirectly through the possibility of being fired),
i.e., salary plus bonus schemes. Secondly, as discussed above, the agent can be
allowed to insure himself, allowing for the smoothing of consumption across
periods even when income is erratic. In a2 model incorporating these features, it is
thus far possible to derive some general results.’? but not enough to allow an explicit
characterization of the optimal contract choice.
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Appendix
In this Appendix we prove the results of Sections 5 and 6.

Proof of Proposition 5.1. Consider any sample path with agent compensation
wiw, ). Write w(cw) = 6fg e~ *w{w, s)ds, the “mean wage” for the measure induced

by the discount rate e~ %. By Jensen's inequality,

u[wiw)] > 5[00 e~ "yl w(w, ) 1ds.

o

Denote w = Ew(w), taking the expectation now with respect to the measure induced
by the given control strategy. Since u is concave, again, by Jensen’s inequality,

U(w) = Eu[w(w)] = Eéfwe"“u[w(w, 5)]ds.

o
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Since the principal discounts the future at the same rate as the agent and is
risk-neutral, along any sampie path the principal’s returns are identical under time
varying compensation w{e, ") or mean wage w(w). From risk-neutrality it follows
that the principal is indifferent between environment-varying compensation w(w)
or a constant compensation w. [

Proof of Proposition 5.2. The weighted first-best maximand is

(1- l){Eéfwe‘és{dY+ kds] — w} + l{éjmq(s)ds + u(w)} (A1)
1]

0

and a strategy is of course the choice of instantaneous controls {m, v) for every time

“instant and environment, and a constant compensation level w. From {A.1)itis clear

that the two choices can be made independently. Further, the maximand for w is
: - 1-4
Au(w) — (1 — A)w and this is clearly maximized for ws.t. o' (W} = 0 when % > 0 or

atw=0,e.g, when A =0. It is further clear from (A.1), that E§{[5 e"*[dY(1 ~ A} +
g(m,v)A}ds} is maximized by the constant use of the control which maximizes
m(l -~ Ay -+ glm,v)A. ]
Proof of Propesition 6.1, One way in which one could estimate the rate of approach
to efficiency would be to directly analyze the asymptotic behavior of the optimal
bankruptcy scheme (w*(8), k*(5), y*(J)), as § 0. Since explicit expressions for these
parameters cannot be obtained, such a direct line of attack is not very fruitful.
Instead, we concentrate on finding a particular set of schemes (w(8), k(8), ¥(6)) for
which the rate of convergence stated in Proposition 6.1 is valid. Clearly, such a rate
is therefore a lower bound for the rate implied by {(w*{d), ¥*(3}, y*{)), which in turn
is a lower bound for the general class of all admissible compensation schemes.
Suppose the first-best constant control is (M, #) and the associated wage is W.
Consider, k{5) =, w(5) = W, for all 4, We will specify y{5) shortly. For any y= 0,
let §*(, W, §) denote the stationary Markovian optimal best response policy of the
agent. Define

U = U(W, i, D)
T5(y) = min {t > 0: Y{t) = 0] Y{0) = y, B*(#, W, )}
T=min {t>0: Y(£) = 0| Y(0) = y, = = (A, §) }.

Clearly,
Vy(y) < UW)(1 —~ E~3T0)) (A.2)
Viy) = U(1 — E~970) (A3)

(A.2) and (A.3) imply that

.

[~ B> (1 _ gemoTo)
U(w)

= b(l ~ Ee~?TO),
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Now, by standard arguments (e.g. Dutta [6]) it follows that

| —Ee ¥ 0= ¥ (A4)
where
- 2
A= ( \[;)\/5 = a\/g.
¥
From (A.4) it follows that
- ay(d)
H{y) = (i — W) — Bl o~ oy {A.5)
Coliecting (A.4) and (A.5) together we have
Hyy) 6y(9)
P e T

Ké:(;?—;l >1—e P9
U
where ¢~ = (i1 — W)b.

The remainder of the proof will be as follows. We shall demonstrate the existence
of y(6) such that i) $y(8) = O(,/3 In &), i) e~ ¥ = 0(, /3 In §). Clearly, the proof will
then be complete.

For any n > 0 define

—nind

NG

It follows that 89(8) = —n./31n 6 = 0(,/31n §). Further, —Zy(§)=anlné and so
e~ M@ = 5 1f n is chosen such that an = 4, then 6*" goes to zero faster than Jomé.

Hence, forn = L, e~ %9 = O(\/S In 8), and the proof of Proposition 6.1 is complete.
O

y(é) =

Computations for the parametric example

Since the agent’s utility is increasing in the variance, it is immediate that for any
mean, the largest associated variance is chosen in a first-best solution: iev=1-—m.
"The first-best 7 then maximizes m + z(1 — m)Y/2, It follows that f = 1 — z22/4 = 1 — 3,
Furthermore, it is easy to check that the first-best wage W = 1/4. In the terminalogy

9\ /2 2\~ 1/2
of the proof of Proposition 6.1, a= (—2> and conseguently, n = 1/2(@)
z z

Finally, substituting for 7z, 5 and W, it follows that ¢ = (25 + 82%)/(3 — 22)(5 4 8z2).
The computations are complete. [




