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Abstract: 

The standard VaR approach considers only terminal risk, completely ignoring the sample 

path of portfolio values. In reality interim risk may be critical in a mark-to-market 

environment.  Sharp declines in value may generate margin calls and affect trading 

strategies.  In this paper we introduce the notion of MaxVaR, analogous to VaR in every 

way except it quantifies the probability of seeing a given loss on or before the terminal 

date rather than at the terminal date. Under standard set of assumptions we provide a 

simple formula for MaxVaR and examine the ratio of MaxVaR to VaR.  For reasonable 

parameterizations MaxVaR may exceed VaR by over 40%.  MaxVaR exceeds VaR by as 

much as 80% or more for high Sharpe Ratio hedge-fund-like sets of portfolio return 

distribution. 

                                                 
1 An Excel spreadsheet with a calculator for the implicit solution for MaxVaR is available upon 
request. We thank an anonymous referee. 
2 Contact author. Email: jboudouk@stern.nyu.edu.  
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1. The Problem with Long Horizon VaR 
In spite of the popularity of value at risk, there are many unresolved issues from both a 

methodological and an implementation perspective.  Methodological issues revolve mainly 

around interpretation.  For example, VaR tells us how frequently we expect to see a loss 

greater than a certain threshold value. VaR, however, says little about the distribution of 

such losses when they do occur.3  With respect to implementation, there are difficulties in 

estimating VaR due to the non-normal behavior of asset returns.  Fat tails, skewness and 

correlation breakdown, typical properties of asset returns, result in VaR calculations under 

the normality assumption often yielding estimates that err on the conservative side.  

Nonparametric models such as historical simulation, a theoretically suitable remedy, often 

fail due to sampling errors.4 5 

The increasingly popular use of VaR in long-horizon (or multiperiod) settings is 

even more difficult to interpret.  In addition to many concerns that are valid for short 

horizons, when we use VaR for long horizons we need to add a particularly unpalatable 

assumption that there is no intermediate trading between the time the VaR is calculated 

and the terminal measurement horizon. While the absence of intermediate trading is a 

strong assumption, there are many reasons to adopt it, not least because there is no clear 

alternative.  In reality when trading results turn sour a trader or an institution may choose 

to or may have to unwind positions.  On the other hand, it may also “go for broke” and 

increase positions.  Either change may, however, be difficult to execute due to liquidity 

constraints.  Hence, the assumption of a fixed position may be thought of as reasonable for 

particularly large positions.  In this paper we make the simplifying assumption of no 

                                                 
3 See “Expect the Worst -- Rethinking the Value at Risk Concept using Worst Case Scenario Analysis and its 
Implications for Risk Management,” Jacob Boudoukh, Matthew Richardson, and Robert F. Whitelaw, Risk, 
September 1995. 
4  For a discussion of some of these difficulties see “The Best of Both Worlds: A Hybrid Approach to 
Calculating Value at Risk,” Jacob Boudoukh, Matthew Richardson and Robert F. Whitelaw, Risk, May 1998. 
5  For a general discussion of VaR see “Understanding Market, Credit, and Operational Risk – the Value at 
Risk Approach”, Linda Allen, Jacob Boudoukh and Anthony Saunders, 2004, Blackwell Publishing. 
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change in portfolio composition throughout. This is a useful assumption also in order to 

preserve comparability with the standard VaR concept.  

In this article we address a specific methodological problem that arises when VaR is 

used for long-horizon risk measurement and management purposes.  The problem is that 

VaR calculations focus on the distribution of a portfolio’s value only at the terminal date, 

ignoring the path of portfolio value prior to that date. The key question we ask is what 

happened in the interim? In a mark-to-market environment this is a very relevant question, 

particularly due to the increased use of long-horizon VaR in the money management and 

insurance industries, as well as by regulators and investment banks.  As opposed to VaR, 

the loss we may see at a given horizon with a certain probability, we call the loss we may 

see on or before the given horizon MaxVaR. At the 5 percent level and for typical equity 

market parameters MaxVaR exceeds VaR by over 40%.  For higher Sharpe Ratio 

strategies MaxVaR may exceed VaR by over 80%.   

 

2. Framework 
Commonly used VaR calculations focus on the distribution of asset returns at a given 

horizon.  For example, regulators may require institutions to report their 10-day VaR, or a 

fund manager may want to know the quarterly VaR of a portfolio.  Statements about VaR 

are, of course, probabilistic, and provide information about the tail of the distribution at the 

given horizon.  However, it is also valuable to the decision maker, viewing a daily mark-

to-market of his/her portfolio, to know information about the distribution of asset returns 

on or before that horizon.  While one could argue that the horizon is arbitrary in any case, 

the VaR at any horizon is somewhat deceiving when portfolio values are monitored day-to-

day.   

VaR is especially misleading if a margin call can occur given a certain mark-to-market 

value of the portfolio.  In such a case the use of VaR vis-à-vis the capital of the firm/hedge 

fund/trading strategy is completely misguided.  We are, in fact, interested in the probability 

of going below a certain value on or prior to the chosen horizon.   
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To implement this notion we define MaxVaR as the loss in portfolio value that will be 

exceeded with a given probability level on or before the given horizon. MaxVaR is, 

therefore, immediately comparable to the standard VaR that focuses on terminal values 

only.  The ratio that we calculate (MaxVaR divided by VaR) is simply an adjustment 

factor to the standard VaR, which is readily usable as an extension of the standard 

calculation. We therefore use all the standard distributional assumptions here.  

Let the value of the asset (or the portfolio, for that matter), St, follow a log-normal 

diffusion process with annualized expected return µ and volatility σ.  The value at the end 

of period T, ST, is the variable of interest when calculating the T period VaR.  In order to 

quantify MaxVaR, define the minimal sample-path value of St between 0 and T to be  S(0,T]. 

That is, S(0,T] ≡ min{St, t in (0,T] }.  We focus on the distribution of S(0,T].   (These 

quantities are illustrated graphically in the Figure 1.)  Similarly we can consider rates of 

return. Let Rt= ln(St/S0) be the (continuously compounded) return from 0 to t.  Let  R(0,,T] 

be defined as R(0,,T]= ln(S(0,T]/S0), i.e., the minimum cumulative return over the period.  
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Further, define 22σµ −=m , i.e., the annual expected continuously compounded return. 

For a given tail value z, the probability αVaR that RT ≤ z is 

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cumulative standard normal. 

 

Theorem: 

αMaxVaR ≡ Prob[R(0,T] < z] =  

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Proof:  

The result follows from the properties of the first passage time of a Brownian motion with 

drift6.  

To get some intuition for this result consider the simpler case where m=0, i.e., there 

is no expected drift in the (log) price process.  In this case, the above formula simplifies to  

αMaxVaR =Prob[R(0,T] <z] =  






Φ
T

z
σ

2  =2 αVaR        (for z<0). 

The MaxVaR probability of hitting z or lower on or before T is, interestingly, exactly twice 

the probability associated with hitting z at the horizon, T. i.e., the VaR.  In this simpler 

case the formula for the MaxVaR is based on the well-known “reflection principle” -- for 

every process with a sample path that touches the value z and declines further there is one 

that rises from that z point on. These could be thought of as mirror image processes.  To 

summarize, the z percent VaR is the 2z percent MaxVaR. Of course, this does not imply 

that the z% MaxVaR is twice the z% VaR.  

 

 

 

                                                 
6 See, for example, Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, 
second edition, Springer (New York), Graduate Texts in Mathematics #113, 1991, pp. 196 – 197.. 
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3. Results 
In Table 1 below we provide a comparison between the standard VaR and the MaxVaR in 

order to get some intuition for the magnitude of the adjustment which is required in order 

to account for interim risk. We set m=0, i.e., the expected return on the portfolio is 

assumed to be 0. In this case, while the probability of seeing a return of -1.645 standard 

deviations or worse at the end of period is 5%, there is a 10% probability of seeing this 

size move along the sample path prior to the terminal date.  To put it differently, there is a 

5% probability of seeing an end-of period return of less than –1.645 standard deviations 

(VaR), and a 5% probability of seeing a return of less than –1.960 standard deviations on 

or before the end of the period (MaxVaR). At the 5% level, the ratio of the VaR to the 

MaxVaR is, therefore,  1.960/1.645=1.192.  That is, the standard VaR calculation can be 

easily adjusted to account for the fact that value is observed continuously in the interim 

simply by inflating VaR by 19%.  This “inflation” factor, the ratio of MaxVaR to VaR, 

does not depend on volatility or the horizon, but it declines as the tail probability declines. 

Thus, the adjustment grows smaller in percentage terms as the tail event becomes less 

likely. 

 

Table 1: MaxVaR vs. VaR, m=0 

 
PROB 

VaR MaxVaR 
 

MaxVaR 
VaR 

MaxVaR 
(N=10) 

5% 1.645 Tσ 1.960 Tσ 1.192 1.802 Tσ  

2.5% 1.960 Tσ 2.241 Tσ 1.144 2.090 Tσ  

1% 2.326 Tσ 2.576 Tσ 1.107 2.420 Tσ  

 

In the last column of the table we also provide an example of this calculation when 

the interim sampling is discrete. Suppose, for example, the process is sampled ten times 

(N=10) over the relevant horizon.  The discrete MaxVaR will be lower than the continuous 
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sampling MaxVaR since we might “miss” the lowest point.7  We use 50,000 simulations to 

determine the appropriate value. The case of N=10 is of particular interest due to the fact 

that regulators often look at a 10-day VaR as a measure of banks’ trading risk (see, e.g., 

the 1998 Basel capital requirements).  These market risk-related capital requirements 

consider the two-week (i.e., ten day) VaR as the basis, but, we argue, ignore the mark-to-

market of the trading portfolio in the interim.  The appropriate adjustment for daily mark-

to-market appears in the table above. With discrete sampling at this frequency, the 

necessary percentage adjustment is slightly less than half of that needed for continuous 

sampling. 

Assuming the drift is zero is unrealistic for most practical examples, although it is 

still useful for two reasons. First, m=0 provides a lower bound on the necessary adjustment 

factor for positive drift processes. As the drift increases, the ratio of MaxVaR to VaR also 

increases because interim returns have lower means than their terminal horizon 

counterparts. Second, m=0 provides the limit of the adjustment as the horizon shrinks -- for 

very short horizons the drift is relatively unimportant. 

To get an idea of the potential effect of a positive drift for longer horizons, Table 2 

reports results for σ=15%, T=1, and µ=10% or 15%. To make comparison easier, the 

values are reported in units of standard deviation ( Tσ ), as in Table 1. However, in 

contrast to Table 1, the results are not independent of σ and T (we will expand on this issue 

below).  

There are a couple of results worth noting. First, and most obvious, both the VaR 

and MaxVaR are reduced relative to the levels reported in Table 1 due to the positive drift. 

For example the 5% MaxVaRs are 1.493 and 1.262 standard deviations for µ equal to 10% 

and 15%, respectively, relative to 1.960 in the no drift case. Second, and more important, 

the MaxVaR/VaR ratio can increase dramatically as the drift increases. For example, at the 

5% level, the MaxVaR is now more than 41% or 75% greater than the corresponding VaR 

                                                 
7 A similar issue arises in the case of barrier options, where the question of whether the knock in/out is a 
function of the end of the trading day closing price or at any point during the trading day turns out to make a 
difference for pricing these derivatives. 
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for the two drift values—a very economically significant adjustment factor. This increase 

is due to the fact that the positive drift has less influence on returns over intermediate 

horizons. Thus MaxVaR is reduced less than VaR, and the ratio increases.  This result 

demonstrates the fact that the use of VaR instead of MaxVaR as a risk measure is 

especially problematic for high Sharpe Ratio portfolios, e.g., hedge funds.  

 

Table 2: MaxVaR vs. VaR, σ=15%, T=1 

 
PROB 

µ VaR MaxVaR 
 

MaxVaR 
VaR 

5% 10% 1.053 Tσ 1.493 Tσ 1.417 

2.5% 10% 1.368 Tσ 1.752 Tσ 1.281 

1% 10% 1.735 Tσ 2.067 Tσ 1.191 

5% 15% 0.720 Tσ 1.262 Tσ 1.753 

2.5% 15% 1.035 Tσ 1.504 Tσ 1.453 

1% 15% 1.401 Tσ 1.801 Tσ 1.285 

 

It is important to note that the results in Table 2 depend on all three parameters—µ, 

σ, and T. In fact, the key variable is the normalized drift over the relevant horizon, i.e., 

( ) ( ) T
T

T
σ
σµ

σ
σµ 22 22 −

=
− . As this quantity increases, so does the MaxVaR adjustment 

factor. Therefore, the effect of considering interim risk is increasing in µ and T and 

decreasing in σ.   

 

4. Conclusion 
We provide an important extension to the well-known measure of risk, VaR, to account for 

the fact that the sample path of portfolio values is observable via mark-to-market, and is of 

interest because it may affect trading activity in the portfolio (e.g., cause liquidation or 
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stop-loss triggers).  The concept of MaxVaR is easy to quantify and we provide a ratio of 

the standard VaR to MaxVaR for a number of illustrative cases. 

Further extensions to this concept may be of interest.  In particular, our derivation 

uses the standard assumption that returns are independent log-normals with constant 

parameters.  Various violations of these assumptions may change the MaxVaR calculation. 

First, asset returns are known to be fat tailed.  It is common for risk management systems 

to ignore fat tails and assume that long horizon returns are normal. From a practical 

perspective this is a plausible assumption, due to the fact that fat tails are likely to “wash 

out” by averaging over long horizons (this is simply a result of the law of large numbers 

under some mild assumptions).  This may not be such a good assumption for interim 

values.  While the effect of unusually large moves may fade out at long horizons, they may 

still be important at short horizons and lead to increases in MaxVaR. 

Second, if asset returns are positively or negatively serially correlated, i.e., asset 

prices experience return continuations or reversals, then much in the same way that long 

horizon VaRs need to be calculated carefully, taking these time series properties into 

account will also affect  the MaxVaR. 

Finally, in the presence of stochastic volatility similar issues may arise, where 

periods of high volatility may generate extreme moves that, if we ignore them, we may 

understate the MaxVaR.  These topics are left for future research. 


