How does liquidity react to stress periods in a limit order market?

Helena Beltran
Alain Durré
Pierre Giot*

November 4, 2004

ABSTRACT

This paper looks at the interplay of volatility and liquidity on the Euronext trading platform during the December 2, 2002 to April 30, 2003 time period. Using transaction and order book data for some large- and mid-cap Brussels-traded stocks on Euronext, we study the ex-ante liquidity vs volatility and ex-post liquidity vs volatility contemporaneous relationships to ascertain if the high volatility was associated with decreases in liquidity and large trading costs. We show that the provision of liquidity remains adequate when volatility increases, although we do find that it is more costly to trade and that the market dynamics is somewhat affected when volatility is high.

Keywords: order book, volatility, liquidity.

JEL classification: G10, C32.

*Helena Beltran is a FNRS research fellow at CORE, Université catholique de Louvain, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve. Phone: +32 (0) 10 478160. Email: beltran@core.ucl.ac.be. Alain Durré is from the Institut d’Economie Scientifique et de Gestion of the Catholic University of Lille (France), member of the LABORES (CNRS-U.R.A. 362) and member of the Research Department of the National Bank of Belgium. Phone: +32 (0) 2215563. Email: alain.durre@nbb.be. Pierre Giot is Professor of finance at the Department of Business Administration & CEREFIM, University of Namur, Rempart de la Vierge, 8, 5000 Namur, Belgium and CORE at Université catholique de Louvain. Phone: +32 (0) 81 724887. Email: pierre.giot@fundp.ac.be. Send all correspondence to beltran@core.ucl.ac.be. We are very grateful to the National Bank of Belgium for providing financial support for this research. We thank Olivier Lefebvre and Patrick Hazart at Euronext for giving us access to the data. We also thank Rob Engle, Bruce Lehmann and Gunther Wuyts for helpful comments and suggestions.
I. Introduction

Modelling and appraising liquidity in financial markets has been of paramount importance for central banks, regulators and practitioners for the last decade. The perceived liquidity decrease during the financial crisis of 1998 has led many to question the functioning of stock markets during stress periods (see Borio, 2004, and references given therein). Moreover, the well-publicized problems of large hedge funds such as LTCM have also pointed out that liquidity could dry out rapidly during crisis periods, hence normal market conditions do not offer much information regarding what happens during volatile periods. As pointed out in the empirical and theoretical literature, liquidity depends crucially on the market structure. In price-driven markets (e.g. at the NASDAQ or in bond and FOREX markets), a market maker ensures the continuity and viability of the trading process by quoting firm bid and ask prices whatever the market conditions. Thus, the inside spread (i.e. the difference between the best buy and sell prices) and depth at the best quotes seem to be good measures of the available liquidity, that is on an ex-ante basis. Ex-post, the liquidity of an exchange is often assessed by computing measures such as the effective or realized spread, or VWAP (volume-weighted average price) measures. Note that measures related to the liquidity displayed by the order book (see below) refer to pre-trade liquidity, and will correspondingly be referred to as ex-ante liquidity measures. Examples of such measures are the quoted spread and bid/ask depths. Measures computed with transaction data refer to realized trading costs, thus called ex-post liquidity measures. Effective spread is a well-known example of an ex-post liquidity measure.

In pure order-driven markets, no market maker stands ready to trade. Liquidity is thus provided by limit orders entered throughout the day by ‘patient’ or liquidity supplier investors (often value investors), and orders are executed only when prices match, i.e when liquidity is demanded by ‘impatient’ or liquidity demander investors. Examples of impatient traders include traders who wish to transact near the close of the trading session (so that the price of their trade is not far from the official closing price), see Cushing and Madhavan (2000), or momentum traders who are keen on entering immediate long or short positions (Keim and Madhavan, 1997). Therefore, the inside spread is not as relevant as in price-driven markets and depth outside the quotes (i.e. the complete state of the order book) and times between order entry and execution (the immediacy component) become crucial. As shown in Handa and Schwartz (1996), and discussed below, there exists a dynamical equilibrium between limit order and market order trading which strongly determines the available liquidity of the order book.
While in a price-driven market the market makers ensure the continuity of the price process (for example specialists at the NYSE are required by the exchange to maintain an ‘orderly market’), in order-driven markets no investors have to provide liquidity. Thus it is not inconceivable that order book systems could break down in times of stress because the dynamical equilibrium of Handa and Schwartz (1996) between limit orders and market orders is disrupted. Which trading platform best performs in such time periods? Some argue that the main advantage of price-driven platforms is the presence of market makers who always have to deal, even during highly volatile periods. On the contrary, as no market participant has to submit limit orders in order book markets, it is likely that, during periods of stress, fewer limit orders are entered into the book. This then decreases liquidity.\(^1\) On the other hand, it could be argued that the heterogeneity of liquidity providers in order-driven markets is indeed a strong advantage as it leaves room for ‘contrarian’ traders to submit orders. These traders, unlike market makers, are not constrained by inventory holding issues and they may have a long-term vision that incites them to enter positions which go against the current market trend (for an example of such behavior in the FOREX market see the report “Structural aspects of market liquidity from a financial stability perspective” by the Committee on the Global Financial System, 2001). Indeed, the presence of enough contrarian traders could lead to more order-book market liquidity than what could be observed in a (pure) specialist market trading system during periods of stress.\(^2\)

In this paper we analyze how liquidity is affected by increases in volatility for some stocks traded on the Euronext trading platform during the time period that ranges from December 2, 2002 to April 30, 2003. A period with a high level of volatility will be referred to as a “stress period”, while low-volatility periods are referred to as “normal periods”. Note that, contrary to most papers (e.g. Goldstein and Kavajecz) dealing with high-volatility periods, we do not focus on one (or succession of) extreme event(s). For some days during that time frame, volatility was unusually large as market participants anticipated the start of the second Gulf war and markets were quite jittery till the end of the conflict.\(^3\) The last month of 2002 and the first months of 2003 (i.e. just before the start of the war) were truly horrible months for stock investors as most stock indexes (and especially

\(^1\)Another concern is the ability of order books to provide liquidity for large orders without big price discrepancies (hence the recurrent use of upstairs or block markets for large trades in order book markets). This is not the focus of the current study.

\(^2\)In case of extreme volatility events, such as on September 11th, 2001, few contrarians would be ready to act as a counterparts. Thus it is likely that liquidity dries out in the book whereas the specialist has to ensure the continuity of the trading process.

\(^3\)The annualized stock market volatility for the Belgian BEL-20 index is equal to 25.8% for the five months under review. For the six months before and after our 5-month period, it is equal to 18.4% and the difference is statistically significant.
European stock markets) were in a free fall. The end of the conflict in Iraq led to a complete turnaround for stock markets as investors rushed to buy (then deemed oversold) equities. Using high-frequency trade and order book data, we analyze the liquidity and volatility exhibited by some large- and mid-cap Brussels traded stocks on the Euronext platform. We study more particularly the ex-ante liquidity vs volatility and ex-post liquidity (effective spread for example) vs volatility contemporaneous relationships to ascertain if the high volatility was associated with decreases in liquidity and large trading costs. From an econometric point of view, the low and high-volatility regime states will be determined according to an endogenous classification rule based on Markov switching models. Besides the ex-ante and ex-post assessment of liquidity, we also estimate VAR models for some of the variables measured on an intraday basis. Thereafter, we assess the impulse response functions derived from these estimated VAR models and analyze the dynamics of liquidity. Because we choose large- and mid-cap stocks for which there are no market makers, we thus shed light on the ex-ante and ex-post liquidity vs volatility relationships in a pure automated auction market.

The econometric results (which also include an event study for one of the stock) indicate that, while ex-ante or ex-post trading costs somewhat increased with volatility, liquidity remained high (trading costs were ‘reasonable’) and the trading process did not break down. The dynamical analysis based on the VAR model presented in the second part of the paper offers a balanced view according to which the volatility regime bears moderately on the dynamics of the liquidity provision. As such, our results seem to indicate that there is no real important deterioration in the provision of liquidity when volatility increases, although we do find that it is more costly to trade when volatility is high and that the market dynamics is somewhat affected.

The rest of the paper is structured as follows. After this introduction, we present a review of the literature in Section II. The Euronext trading system and the dataset are discussed in Section III. The first part of the empirical analysis is presented in Section IV, where we also provide an event study for the Delhaize stock. The second part of the empirical analysis (trading dynamics and VAR analysis) is presented in Section V. Finally, Section VI concludes.
II. Review of the literature

The literature on market microstructure has traditionally focused on dealership markets. Indeed, most of the models surveyed in O’Hara (1995) focus on the behavior of market makers or deal with fixed costs, inventory costs or asymmetric information costs models in the framework of market maker based trading systems. Because of the growing popularity of automated auction systems in European countries or in the electronic trading systems in the United States, there is now a rapidly evolving literature on order book markets. Most of the empirical studies in that field focus on the provision of liquidity in automated auction markets. Indeed, as no market makers stand ready to buy and sell the traded assets in this setting, the viability of pure electronic order book markets and the ability to trade at all times are far from ascertained. Crucially, the provision of liquidity in times of crisis is of paramount importance. We thereafter survey some of the recent empirical work that focuses on the provision of liquidity in order book markets, the relationship between volatility and liquidity and the characteristics of automated auction markets in times of crisis.

In an important extension of pure dealership markets, automated auction markets allow a relatively easy ex-ante characterization of liquidity beyond the inside bid-ask spread. Because the state of the order book is usually fully or partially made available to market participants, price impact curves (i.e. unit bid and ask prices for a given volume, also called costs of buy and sell trades by Irvine, Benston, and Kandel, 2000) can be computed which allow the computation of extended liquidity measures such as the cost of buy or sell trades. These measures, popularized in Irvine, Benston, and Kandel (2000), Martinez, Tapia, and Rubio (2000), Coppejans, Domowitz, and Madhavan (2002) or Beltran, Giot, and Grammig (2004), aggregate the status of the order book at any given time and offer a relatively accurate picture of the available ex-ante liquidity, i.e. before the submission of a buy or sell trade.

In a now seminal paper, Biais, Hillion, and Spatt (1995) provide one of the first empirical analysis of a limit order book market (the Paris Bourse). They study the joint dynamics of the order flow (placement of market or limit orders) and the order book: investors place limit (market) orders when the bid-ask spread is large (small) or the order book is thin (thick). Therefore, “investors provide liquidity when it is valuable to the marketplace and consume liquidity when it is plentiful”.

4 See the book by Harris (2002).
5 In dealership markets, the ex-ante available liquidity often reduces to the best bid and ask prices (or quoted spread), and the available depth at these prices. Effective spreads or realized spreads are ex-post liquidity measures as they are computed after the submission of the buy or sell trade.
They also show that there is a strong competition among traders (who monitor the state of the order book) to provide liquidity as the flow of order placements is concentrated at or inside the bid-ask quote and the corresponding limit orders are placed in quick succession. For stocks traded on the pure electronic limit order platform of the Hong Kong stock exchange, Ahn, Bae, and Chan (2001) investigate the ‘ecological’ nature of the pure order driven market such as put forward in Handa and Schwartz (1996). They show that there exists a dynamical equilibrium between limit order trading and volatility: market depth rises subsequent to increases in volatility and volatility declines subsequent to increases in market depth. Indeed volatility attracts the placement of limit orders (instead of market orders) which therefore add liquidity to the order book. They also show the need to separate volatility at the ask and bid sides of the order book: when volatility arises from the ask (bid) side, investors submit more limit sell (buy) orders than market sell (buy) orders.

On a related topic and for NYSE stocks, Bae, Jang, and Park (2003) show that it is important to distinguish between transitory and informational volatility: “a rise in transitory volatility induces a new placement of limit orders. A rise in informational volatility appear neither to increase nor decrease the placement of limit orders relative to market orders”. Using a Probit model applied to Swiss stocks traded on the Swiss Stock Exchange, Ranaldo (2004) presents quite similar results: orders are more aggressive (i.e. traders submit more marketable limit orders than just plain limit orders) when the order queue on the incoming trader’s side of the book is larger. For example, buyers then face a smaller execution probability and have to raise their order aggressiveness. The opposite is true for sellers. Moreover, volatility and larger spreads imply weaker trading aggressiveness. Frino, McInish, and Toner (1998) study the intraday pattern of the spread for two competing structures (a floor and an order book) where the same asset is traded (German Bund futures) and conclude that the order book provides more liquidity than the floor, although the performance of the automated auction market deteriorates when volatility increases (however they only focus on one liquidity variable, the quoted spread). Note that these studies do not focus on times of crises and it is thus not clear whether they would get similar results when trading is hectic.

Danielsson and Payne (2001) study the dynamics of liquidity supply and demand in the Reuters D2000-2 order book trading system.6 They focus on the interaction between market and limit orders and show that the probability of a limit buy (sell) order is relatively low after a market sell (buy). Therefore, there could be strong fluctuations in the provision of liquidity because of the complex interplay between market and limit orders (what they call dynamic illiquidity). In agreement

6The Reuters D2000-2 system is an electronic order book system designed for inter-dealer FOREX trades.
with Foucault (1999), they show that the fraction of limit orders in total order arrivals increases with volatility (which increases liquidity), although the bid-ask spread also increases with volatility (which decreases liquidity). Hence, increases in volatility yield wider bid-ask spreads and lead to the increased placement of limit order relatively far from the quote mid-point. They also show that market participants react strongly to the unanticipated component of volume (predictable volume increases liquidity, unpredictable decreases liquidity). This hints at the importance of asymmetric information in automated auction markets and suggests the need for extensions of the models by Glosten and Milgrom (1985) and Easley and O’Hara (1987).

Goldstein and Kavajecz (2004) focus on the liquidity provision at the New York Stock Exchange during extreme market crises. Indeed, they deal with the very short time period that surrounds October 27, 1997. On that day, the Dow Jones Industrial Average lost 554 points (which triggered the circuit breakers) and on October 28, 1997 the index shot up by 337 points. They examine the liquidity supplied by the limit orders (routed by the SuperDOT order book trading system) and by the NYSE market participants (specialists and floor brokers). They show that a substantial liquidity drain occurred on the day after the market crash (i.e. on October 28, 1997) as the order book exhibited continuous large spreads and poor depth. However, the overall market liquidity did not drop dramatically as the specialists and floor brokers fulfilled their functions of liquidity providers and thus ensured good overall depth and low spreads at the NYSE. This hints at the adequacy of hybrid market structures and shows that the viability of pure automated auction markets in times of crisis can be threatened by the significant drop in liquidity due to the substantial fall in the number of limit orders entered in the trading system. Finally, Venkatamaran (2001) also stresses the merits of hybrid trading structures which lead to reduced trading costs.

Most empirical studies thus conclude that the ‘ecological’ nature of the pure order driven market works quite well: traders enter limit orders when liquidity is needed and are more impatient when liquidity is plentiful. Automated auction markets are also quite cheap to run, and bid-ask spreads for small to medium trades are quite low (see also Degryse, 1999). It is however not clear whether these results hold in all circumstances. Indeed, almost all studies (Goldstein and Kavajecz (2004) being the exception) on automated auction markets focus on the provision of liquidity in normal periods, i.e. not in times of crisis. In that latter case, liquidity could rapidly deteriorate if the sole provision

7A hybrid trading structure combines features of order book markets (the existence of a centralized order book run by a computer system) and of dealership markets (the existence of market makers or floor brokers). A good example of such a structure is the NYSE, see for example Bauwens and Giot (2001) or Sofianos and Werner (2000).

8Note however that it is ‘easy’ for traders to avoid the order book as they know that they can rely on the specialist in a hybrid trading structure.
of liquidity comes from limit orders (i.e. in the absence of hybrid systems that allow some provision of liquidity by market makers).

III. The Euronext platform and the dataset

A. Trading on the Euronext platform

Euronext encompasses five exchanges, namely the Amsterdam, Brussels, Lisbon, Paris exchanges and the LIFFE. Euronext aims to put forward a unique electronic trading platform for all financial assets. This is already the case for equities trading, as the same trading platform is now used by all exchanges. Trading on the Euronext platform takes place from 9 to 5.25 p.m CET. Limit orders are matched according to the standard price and time priority rules. Market orders (also called marketable limit orders) are executed against the best (in terms of price) prevailing order on the opposite side of the book. If there is not enough volume to fully execute the incoming order, the remaining part of the order is transformed into a limit order at the best price. Traders can also use more sophisticated orders, e.g. fill-or-kill orders (the limit order is either fully executed or cancelled), must-be-filled orders (the market order is completely executed, whatever the price), iceberg orders (part of the volume is not displayed in the book),... Block trading is allowed for large volume trades (the size of these trades is larger than the stock specific minimum block size, called “Taille normale de bloc”). Although the block trade formally takes place outside the book (akin to the upstairs market at the NYSE), the transaction price is actually constrained by the available liquidity in the book. Indeed, Euronext displays throughout the day the hypothetical prices for a sell and a buy order with a volume equal to the minimum block volume. No blocks can be traded at a price outside these limits. Besides block trades, Euronext also allows so-called iceberg (or hidden) orders. As the name suggests, a hidden limit order is not (fully) visible in the order book. This implies that if a market order is executed against a hidden order, the trader submitting the market order may receive an unexpected price improvement. As on other automated auction exchanges (XETRA, Toronto stock exchange,...), iceberg orders have been allowed to heed the request of investors who were reluctant to see their (potentially large) limit orders openly revealed in the order book.9

At the start of the trading day and before the regular continuous trading, a pre-opening auction takes place: limit orders are submitted and a start-of-day auction sets the opening price; all orders not executed at the end of the opening period remain in the order book. Throughout the trading day, achievable trade prices are bounded by a static and a dynamic price limit. The static bounds are set immediately after the opening auction: they are equal to the auction price +- 10%. During the day, if a trade takes place outside these static bounds, trading is stopped and a new auction takes place (for a time period of 5 minutes). This auction final price defines new static bounds, used thereafter. The second type of bounds are dynamic: a trade cannot take place at a price larger (smaller) than the last trade price plus 2% (minus 2%). If orders can be matched at a transaction price outside the dynamic bounds, the trade is not executed and trading is stopped. A new auction takes place and defines new static and dynamic bounds. A final auction occurs between 5.25 and 5.30 p.m., followed by an additional 10-minute period where traders can trade at the price set by the end-of-day auction.

Note that, depending on the stock, two different Euronext members are involved in the trading process: brokers (called “Négociateurs”) and market makers (called “Animateurs de marché”). All stocks do not feature a market maker. Indeed, stocks belonging to the Euronext 100 index (the first 100 Euronext stocks which have the largest market capitalizations) don’t feature any market maker. Nevertheless, market makers are still allowed to enter orders for these stocks, but then they are considered as simple brokers.

B. The dataset

We were granted access to two historical datasets (for Brussels-traded stocks over a period ranging from December 2, 2002 to April 30, 2003) by Euronext. The first dataset contains the limit order book (LOB) as available to market participants who are not formally Euronext members, i.e. the historical real-time feed of the 5 best orders (price, total volume at that price and number of standing limit orders at that price) on the bid and ask sides of the order book. Indeed, all order book events (order entry, cancellation, . . .) are time-stamped to the second and lead to a potential order book modification, which is recorded in real-time by Euronext. We thus have snapshots of the 5 best bid and ask limit orders in real-time over the historical period we work with. It should however be stressed that the hidden portion of the iceberg orders is not included in the dataset. As discussed

10See also Biais, Hillion, and Spatt (1999).
below, this will impact some of our conclusions (regarding the available ex-ante liquidity in the order book for example), while others should not be affected (the ex-post assessment of trading costs for example). The second dataset contains all transactions, more specifically the prices and volumes of the trades time-stamped to the second. Moreover, we also know if the orders matched in the transaction were so-called client or proprietary orders (the two most frequent cases), or market maker orders (a third possibility).11 Note that the LOB dataset sometimes contains errors as the ordering of prices is not always enforced (e.g. the best ask price is sometimes larger than the ask price ranked second). These errors amount to less than 2\% percent of all LOB observations and are removed from the dataset. Furthermore, the trades dataset did not give any information on the side (buy or sell) from which the trade originated. By using the LOB data, we are however able to determine rigourously the sign of the trade, as trades can only occur at the prices displayed in the book. Thus we did not have to rely on the Lee and Ready (1991) algorithm as used by most authors who work with NYSE data.

In this study we focus on five large-cap Belgian stocks (Dexia, Electrabel, Fortis, Interbrew and KBC) and five mid-cap Belgian Stocks (Agfa, Colruyt, Delhaize, Solvay and UCB).12 The first five stocks are characterized by a large trading activity and are well-known blue-chip stocks widely held by individual and institutional investors. The five mid-cap stocks are also quite actively traded stocks. All ten stocks are members of the BEL20 stock index (which features the most ‘representative’ stocks of the Belgian economy) and no market maker (“animateurs de marché”) is involved in the trading of any of these stocks. Descriptive characteristics for the selected stocks are given in Table I. The stock price for Fortis (whose global pattern is representative of what can be observed for the other stocks, save for the Colruyt stock which has been strongly trending upwards since the end of 2002) is plotted in the top left of Figure 2. This figure shows that the stock price was in a sharp downtrend till the start of the second Gulf war and that the market sharply recovered thereafter.

11A so-called client order is an order routed to a Euronext member for execution by an outside investor. A proprietary order is executed by a Euronext member for his own trading account.

12This classification of large- and mid-cap stocks is relevant for average European investors. US investors (and more particularly large institutional investors) would consider all these stocks to be only mid-cap stocks, and some of these even almost small-cap stocks.
IV. Empirical analysis

A. The importance of intraday seasonality

Most empirical studies on high-frequency data (Engle and Russell, 1998; Bisière and Kamionka, 2000; Bauwens and Giot, 2001; Bauwens and Giot, 2003) stress the need to correctly model the intraday seasonality exhibited by this kind of data. Indeed, when modelling the volatility, the traded volume, or the spread on an intraday basis, it is of paramount importance to proceed along a four-step procedure: (1) define regularly time-spaced measures of interest (e.g. working at the 15-minute frequency, the 15-minute return volatility, the 15-minute traded volume, the average effective spread over the 15-minute interval, . . .); (2) compute the time-of-day pattern for each measure; (3) deseasonalize each measure by its respective time-of-day pattern; (4) model the deseasonalized variable using an econometric model. Failure to recognize the importance of steps (2) and (3) often lead to incorrect model estimations (see Andersen and Bollerslev, 1997, for an application to the modelling of intraday volatility). Moreover there is also an economic justification in the modelling of the intraday seasonality. Because market participants are actively involved in the day-to-day market action, they know and expect a given pattern of activity (or volatility, spread, . . .) and are only affected by deviations (or surprises) from what was expected. A well-known example is the reaction of economic agents to news announcements: by itself, the news (e.g. the CPI number in the US) is not really relevant; what matters is the difference between the actual number and the expected number (see e.g. Bauwens, Ben Omrane, and Giot, 2003 or Andersen, Bollerslev, Diebold, and Vega, 2003).

As a illustration, we plot in Figures 1 and 2 the time-of-day pattern for the annualized volatility of the 15-minute returns, the 15-minute average volume per trade, the trade aggressiveness, the current and effective spread and the price impacts for the bid side. The first figure is for Colruyt (the smallest cap stock in our sample and the least active in terms of average number of transactions per day), while the second figure is for Fortis (the largest cap stock in our sample and the most active in terms of average number of transactions per day). While both stocks are markedly different in terms of market cap and trading activity (see Table I), the time-of-day patterns are quite similar. Quoted spreads, effective spreads and the quoted ask and bid depths are defined as usual, see Harris (2002). Note that, because we deal with an automated auction market, the effective spread can be larger than the quoted spread, as some transactions walk up the book and thus transaction prices are larger than the quoted spread. Price impacts capture the premium paid by traders when the transaction is
executed against standing limit orders beyond the best quotes. Formally, the average price paid per share for a sell of v shares at time t is

$$b_t(v) = \frac{\sum_{i=1}^{k} p_i v_i}{\sum_{i=1}^{k} v_i}$$

(1)

with $\sum_{i=1}^{k} v_i = v$, and $p_i(v_i)$ the ith bid price (volume) available in the book. The bid price impact is then defined as

$$bp_t(v) = \frac{b_t(1) - b_t(v)}{b_t(1)} \times 100.$$

(2)

The same formula is used for the ask side. By construction, the larger the transaction (i.e. the larger v), the larger the price paid as the market order hits more and more limit orders and is likely to walk up further in the book. We compute the price impacts for a volume v equal to 0.5, 1, 1.5 and 2 times a reference volume (the corresponding price impacts are labelled price impact level 1 to 4). The reference volume corresponds to a transaction for a nominal amount of 30,000 euros divided by the average price over the sample; this provides an easy comparison across stocks. Price impacts measure liquidity as offered by the book on an ex-ante basis, i.e before the transaction takes place. Trade aggressiveness measures how much traders use the book. It is computed as the volume-weighted average of the trades which are matched by standing limit orders strictly beyond the best quotes. When trading volume rises, trade aggressiveness can remain low if the book provides more liquidity to the market (thus quoted depths rise).

As suggested by either Figure 1 or 2 (which are representative of the patterns exhibited by the other eight stocks, smallest cap stocks are closest to Colruyt, largest cap stocks are more similar to Fortis), trading activity tends to be (besides the usual high activity at the start of the day) concentrated in the afternoon trading session. This is consistent with the well-known influence of the pre-opening and opening of the US stock markets on the dynamics of the European markets. At the start of the trading session on Euronext, the volatility is particularly high, while the traded volume (not shown in figure) is not that large. On the other hand, traded volume increases at the end of the day while the increases in volatility appear more subdued. As far as the order book is concerned, it provides a reasonable amount of liquidity throughout the day. Although the spreads and price impacts are larger at the opening, they remain small and stable throughout the trading day, with a slight

13For example, a buy trade must be matched with at least one standing limit order above the best ask price to be characterized as being ‘aggressive’.

11
deterioration near the close of the trading session.14 Depths at the quotes are up by roughly 50% in the afternoon compared with the morning. Moreover and although trading volumes are larger after 2 pm, transaction costs, as measured by the effective spread, are quite low and constant, except at the start of the trading session where traders have to pay twice the price they pay during the rest of the day. Indeed, while trade aggressiveness appears to be large on average at the opening of the trading session and around the opening of the US markets, the provision of liquidity by limit orders in the book seems to avoid a sharp increase in transaction costs (except at the opening). These empirical facts are consistent with the previous findings reported in the literature, although it is well known that exchanges somewhat differ in their time-of-day pattern at the close of trading (see Biais, Hillion, and Spatt (1995) for the Paris Bourse, Beltran, Giot, and Grammig (2004) for the Frankfurt XETRA platform, Hamao and Hasbrouck (1995) for the Tokyo Stock Exchange, Chan, Christie, and Schultz (1995) for the NASDAQ or Brockman and Chung (1998) and Ahn and Cheung (1999) for the Hong Kong stock exchange). Note that for the whole sample, the average depth offered on the bid side is higher than on the ask side and, on average, the buy side of the order book seems to be more aggressive in price than the sell side. Nevertheless, these results may be only relevant for the time period considered in this study (as we ‘only’ deal with 5 months).

\section*{B. The contemporaneous relationship between volatility and the liquidity measures}

The main goal of the paper is to study how market conditions and liquidity are affected by volatility. As discussed above, what matters for market participants are deviations from expected volatility, hence the need to focus on the deseasonalized volatility and its contemporaneous relationship with (deseasonalized) liquidity measures. While the raw data are first pre-sampled at the 15-minute frequency (to define the 15-minute returns and to compute the time-of-day patterns as given above for example), we thereafter focus on 4 sub-intervals which span one trading day: [9h:11h], [11h:13h], [13h:15h] and [15h:17h30]. The [9h:11h] interval is just after the market open, [11h:13h] ends with the traders’ lunchtime, [13h:15h] ranges from the start of the afternoon trading up to the New York pre-open and [15h:17h30] should capture the increased activity due to the opening of the US markets and ends with the close of trading on the Euronext platform. Besides, the switch from 15-minute intervals to 2-hour intervals is consistent with the notion of realized volatility (see below)

14Note that the figures for the ask side of the book are very similar to those presented for the bid side. Hence they are not given here but are available on request.
as a volatility measure computed from the ‘aggregation’ of really high-frequency squared returns. As such, estimation results (see the log-log regressions below) from models where the volatility is the independent variable should be less noisy. With respect to these 4 intervals, we thus compute the realized volatility, aggregated effective spread, aggregated quoted spread, aggregated trade aggressiveness, aggregated ask and bid depths and different measures of the aggregated ask and bid price impacts (as defined above). We now proceed with the definition of these aggregated measures computed from the data sampled at the 15-minute frequency.

First and following Andersen and Bollerslev (1998) or Giot and Laurent (2004), we define the realized volatility as the sum of the intraday squared returns which pertain to the required intervals. As shown in Andersen and Bollerslev (1998), the realized volatility measure provides a model-free estimation of return volatility over a given time interval (provided that high-frequency returns are available). For example, with 15-minute returns and for the [11h-13h] time interval, the realized volatility on December 2, 2002 is computed as:

$$RV_{13h,2/12/02} = r_{11h15}^2 + \ldots + r_{13h}^2$$

where r_{11h15} is the 15-minute return for the [11h-11h15] time interval and r_{13h} is the 15-minute return for the [12h45-13h] time interval on December 2, 2002. The aggregated effective spread, quoted spread, trade aggressiveness, ask and bid depths and price impacts are respectively the mean effective spread, mean quoted spread, mean trade aggressiveness, mean depths and mean price impacts (computed from the 15-minute intervals) averaged over the [9h:11h], [11h:13h], [13h:15h] and [15h:17h30] intervals.

In a second step and for each interval, the time-of-day pattern of each measure is computed. Next we compute the deseasonalized variables by dividing each measure by its respective time-of-day. We then assess the contemporaneous relationships between the liquidity variable and the volatility by estimating the following log-log regressions:

$$\ln(X_i) = \beta_0 + \beta_1 \ln(RV_i) + \varepsilon_i, \quad i = 1 \ldots N,$$

where X_i is successively S_i, Q_i, TA_i, DB_i, DA_i, BPI_i and API_i (respectively the deseasonalized aggregated effective spread, quoted spread, trade aggressiveness, bid depth, ask depth, bid price impact and ask price impact), RV_i is the deseasonalized realized volatility and N is the total number
of observations. Because we use log-log regressions, \(\beta_1 \) can be interpreted as an elasticity that ‘links’ the deseasonalized variables. The interpretation of these elasticities is as follows. For the \(\ln(S_i) = \beta_0 + \beta_1 \ln(RV_i) + \varepsilon_i \) regression for example, a \(\beta_1 \) of 0.3 would imply that a 100% increase in the level of realized volatility (with respect to its expected level based on the time-of-day) would yield a 30% increase in the effective spread (with respect to its expected level based on the time-of-day).

Estimation results are given in the top panel of Table II. To save space, we present the full results for the Colruyt and Fortis stocks only. Indeed, as mentioned above, Colruyt (Fortis) is the smallest (largest) cap stock in our sample and is representative of the smallest (largest) stocks in our sample. Next to these full results, we also report the results for ‘all stocks’, that is we give the mean elasticity across stocks. As an illustration, we also plot the relationship between the deseasonalized aggregated effective spread and the deseasonalized realized volatility in Figure 3. The results indicate that the elasticity for the effective spread - realized volatility relationship is around 10% for Fortis, around 28% for Colruyt, and a bit more than 22% for the ten stocks on average. For the trade aggressiveness - realized volatility relationship, the elasticities range from a low of 7.4% (Fortis) to a high of 32.9% (Colruyt), with the average across stocks being equal to 15.7%. Figure 3 (and a similar figure for the trade aggressiveness, not reported here) also shows that there is no sharp deterioration in market liquidity when volatility increases sharply. Indeed a positive relationship between both effective spread and trade aggressiveness vs realized volatility is at play (which is expected from the market microstructure literature), but this positive dependence is somewhat muted (see below for additional discussions). As expected, the smallest cap stock (Colruyt) exhibits a more pronounced upward trending relationship than the largest cap stock (Fortis). Plots for the other stocks are quite similar to what is given in Figure 3.

The analysis for the quoted spread and depths yields similar results. Table III shows that the elasticity for the quoted spread - realized volatility relationship is around 12% for Fortis, and is equal to 24% on average for all the stocks. Furthermore, while there is a negative relationship between the depth (for both sides of the order book) and the realized volatility, it is not significant for most stocks. We also look at the relationship between the deseasonalized aggregated price impact (level 1 to 4) and the deseasonalized realized volatility (this last analysis thus uses information provided by the full limit order book dataset). The outputs of these log-log regressions are also given in Table III but we only present the level 3 price impacts to save space. In contrast to the bid and ask depths results, these level 3 elasticities are significant and are close to 15% on average for all stocks, with a
low around 9% to 10% for Fortis and close to 20% for Colruyt. The level 1, 2 and 4 elasticities and the detailed results for all the stocks deliver the same qualitative results.

B.1. High and low volatility regimes

Up to now we analyzed the whole bunch of observations put together, i.e. we did not deal separately with high-volatility and low-volatility time periods. Thereafter we split the deseasonalized measures defined on the [9h:11h], [11h:13h], [13h:15h] and [15h:17h30] intervals into a low-volatility and high-volatility subset. To construct the two sub-datasets, we apply a two-state Markov switching model (such as introduced by Hamilton, 1989) to the series of deseasonalized realized volatility. Using the smoothed transition probabilities, we can then immediately determine which observations belong to the low-volatility regime and which ones can be put into the high-volatility sub-dataset.

More formally, we assume that the deseasonalized realized volatility RV_i switches regime according to an unobserved variable s_i: regime 1 ($s_i = 1$) is the low-volatility state, while regime 2 ($s_i = 2$) is the high-volatility state. At time i, the volatility state is thus $s_i \in \{1, 2\}$ and the dynamics of s_i is governed by a Markov process: $P(s_i = 1|s_{i-1} = 1) = p_{11}$, $P(s_i = 2|s_{i-1} = 1) = 1 - p_{11}$, $P(s_i = 2|s_{i-1} = 2) = p_{22}$ and $P(s_i = 1|s_{i-1} = 2) = 1 - p_{22}$, where p_{11} (p_{22}) is the probability of being in the low-volatility (high-volatility) state at time i given that the low-volatility (high-volatility) state is observed at time $i-1$. In state m, the deseasonalized realized volatility is equal to μ_m, with variance σ_m^2. We estimate the parameters of the model using the MSVAR package (maximum likelihood, EM algorithm) of H.-M. Krolzig in the OX 3.3 econometric framework, which also computes the smoothed transition probabilities. Finally, these are used to separate the observations into the two sub-datasets. We then re-run the log-log regressions.

Estimation results for these regressions are given in the middle and bottom panels of Tables II and III. Let us consider first the effective spread and trade aggressiveness (Table II). A comparison of the elasticities in both regimes for all stocks on average indicates that the numerical values are close to one another both for the effective spread (21% versus 18%) and for the trade aggressiveness (18% versus 15%). In all cases, the effective spread - realized volatility and trade aggressiveness - realized volatility elasticities do not significantly change when volatility switches from the low- to the high-volatility state.15 In other words, these relationships (which focus mainly on the ex-post liquidity or actual cost of trading) do not seem to significantly deteriorate in times of high volatility.

15This was tested using regression analysis and appropriately defined dummy variables. Note that there is however one exception: the Delhaize stock, for the trade aggressiveness.
These results are in agreement with the estimates for the limit order book dataset (quoted spread, bid and ask depths, bid and ask price impacts) provided in Table III. As reported, most elasticities are not significant and only the quoted spread elasticity is really significant during stress periods.16

This suggests that the Euronext system provides adequate liquidity in both low- and high-volatility regimes as the slopes of these key relationships do not change in a meaningful way. In contrast, a trading system with poor liquidity would be characterized by increasing elasticities as volatility increases, indicating that liquidity dries up in high volatility regimes.

If high-volatility regimes do not significantly impact the elasticities of the effective spread - realized volatility and trade aggressiveness - realized volatility relationships, they do affect the mean (or expected value) of the effective spread and trade aggressiveness. These results are reported in Table IV. For Colruyt (the ‘worst case’ in terms of deterioration of liquidity during the high-volatility regime), the effective spread goes up by 91\% and trades are more aggressive (+32\%) despite the decrease of liquidity in the book; price impacts (bid side, level 3) surged by 66\% on average. This suggests that traders were somehow reluctant to enter large orders given the low liquidity offered by the book. As expected, figures for the largest cap stock (Fortis) indicate that the changes in the means are more moderate. Note that Dexia is the most liquid stock as the effective spread only increases by 10\%. Broadly speaking and looking at the reported results for all the stocks (in detail and on average), the decrease in liquidity seems very reasonable when compared with the increase in the average volatility between the low- and high-volatility regimes (nearly 400\%). Moreover and given that the amount (in share volume) of the hidden orders (not featured in our database) on the Euronext trading platform is estimated at 30\% of the total book (see D’Hondt, De Winne, and Francois-Heude (2002)), the argument according to which there is a sufficient liquidity provision seems to be valid.

\textbf{B.2. Additional results and robustness checks}

For the aggregated effective spread and aggregated trade aggressiveness, we also re-estimate some of the log-log regressions allowing for a quadratic effect, i.e. we include the squared independent variable as an additional explicative variable. We thus estimate:

\[
\ln(S_i) = \beta_0 + \beta_1 \ln(RV_i) + \beta_2 (\ln(RV_i))^2 + \epsilon_i, \tag{5}
\]

16A regression analysis with appropriately defined dummy variables again confirms that these elasticities are not significantly different in the two regimes, save for the Colruyt, Delhaize, Fortis and KBC stocks (ask and bid depths only).
\[\ln(TA_i) = \beta_0 + \beta_1 \ln(RV_i) + \beta_2 (\ln(RV_i))^2 + \varepsilon_i \] (6)

where the variables are defined as before. For the 10 stocks and for both liquidity measures, the \(\beta_2 \) coefficient is however almost never significant (full numerical results are available on request).

Finally, in a previous version of the paper, we also considered an exogenous volatility criteria: the low-volatility subset featured the measures for which the realized volatility was within one standard deviation of its expected value (‘average volatility’ group) while the high-volatility subset featured the intervals for which the realized volatility was beyond one standard deviation of its expected value (‘above-average volatility’ group). The estimation results were quite close to those shown above for the volatility criteria based on the Markov switching process and are therefore not included in this version of the paper.

Last, we also performed the log-log estimations taking into account a regime switching based on the deseasonalized trading activity. That is, the Markov switching methodology is applied to the deseasonalized trading activity instead of the deseasonalized realized volatility. The left- and right-hand side variables in the log-log regressions are defined as before. We therefore estimate the \(\ln(X_i) = \beta_0 + \beta_1 \ln(RV_i) + \varepsilon_i \) regressions in a state of low deseasonalized trading activity and high deseasonalized trading activity. The estimated elasticities are not only very similar to those given above for the switch based on the deseasonalized realized volatility but they are also very similar across the newly-defined regimes. This thus leads us to conclude similarly and lends further credence to the results given above.

C. An event study: the Delhaize stock on March 13, 2003

While the 10 stocks under review were sometimes quite volatile during the 5-month period (and in particular around the start of the second Gulf war), it would however be wrong to classify this time period as being ‘extreme’. This has already been highlighted in the introduction of the paper, as our study is thus different from e.g. Goldstein and Kavajecz (2004) who focus on extreme events that led to (or preceded) temporary market shutdowns. There is however one market event in our five-month period that could be considered as being extreme and which could be related to Goldstein and Kavajecz (2004). More specifically, we shall thereafter discuss the behavior of the Delhaize stock.
on March 13, 2003, which provides a detailed case study of the book dynamics when faced with extremely large intraday price changes and buy-sell pressure.

The price pattern of the Delhaize stock is shown in Figure 4 for the five days centered on March 13, 2003. This figure shows that the price of the stock increased strongly on March 13, 2003, with an intraday variation close to +50% (the intraday high was close to 18 Euros, the closing price on March 12, 2003 was close to 12 Euros). As a result, the trading process for the Delhaize stock was automatically suspended for some brief period of time because of the very large intraday price changes. The sequence of news events on that day reads as:

- 9h58: Delhaize reports net earnings (for the 2002 fiscal year) which have increased 19.3% year-on-year;
- 10h00: Delhaize reports an increased solvability, actually much better than what was expected by the market;
- 10h01: Delhaize declares a net dividend per share of 0.66 Euros. This amount was much larger than what was expected by the market;
- Thereafter in the day, many analysts upgrade the stock from ‘Sell’ to ‘Neutral’ or ‘Buy’.

The very large intraday price changes for Delhaize were due to heavy buy pressure, as many market participants unwound short positions (in the period preceding March 13, 2003, there were even rumors that Delhaize could go bankrupt) or acted according to the revised analysts recommendations. For the sake of our study, it is therefore interesting to look at the ‘behavior’ of the order book on March 13, 2003 and assess if these very large price movements were the result of poor market liquidity. More precisely we look at the deseasonalized 15-minute traded volume, number of trades, quoted spread, effective spread, trade aggressiveness, quoted bid and ask depths and bid and ask price impacts (level 2 and 4). All these market liquidity variables are plotted for the five days centered on March 13, 2003 in Figures 5 and 6. As expected, there was a very large buy-sell disequilibrium on March 13, 2003 and there was a surge in the number of trades and traded volume (both quantities are much larger than what is usually observed). However, the sub-figures for the dynamics of the (deseasonalized) quoted spread, effective spread, trade aggressiveness, book depths and price impacts all tell the same story: the book liquidity remained high and the trading process was not characterized by a hectic behavior. In other words, the surge in trading activity and the

17 Technically speaking, the trading process was thus briefly interrupted because the maximum intraday price change limit was reached. See Section A.
buy-sell disequilibrium indeed led to large intraday price changes (which is consistent with the fact that the economic agents adjust their view on the Delhaize stock given the public news announcements made by the company), but the book liquidity was adequate. This is perfectly exemplified by the sub-figure for the effective spread, which measures the actual trading costs faced by the market participants: as far as the effective spread is concerned, March 13, 2003 was a ‘normal’ trading day.

D. Permanent and transitory volatility

V. Trading dynamics

In this section we analyze how the volatility level affects the interplay between the main liquidity components (spreads, price impacts, average volume per trade, . . .) and the relationships between liquidity and volatility. Because this analysis hinges on the investigation of the dynamics of liquidity, we use VAR models applied to the original data sampled at the 15-minute frequency. The VAR analysis will thus first be performed on the whole dataset, and then on the subsets defined by the low- and high-volatility states identified by the Markov switching model.18

A. VAR models and impulse response functions

We model the dynamics between liquidity and volatility using a Vector Autoregression (VAR) model. VAR models are to some extent a-theoretical, in the sense that there is no need to specify the economic relationships. Hence, we need to impose some restrictions on the estimated coefficients to reconstruct the underlying structural model. In this paper, we consider a VAR(p) model of the following type:

\[X_t = \Gamma_0 + \sum_{i=1}^{p} \Gamma_i X_{t-i} + \epsilon_t \] \hspace{1cm} (7)

where \(X_t \) is the vector of endogenous variables and \(\epsilon_t \) is the usual error term. With respect to the application considered in this paper, we estimate a 4-lag VAR (the lag dynamics is thus roughly equal to one hour as we work with 15-minute intervals), with 7 variables (6 of the 7 variables

18The use of VAR models to analyze high-frequency equidistantly time spaced data has been advocated by Joel Hasbrouck, see e.g. Hasbrouck (1999).
are endogenous and the last one is exogenous, see below). These variables, which have all been previously deseasonalized by their respective time-of-day as described previously, are:

- Liquidity ex-ante: quoted spread and the price impact for a trade of 45,000 euros (average of the ask and bid sides);
- Liquidity ex-post: effective spread and trade aggressiveness;
- Activity variables: number of trades and average volume per trade;
- Volatility.

We first test for block exogeneity of each of the variables and ascertain that only trade aggressiveness is exogenous at the 5% level. Thereafter, we thus estimate a VAR with 6 endogenous variables: quoted spread, average price impact for a transaction of 45,000 euros, number of trades, average volume per trade, the effective spread, and volatility; trade aggressiveness is the only exogenous variable. Using the BIC criteria, we further reduce the dimension of the system as it indicates that a 2-lag structure is adequate. Finally we estimate the selected VAR(2) model twice: first with the observations belonging to the low-volatility regime, and then with the observations which pertain to the high-volatility regime. Using a Cholesky decomposition, we further decompose the residuals ε_t to get a structural model:

$$X_t = \sum_{j=1}^{\infty} C_j \varepsilon_{t-j} \quad (8)$$

This decomposition ensures that the individual shocks are orthogonal, i.e. that the variance-covariance matrix $V(\varepsilon_t)$ is diagonal. It also allows the system analysis of the impact of a one-period shock to a given variable, also called impulse response functions. We compute the 20-lag (5 hours, about half a trading day) impulse response functions for the VAR model estimated first with all the data, and then with the data provided by the low- and high-volatility regime classification. For the first VAR(2) model as for the low- and high-volatility regime VAR(2) models, we tried several endogenous variable ordering to ascertain that the choice of ordering did not lead to different results. The impulse responses exhibit remarkably similar shapes whatever the ordering. This is important as it implies that the correlation between the individual shocks e_{jt} (where j denotes the j-th variable) is small and thus does not appear as important as in many macroeconomic structural models. The main argument as to why cross-correlations between shocks are large in macroeconomic models is that the data is typically monthly/quarterly and thus lagged response to a single shock within the month.
are aggregated and consequently treated as a contemporaneous impact when dealing with monthly data. This suggests that the chosen 15-minute interval is small enough to avoid aggregation issues.

In both regimes, most of the impulse responses (detailed plots are available on request) are significantly different from zero (flat IR), but there are no marked differences between the low- and high-volatility regimes (see below for additional discussion). Moreover, the confidence intervals for the high-volatility regime are larger than for the low-volatility regime; for many impulse responses, the confidence intervals for the low-volatility regime lie within the ones for the high-volatility regime.\footnote{The number of observations in the low-volatility regime is roughly twice the number of observations in the high-volatility regime.}

In all cases the width of the confidence intervals strongly decreases after 4 periods on average, i.e. roughly one hour. Furthermore, for volatility shocks and the impulse responses of a variable to its own shock, impulse responses are significantly different between regimes at the 95\% confidence level. To improve on the impulse response analysis, we compute two additional statistics: half-life times and cumulated impacts. The cumulated impact of a shock is defined as the sum of the impulse responses over all 20 periods; it is also the long-run impact of a permanent shock. The half-life is the time needed to achieve half of the cumulated impact; thus it measures the speed of return to equilibrium.

B. Impulse response functions and the dynamics of liquidity

All the relevant empirical results are summarized in Tables V and VI, which thus supplement/summarize the description given below.

VI. Conclusion

Using limit order book and transaction data for five large-cap and five mid-cap Belgian stocks traded on the Euronext system, we study the contemporaneous relationships between different liquidity measures and market volatility. We consider ex-ante (e.g. quoted spread, bid and price price impacts, depths) and ex-post (e.g. effective spread, trade aggressiveness) liquidity measures which are fully available once complete order book data is at hand. From an econometric point of view, we work with the realized volatility as popularized recently in Andersen and Bollerslev (1998), which allows us to define a low- and high-volatility regime based on Markov switching techniques. Thereafter,
we thus assess the different relationships (mostly modelled as log-log regressions on appropriately defined liquidity measures) with all the data, and then separately in the low- and high-volatility regimes. This analysis thus sheds light on the behaviour of automated auction markets in times of low and high volatility, and allows us to quantify the impact of the switch in volatility regimes on key ex-ante and ex-post liquidity measures relevant for traders and/or institutional investors.

Our results indicate that the provision of liquidity in the Euronext trading system seems to be quite resilient to increases in volatility. Indeed, the slopes of these liquidity measures - volatility relationships (e.g. effective spread - volatility or trade aggressiveness - volatility relationships for example) do not significantly change when volatility switches from the low-volatility to the high-volatility regime. In contrast, the mean (or expected value) of each liquidity measure is usually significantly higher in the high-volatility state, but this was expected from the market microstructure literature. As such, the main empirical result of this study is that there is no real important deterioration in the provision of liquidity when volatility increases, although we do find that it is more costly to trade when volatility is high and that the market dynamics is somewhat affected.

As indicated by many theoretical studies, adverse selection increases when volatility increases, which results in a more costly provision of limit orders. As a consequence, market liquidity drops when volatility increases. In periods of financial distress, this is the one of the main concerns of central banks since this behavior may lead to the collapse or near-collapse of financial markets (e.g. the 1987 krach and the LTCM failure in 1998, among others). As recently suggested by Mishkin and White (2002), a financial crisis combined with a large drop in liquidity may be particularly destabilizing, and thus potentially requires prompt and adequate action by monetary authorities. The concern about a systemic drop in financial liquidity, shared by many studies (see e.g. Borio and Lowe (2002) and Borio (2003)), leads many academics and practitioners to suggest that central banks should perhaps play a regulatory role in financial markets. However and given the many ways stock markets can be set up (pure order book market, price-driven market, hybrid market), the first natural step is to understand the dynamics of liquidity in stress periods in each type of market. While this kind of study had already been done for some price-driven markets or for some hybrid markets, no empirical study had yet focused on that topic for Euronext. Regarding the behavior of liquidity in high-volatility regimes, the results presented in this paper are particularly promising. Indeed, even if trading costs are larger in stress periods, the trading system does not seem to break down.

Our results of course pave the way for additional research linked to that topic. An obvious extension would be to assess our relationships on an extended dataset which would feature a much
larger number of stocks sub-divided into smaller groups based on the firms’ characteristics. In this extended setting, we could thus quantify the possible deterioration in the provision of liquidity according to the most salient characteristics of the stock (e.g. small-cap, mid-cap, large-cap; type of industry; . . .). It could also be argued that the Markov switching algorithm should be applied to the overall market volatility (for example the volatility of the index). This would lead to the same classification of low- and high-volatility regimes for all stocks. In the same vein, the classification into low- and high-regimes could also be done with respect to the trading activity for example (instead of volatility). This would yield insights into the provision of liquidity in different trading environments.
References

<table>
<thead>
<tr>
<th></th>
<th>DEXIA</th>
<th>ELECTRABEL</th>
<th>FORTIS</th>
<th>KBC</th>
<th>INTERBREW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market capitalization</td>
<td>11.2</td>
<td>12.6</td>
<td>19.8</td>
<td>9.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Average price</td>
<td>10</td>
<td>228.3</td>
<td>15.2</td>
<td>29.4</td>
<td>18.9</td>
</tr>
<tr>
<td>Average volume per trade</td>
<td>1695.2</td>
<td>159.7</td>
<td>1339.6</td>
<td>502.1</td>
<td>1048.4</td>
</tr>
<tr>
<td>Average number of trades</td>
<td>719.4</td>
<td>329.3</td>
<td>876.3</td>
<td>354.4</td>
<td>411.3</td>
</tr>
<tr>
<td>% of aggressive trades</td>
<td>16.3</td>
<td>20.1</td>
<td>21.5</td>
<td>24.3</td>
<td>22.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AGFA</th>
<th>COLRUYT</th>
<th>DELHAIZE</th>
<th>SOLVAY</th>
<th>UCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market capitalization</td>
<td>2.5</td>
<td>1.9</td>
<td>2.1</td>
<td>4.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Average price</td>
<td>19.7</td>
<td>53.9</td>
<td>16.7</td>
<td>59.6</td>
<td>24.7</td>
</tr>
<tr>
<td>Average volume per trade</td>
<td>757.2</td>
<td>205.2</td>
<td>663.9</td>
<td>302.6</td>
<td>524.6</td>
</tr>
<tr>
<td>Average number of trades</td>
<td>284.7</td>
<td>136.8</td>
<td>315.3</td>
<td>261.7</td>
<td>275.6</td>
</tr>
<tr>
<td>% of aggressive trades</td>
<td>20.3</td>
<td>18.4</td>
<td>22.5</td>
<td>21.4</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Descriptive statistics for the 10 Brussels-traded stocks selected in the empirical analysis. An aggressive trade is defined as a trade which is matched with standing limit orders beyond the best quote. Market caps are expressed in billions of euros and are the average market caps for the given stock over our sample.
Table II
Elasticities (I).

<table>
<thead>
<tr>
<th></th>
<th>All observations</th>
<th>Low-volatility regime</th>
<th>High-volatility regime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Effective spread</td>
<td>Trade aggressiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elasticity</td>
<td>Significant</td>
</tr>
<tr>
<td>COLRUYT</td>
<td>409</td>
<td>0.281</td>
<td>1/1</td>
</tr>
<tr>
<td>FORTIS</td>
<td>409</td>
<td>0.101</td>
<td>1/1</td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>409</td>
<td>0.221</td>
<td>10/10</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Effective spread</td>
<td>Trade aggressiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elasticity</td>
<td>Significant</td>
</tr>
<tr>
<td>COLRUYT</td>
<td>320</td>
<td>0.259</td>
<td>1/1</td>
</tr>
<tr>
<td>FORTIS</td>
<td>323</td>
<td>0.074</td>
<td>1/1</td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>-</td>
<td>0.213</td>
<td>10/10</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Effective spread</td>
<td>Trade aggressiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elasticity</td>
<td>Significant</td>
</tr>
<tr>
<td>COLRUYT</td>
<td>88</td>
<td>0.063</td>
<td>0/1</td>
</tr>
<tr>
<td>FORTIS</td>
<td>86</td>
<td>0.003</td>
<td>0/1</td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>-</td>
<td>0.175</td>
<td>7/10</td>
</tr>
</tbody>
</table>

Outputs of the log-log regressions where the dependent variable is successively the aggregated effective spread, the aggregated trade aggressiveness and the percentage of limit orders, the independent variable is the realized volatility in all cases. All measures are computed over the [9h:11h], [11h:13h], [13h:15h] and [15h:17h30] intervals and are deseasonalized (by their respective time-of-day) prior to running the regressions. The panel ‘Low-volatility regime’ gives the outputs for the sub-datasets where the realized volatility is in the low-volatility regime; the panel ‘High-volatility regime’ gives the outputs for the sub-datasets where the realized volatility is in the high-volatility regime. We provide results for the COLRUYT stock (smallest cap), FORTIS stock (largest cap) and for all stocks. In that latter case, we report the mean elasticity. The column ‘Significant’ reports the number of significant elasticities. The time period is December 2, 2002 to April 30, 2003.
<table>
<thead>
<tr>
<th>Stock</th>
<th>N</th>
<th>Quoted spread</th>
<th>Elasticity</th>
<th>Significant</th>
<th>Elasticity</th>
<th>Significant</th>
<th>Elasticity</th>
<th>Significant</th>
<th>Elasticity</th>
<th>Significant</th>
<th>Elasticity</th>
<th>Significant</th>
<th>Elasticity</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bid depth</td>
<td></td>
<td>Ask depth</td>
<td></td>
<td>Bid PI3</td>
<td></td>
<td>Ask PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLRUYT</td>
<td>409</td>
<td>0.309</td>
<td>1/1</td>
<td>-0.0349</td>
<td>0/1</td>
<td>-0.0541</td>
<td>0/1</td>
<td>0.208</td>
<td>1/1</td>
<td>0.208</td>
<td>1/1</td>
<td>0.208</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>FORTIS</td>
<td>409</td>
<td>0.119</td>
<td>1/1</td>
<td>0.0001</td>
<td>0/1</td>
<td>-0.0061</td>
<td>0/1</td>
<td>0.104</td>
<td>1/1</td>
<td>0.104</td>
<td>1/1</td>
<td>0.104</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>409</td>
<td>0.241</td>
<td>10/10</td>
<td>-0.024</td>
<td>2/10</td>
<td>-0.034</td>
<td>3/10</td>
<td>0.016</td>
<td>10/10</td>
<td>0.016</td>
<td>10/10</td>
<td>0.016</td>
<td>10/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bid depth</td>
<td></td>
<td>Ask depth</td>
<td></td>
<td>Bid PI3</td>
<td></td>
<td>Ask PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLRUYT</td>
<td>320</td>
<td>0.274</td>
<td>1/1</td>
<td>-0.12</td>
<td>1/1</td>
<td>-0.125</td>
<td>1/1</td>
<td>0.159</td>
<td>1/1</td>
<td>0.159</td>
<td>1/1</td>
<td>0.159</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>FORTIS</td>
<td>323</td>
<td>0.123</td>
<td>1/1</td>
<td>-0.059</td>
<td>0/1</td>
<td>-0.105</td>
<td>1/1</td>
<td>0.125</td>
<td>1/1</td>
<td>0.125</td>
<td>1/1</td>
<td>0.125</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>-</td>
<td>0.235</td>
<td>10/10</td>
<td>-0.048</td>
<td>2/10</td>
<td>-0.058</td>
<td>3/10</td>
<td>0.162</td>
<td>10/10</td>
<td>0.162</td>
<td>10/10</td>
<td>0.162</td>
<td>10/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bid depth</td>
<td></td>
<td>Ask depth</td>
<td></td>
<td>Bid PI3</td>
<td></td>
<td>Ask PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLRUYT</td>
<td>88</td>
<td>0.034</td>
<td>0/1</td>
<td>0.097</td>
<td>0/1</td>
<td>0.099</td>
<td>0/1</td>
<td>0.173</td>
<td>0/1</td>
<td>0.173</td>
<td>0/1</td>
<td>0.173</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>FORTIS</td>
<td>86</td>
<td>0.021</td>
<td>0/1</td>
<td>0.14</td>
<td>1/1</td>
<td>0.141</td>
<td>1/1</td>
<td>0.059</td>
<td>0/1</td>
<td>0.059</td>
<td>0/1</td>
<td>0.059</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>ALL STOCKS</td>
<td>-</td>
<td>0.168</td>
<td>8/10</td>
<td>0.053</td>
<td>2/10</td>
<td>0.033</td>
<td>2/10</td>
<td>0.007</td>
<td>2/10</td>
<td>0.007</td>
<td>2/10</td>
<td>0.007</td>
<td>2/10</td>
<td></td>
</tr>
</tbody>
</table>

The table reports the elasticities for bid and ask prices and bid and ask depths. The dependent variable in the log-log regressions is the quoted spread, bid depth, ask depth, or bid and ask price impacts (level 3). The independent variable is the realized volatility. The table provides results for the COLRUYT stock (smallest cap), FORTIS stock (largest cap), and all stocks. The time period is December 2, 2002 to April 30, 2003.
Table IV
% change in the mean of each deseasonalized variable when switching from the low- to the high-volatility regime.

<table>
<thead>
<tr>
<th></th>
<th>Limit orders</th>
<th>Realized volatility</th>
<th>Effective spread</th>
<th>Trade aggressiveness</th>
<th>Quoted spread</th>
<th>Bid Depth</th>
<th>PI3</th>
<th>Ask Depth</th>
<th>PI3</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLRUYT</td>
<td>7.7</td>
<td>390.6</td>
<td>91</td>
<td>32.4</td>
<td>88.5</td>
<td>-1.8</td>
<td>66.1</td>
<td>-4.9</td>
<td>34.2</td>
</tr>
<tr>
<td>FORTIS</td>
<td>-1.7</td>
<td>337.3</td>
<td>23.6</td>
<td>11.8</td>
<td>21.3</td>
<td>2.8</td>
<td>16.5</td>
<td>-11.8</td>
<td>6.3</td>
</tr>
<tr>
<td>ALLSTOCKS</td>
<td>6.3</td>
<td>388.1</td>
<td>51.2</td>
<td>17.1</td>
<td>54</td>
<td>-3.2</td>
<td>34.1</td>
<td>-7.3</td>
<td>31.3</td>
</tr>
</tbody>
</table>

The table reports the % change in the mean of each deseasonalized variable when switching from the low- to the high-volatility regime. Depth corresponds to the depth at the best prices. PI3 corresponds to the price impacts computed for a transaction of 45,000 Euros. The null hypothesis of the equality in means is rejected at the 5% level for all variables except for the bid depth.

Table V
The dynamics of liquidity.

<table>
<thead>
<tr>
<th>shock</th>
<th>volatility</th>
<th>av. vol</th>
<th>nb tr</th>
<th>pi3</th>
<th>qsp</th>
<th>sp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L H</td>
<td>L H</td>
<td>L H</td>
<td>L H</td>
<td>L H</td>
<td>L H</td>
</tr>
<tr>
<td>volatility</td>
<td>+ +</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>av. volu</td>
<td>+ + +</td>
<td>- +</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nb tr</td>
<td>+ +</td>
<td>- +</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pi3</td>
<td>+ + +</td>
<td>- +</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>qsp</td>
<td>+ + +</td>
<td>- +</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>sp</td>
<td>+ + + +</td>
<td>+ +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

This table presents a summary of the VAR results (analysis of the dynamics of liquidity). A “+” (“-”) means that the shock on the given variable (in the top row) has a positive (negative) and significant impact on the variable (in the first column). In a few cases, we report a “-+”, which indicates that the shock is first negative and then positive. “H” refers to the high-volatility state, while “L” refers to the low-volatility state. Note that av. volu relates to the average volume per trade, nb tr, the number of trades, pi3, the level 3 price impact, qsp, the quoted spread, sp, the effective spread.
Table VI
Half-life of the impulse responses.

<table>
<thead>
<tr>
<th>shock</th>
<th>volatility</th>
<th>av. volu</th>
<th>nb tr</th>
<th>pi3</th>
<th>qsp</th>
<th>sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>volatility</td>
<td>15</td>
<td>1H</td>
<td>15</td>
<td>15</td>
<td>30 (15 mn)</td>
<td></td>
</tr>
<tr>
<td>av. volu</td>
<td>15</td>
<td></td>
<td>1H</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nb tr</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>pi3</td>
<td>1H (15 mn)</td>
<td>15</td>
<td>15</td>
<td>30 (15 mn)</td>
<td>1H30</td>
<td></td>
</tr>
<tr>
<td>qsp</td>
<td>1H</td>
<td>15</td>
<td>15</td>
<td>1H</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>sp</td>
<td>1H</td>
<td>15</td>
<td>15</td>
<td></td>
<td>45</td>
<td>15</td>
</tr>
</tbody>
</table>

This table reports the half-life of the impulse responses. All results are expressed in minutes except when there is an “H” (for hour). We only report results for the significant impulse responses. All results are for the low- and high-volatility states, except when there is a number in parenthesis (high-volatility state). Note that av. volu relates to the average volume per trade, nb tr, the number of trades, pi3, the level 3 price impact, qsp, the quoted spread, sp, the effective spread.
Figure 1. Colruyt. From top left to bottom right: stock price (sampled at 15-minute intervals), time-of-day for the volatility, time-of-day for the average volume per trade, time-of-day for the trade aggressiveness, time-of-day for the current and effective spread and time-of-day for the bid price impacts. The time period is December 2, 2002 to April 30, 2003.
Figure 2. Fortis. From top left to bottom right: stock price (sampled at 15-minute intervals), time-of-day for the volatility, time-of-day for the average volume per trade, time-of-day for the trade aggressiveness, time-of-day for the current and effective spread and time-of-day for the bid price impacts. The time period is December 2, 2002 to April 30, 2003.
Figure 3. Aggregated effective spread vs realized volatility (Colruyt and Fortis). Relationship between the aggregated effective spread and the realized volatility. The aggregated effective spread is the average effective spread over the [9h:11h], [11h:13h], [13h:15h] and [15h:17h30] intervals; the realized volatility is defined over the same intervals. Both measures are deseasonalized by their respective time-of-day. The time period is December 2, 2002 to April 30, 2003.
Figure 4. Delhaize (event study). Price pattern for the five days centered on March 13, 2003.
Figure 5. Delhaize (event study). Trade dynamics and market liquidity (all variables are deseasonalized) for the five days centered on March 13, 2003.
Figure 6. Delhaize (event study). Book dynamics and market liquidity (all variables are deseasonalized) for the five days centered on March 13, 2003.