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Abstract: A classical and important problem in stochastic inventory theory is to determine
the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder
costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by
inventory in stock, is at least equal to a desired value. This problem is often hard to solve because
the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the
distribution of demand during the lead-time. As a consequence, there are no known algorithms,
other than exhaustive search, that are available for solving this problem in its full generality. Our
paper derives the first known bounds to the fill-rate constrained (Q, r) inventory problem. We
derive upper and lower bounds for the optimal values of the order quantity and the reorder level
for this problem that are independent of the distribution of demand during the lead time and its
variance. We show that the classical economic order quantity is a lower bound on the optimal
ordering quantity. We present an efficient solution procedure that exploits these bounds and has a
guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when
the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing
algorithms. c© 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000
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1. INTRODUCTION

A classical and important problem in stochastic inventory theory is to determine the order
quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject
to a service constraint that the fraction of demand satisfied by inventory in stock (i.e., the fill
rate), is at least equal to a desired value. This optimization problem is usually difficult to solve
without making additional assumptions regarding the distribution of demand during the lead-
time (see Zipkin [19]). As a consequence, no algorithm other than exhaustive search is available
for solving this problem in its full generality. In this paper, we derive upper and lower bounds
for the optimal values of Q and r for this problem and in particular show that the classical
Economic Order Quantity (EOQ) is a lower bound for the optimal Q. We also present an efficient
solution procedure that exploits these bounds and produces a solution that has a guaranteed error
bound.

Correspondence to: S. Seshadri

c© 2000 John Wiley & Sons, Inc.



636 Naval Research Logistics, Vol. 47 (2000)

Several heuristics have been proposed for solving this service constrained (Q, r) inventory
problem. Platt, Robinson, and Fruend in [10] provide a comprehensive review of these procedures.
Heuristics adopt one or both of two approaches for solving this problem. They simplify either
the expression for the fill rate, or the expression for the average inventory. Such simplifications
are introduced by assuming that there is at most one order outstanding at any time (Section 4-2
of Hadley and Whitin [7], Yano [16], Silver and Wilson [14], and Rosling [12]), or by assuming
that the duration of backorders is negligible (Section 4-2 of [7], [16], and [14]), or by neglecting
a part of the integral in the expression for the fill rate. The advantage of heuristic procedures
lies in the ease with which a user can determine the values of Q and r. For example, Yano [16]
provides an iterative heuristic for normally distributed lead-time demand that is guaranteed to
converge. Platt, Robinson, and Freund [10] propose and compare two elegantly motivated closed
form heuristics for solving this problem. Our bounds can be used to enhance the efficiency of these
algorithms.

The problem has been found to be intractable when the above simplifications are not made.
This is because the optimization domain shifts from convex optimization to general nonlinear
optimization. The difficulty is created by the fact that the fill rate constraint is not in general a
convex function of the problem parameters, Q and r. Hadley and Whitin [7] realized the difficulty
of this problem and stated ‘‘the program (algorithm) determines a relative minimum but does not
provide any guarantee that the minimum so obtained is the absolute minimum (p. 188).’’

Obtaining optimal parameters might appear to be inconsequential, Zipkin [19] showed that
the penalty of making simplifications in order to convexify the fill rate expression can be quite
substantial in certain instances. Zipkin [19] proved that the average level of backorders was
convex in Q and r. He also derived sufficient conditions that can be imposed on the lead-time
demand distribution to guarantee that the expression for the fill rate is convex in (Q, r). The
condition (which is also provided by Zhang in [17]) states that fill rate expression is convex in
(Q, r) if the probability density function of lead-time demand f(x) is decreasing for x ≥ r. This
condition restricts r to large positive values. In practical problems r can be negative or small when
either the setup cost is high, backorder cost is low, demand variance is small, or the lead-time is
short.

Rosling in a series of recent papers ([11] and [12]) has analyzed several inventory cost rate
functions. His approach unifies the analysis of different inventory models (continuous review,
period review, etc.) with the notion of quasi-convexity (see below) of the cost rate function. Our
model without the fill rate constraint is the closest to model 4 in [11]. In this paper, Rosling shows
that the cost (rate) function for model 4 is quasiconvex if the distribution function of lead-time
demand is logconcave. (An accessible summary of logconcavity property and applications can be
found in [4].) He uses this result in [12], and shows that if the cost rate function is quasiconvex for
all nonnegative cost coefficients, then the Lagrangian that incorporates the fill rate constraint is
quasiconvex (p. 14). When there is a service constraint, Rosling also comments ([12], p. 20): ‘‘It
is also taken for granted that an optimal finite policy exists, but the exact conditions for this are not
well known for the problem with a service constraint.’’ He too does not establish the existence of
a finite optimal solution. In [12], Rosling proposes an algorithm that assumes the quasiconvexity
of the cost rate function for the service level constrained case and the existence of a finite optimal
solution. He also observes that algorithms proposed in the literature are not always guaranteed to
converge, similar to observations made by Platt, Robinson, and Freund [10].

Our bounds are useful even when the quasiconvexity property of the Lagrangian of the fill rate
is established by the lead time demand distribution being logconcave. Notice that a function g(x)
from Rn → R is said to be strictly quasiconvex if for all x, y, in Rn and θ ∈ (0, 1), g((1 −
θ)x + θy) < max{g(x), g(y)}. This property implies that a local optimum is a global optimum
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(see, e.g., [2]). Therefore, in order to use an algorithm that exploits this property, it is essential to
know a good upper bound for the decision variables (in our case the order quantity and the reorder
level). This explains the need for the assumption by Rosling that a finite optimal policy exists.
As Rosling comments, ‘‘An algorithm is initiated at Qw < Q∗, it follows . . . that Q increases for
some time until it possibly overshoots Q∗, after which it might oscillate so that convergence is
not monotonic’’ ([12], p. 22)). Therefore, establishing the existence of an upper bound that is not
too large when compared to the lower bound increases the efficiency of algorithms for solving
the fill-rate constrained problem even when the Lagrangian is quasiconvex.

Our bounds are new for the service constrained version of the problem. Bounds are available
for the unconstrained version of the problem (see Zheng [18], Axsater [1], and Gallego [6]).
Zheng showed that the deterministic EOQ (modified for the case when backorders are allowed)
is a lower bound for the optimal value of Q. He also established that the use of the EOQ as the
order quantity does not lead to substantial deviation from the optimal cost. Axsater sharpened
the bound on cost provided by Zheng. Federgruen and Zheng provided an algorithm in [5] for
determining the optimal values of Q and r for the unconstrained problem that is also applicable to
the constrained problem in special cases. Discussion of this aspect is given in Section 2. Gallego
provided an upper bound for Q for the unconstrained problem. The upper bound given by Gallego
grows with the standard deviation of the lead-time demand, whereas our bounds are distribution-
free (and variance free) as explained below. As Nahmias and Smith [9] stress, in many retail
settings the variance to mean ratio can be very high (ranging from 3 to 500 in their retail study).
Thus our bounds can be useful in these scenarios even for the unconstrained problem.

Our analysis is based on the exact formulation of the objective function, as well as the exact
expression for the fill rate. Interest in (Q, r) inventory systems using the exact formulation of
the objective function, as given by Hadley and Whitin (in Section 4:7 of [7]), was rekindled by
the work of Zipkin and Zheng. The bounds derived by us are independent of the distribution of
the lead-time demand in the following sense. We show that in the worst case the search for the
optimal values of Q and r can be restricted to four intervals, the first of which is given in terms
of the reorder level and the others in terms of the order quantity. In each interval, regardless of
the distribution of the lead-time demand, the ratio of the largest to the smallest value within the
interval is less than 4. The solution algorithm uses this feature by searching along the values of r
in the first interval and along the values of Q in the others. We provide an epsilon-optimal solution
algorithm which is guaranteed to converge in polynomial time. Moreover, these bounds can be
easily incorporated into existing algorithms in order to improve the efficiency of the search for
Q, even when the fill rate constraint is well behaved (i.e., convex or quasiconvex) or not present.

We introduce a novel way of dealing with the fill rate constraint. We express the cost function
as a sum of a convex function of (Q, r) and a nonconvex function. It has the following special
property that, for a given Q, if the reorder level r(Q) minimizes the convex portion of the cost,
then the set of all such (Q, r(Q)) pairs is exactly equal to the set of solutions that satisfy the fill
rate constraint. This property plays an important role in guaranteeing an epsilon-optimal solution
within finite time. Another novelty in our analysis is that it does not use the two-point distribution
approach taken by earlier researchers (such as [1] and [6]) to establish bounds for the unconstrained
problem. The main feature of our approach is to bypass the tail integral with regard to the demand
distribution. This property allows us to produce distribution free (and variance independent)
bounds. Our methods are attractive when viewed as alternate methods of establishing bounds for
the stochastic inventory problem.

In Section 2, we specify the problem and derive structural properties that are used to transform
the problem. We then derive bounds in Section 3 and provide an algorithm that can be used to
determine (Q, r) in Section 4.
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2. PROBLEM FORMULATION

We consider the classical formulation of the continuous review stochastic inventory control
problem. The decision variables are the parameters r and Q. The objective is to minimize the
sum of setup, holding and backorder costs subject to the constraint that the fill rate should be
at least equal to F (as given by Hadley and Whitin in [7]). The setup cost per order is given by
K. The holding cost per unit per unit time is denote as h and the back order penalty per unit
per unit time as p. In order for the optimal value of Q to be nonzero and the optimal values of r
and Q to be finite, we assume that F, h, and K are strictly greater than zero and that the penalty
p is greater than or equal to zero. The lead-time is assumed to be independent of the inventory
position. The distribution function of the lead-time demand is denoted as F , the complement of F
as Fc(·), and the density function of the lead-time demand is denoted as f(·). We assume that the
density function f(·) is strictly positive on [0,∞). The average arrival rate of demand is denoted
as λ and the average demand during the lead-time is given by µ. We assume that the inventory
position is uniformly distributed in the interval [r, r+Q] and independent of the lead time demand
(see Browne and Zipkin [3], Serfozo and Stidham [13], and Zipkin [20]) for discussion of the
conditions under which this assumption holds). In this model all unfilled demand is backordered.
The case when there are either lost sales or partially lost sales poses greater difficulty in the
analysis as described in [9] and [8]. We plan to analyze the lost sales model in future work.

Denote the average inventory and the average backorder level by Ī(Q, r) and S̄(Q, r). It follows
from the assumption that inventory position is uniformly distributed,

Ī(Q, r) =

∫ r+Q

r
[
∫ y

0 (y − x)f(x) dx] dy

Q

and

S̄(Q, r) =

∫ r+Q

r
[
∫∞

y
(x − y)f(x) dx] dy

Q
.

Define

G(y) = h

[∫ y

0
(y − x)f(x) dx

]
+ p

[∫ ∞

y

(x − y)f(x) dx

]
.

The sum of the average holding cost and the average cost of backorder can be expressed in terms
of G(y) as

hĪ(Q, r) + pS̄(Q, r) =

∫ r+Q

r
G(y) dy

Q
.

The optimization problem is given by

Problem P:

min
Q,r

C(Q, r) = min
Q,r

(
λK

Q
+

∫ r+Q

r
G(y) dy

Q

)
(1)

subject to the fill rate constraint,

1 −
∫ r+Q

r
Fc(x) dx

Q
≥ F. (2)
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It is known that the objective function of problem P is jointly convex in Q and r (see Zipkin [19]
or Zheng [18]), that G(y) is convex, G(∞) = ∞, and that limy→∞ G′(y) = h, where G′(y)
is the derivative of G(y). In addition, if f(·) > 0 on [0,∞), then C(Q, r) is strictly and jointly
convex in (Q, r).

REMARK: One approach to solving P would be to form the Lagrangian and search for the
optimal multiplier employing the algorithm proposed by Federgruen and Zheng in [5] (denoted
as the FZ algorithm). It can be shown that the Lagrangian will be of the same form as the
objective function except that G(y) will be replaced by G(y) − πF (y), where π is the multiplier.
Unfortunately, G(y) − πF (y) is not always unimodal—a condition that is necessary to ensure
the optimality of (Q, r) found using the FZ algorithm. The condition holds when the lead-time
demand is Poisson. It is also worth mentioning that the complexity of an algorithm that uses the
Lagrangian approach to incorporate the fill rate constraint is as yet unknown. Moreover, by using
the structure of the fill rate constraint, it might be possible to use weak duality theory to develop
bounds on the solution produced by the Lagrangian approach. As mentioned in the Introduction,
Rosling [12] shows that if the distribution of lead-time demand is logconcave, then the Lagrangian
(that incorporates the fill rate constraint) is quasiconvex, but a finite optimal policy is still not
guaranteed. Therefore, bounds are required on the values of Q and r to facilitate the search for
these parameters.

Let (Q∗, r∗) be an optimal solution to ProblemP. Let (Q∗
u, r∗

u) minimize C(Q, r) (i.e., (Q∗
u, r∗

u)
achieve the unconstrained minimum).

Define the fill rate achieved with a given set of (Q, r) to be Φ(Q, r). Thus,

Φ(Q, r) = 1 −
∫ r+Q

r
Fc(x) dx

Q
. (3)

Let ru(Q) be the value of r that minimizes C(Q, r) for a given value of Q.

LEMMA 1: Φ(Q∗
u, r∗

u) ≥ F iff p/(p + h) ≥ F .

PROOF: C(Q, r) can be expressed as (see Zheng [18]):

C(Q, r) =
λK

Q
+

∫ r+Q

r
[(h + p)

∫ y

0 F(x) dx + p(λL − y)] dy

Q
.

From the convexity of C(Q, r), ru(Q) is obtained by solving for r in

∂C(Q, r)
∂r

= 0.

Therefore,

(h + p)
∫ ru(Q)+Q

0
F(x) dx + p(λL − ru(Q) − Q)

− (h + p)
∫ ru(Q)

0
F(x) dx − p(λL − ru(Q)) = 0.
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This implies that

h + p

p

[∫ ru(Q)+Q

0
F(x) dx −

∫ ru(Q)

0
F(x) dx

]
= Q.

Consolidating the terms in the integrals, we obtain

h + p

p

[∫ ru(Q)+Q

ru(Q)
(1 − Fc(x)) dx

]
= Q.

This implies that

h + p

p

[
Q −

∫ ru(Q)+Q

ru(Q)
Fc(x) dx

]
= Q.

Therefore,


1 −

∫ ru(Q)+Q

ru(Q) Fc(x) dx

Q


 = Φ(Q, ru(Q)) =

p

p + h
. (4)

This in turn yields

Φ(Q∗
u, ru(Q∗

u)) = Φ(Q∗
u, r∗

u) =
p

p + h
. (5)

If p
p+h ≥ F , then from Eq. (5) we obtain that Φ(Q∗

u, r∗
u) ≥ F . On the other hand, if Φ(Q∗

u, r∗
u) ≥

F , then from Eq. (5) it follows that p
p+h ≥ F .

REMARK: A similar result to Lemma 1 is derived in [6] in the context of the unconstrained
problem, but we need the ‘‘if and only if’’ argument, which is new in this paper, to characterize
the solution set for the constrained problem.

For a given order quantity Q, let r(Q) be the reorder level that satisfies the fill rate constraint
as an equality, i.e.,

1 −
∫ r(Q)+Q

r(Q) Fc(x) dx

Q
= Φ(Q, r(Q)) = F. (6)

Given Q, let r∗(Q) to be the reorder level that minimizes C(Q, r) and satisfies the fill rate
constraint. The function r∗(Q) is characterized in the lemma given below.

LEMMA 2: If p/(p+h) < F , then r∗(Q) = r(Q), i.e., r∗(Q) satisfies the fill rate constraint
as an equality. If p/(p + h) ≥ F , then r∗(Q) = ru(Q).

PROOF: From equation (3) we know that Φ(Q, r) is non-decreasing in r. Therefore, the set
of reorder points, SF , that satisfy equation (2) for a given value of Q is given by

SF = {r : r ≥ r(Q)}.
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Thus, r∗(Q) can be represented as:

r∗(Q) = arg min
r∈SF

C(Q, r).

The minimum value of C(Q, r) for a given Q is achieved at ru(Q). It follows from equation (4)
that for a given value of Q, if p/(p + h) < F then Φ(Q, ru(Q)) < F . From the fact that Φ(Q, r)
is non-decreasing in r, it follows that r(Q) > ru(Q) when p/(p + h) < F . Therefore, from the
convexity of C(Q, r) in r, it follows that C(Q, r) ≥ C(Q, r(Q)) for r ∈ SF . This finally implies
that r∗(Q) = r(Q).

The second part of the lemma follows from Lemma 1.

REMARK: It should be noted that the set {(Q, r) : Φ(Q, r) ≥ F , and Q ≥ 0} need not be
convex (see Zipkin [19]). Lemmas 1 and 2 narrow down the set in which an optimal solution of
P can be found as follows.

1. If p/(p + h) ≥ F then the unconstrained solution, (Q∗
u, r∗

u), is optimal for P.
2. If p/(p + h) < F then the search for the optimal solution to problem P can be

restricted to the set {(Q, r(Q)) : Q ≥ 0}.

We will now use these properties to modify the objective function in problem P. As stated in
Section 1 we express the cost as a sum of two functions. The first function has the property that
for a given Q, the reorder level r(Q) that satisfies the fill rate constraint in equality (as defined
earlier), also minimizes this portion of the cost. This set of (Q, r(Q)) is identical to the set of
solutions that satisfy the fill rate constraint (as shown in Lemma 4 below). Moreover we will
prove in Lemma 5 that this portion is a convex function of Q when r is replaced by r(Q). Let
K1 = K

p+h and Fu = p
p+h .

LEMMA 3: Problems P1 and P are equivalent, where

Problem P1:

min
Q,r

C1(Q, r) = min
Q,r

(
λK1

Q
+ FS̄(Q, r) + (1 − F )Ī(Q, r) + (F − Fu)(r + Q/2 − µ)

)
(7)

subject to

1 −
∫ r+Q

r
Fc(x) dx

Q
≥ F. (8)

PROOF: The objective function of problem P (see equation (1)) can be written as

(p + h)
[

λK

(p + h)Q
+

p

p + h
S̄(Q, r) +

h

p + h
Ī(Q, r)

]

= (p + h)
[
λK1

Q
+ FuS̄(Q, r) + (1 − Fu)Ī(Q, r)

]

= (p + h)
[
λK1

Q
+ FS̄(Q, r) + (1 − F )Ī(Q, r) + (F − Fu)(Ī(Q, r) − S̄(Q, r))

]
.
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Further,

(Ī(Q, r) − S̄(Q, r)) =

∫ r+Q

r
[
∫ y

0 (y − x)f(x) dx − ∫∞
y

(x − y)f(x) dx] dy

Q

=

∫ r+Q

r
(y − µ) dy

Q
=

(r+Q−µ)2

2 − (r−µ)2

2

Q

= r + Q/2 − µ. (9)

LEMMA 4:

(1) The mapping from Q to r(Q) is one-to-one.

(2) −1 ≤ r′(Q) ≤ 0.

(3) r(Q) + Q is increasing in Q.

(4) limQ→∞(r(Q) + Q) = ∞.

PROOF: By assumption f(·) > 0. Therefore the fill rate, which is given by 1−
∫ r+Q

r
Fc(x) dx

Q ,
is strictly increasing in r. Therefore given Q, the fill rate can be satisfied only for one value of
r. This proves part (1) of the lemma. For proving parts (2), (3) and (4), we know from Lemma 2
and the first part of this lemma that r(Q) is the solution to

∂

∂r

(
λK1

Q
+ FS̄(Q, r) + (1 − F )Ī(Q, r)

)
= 0. (10)

Therefore, the results obtained in Lemma 3.3 and 3.4 in Zheng [18] correspond to claims (2), (3),
and (4).

3. BOUNDS ON Q∗

We will now restrict our attention to the case p/(p+h) < F , that is when the fill rate constraint
is binding at the optimal solution to problem P (or P1). As a result of Lemmas 2 and 3, problem
P1 can be solved by finding the value of Q that minimizes:

C1(Q) =
λK1

Q
+

∫ r(Q)+Q

r(Q) G1(y) dy

Q
+ (F − Fu)(r(Q) + Q/2 − µ) (11)

where,

G1(y) = (1 − F )
[∫ y

0
(y − x)f(x) dx

]
+ F

[∫ ∞

y

(x − y)f(x) dx

]
. (12)

Notice that, ∫ r(Q)+Q

r(Q) G1(y) dy

Q
= FS̄(Q, r(Q)) + (1 − F )Ī(Q, r(Q)).
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Also, note that by specifying r to be equal to r(Q) in the cost function (11) we ensure that the fill
rate constraint is satisfied. Define,

H(Q, r) =

∫ r+Q

r
G1(y) dy

Q
.

As a matter of notation, we denote derivatives using a prime wherever there is no scope for
confusion. We shall refer to H(Q, r(Q)) by H(Q). The properties of H(Q) derived in the next
lemma will be used to obtain bounds on Q.

LEMMA 5:

(1) H ′(Q) ≥ 0.
(2) H ′′(Q) ≥ 0.
(3) H ′(Q) ≤ (1 − F )/2, for all Q ≥ 0.

PROOF: Please see Appendix (also see Zheng [18]).

THEOREM 1: A lower bound for Q∗ is given by the Economic Order Quantity (EOQ), i.e.,

Q∗ ≥
√

2λK
h .

PROOF: Note that as K > 0, Q∗ > 0, and because h > 0, Q∗ < ∞. Therefore, an optimal
solution to P1 has to satisfy the first-order condition for optimality, i.e., ∂

∂QC1(Q) = 0. Therefore,
we get

λK1

(Q∗)2
= H ′(Q∗) + (F − Fu)(r′(Q∗) + 1/2).

From Lemma 4 we know that r′(Q) ≤ 0; therefore,

λK1

(Q∗)2
≤ H ′(Q∗) +

F − Fu

2
. (13)

From part 3 of Lemma 5, H ′(Q∗) ≤ (1 − F )/2; therefore,

λK1

(Q∗)2
≤ 1 − F

2
+

F − Fu

2
=

1 − Fu

2
.

Substituting for the values of K1 and Fu, we get

λK

(p + h)(Q∗)2
≤ h

(p + h)2
or Q∗ ≥

√
2λK

h
= EOQ.

REMARK: This is an important and useful lower bound on Q as it is not a function of the
backorder cost rate p, because in many practical situation p is difficult to find and many papers in
the literature (such as [10], [16]) have analyzed the fill rate constrained (Q, r) problem without
a backorder cost. It can be shown that when the variance of demand approaches zero, p → 0,
and F → 1, then Q∗ → √

2λK/h. Therefore, the lower bound is also tight. (At first sight,
this example looks contradictory because p goes to zero while the fill rate goes to 1. We wish to
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emphasize that this is not unusual if the decision maker wishes to only specify a fill rate and does
not wish to specify a value for p.) In contrast the lower bound on Q for the unconstrained problem
is
√

2λK(p + h)/hp (see [6] and [17]) and is not applicable to the constrained problem.
We now present Lemmas 6–8 that will be used to derive an upper bound for the value of Q∗.

Define

J(Q) =
λK1

Q
+ H(Q) − B,

where

B = H(0).

It can be verified by the use of L’Hospital’s rule that H(0) = G1(r(0)).

LEMMA 6:

(1) J(0) = J(∞) = ∞.
(2) J(Q) is strictly convex.

PROOF: (1) As K > 0, it follows that J(0) = ∞, and as H(∞) = ∞ (see Zheng [18]) it
follows that J(∞) = ∞. (2) The proof follows from Lemma 5 given in Zheng [18].

Let Qm be a value of Q that satisfies the first order condition ∂
∂Q (J(Q)

Q ) = 0.

LEMMA 7:

(1) Qm is unique.
(2) J(Q)/Q is decreasing and convex for 0 ≤ Q ≤ Qm and increasing for Q >

Qm. Thus, Qm minimizes J(Q)/Q.

PROOF: Please see the Appendix.

LEMMA 8: [H(Q) − B]/Q is increasing in Q.

PROOF: Please see the Appendix.

As B is constant, it follows from Eq. (11) that problem P1 can be solved by finding the value
of Q that minimizes the redefined objective function

Cn(Q) =
λK1

Q
+ FS̄(Q, r(Q)) + (1 − F )Ī(Q, r(Q))

− B + (F − Fu)(r(Q) + Q/2 − µ). (14)

Define Qr to be the value of Q such that r(Qr) = Qr. Denote the lower bound on Q∗ derived
in Eq. (13) by Ql. Also, define Q̃ to be such that r(Q̃) = 0. The bounds will be derived in two
theorems given below. The first theorem determines the bounds for values of the fill rate greater
than 62.5%. The second theorem determines bounds for fill rates less than 62.5%.

THEOREM 2: If the required fill rate F exceeds 62.5%, then:

(I) If Ql < Qr, then the optimal solution will be found in one of the three intervals
(1) Qr ≤ Q∗ ≤ min(4Qr, Q̃), (2) Q̃ ≤ Q∗ ≤ 4Q̃, or (3) r(Qr) ≤ r∗ ≤
2r(Qr).
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(II) If Ql > Qr, then the optimal solution will fall in one of the two intervals, (1)
Ql ≤ Q∗ ≤ min(4Ql, Q̃), or (2) Q̃ ≤ Q∗ ≤ 4Q̃.

PROOF:
CASE I, Ql ≤ Qr: This case will be proved in three parts. Case I.1 provides the upper bound

on Q∗ in terms of Qr, while Case I.2 provides the upper bound on r∗ in terms of r(Qr). Case I.3
analyzes the region when r is negative and provides the bound for Q∗ as a multiple of Q̃.

CASE I.1: Consider any Q2 ≥ Qr. Define Qu to be the smallest value of Q2 such that
Cn(Q2) ≥ Cn(Qr) for Q2 ≥ Qu. Let Q2 be such that Qr ≤ Q2 ≤ Qu. Then by assumption

λK1

Qr
+ H(Qr) − B + (F − Fu)

(
r(Qr) +

Qr

2
− µ

)

≥ λK1

Q2
+ H(Q2) − B + (F − Fu)

(
r(Q2) +

Q2

2
− µ

)
. (15)

Therefore,

1 ≤
λK1
Qr

+ H(Qr) − B + (F − Fu)(r(Qr) + Qr

2 )
λK1
Q2

+ H(Q2) − B + (F − Fu)(r(Q2) + Q2
2 )

=
Qr[λK1

Q2
r

+ (H(Qr)−B)
Qr

+ (F − Fu)(1 + 1/2)]

Q2[λK1
Q2

2
+ (H(Q2)−B)

Q2
+ (F − Fu)( r(Q2)

Q2
+ 1/2)]

. (16)

Define

A =
λK1
Q2

r
+ (H(Qr)−B)

Qr
+ (F − Fu)(1 + 1/2)

λK1
Q2

2
+ (H(Q2)−B)

Q2
+ (F − Fu)( r(Q2)

Q2
+ 1/2)

. (17)

As Qr

Q2
A ≥ 1 by assumption, an upper bound on A can be used to bound Qu in terms of Qr.

Assume that r(Q2) ≥ 0. The case where the reorder level is negative is analyzed in I.2. To get
the upper bound on A, we substitute r(Q2)/Q2 = 0 in Eq. (17). Therefore,

A ≤
λK1
Q2

r
+ (H(Qr)−B)

Qr
+ 3

2 (F − Fu)
λK1
Q2

2
+ (H(Q2)−B)

Q2
+ 1

2 (F − Fu)
=

J(Qr)
Qr

+ 3
2 (F − Fu)

J(Q2)
Q2

+ 1
2 (F − Fu)

. (18)

Cases I.1.1, I.1.2, and I.1.3 will now provide upper bounds on A depending on the relative values
of Ql, Qr, and Qm.

CASE I.1.1, Ql ≤ Qr ≤ Qm: From Lemma 7, Qr ≤ Qm implies J(Qm)/Qm ≤ J(Q2)/Q2.
Therefore, we can substitute J(Qm)/Qm for J(Q2)/Q2 in (18) without affecting the direction
of the inequality. From the first-order condition J(Qm)/Qm = J ′(Qm), we obtain

−λK1

Q2
m

+ H ′(Qm) =
λK1

Q2
m

+
(H(Qm) − B)

Qm
.
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This implies

λK1

Q2
m

=
1
2

(
H ′(Qm) − (H(Qm) − B)

Qm

)
.

Therefore,

J(Qm)
Qm

=
λK1

Q2
m

+
(H(Qm) − B)

Qm
=

1
2

(
H ′(Qm) +

(H(Qm) − B)
Qm

)
. (19)

By the definition of Ql, λK1/Q2
r ≤ λK1/Q2

l . Thus, we can substitute λK1/Q2
l for λK1/Q2

r in
(18) without affecting the direction of the inequality. Substituting the value of J(Qm)/Qm from
Eq. (19) in the denominator of (18) and the value of λK1/Q2

l from Eq. (13) in the numerator of
(18), we get

A ≤
H ′(Ql) + F−Fu

2 + (H(Qr)−B)
Qr

+ 3
2 (F − Fu)

1
2 (H ′(Qm) + (H(Qm)−B)

Qm
) + 1

2 (F − Fu)
.

As Qr ≤ Qm, it follows from Lemma 8 that (H(Qr) − B)/Qr ≤ (H(Qm) − B)/Qm. As
Ql ≤ Qm, it follows from Lemma 5 that H ′(Ql) ≤ H ′(Qm). Therefore,

A ≤
4
2 (F − Fu)
1
2 (F − Fu)

= 4.

CASE I.1.2, Ql ≤ Qm ≤ Qr and CASE I.1.3, Qm ≤ Ql ≤ Qr: As Q2 ≥ Qr ≥ Qm, it
follows from Lemma 7 that J(Qr)/Qr ≤ J(Q2)/Q2. Therefore, from (18)

A ≤
J(Qr)

Qr
+ 3

2 (F − Fu)
J(Q2)

Q2
+ 1

2 (F − Fu)
≤

3
2 (F − Fu)
1
2 (F − Fu)

= 3.

CASE I.2: We shall now consider the values of Q for which the reorder point is negative, i.e.,
Q ≥ Q̃. Similar to inequality (16), we can define Q2 ≥ Q̃ such that

1 ≤
λK1

Q̃
+ H(Q̃) − B + (F − Fu)(r(Q̃) + Q̃

2 )
λK1
Q2

+ H(Q2) − B + (F − Fu)(r(Q2) + Q2
2 )

=
λK1

Q̃
+ H(Q̃) − B + (F − Fu)( Q̃

2 )
λK1
Q2

+ H(Q2) − B + (F − Fu)(r(Q2) + Q2
2 )

, (20)

as r(Q̃) = 0.
From Lemma 10 given in the Appendix it follows that

∂

∂Q

(
r(Q) +

Q

2

)
= −1

2
+

F

F(r + Q)
for r ≤ 0. (21)

Therefore, for F ≥ .625, (r(Q) + Q/2) is increasing in Q. Thus, when

1 ≤
λK1

Q̃
+ H(Q̃) − B

λK1
Q2

+ H(Q2) − B
(22)
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is true, then inequality (20) is also true. This implies

1 ≤
Q̃[λK1

Q̃2 + (H(Q̃)−B)
Q̃

]

Q2[λK1
Q2

2
+ (H(Q2)−B)

Q2
]
. (23)

Therefore, similar to Eq. (17), define A3 as

A3 =
λK1

Q̃2 + (H(Q̃)−B)
Q̃

λK1
Q2

2
+ (H(Q2)−B)

Q2

. (24)

The first-order condition for the optimality must hold at Q∗, so

λK1

(Q∗)2
= H ′(Q∗) +

∂

∂Q
(F − Fu)

(
r(Q∗) +

Q∗

2

)

≥ H ′(Q∗) + (F − Fu)
(

F − 1
2

)
. (25)

where inequality (25) follows from (21). As Ql ≤ Q̃ and Q2 ≤ Q∗, it follows from equations
(13), (24), and (25) that

A3 ≤
λK1
Q2

l

+ (H(Q̃)−B)
Q̃

λK1
(Q∗)2 + (H(Q2)−B)

Q2

≤
H ′(Ql) + (F − Fu)/2 + (H(Q̃)−B)

Q̃

H ′(Q∗) + (F − Fu)(F − 1/2) + (H(Q2)−B)
Q2

. (26)

By assumption Q∗ ≥ Q̃ and as Q2 ≥ Q̃, it follows from Lemmas 5 and 8 that

A3 ≤ (F − Fu)/2
(F − Fu)(F − 1/2)

(27)

≤ 1/2
(.625 − 1/2)

= 4. (28)

CASE I.3: Consider any r(Q) ≥ r(Qr). From Lemma 4 we know that if r(Q) ≥ r(Qr), then
r(Q) + Q ≤ r(Qr) + Qr. This implies that r(Q) ≤ 2r(Qr).

CASE II, Ql > Qr: The optimal Q lies in the range [Ql,∞). This part of the theorem will be
proved in Case II.1 which provide bounds for Q∗ in terms of Ql for the case when the optimal r is
positive and Case II.2 which provide bounds for Q∗ in terms of Q̃ for the case when the optimal
r is negative.

CASE II. 1: Define A1 to be such that Cn(Ql)
Cn(Q2)

= Ql

Q2
A1. The upper bound on A1 gives the

upper bound on Q∗ in terms of Ql. We obtain, similar to Eq. (18),

A1 ≤
λK1
Q2

l

+ (H(Ql)−B)
Ql

+ 3
2 (F − Fu)

λK1
Q2

2
+ (H(Q2)−B)

Q2
+ 1

2 (F − Fu)
=

J(Ql)
Ql

+ 3
2 (F − Fu)

J(Q2)
Q2

+ 1
2 (F − Fu)

. (29)
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This case will now be proved in three parts II.1.1, II.1.2, and II.1.3.

CASE II.1.1, Qr ≤ Qm ≤ Ql and Case II.1.2, Qm ≤ Qr ≤ Ql: As Q2 ≥ Ql ≥ Qm it follows
from Lemma 7 that J(Ql)

Ql
≤ J(Q2)

Q2
. Therefore, from (29) we obtain

A1 ≤
J(Ql)

Ql
+ 3

2 (F − Fu)
J(Q2)

Q2
+ 1

2 (F − Fu)
≤

3
2 (F − Fu)
1
2 (F − Fu)

= 3.

CASE II.1.3, Qr ≤ Ql ≤ Qm: The proof of this part is similar to Case I.1.1. Substituting the
value of J(Qm)/Qm from Eq. (19) in the denominator and the value of λK1/Q2

l from Eq. (13)
in the numerator of (29), we get

A1 ≤
H ′(Ql) + F−Fu

2 + (H(Ql)−B)
Ql

+ 3
2 (F − Fu)

1
2 (H ′(Qm) + (H(Qm)−B)

Qm
) + 1

2 (F − Fu)
.

As Ql ≤ Qm, it follows from Lemma 8 that (H(Ql) − B)/Ql ≤ (H(Qm) − B)/Qm and from
Lemma 5 that H ′(Ql) ≤ H ′(Qm). Therefore,

A1 ≤
4
2 (F − Fu)
1
2 (F − Fu)

= 4.

CASE II.2: If Q̃ ≥ Ql, the proof of this case is identical to Case I.2. If Q̃ < Ql, then the proof
is similar to Case I.2, and we bound the value of Q2 such that Cn(Ql)/Cn(Q2) ≤ 1.

The reader will note that the bounds on Q∗ for positive values of r(Q) given in Theorem 2 are
valid for all values of F > 0. Therefore, only bounds on Q∗ when r(Q) is negative are presented
in Theorem 3.

THEOREM 3: When the optimal r is negative and the required fill rate is less than 62.5%,
then the optimal Q falls in one of the following intervals:

(1) If Q̃ ≤ µ/4, then Q̃ ≤ Q∗ ≤ 4Q̃

(2) If Q̃ > 4µ, then Q̃ ≤ Q∗ ≤ 4Q̃

(3) If µ/4 < Q̃ ≤ 4µ, then Q̃ ≤ Q∗ ≤ 16µ.

PROOF: (1) We consider the values of Q for which the reorder point is negative, i.e., Q ≥ Q̃.
Similar to inequality (16) we define Q2 ≥ Q̃ such that

1 ≤
λK1

Q̃
+ H(Q̃) − B + (F − Fu)(r(Q̃) + Q̃

2 − µ)
λK1
Q2

+ H(Q2) − B + (F − Fu)(r(Q2) + Q2
2 − µ)

=
Q̃

Q2


 λK1

Q̃2 + (H(Q̃)−B)
Q̃

+ 1
2 (F − Fu) − (F − Fu)( µ

Q̃
)

λK1
Q2

2
+ (H(Q2)−B)

Q2
+ 1

2 (F − Fu) − (F − Fu)(−r(Q2)
Q2

+ µ
Q2

)


 . (30)
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From the proof for Case I.1.1 of Theorem 2 we know that

λK1

Q̃2 + (H(Q̃)−B)
Q̃

+ 1
2 (F − Fu)

λK1
Q2

2
+ (H(Q2)−B)

Q2
+ 1

2 (F − Fu)
≤ 2. (31)

Using inequality (31), it can be verified1 that inequality (30) cannot be true for Q2 ≥ 2Q̃ if

µ

Q̃

(−r(Q2)
Q2

+ µ
Q2

)
≥ 2. (32)

From Eq. (60) given in the Appendix, we get

−r(Q)
Q

= (1 − F ) −
∫ r(Q)+Q

0 Fc(x) dx

Q
≤ 1 − F. (33)

Using inequality (33) it follows that inequality (32) holds true if

Q2µ

Q̃

(Q2(1 − F ) + µ)
≥ 2. (34)

Rearranging terms in inequality (34), we obtain

Q2

Q̃
≥ 2

1 − 2Q̃
µ (1 − F )

. (35)

As Q̃
µ ≤ 1/4 it follows that 1 ≥ 1 − 2Q̃

µ (1 − F ) > 0. The maximum value of 2
1−(2Q̃/µ)(1−F )

is 4

when Q̃/µ = 1/4 and F = 0. Therefore, if Q2/Q̃ ≥ 4, inequality (30) cannot hold true for any
value of Q2 ≥ 2Q̃. Thus, when Q̃/µ ≤ 1/4, inequality (30) cannot hold for values of Q2 ≥ 4Q̃.1

(2) Q̃ ≥ 4µ: Similar to inequality (20) in the proof of Theorem 2, we get

1 ≤
λK1

Q̃
+ H(Q̃) − B + (F − Fu)(r(Q̃) + Q̃

2 )
λK1
Q2

+ H(Q2) − B + (F − Fu)(r(Q2) + Q2
2 )

. (36)

From Eq. (60) in the Appendix, we get

−r(Q2)
Q2

= (1 − F ) −
∫ r(Q2)+Q2

0 Fc(x) dx

Q2
(37)

1For positive A, B, X, Y, A − X and B − Y , if A/B ≤ 2 and X/Y ≥ 2, then (A − X)/(B − Y ) ≤ 2.
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and

0 = (1 − F ) −
∫ r(Q̃)+Q̃

0 Fc(x) dx

Q̃
. (38)

Subtracting Eq. (37) from (38), we obtain

r(Q2)
Q2

= −
∫ r(Q̃)+Q̃

0 Fc(x) dx

Q̃
+

∫ r(Q2)+Q2

0 Fc(x) dx

Q2
(39)

≥ −
∫ r(Q̃)+Q̃

0 Fc(x) dx

Q̃
≥ − µ

Q̃
(40)

Since Q̃ ≥ 4µ in this case it follows from inequality (40) that r(Q2)/Q2 ≥ −1
4 . Using this in

the denominator of inequality (36), the proof now follows in a manner similar to Case I.1.1 in
Theorem 2.

(3) µ/4 ≤ Q̃ ≤ 4µ: The proof follows from part 1 and 2.

4. ALGORITHM

We utilize the bounds derived in the previous section in the algorithm given below for deter-
mining the optimal values of Q and r. The algorithm is for the case when the required fill rate is
greater than 62.5%. A similar algorithm can be constructed when the fill rate required is less than
65.5%; and the details are omitted due to considerations of space. Define

Ccon(Q) =
λK1

Q
+ H(Q) + (F − Fu)

(
r(Q) +

Q

2

)
.

This function differs from the original cost function in only a constant that is

Ccon(Q) = C1(Q) + (F − Fu)µ.

Let ε be the maximum desired error in Ccon(Q). Let

N =
⌈

2 log(2)
log(1 + ε)

⌉
(41)

and

∆ = εQ̃/2. (42)

Algorithm for Determining (Q, r) to Satisfy a Given Fill Rate F

1. If p/(p + h) ≥ F , utilize the FZ algorithm to compute the optimal values of
(r, Q). Otherwise, proceed to step 2.
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2. Determine the EOQ =
√

2λK/h and the value of Qr. A simple line search
can be used to determine the value of Qr, i.e., to find the value of Q such that
r(Q) = Q. Determine the exact value of the lower bound for Q by solving the
convex program

Ql = arg min
Q

{
λK1

Q
+ H(Q) + (F − Fu)

Q

2

}
.

3. If EOQ < Qr, then perform a search (see step 3.1 and 3.2) in the two intervals,
I1 = [r(Qr), 2r(Qr)] and I2 = [Qr, 4Qr]. Otherwise, let I3 = [EOQ, 4EOQ]
and execute step 3.3.

3.1. Search in I1: Let ri = r(Qr) ∗ 2(i/N), i = 1, 2, . . . , N . Determine Qi’s
corresponding to each of the ri’s such that the fill rate constraint is met
[see Eq. (2)]. There are three cases to consider. If Ql > QN , go to step 2.
If Ql < Q1, set i0 = 1. Else, if Q1 ≤ Ql ≤ QN , determine i0 such that
Qi0 ≤ Ql < Qi0+1. Evaluate Ccon(Q) at each of the (Qi, ri) pairs, for
i = i0, i0 + 1, . . . , N .

3.2. Search in I2: Let Qi = Qr ∗ 2(i/N), i = 1, 2, . . . , 2N . Determine ri’s
corresponding to each of the Qi’s such that the fill rate constraint is met
[see Eq. (2)]. Determine the value of i0 as done in step 3.1. If r(QN ) ≥ 0,
then let M = N . Else, let

N0 = max i : r(Qi) ≥ 0,

M = N0 +
⌈

6
ε

⌉
,

and

Qi = Q̃ + [i − 1 − N0]∆, i ≥ N0 + 1.

Evaluate Ccon(Q) at each of the (Qi, ri) pairs, for i = i0, i0 + 1, . . . , M .
Proceed to step 4.

3.3. Search in I3: Let Qi = EOQ ∗ 2(i/N), i = 1, 2, . . . , 2N . Determine ri’s
corresponding to each of the Qi’s such that the fill rate constraint is met
[see Eq. (2)]. Determine the value of i0 as done in step 3.1 and the value
of M and Qi as in step 3.2. Evaluate Ccon(Q) each of the (Qi, ri) pairs,
for i = i0, i0 + 1, . . . , M .

4. Choose the (Q, r) pair that gives the lowest value of Ccon(Q) in steps 3.1 and
3.2 or step 3.3.

end
Let the algorithm return the order quantity Qk. Define the error from using Qk as δ, i.e.,

δ =
Ccon(Qk)
Ccon(Q∗)

.
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LEMMA 9: The (Q, r) pair produced by the above algorithm gives an error with respect to
Ccon(Q∗) that is at most ε percent for required fill rates greater than 62.5%.

PROOF: Theorem 2 guarantees that the optimal values of (Q, r) will lie in the ranges I1 and
I2 or in I3 as the case might be. Suppose the optimal order quantity lies between two adjacent
values of Q’s as determined by the algorithm. Let these values of Q be Qj and Qj+1, with
Qj < Q∗ < Qj+1. Notice that by convexity and the choice of Ql the function (λK1/Q +
H(Q) + (F − Fu)(r(Q) + Q/2)) is increasing in Q for Q ≥ Ql. Thus,

δ ≤ λk/Qj + H(Qj) + (F − Fu)(rj + Qj/2)
λk/Q∗ + H(Q∗) + (F − Fu)(r∗ + Q∗/2)

− 1

≤ (F − Fu)(rj − r∗)
λk/Q∗ + H(Q∗) + (F − Fu)(r∗ + Q∗/2)

. (43)

If the cost minimizing solution lies in I1 then the error bound follows from the choice of the
values of ri’s, i.e., from (41) and (43)

δ ≤ rj − rj+1

rj+1

≤ ε.

If the cost minimizing solution lies in I2 or I3, we note that from Lemma 4 that

Qj + rj ≤ Q∗ + r∗

⇒ rj − r∗ ≤ Q∗ − Qj ≤ Qj+1 − Qj . (44)

If r(QN ) ≥ 0, then from (41), (43), and (44),

δ ≤ 2(Qj+1 − Qj)
Qj

≤ 2(
√

1 + ε − 1) ≤ ε.

If r(QN ) ≤ 0, then, from Lemma 10 in the Appendix and from the fact that F ≥ 62.5%, it
follows that (r(Qi) + Qi/2) is increasing in i for i ≥ N0 + 1, where N0 is as defined in steps
3.2 and 3.3 of the algorithm. Also, by definition (step 3.2 of the algorithm) QN0+1 = Q̃ and
r(Q̃) = 0. Thus,

r(Qi) +
Qi

2
≥ r(Q̃) +

Q̃

2
=

Q̃

2
for i ≥ N0 + 1. (45)

Therefore, from (42), (43), (44), and (45),

δ ≤ (F − Fu)(Qj+1 − Qj)
(F − Fu)(Q̃/2)

=
εQ̃/2
Q̃/2

≤ ε.
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5. CONCLUSION

In the preceding sections, we considered a general form of the problem of determining the
optimal values of (Q, r) subject to a fill rate constraint. The bounds are also applicable to two
special cases. First, the majority of the literature deals with the special case in which there is no
backorder penalty, i.e., p = 0. This implies that Fu = 0. All our bounds are applicable for this
case as well since the bounds are independent of p. Second, if the fill rate constraint were not
imposed, then F could be allowed to approach Fu from above in Theorem 2. As a consequence
and from Lemma 1, the bounds will continue to hold.

APPENDIX

PROOF OF LEMMA 5: (1) By differentiating H(Q) with respect to Q we get

H′(Q) =

(
G1(r(Q) + Q)

Q
−
∫ r(Q)+Q

r(Q)
G1(y) dy

Q2

)
+

(G1(r(Q) + Q) − G1(r(Q)))
Q

r′(Q). (46)

As r(Q) is the solution to

∂

∂r

(
λK1

Q
+

∫ r+Q

r
G1(y) dy

Q

)
= 0,

it follows that

G1(r(Q) + Q) − G1(r(Q)) = 0. (47)

Therefore,

H′(Q) =

(
QG1(r(Q) + Q)

Q2
−
∫ r(Q)+Q

r(Q)
G1(y) dy

Q2

)
. (48)

From Eq. (47) and because G1(·) is convex, it follows that G1(r(Q) + Q) ≥ G1(y) for y ∈ [r(Q), r(Q) + Q]. This
proves that H′(Q) is nonnegative.

(2) By definition,
H(Q, r) = FS̄(Q, r) + (1 − F )Ī(Q, r).

From Eq. (9), we get Ī(Q, r) = S̄(Q, r) + Q/2 + r − µ. Therefore,

H(Q, r) = S̄(Q, r) + (1 − F )(Q + r − µ).

Zipkin [19] shows that if f(·) > 0, then S̄(Q, r) is strictly convex in (Q, r). Therefore, H(Q, r) is strictly convex for
in (Q, r), i.e., for a given α ∈ (0, 1), (Q1, r(Q1)), and (Q2, r(Q2)),

αH(Q1, r(Q1)) + (1 − α)H(Q2, r(Q2)) > H(αQ1 + (1 − α)Q2, αr(Q1) + (1 − α)r(Q2)). (49)

From Eq. (10) we know that r(Q) minimizes H(Q, r), for a given Q; hence

H(αQ1 + (1 − α)Q2, αr(Q1) + (1 − α)r(Q2)) ≥ H(αQ1 + (1 − α)Q2, r(αQ1 + (1 − α)Q2)). (50)

It follows from (49) and (50) that

αH(Q1, r(Q1)) + (1 − α)H(Q2, r(Q2)) > H(αQ1 + (1 − α)Q2, r(αQ1 + (1 − α)Q2)).

This proves that H(Q) is a strictly convex function of Q.
(3) It follows from the convexity of H(Q) that H′(Q) ≤ limQ→∞ H′(Q), for all Q > 0. From Eq. (48)

lim
Q→∞

H′(Q) = lim
Q→∞

G1(r(Q) + Q)
Q

− lim
Q→∞

∫ r(Q)+Q

r(Q)
G1(y) dy

Q2
. (51)
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We know from Lemma 4 that limQ→∞ G1(r(Q) + Q) = G(∞) = ∞. Therefore, we use L’Hospital’s rule for
computing one sided limits (see Theorem 4, page 264 in [15]) to compute the limit for the first quantity on the right-hand
side of Eq. (51). Differentiating the numerator and denominator separately, we obtain

lim
G→∞

G1(r(Q) + Q)
Q

=
limQ→∞ G′

1(r(Q) + Q)(1 + r′(Q))
1

. (52)

Similarly,

lim
Q→∞

∫ r(Q)+Q

r(Q)
G1(y) dy

Q2
= lim

Q→∞
G1(r(Q) + Q)

2Q
=

limQ→∞ G′
1(r(Q) + Q)(1 + r′(Q))

2
. (53)

From Eqs. (52) and (53),

lim
Q→∞

H′(Q) =
limQ→∞ G′

1(r(Q) + Q)(1 + r′(Q))
2

. (54)

It follows from Zheng [18] that limQ→∞ G′
1(Q) = 1 − F . From Lemma 4 we get 1 + r′(Q) ≤ 1. Therefore,

limQ→∞ H′(Q) ≤ (1 − F )/2.

PROOF OF LEMMA 7: (1) By the definition of Qm,

∂

∂Q

(
J(Q)

Q

)
Q=Qm

=
1

Qm

[
J ′(Qm) − J(Qm)

Qm

]
= 0.

This implies that

J ′(Qm) =
J(Qm)

Qm
. (55)

Let us suppose that Qm is not unique and that there are two values Q1 and Q2 that satisfy Eq. (55). Assume without loss
of generality that Q2 > Q1. It follows from Eq. (55) that

Q2J ′(Q2) = J(Q2)

and
Q1J ′(Q1) = J(Q1).

These equations imply that

J(Q2) − J(Q1) = Q2J ′(Q2) − Q1J ′(Q1). (56)

From Lemma 6, J(Q) is strictly convex. Therefore,

J(Q2) − J(Q1) < J ′(Q2)(Q2 − Q1). (57)

Subtracting Eq. (57) from Eq. (56), we get

0 > (J ′(Q2) − J ′(Q1))Q1.

This is a contradiction as J ′(Q2) ≥ J ′(Q1) due to the convexity of J(Q). This shows that Qm is unique.
(2) To prove the second part of this lemma

∂2

∂Q2

(
J(Q)

Q

)
=

J ′′(Q)
Q

+
2

Q2

[
J(Q)

Q
− J ′(Q)

]
. (58)

From Lemma 6, J ′′(Q)/Q ≥ 0. From the first part of this lemma Qm is unique; therefore (∂/∂Q)(J(Q)/Q) can
change sign only once. Therefore, (∂/∂Q)(J(Q)/Q) ≤ 0 for Q ≤ Qm, which implies that J(Q)/Q ≥ J ′(Q) for
Q ≤ Qm. Hence using (58) we get that (∂2/∂Q2)(J(Q)/Q) > 0, for 0 ≤ Q ≤ Qm. Finally, from the first part of
this lemma, (∂/∂Q)(J(Q)/Q) ≥ 0, for Q ≥ Qm. This proves the second part of the lemma.

PROOF OF LEMMA 8:
∂

∂Q

(
H(Q) − B

Q

)
=

1
Q

(
H′(Q) − H(Q) − B

Q

)
.

As H(Q) is an increasing convex function (from Lemma 5); therefore, for any Q > 0, we get

QH′(Q) ≥ (H(Q) − H(0)). (59)

As B = H(0), it follows from (59) that

∂

∂Q

(
H(Q) − B

Q

)
≥ 0.
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LEMMA 10: When r ≤ 0,

r′(Q) = −1 +
F

F(r + Q)
≥ −1 + F.

PROOF: From the definition of r(Q) in Eq. (6) we obtain

(1 − F )Q =

∫ r(Q)+Q

r(Q)

Fc(x) dx

=

∫ 0

r(Q)

Fc(x) dx +

∫ r(Q)+Q

0

Fc(x) dx

= −r(Q) +

∫ r(Q)+Q

0

Fc(x) dx. (60)

Taking the derivative of both sides of Eq. (60) with respect to Q, we obtain

(1 − F ) = −r′(Q) + Fc(r(Q) + Q)(1 + r′(Q))

= −r′(Q)F(r(Q) + Q) + Fc(r(Q) + Q). (61)

Rearranging the terms in (61), we get

r′(Q) = −1 +
F

F(r + Q)
≥ −1 + F. (62)
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