
UNCORRECTED P
ROOF

ARTICLE IN PRESS

Automatica ( ) –
www.elsevier.com/locate/automatica

1

Supply chain structure and demand risk�

Ying-Ju Chen, Sridhar Seshadri∗3

Stern School of Business, New York University, NY 10012, USA

Received 4 March 2005; received in revised form 1 August 2005; accepted 22 November 20055

Abstract

V. Agrawal and S. Seshadri (2000) [Risk intermediation in supply chains. IIE Transactions, 32, 819–831] considered a problem in which7
a single risk neutral distributor supplies a short-lifecycle, long-leadtime product to several retailers that are identical except in their attitudes
towards risk. They proved that the distributor should not offer the same terms to every retailer but instead offer less risky (from the demand9
risk perspective) contracts to more risk averse retailers. They did not prove the optimality of their menu.

In this paper we reconstruct their results when the number of retailers is infinite and their coefficient of risk aversion is drawn from a11
continuous distribution. We use optimal control theory to solve this problem. We show that this distribution uniquely determines the channel
structure. Moreover, the optimal contract menu not only has the same structure as in Agrawal and Seshadri but is also optimal among nearly13
all contracts. The implications of these findings for channel design are discussed.
� 2005 Published by Elsevier Ltd.15
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1. Introduction

In the standard newsvendor model, a vendor offers a con-19
tract to price-taking retailers that face uncertain demand. The
retailers choose an order quantity knowing that if the realized21
demand is larger than her quantity, excess demand will be met
through an emergency purchase order at a higher price; other-23
wise, the unsold product will be re-sold at the salvage price.
This contract will be called the “original newsvendor contract”25
(ONC). The ONC is common in many supply chains. Standard
analysis shows that the optimal order quantity under the ONC27
is given by the “fractile rule” which depends on both the de-
mand distribution as well as the retailer’s utility function.29

Agrawal and Seshadri (2000) showed that, if retailers have
different risk preferences, the single contract offered by the31
vendor may not achieve the optimal risk reduction. Thus, in
practice risk intermediation is often employed. A risk-neutral33
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intermediary (the distributor) can take the vendor’s ONC and 35
instead offer a menu of contracts to the retailers. Since the
distributor can absorb the risk at a lower cost, she gets benefits 37
from offering risk-reducing contracts to retailers.

In Agrawal and Seshadri’s menu, less risky (from the de- 39
mand risk perspective) contracts are given to more risk averse
retailers. Such a menu of contracts increases the distributor’s 41
expected profit because the distributor can trade-off the ex-
pected value obtained by risk averse retailers against the gain in 43
utility from risk reduction. They left unaddressed the question
whether the menu of contracts designed by them is optimal. 45

In this paper, we reconstruct their results when the number
of retailers is infinite and their coefficient of risk aversion is 47
drawn from a continuous distribution. We apply optimal control
theory to solve the contract design problem. Surprisingly, the 49
optimal menu not only has the same structure as that given
by Agrawal and Seshadri but is also optimal among nearly all 51
contracts. We also show that the distribution of the risk aversion
coefficient uniquely determines the channel structure. Thus, 53
distribution systems for products with long supply leadtimes
and short lifecycles should bear marked similarities reflecting 55
the attitude towards risk of channel participants.

The rest of the paper is organized as follows. In the next sec- 57
tion, we briefly discuss demand risk and its impact on ordering

59
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decisions, and then present the model in Section 3. Section 41
provides the optimal contract menu when all retailers are of-
fered a contract, and in Section 5 we show that the proposed3
contract is optimal among all contract menus. Section 6 con-
cludes with suggestions for future work.5

2. Demand risk

The impact of risk aversion on the order quantity has been7
examined in the framework of the “risk averse newsvendor
problem.” In this problem, the retailer is offered the ordinary9
newsvendor contract (denoted as ONC) in which items that are
ordered before the realization of demand are supplied at the11
cost of c per unit, items ordered after demand has been realized
at e per unit, and unsold goods are taken back at s per unit.13
For this problem, under the ONC, it is well known that the risk
averse retailer’s order quantity (i.e., the one that maximizes his15
expected utility) will be smaller than the order quantity that
maximizes his expected profit (see Baron, 1973; Eeckhoudt,17
Gollier, & Schlesinger, 1995; Horowitz, 1970). The reduction
in the order quantity of the retailer leads to lower expected19
profit (for the retailer). Eeckhoudt et al. give examples in which
risk averse retailers will order nothing due to high demand21
uncertainty. Therefore, risk aversion of the retailers has been
portrayed in the literature as leading to the loss of efficiency in23
supply chains.

Agrawal and Seshadri (2000) showed not only that this loss25
of efficiency can be eliminated through risk reducing pricing
contracts, but also that any risk neutral intermediary will find it27
beneficial to offer such risk reducing contracts to the retailers. In
their model, the intermediary is referred to as the distributor129
who purchases the goods as per the terms of the ONC from the
vendor, and in turn offers the goods to the retailers on contract31
terms that are less risky from the retailers’ viewpoint.

They proposed that, as opposed to the ONC, under the risk33
reducing contracts offered by the distributor to the retailers, the
emergency purchase and the salvage prices should be set equal35
to the regular purchase price, and in addition a fixed payment
should be made by the distributor to the retailer. Therefore, a37
retailer’s payoff consists of a fixed component (independent of
the demand) and a variable component that increases linearly39
with the realized demand. Consequently, as the retailer’s pay-
off depends only upon the demand, the retailer is indifferent41
to the order quantity decision and is content to relegate the re-
sponsibility of determining an order quantity to the distributor.43
The distributor makes the order quantity decision fully aware
that he has to satisfy all the demand faced by the retailer. The45
distributor bears the cost if necessary of buying the product at
the emergency purchase cost and also the cost of disposing any47
unsold product at the salvage price.

1 The distributor can be an independent firm, or the vendor, or one
of the retailers. For the sake of clarity we will refer to the intermediary
as the distributor, and the risk averse players facing uncertain demand as
the retailers. The analysis, though, is valid for any two levels in a vertical
marketing channel, where the lower level facing uncertain demand is risk
averse and the upper level is risk neutral (or less risk averse).

By performing this function of “(demand) risk intermediation”, 49
the distributor raises the retailers’ order quantities such that
the maximum efficiency is obtained. The key contribution in 51
their paper is to establish that the contracts offered to the re-
tailer not only maximize the efficiency in the supply chain but 53
are also optimal from the distributor’s viewpoint within the
class of contracts that have a fixed payment and a linear price 55
schedule. We show that such contracts are actually optimal for
the distributor amongst a much broader class of contracts, thus 57
making the menu designed by Agrawal and Seshadri much
more attractive! 59

Contracts similar to the ones proposed by them are being
adopted within the context of vendor managed inventory (VMI) 61
programs. In many VMI programs the vendors make the in-
ventory decisions on behalf of the retailers and also bear the 63
risks and costs associated with these decisions (Andel, 1996).
In addition to the contracts found in VMI programs, we have 65
observed several supply contracts that transfer the demand risk
from the buyer to the vendor, for example in the publishing 67
(Carvajal, 1998), cosmetics (Moses & Seshadri, 2000), com-
puters (Kirkpatrick, 1997), apparel (Bird & Bounds, 1997), 69
and grocery industries (Lucas, 1996). Other work on risk re-
ducing contracts includes that of Chen, Sim, Simchi-Levi, and 71
Sun (2004), Donohue (2000), Eppen and Iyer (1997), Feng
and Sethi (2004), Fisher, Hammond, Obermeyer, and Raman 73
(1994), Fisher and Raman (1996), and Gan, Sethi, and Yan
(2004). In contrast to the majority of this work which deals with 75
a single retailer, we focus on the optimal contract for multiple
risk averse retailers. 77

In the last two decades the concept of risk intermediation has
been used to create not only novel investment and insurance 79
products but also a global marketplace for such products and
services. A large number of firms now offer a menu of products 81
with different risk-return choices to customers worldwide. The
existence of a similar market for hedging risky payoffs result- 83
ing from uncertain demand should not be entirely surprising.
The contracts observed in some of the industries studied by us 85
further confirm the insight provided by our analysis. It is also
logical that such contracts are seen for products that have short 87
life cycle or are perishable such as grocery, personal computers
and apparel, as these are the industries that are the most vulner- 89
able to demand uncertainty. The single period inventory model
as the decision making framework embodied in the newsperson 91
problem is appropriate for such products as well.

3. Model 93

We consider a single period model in which multiple risk
averse retailers purchase a single product from a common ven- 95
dor. We assume that the retailers operate in identical and in-
dependent markets. The retailers face uncertain customer de- 97
mand with a fixed selling price p, and they accordingly make
their purchase order quantity decisions to maximize their ex- 99
pected utility. The distribution of demand faced by a retailer
is FD(·), which is independent of the contracts offered either 101
by the vendor or by the distributor. The vendor has to offer 103
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the same supply contract(s) to each retailer. The terms of the1
contract offered to the retailers are to be determined.

Retailers are assumed to be risk averse, but have different3
degrees of risk aversion. We adopt a mean–variance utility ap-
proach, which can be regarded as the order-2 approximation5
of the original utility function via a Taylor series expansion.
That is, let �i denote the Arrow–Pratt risk aversion measure7
(�i ≡ −u′′

i /u
′
i where ui(·) is the retailer i’s original utility),

and Z be a gamble. Then, retailer i’s expected utility is given by9
E[Z] − �i (Var[Z]/2) (Pratt, 1964). This approach is valid in
the small gambles framework since higher-order terms vanish11
in the Taylor series expansion.

The decision problem of a retailer is to either select a con-13
tract from the menu offered by the distributor, or to accept the
vendor’s ONC. An ONC is characterized by three per-unit pa-15
rameters c, s, e: c is the purchase price, s is the salvage value,
and e is the emergency purchase price. We assume p�e, thus17
all demand is met. In Agrawal and Seshadri’s (2000) model,
the distributor offers a menu of contracts, each of which spec-19
ifies only two terms: the fixed payment F(�), and the pur-
chase/salvage/emergency price c(�). Later we will show that21
this restricted class of contracts is broad enough for construct-
ing optimal contract menus.23

Retailers are expected utility rather than expected profit max-
imizers. We define the reservation utility of retailer i, denoted25
by ri , as the expected utility she will get upon accepting the
vendor’s contract ONC. We assume that retailer i will choose27
a contract from the distributor’s menu if it provides at least an
expected utility of ri . We show in Section 4 that ri’s are ordered29
according to the coefficient of risk aversion.

In the main departure from Agrawal and Seshadri’s (2000)31
model, we assume that the coefficient of risk aversion � can
take values in the interval [0, 1]. We assume that it has the33
density function fr(�). In this representation, the fraction of
retailers in the population whose coefficient of risk aversion lies35
in the interval [�, �+d�] is given by fr(�) d�. The distribution
function of risk aversion and its complement are denoted by37
Fr and Fc

r . We also assume that the reservation utility is a
differentiable and convex function of �.39

4. Main results

In this section, we first review some results in Agrawal and41
Seshadri (2000) where they consider a fixed number of retailers
(instead of a continuum). The rest of the section focuses on the43
optimal contract menu with a continuum of retailers.

4.1. Review of the model with discrete types45

4.1.1. Single contract
Agrawal and Seshadri find that the distributor has an47

incentive to cover fewer retailers if the distributor is al-
lowed to offer only a single contract. The number of re-49
tailers covered decreases as the demand becomes more51

volatile (i.e., �/� increases), as the emergency cost e increases,
and, when the retailers’ margin p − c increases. These results 53
are a consequence of the fact that higher s, e, or p − c, allow
the distributor to make greater profit per retailer. Thus with in- 55
creasing s, e, or p−c it becomes more attractive for the distrib-
utor to “skim” the market and serve only the more profitable 57
retailers.

4.1.2. Menu of contracts 59
Let us recall the setting of Agrawal and Seshadri (2000).

The set of all retailers is denoted by N, where N = {1, . . . , n}. 61
Retailer i has a reservation utility ri and coefficient of risk
aversion �i where �i ��j , ∀i�j .2 Assume that the dis- 63
tributor offers a family of contracts C = {Fi, ci}, where the
distributor makes payment Fi to retailer i, supplies both regu- 65
lar and emergency orders at price ci and also accepts returns
at the same price ci . Denote the set of retailers that accept 67
the contract as S(C). Note that the contract (F, p, p, p)

is a risk-free contract under which the retailer gets a side 69
payment F and passes the demand to the distributor at unit
price of p. The following theorem summarizes their main 71
results:

Theorem 1 (Agrawal and Seshadri (2000)). In the optimal 73
contract menu, there exists a fixed number k such that retailers
k, k + 1, . . . , N accept the risk free contract, Fk = rk, ck = p, 75
and the distributor’s profit is maximized by offering the contract
(Fi, ci), i�k − 1 given by 77

ci = p −
[

2(ri+1 − ri)

(�i+1 − �i )�2

]0.5

,

Fi + (p − ci)� − �i

(p − ci)
2�2

2
= ri . (1)

The distributor will offer a menu of contracts C∗ = ((F1, c1), 79
. . . , (Fk−1, ck−1), (rk, p)), and every retailer will choose a con-
tract, i.e., S(C∗) = N . The expected value of contracts is or- 81
dered by {ri}’s, which is decreasing in �i , and the distributor
makes a profit on all contracts. 83

Remark. Agrawal and Seshadri (2000) prove that the choice
of ((F1, c1), . . . , (Fk−1, ck−1), (rk, p)) eliminates the incentive 85
of any retailer to select a contract that is not designed for her.
In particular, as retailer k prefers the risk-free contract (rk, p) 87
to any other contracts, Property 5 in Agrawal and Seshadri
(2000) implies that all retailers j �k strictly prefer (rk, p) to all 89
others.

4.2. Optimal contract menu in the continuous case 91

We now discuss the model with a continuum of � ∼ Fr(·). We
work with the probability triple ([0, 1],B, Fr(·)) with B being 93
the Borel sets on [0, 1]. We make the following assumption on
the distribution of � in the sequel. 95

2 In their paper, the ordering is reversed. We modify it here to make the
discrete and continuous cases consistent.
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Assumption 2. xF c
r(x) is unimodal and has a unique maxi-1

mum at an interior point k ∈ (0, 1).

Remark. Unimodality of xF c
r(x) is commonly assumed in3

many papers on revenue management, e.g., Lariviere and
Porteus (2001) and Yoshida (2002).3 Note that this assump-5
tion is scale invariant, i.e., if x is scaled to bx then xF c

r(x/b)

remains unimodal. Moreover, the “point” that achieves the7
maximum is also scale invariant. See the proof of Lemma 5
for details.9

First, assume that all retailers are offered a contract and focus
on the design of the optimal menu of contracts. Motivated by11
Agrawal and Seshadri (2000), we formulate the optimal contract
design problem in two stages. In the first stage, we assume that13
there exists a constant � ∈ [0, 1] such that retailers with � ∈
[�, 1] will choose the risk-free contract (r(�), p, p, p) from the15
menu, where r(�) is the reservation utility of retailer with risk
aversion coefficient �. Note that (r(�), p, p, p) is the cheapest17
risk-free contract that satisfies the participation constraints for
all retailers � ∈ [�, 1] for two reasons: it is risk-free, so has the19
lowest expected value of all contracts that provide a utility of
r(�). We show below that it provides utility greater than or equal21
to r(�) for all retailers with � in [�, 1]. We first develop optimal
incentive compatible contracts to every retailer � ∈ [0, �) under23
such assumptions. In the second stage, we optimize over the
choice of �. Since we do not exclude the possibility of � = 1,25
i.e., only the most risk-averse retailer is offered the risk-free
contract, and hence this is without loss of generality.27

Consider any menu such that g(x) and h(x) are, respectively,
the mean and variance of the payoff to a retailer if menu item29
x is chosen, where x can take values in the interval [0, �] and
� ∈ [0, 1]. We therefore do not restrict ourselves to the family31
of contracts considered in Agrawal and Seshadri (2000), and
instead consider the most general form of the contracts. This33
is the most general form because retailers are concerned only
about the mean and the variance of the payoff. With some abuse35
of notation, let a retailer with coefficient of risk aversion equal
to x�� choose menu item x. Given a fixed �, the distributor’s37
problem is to choose {(g(�), h(�)), � ∈ [0, �)} that solves the
following maximization problem:39

max

{
[EV (SEV

opt , c, s, e) − r(�)]Fc
r (�)

+
∫ �

0
(EV (SEV

opt , c, s, e) − g(�))fr(�) d�

}
,

s.t. (IC-1) � ∈ argmax
z∈[0,�)

g(z) − �h(z), ∀� ∈ [0, �),

(IC-2) r(�)� max
z∈[0,�)

g(z) − �h(z), ∀� ∈ [�, 1],
(IR-1) g(�) − �h(�) − r(�)�0, ∀� ∈ [0, �),

(IR-2) r(�)�r(�), ∀� ∈ [�, 1], (2)

3 The support need not be [0, 1] for distributions we discuss here. We
restrict to [0, 1] in this paper for merely notational ease. Another popular
assumption for demand unimodality in revenue management is that the revenue
is concave in demand, see Gallego and van Ryzin (1994).

where SEV
opt ≡ FD((e − c)/(e − s)) (FD(·) denotes the de- 41

mand distribution) is the expected value maximizing order
quantity as defined in Eq. (2) of Agrawal and Seshadri (2000). 43
EV (SEV

opt , c, s, e) is the expected cost that the distributor has
to pay for buying the vendors’ ONC. 45

In Eq. (2), the first two inequalities are incentive compatibil-
ity (IC) conditions for, respectively, the retailers that receive a 47
specific contract designed for her and the retailers that accept
the risk-free contract. In (IC-1), the contract menu is incentive 49
compatible since the utility of retailer � is maximized if she
chooses the contract with mean g(�) and variance h(�). On the 51
other hand, r(�) is the utility of retailer ��� when she receives
the risk-free contract, and (IC-2) guarantees that she prefers 53
this to any other contracts g(z), h(z) with z ∈ [0, �).

The last two inequalities in Eq. (2) represent individual ra- 55
tionality (IR) conditions, i.e., each retailer shall get at least
her reservation utility. Note that the reservation utility r(�) can 57
be explicitly expressed as r(�) = maxS {E[�(S, 0, c, s, e)] −
�(Var[�(S, 0, c, s, e)]/2)}, where �(S, 0, c, s, e) is the profit 59
if the ONC is accepted and the order quantity is S. Lemma 3.1
in Agrawal and Seshadri (2000) shows that with this expres- 61
sion r(�) is strictly decreasing in �, and hence the last inequal-
ity (IR-2) is automatically satisfied. To see this let �1 < �2. If 63
retailer �1 uses retailer �2’s order quantity, she gets the same
mean and variance but a higher expected utility because �1 is 65
less than �2. If she optimizes the order quantity, then her ex-
pected utility can only be higher. Thus, r(�1)�r(�2). 67

Our strategy is to first ignore the IC conditions for retail-
ers � ∈ (�, 1] (IC-2), and then verify that they are satis- 69
fied by our proposed menu. We assume that for retailer � ∈
[0, �) the first-order condition for interior optimality (or local 71
optimality—LO) hold:

(LO)

[
dg(z)

dz
− �

dh(z)

dz

]
z=�

= 0, ∀� ∈ [0, �]. (3)
73

We shall replace constraints (IC-1) and (IC-2) in Eq. (2) by
(LO), and obtain the necessary conditions for optimality for 75
the modified version of the problem. A candidate menu will
then be proposed based on this relaxed optimization problem, 77
and later we prove that (LO) for that menu ensures that each
retailer � ∈ [0, �) is choosing her contract optimally. 79

Denote the expected value of the utility obtained by retailer
� as r̂(�) = g(�) − �h(�). Using Eq. (3) gives 81

dr̂(�)

d�
=

[
dg(�)

d�
− �

dh(�)

d�
− h(�)

]
= −h(�). (4)

This implies that 83

g(�) = r̂(�) + �h(�) = r̂(�) − �
dr̂(�)

d�
. (5)

Now we come back to the distributor’s optimization problem 85
Eq. (2). Observing that the term [EV (SEV

opt , c, s, e)−r(�)]Fc
r (�)

is independent of the choice of {(g(�), h(�)), � ∈ [0, �)}, the 87
distributor’s problem becomes

max
∫ �

0

[
−r̂(�) + �

dr̂(�)

d�

]
fr(�) d� 89
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subject to r̂(�)�r(�), r̂(�)= r(�), r̂(0)= r(0). (Why pay the1
risk neutral retailer more than the expected value? Therefore
r̂(0) = r(0).) We can rewrite the problem as3

max
∫ �

0

[
−r̂(�) + r(�) + �

dr̂(�)

d�
− �

dr(�)

d�

]
fr(�) d�, (6)

subject to the constraints since the added terms are independent5
of the policy g(�). Let x(�) ≡ r̂(�)−r(�) be the state variable,
and u(�) = d(r̂(�) − r(�))/d� be the control. Through this7
transformation, the design of the optimal menu of contracts can
be recast as an optimal control problem and can be solved by9
use of calculus of variation. The Hamiltonian is given by

H(�) = (−x(�) + �u(�))fr(�) + �(�)u(�). (7)11

The adjoint equation is given by d�(�)/d�=−�H/�x =fr(�),
and the transversality condition gives no information. Let13
�(�) = c where c is some constant, we obtain

�(�) = c − Fc
r (�). (8)15

The necessary condition for optimality is that the Hamiltonian
is maximized by the choice of u. From Eqs. (7) and (8), H is17
linear in u, and the coefficient of u in H is

c + �fr(�) − Fc
r (�). (9)19

If the expression in Eq. (9) were positive, the solution would be
unbounded. Due to our assumption about the uniqueness of the21
maximum, it is not hard to see that c = 0. Note that �fr(�) −
Fc

r (�) is the derivative of −�Fc
r (�), and hence from Assump-23

tion 2, �fr(�) − Fc
r (�) > 0 if � > k, and �fr(�) − Fc

r (�) < 0
if � < k. The case � = k has measure zero and hence it will25
not contribute to the integral Eq. (6). If �fr(�) − Fc

r (�) > 0,
there is no maximum since we can take u → ∞. On the other27
hand, when �fr(�) − Fc

r (�) < 0 we should make u as nega-
tive as possible. But, the boundary conditions r̂(�)�r(�) on29
[0, �] on the other hand they require that u(�) be greater than
or equal to zero whenever r̂(�)= r(�). It therefore follows that31
r̂(�) = r(�) for all � in [0, �].

The following theorem summarizes our results thus far.33

Theorem 3. Suppose Assumption 2 holds, retailers with � ∈
[�, 1] choose contract (r(�), p, p, p), where constant � ∈ [0, 1],35
and the distributor has to serve all retailers. Then the necessary
conditions for the optimal contract menu are (i) (LO) in Eq. (3)37
and (ii) retailers � ∈ [0, �] receive their reservation utilities.

4.2.1. Candidate menu and verifying the necessary and39
sufficient conditions

Now we will propose a candidate menu of contracts. The41
inspiration is due to the optimal menu in the discrete ver-
sion, i.e., the one proposed in Theorem 1. We will focus on43
the class of contracts with a fixed franchise fee and common
cost {F(�), c(�)}, and prove that this class is broad enough to45
achieve the optimality. Passing to the limit in Eq. (1), the cost
c(�) charged to the retailer with a coefficient of risk aversion47
equal to � and the corresponding fixed side payment F(�) are49

given by the solution to

c(�) = p −
(

−2dr(�)

d�

1

�2

)0.5

,

F(�) + (p − c(�))� − �
(p − c(�))2�2

2
= r(�). (10) 51

The corresponding g(�) and h(�) are F(�) + (p − c(�))� and
(p − c(�))2�2/2, ∀� ∈ [0, �). 53

We will verify now that the proposed contract menu satisfies
the necessary and sufficient conditions. 55

Checking condition (ii) in Theorem 3. With the menu shown
in Eq. (10), retailers with � ∈ [0, �] receive their reservation 57
utilities.

Checking (IC-1). We now verify that (LO) implies global op- 59
timality for � ∈ [0, �). Suppose a retailer � ∈ [0, �] chooses the
contract designed for retailer z ∈ [0, �]. The fixed side payment 61
is F(z)=r(z)−(p−c(z))�+z((p−c(z))2�2/2), and hence her
payoff by doing so will be r(z)−(�−z)((p−c(z))2�2/2). From 63
Eq. (10), we have p − c(z) = (−2dr(y)/dy|y=z(1/�2))0.5, and
hence retailer �’s payoff becomes r(z)− (�− z)dr(y)/dy|y=z. 65
Recall that if she chooses her own contract, she receives her
reservation utility r(�). Thus, (IC-1) boils down to 67

r(�)�r(z) + (� − z)
dr(y)

dy

∣∣∣∣
y=z

, ∀z ∈ [0, �), (11)

which is equivalent to saying that r(�) is convex. 69
The convexity of r(�) is established in Lemma 3.2 of

Agrawal and Seshadri (2000), and we briefly present the proof 71
here. Suppose that �1 < �2 < �3 and S2 is the optimal order-
ing quantity under the ONC for retailer with �2. If retailers 73
with �1 and �2 use S2 as the ordering quantity, we have
r(�2) = g(S2) − �2h(S2) and r(�1)�g(S2) − �1h(S2). Thus 75
r(�1)− r(�2)�(�2 −�1)h(S2), which yields h(S2)�(r(�1)−
r(�2))/(�2 −�1). On the other hand, if using S2 as the ordering 77
quantity for both retailers with �2 and �3, we obtain

r(�2) − r(�3)�(�3 − �2)h(S2) ⇒ h(S2)�
r(�2) − r(�3)

�3 − �2
. 79

Combining both cases, we have ∀�1 < �2 < �3,

r(�1) − r(�2)

�2 − �1
� r(�2) − r(�3)

�3 − �2
, 81

i.e.,

r(�2) − r(�1)

�2 − �1
� r(�3) − r(�2)

�3 − �2
. 83

Therefore r(�) is convex.
Since r(�) is convex, Eq. (11) is valid, and retailer �’s payoff 85

attains its maximum when contract (F (�), c(�)) is selected,
∀� ∈ [0, �]. Thus, (IC-1) is true. 87

Checking (IC-2). The IC condition for retailer � yields
r(�)�F(z)−(p−c(z))�−��2(p−c(z))2/2, ∀z ∈ [0, �), and 89
hence for retailer � ∈ (�, 1], choosing the risk-free contract 91
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(which gives r(�)) is strictly preferred since1

r(�)�F(z) − (p − c(z))� − �
�2(p − c(z))2

2

> F(z) − (p − c(z))� − �
�2(p − c(z))2

2
, ∀z ∈ [0, �).

The above discussions establish the necessity of optimality3
given a fixed �.

Checking the sufficiency. As the Hamiltonian Eq. (7) is linear5
in the state variable, the derived Hamiltonian is concave in the
state variable and satisfies the sufficient condition for optimality7
(see Theorem 2.2 of Sethi & Thompson, 1981).

Remark. The standard approach to prove optimality (e.g., see9
Salanie, 1998) is to first assume the single-crossing (sorting)
condition, or so-called Spence–Mirrlees condition, whose def-11
inition is given below. Suppose that a retailer’s payoff is F −
u(q, �), where F is the monetary transfer, q is the quality level13
(contract terms), and � is the retailer’s unobservable “type”
(the coefficient of risk aversion). The single-crossing condi-15
tion, labelled as (SC), requires that �2u(q, �)/���q < 0, ∀q.
In words, this condition ensures that types can be ranked ac-17
cording to their marginal utilities, and it implies that utilities
of two distinct retailers intersect at most once.19

With the single-crossing condition, it can be shown that the
necessary and sufficient conditions for (IC-1) and (IR-1) con-21
ditions are (LO) and the monotonicity (M) of h(�), see Salanie
(1998) for details. We now verify that for our proposed menu,23
both (SC) and (M) hold.

Checking (M). The term corresponding to the variance h(�) is25
�2(p−c(�))2/2=−dr(y)/dy|y=�, which is indeed monotonic
in � from the convexity of r(�).27

Checking (SC). Define q(�) = �2(p − c(�))2/2. Recall that
the retailers possess mean–variance utility g(z) − �h(z), and29
hence the mean (g(z)) does not contribute to �2u(q, �)/���q.
Thus �2u(q, �)/���q = −1 < 0, ∀q �0, i.e., (SC) is satisfied.31

4.2.2. Optimal choice of �
Now we turn to the second stage: optimizing over the choice33

of �. Let �(�) denote the profit function of the distributor when
retailers that have a coefficient of risk aversion greater than �35
are offered the risk-free contract. Using Eq. (10), �(�) can be
restated as37

�(�) = (EV (SEV
opt , c, s, e) − r(�))F c

r (�)

+
∫ �

0
(EV (SEV

opt , c, s, e) − r(�) + r
dr(�)

d�
)fr(�) d�.

Using the rule for differentiating under the integral we obtain39

d�(�)

d�
= −dr(�)

d�
(F c

r (�) − �fr(�)). (12)

From Eq. (12) and the fact that −dr(�)/d� > 0, the maxima41
of the profit function are independent of the reservation utility.
Moreover, note that the expression in parentheses in Eq. (12) is43
the derivative of �Fc

r (�). Therefore, if the function �Fc
r (�) has

a unique maximum in the interior of [0, 1], then the optimal45
value of � is independent of the reservation utility. In other
words, the fraction of retailers who select the risk free contract 47
is independent of product characteristics if the distribution is
unimodal. 49

Recall that k ∈ (0, 1) is the value of � at which the function
�Fc

r (�) attains its maximum. Thus, 51

Fc
r (�) − �fr(�)�0, � ∈ [0, k], (13)

and the necessary condition for optimality of �(�) is �= k. We 53
use C∗ = {F ∗(�), c∗(�)} to denote the contract menu where
(F ∗(�), c∗(�)) are as given in Eq. (10) and the corresponding 55
payment when � ∈ [0, k) and (F ∗(�), c∗(�))=(r(k), p), ∀� ∈
[k, 1]. Notice that in the continuous case the menu C∗ we 57
propose again gives a risk-free contract to all retailers with
coefficient higher than k, which is chosen in Eq. (12). This 59
completes the characterization of the optimal menu of contracts,
and therefore we have 61

Theorem 4. Suppose Assumption 2 holds. Let k=argmax�∈[0,1]
�Fc

r (�) and C∗ = {(F ∗(�), c∗(�)), � ∈ [0, k]}. Then the pro- 63
posed C∗ is optimal among the class of menus that serve all
retailers. Moreover, under the optimal menu of contracts, all 65
retailers � ∈ [0, k] receive their reservation utilities, and re-
tailers � ∈ (k, 1] are offered the same risk-free contract. 67

Note that the class of menus we consider include all menus
since retailers’ utility functions are of the mean–variance for- 69
mat. Hence, if all retailers ought to be served, C∗ is indeed the
optimal menu. 71

Remark. Since 1 × Fc(1) = 0, � = 1 can never occur in opti-
mality. 73

Remark. If we assume instead the distributor can offer a con-
tract to only one retailer, it becomes an adverse selection prob- 75
lem. This may be of interest to study in future work.

5. Verification of optimality 77

In Theorem 4, we have shown that if all retailers are served,
our proposed contract menu C∗ yields the highest expected 79
payoff to the distributor. The purpose of this section is to show
that our proposed menu of contracts is indeed optimal even 81
when we allow the distributor to exclude some retailers (for
example, offer contracts only to those whose coefficient of risk 83
aversion falls in [0, 0.25) ∪ [0.7, 0.993)). We do this through
three lemmas and a theorem as stated below. The proofs are 85
given in the appendix.

Let S(C) be the set of retailers that receive and accept con- 87
tracts from the menu C. For each x ∈ S(C), the menu C
specifies a bundle (F (x), c(x)). Needless to say, the sets S(C) 89
of interest should be measurable with respect to the proba-
bility space ([0, 1],B, Fr(·)). Due to the special structure of 91
our proposed contract, we show that if the distributor wants
to serve merely the retailers on an interval I ⊂ [0, 1] and ig- 93
nore all other retailers, the optimal one-segment contract menu
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coincides with the proposed contract C∗ restricted to the inter-1
val I (denoted as C∗|I ):

Lemma 5 (Decomposition). Suppose C∗ = (F ∗(x), c∗(x)) is3
the optimal contract menu for S(C∗) = [0, 1]. Then for any
interval I ⊂ [0, 1], C∗|I is also optimal.5

This lemma says for any given contract C with arbitrary
number of segments, the distributor will be better off if she7
replaces C by menu C∗ in every segment. Next we will study
two properties of the proposed contract menu C∗, namely the9
no-skip property and push-to-the-end property.

Lemma 6 (No-skip property). Suppose the distributor adopts11
menu C∗ and S(C∗) is composed of two disjoint intervals I1 and
I2, then the distributor will be better off by offering contracts13
to all retailers in I1, I2, and also those between I1 and I2.

Applying this lemma inductively, we obtain that if the dis-15
tributor offers the menu C∗, then the optimal S(C∗) will be an
interval. Next we show that while offering family of contracts17
C∗, the distributor should not leave any uncovered intervals of
retailers from both ends.19

Lemma 7 (Push-to-the-end property). Suppose the distributor
adopts menu C∗ and S(C∗) is nonempty. Let s̄ ≡ sup{x : x ∈21
S(C∗)} Then it is in the distributor’s interest to set s̄ = 1. On
the other hand, if s ≡ inf{x : x ∈ S(C∗)}, the distributor will23
set s = 0.

Combining Lemmas 5–7, if the distributor offers C∗ =25
{F ∗(x), c∗(x)}, she will offer contracts to the entire interval
[0, 1] to maximize her profit. Bearing in mind the structure of27
C∗, we are ready to prove its optimality among all feasible
contract menus:29

Theorem 8. The proposed contracts (F ∗(x), c∗(x)) are opti-
mal among all contracts that offer a menu to a measurable set31
of retailers.

In our model, the reservation utility of a retailer comes from33
her alternative “accepting the ONC.” Therefore, the reservation
utility varies from type to type in nature, and is decreasing in �.35
The optimal contract menu C∗ enables the distributor to extract
all the information rent of retailers who are less risk averse,37
while leaving the retailers with higher risk aversion the full in-
formation rent. This result is in strict contrast to the case when39
reservation utilities are the same for all players, but they differ
in their aversion to risk. In that case, it is optimal to give no rent41
to the most risk-averse player, and give information rent to the
rest. In our case, because the players differ in their reservation43
utilities, we are able to capture some of the difference in reser-
vation utility. Moreover, as less risk-averse retailers have higher45
utility, we capture their rent and not that of the most risk-averse
retailers. This corresponds to case 2 of Section 3.3.1 in Laffont47
and Martimort (2002) where the discrete case is discussed.

The fact that a continuum of retailers receive a risk-free49

contract is also worth noting. It is known as the “bunching”
phenomenon (Laffont & Martimort, 2002), which may occur in 51
the standard case when the monotone hazard rate property of
types fails. Here the bunching occurs in retailers with high risk 53
aversion and the contract offers them the efficient level, i.e., it
fully covers the demand risk for those risk averse retailers. More 55
discussion on type-dependent participation constraints can be
found in Jullien (2000). 57

Finally, we show in the following corollary that the proposed
menu C∗ is unique up to a measure-zero modification, which 59
means all menus properly different from C∗ are suboptimal.

Corollary 9. The menu C∗ is the cheapest menu that achieves 61
the optimal profit uniquely up to a measure-zero set.

6. Conclusion and extension 63

In this paper we show that the contract menu proposed by
Agrawal and Seshadri (2000) is indeed optimal among all possi- 65
ble menus, provided that the distribution of risk aversion is con-
tinuous and satisfies some mild condition commonly adopted 67
in the revenue management literature. The channel structure
is uniquely determined by the distribution, independent of the 69
underlying ONC contract and the demand distribution.

The same results hold for other cases if there exists a pa- 71
rameter y and two functions g(·), h(·) such that the utility of a
type-y retailer receiving the contract C is g(C) + yh(C), and 73
the reservation utility is differentiable and decreasingly convex
in y (required in Eqs. (10) and (12)). If the payoff of retailers 75
is normally distributed, such an utility structure may show up
since the first and second moments are sufficient statistics for 77
all of its moments.

The reason why it does not work for a general utility function 79
(e.g., g(C) + yh(C) + �(y, C) where �(y, C) is the higher-
order term) can be seen by examining the proof of Theorem 81
4. With this extra term �(y, C), Eqs. (4) and (5) both fail, and
therefore the optimal control problem cannot be solved simply 83
by use of calculus of variation. Further investigation on general
utility functions is needed, especially when the retailers cannot 85
be ordered by a single parameter.
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Appendix A. Proofs in Section 5

Proof of Lemma 5. Let k be the cutoff point such that under 89
contracts C∗ retailers in [0, k] get the risk-free contract. First we
consider the case when I ⊂ [k, 1]. In this case, if the distributor 91
provides C∗|I to the retailers, their IC conditions are satisfied
and their rents are fully extracted. Thus, no other contract will 93
yield a higher expected revenue for the distributor. If I∩[0, k] is
nonempty, we can derive the optimal one-segment contract C′ 95
on I. For ease of explanation we define I =[	, 
]. Recall that the
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retailers are located on I with a rescaled distribution F ′
r where1

F ′
r (x) = 0 if x < 	, F ′

r (x) = (Fr(x) − Fr(	))/(Fr(
) − Fr(	)),
if 	�x�
, and F ′

r (x) = 1 if x�
.3
Now we revisit the second equation of the first-order

condition, we find that (F ′
r )

c(x) − xf ′
r (x) = 1/(Fr(
) −5

Fr(	))[Fc
r (x) − xf r(x)] has again k as the cutoff point since

1/(Fr(
)−Fr(	)) is an irrelevant constant. Thus, the new con-7
tract C′ on I offers the risk-free contract to retailers in [	, k]
and extracts retailers’ rent in [k, 
], which exactly coincides9
with C∗|I . �

Proof of Lemma 6. It suffices to consider the case with closed11
intervals since Fr is atomless. Suppose that these two inter-
vals are [	1, 
1] and [	2, 
2] with 
1 < 	2. Since these two13
intervals are disjoint, we can find two points a, b such that

1 < a < b < 	2. Let C′ = C′′ ∪ C∗ where S(C′′) = (a, b) and15
C′′ ={(F ∗(x), c∗(x)), ∀x ∈ S(C′′)}, i.e., we propose contracts
(F ∗(x), c∗(x)) to those retailers on (a, b). Since the choice of17
(F ∗(x), c∗(x)) directly ensures their IC conditions, these re-
tailers on [	1, 
1] and [	2, 
2] will not deviate to choose any19
contract of C′′. The IC conditions for a retailer x on (a, b) again
follow from the construction of (F ∗(·), c∗(·)). By Theorem 4,21
retailer x in [a, b] receives her reservation utility r(x).

We now state and use Lemma 2.2 in Agrawal and Seshadri23
(2000). Suppose Fx and Fy are distribution functions of, re-
spectively, random variables X and Y, and F−1(a) = inf{b ∈25
R : F(b)�a} denotes the “inverse” of distribution F. X is said
to be less than Y in the dispersive order if and only if27

F−1
x (�2) − F−1

x (�1)�F−1
y (�2) − F−1

y (�1),

∀0 < �1 ��2 < 1.

Lemma 2.2 of Agrawal and Seshadri (2000) shows that29
�(SEV

opt , F ∗(x), c∗(x), c∗(x), c∗(x)) ≡ F ∗(x)+ (p−c∗(x))D,
where D denotes the realized demand, is smaller than the31
profit under the ONC in the dispersive order. Thus, the distri-
butor benefits from offering the contract (F ∗(x), c∗(x)) to33
retailer x. �

Proof of Lemma 7. Suppose s̄ < 1, then there exists an interval35
(a, b) such that s̄ < a < b < 1. Let C′′ =C ∪C′, where S(C′)=
(a, b) and C′ = {(F ∗(x), c∗(x), ∀x ∈ (a, b)}. Since the IC37
conditions of any x ∈ S(C′′) are satisfied, no deviation can
occur. Hence the distributor receives a higher payoff under C′′39
than under C∗, which contradicts the assumption that C∗ is
optimal. Therefore setting s̄ = 1 is in the distributor’s interest.41

On the other hand, let us suppose that s > 0. Lemma 3.5 in
Agrawal and Seshadri (2000) implies that when � is discrete,43
if s > 0, then the distributor will find it profitable by offering
a contract to a retailer with � < s. A similar argument shows45
that in the continuous case, the distributor will be better off
by offering contracts to retailers in (c, d), where 0 < c < d < s.47
Thus s = 0 is optimal. �

Proof of Theorem 8. Let C̃ be the family of contracts that49
is optimal and S(C̃) be its associated set. Since S(C̃) is mea-
surable and the probability measure of � is equivalent to the51

Lebesgue measure, for an arbitrarily small constant �, we can
find a closed set G ⊂ S(C̃) such that the measure of {� ∈ G} is 53
greater than or equal to the measure of {� ∈ S(C̃)} − �. More-
over, G is compact by its closedness and the fact G ⊂ [0, 1], 55
and hence there exists a finite open covering O that covers set G
(see, e.g., Royden, 1988). Grouping all the connected sets, we 57
can decompose O into a finite number of disjoint open compo-
nents, i.e., O = ∑J

j=1 Oj where {Oj }’s are mutually nonover- 59
lapping open intervals and J is the number of these intervals.

Define (C) as the expected payoff if the distributor adopts 61
menu C. Now we will propose a new menu of contracts C′
whose set S(C′) is an interval and (C′)�(C̃)−M�, where M 63
is the maximal payoff that the distributor can gain by offering
a contract to a retailer. M should be bounded (otherwise the 65
distributor extracts infinite profit from a single retailer!) and
can be found by solving the single-retailer problem: 67

M � sup
�∈[0,1]

max
F,c′

{
E[�(SEV

opt (0, c, s, e)] − (F + (p − c′)�) :

F + (p − c′)� − �(p − c′)2 �2

2
�r(�)

}
,

which is bounded by the continuity of the objective and the 69
compactness of [0, 1]. Note also that M is a fixed constant
independent of the choice of C̃. 71

First, we replace the contracts offered to those retailers on O
by C′′ ≡ (F ∗(�), c∗(�)) and S(C′′) = O. On each open inter- 73
val Oj , Lemma 5 shows that it is optimal within this interval
Oj and hence the payoff that the distributor gets from retailers 75
in Oj under C′′ is higher than that under C̃. Moreover, since
the IC conditions under C′′ are a subset of the IC conditions 77
under (F ∗(�), c∗(�)) on [0, 1], a retailer � will weakly pre-
fer to choose her own (F ∗(�), c∗(�)) over all other contracts 79
(F ∗(�′), c∗(�′)), ∀�′ ∈ O. Note that there are some retailers in
O that are not considered in C̃ before. Property 8 in Agrawal 81
and Seshadri (2000) says that if a retailer receives the same
utility while accepting a contract as that under the ONC, then 83
the distributor will earn positive profit from this retailer. Thus,
offering contracts to these retailers while keeping others’ con- 85
tracts fixed still satisfies all IC conditions and can only benefit
the distributor. Thus from the retailers on O, the distributor gets 87
at least as much payoff under menu C′′ as what she gets on G
under C̃. 89

If J = 1, i.e., the open subcovering O is itself an inter-
val, we can define C′ = C′′, and the distributor’s payoff under 91
C′ is (C′′)�(C̃|G)�(C̃) − M�, where (C|G) denotes
the expected payoff that the distributor gets from retailers in 93
G ∈ S(C) by offering contract menu C. We define (C) ≡
(C|S(C)). 95

Next we focus on the case J > 1. Let 	i , 
i be, respectively,
the left-hand and right-hand endpoints of Oj , and we assume 97
without loss of generality that 
i < 	i+1, ∀i ∈ {1, . . . , J −
1}. Since Oj and Oj+1 are disjoint where j �J − 1, we can 99
find an open interval (a, b) such that 
j < a < b < 	j+1. Note
that (a, b) has strictly positive measure. Let C′ = C′′ ∪ C∗ 101
where C∗=(F ∗(�), c∗(�)) and S(C∗)=(a, b), i.e., we propose
contracts (F ∗(�), c∗(�)) to those retailers on (a, b). Applying 103
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Lemma 6, all these retailers in O will not deviate to choose any1
contract of C∗. The IC conditions on (a, b) are satisfied from
the construction of C∗.3

Consequently, as long as O is not connected, we can al-
ways offer contracts to some retailers in between two inter-5
vals Oj and Oj+1 and yield a (weakly) higher payoff. We
then obtain by induction that the optimal contract C′ with7
O ⊂ S(C′) has the “no-skip” property (Lemma 6), i.e.,
S(C′) is an interval. The distributor’s payoff under C′ is9
(C′)�(C′|O)�(C̃|G)�(C̃) − M�, where the second
inequality follows from Lemma 5.11

So far we have established that for a given �, there exists a
contract menu C′ such that (C′) > (C̃) − M� and S(C′) is13
an interval. Finally, since � can be arbitrarily small and M is
fixed, the distributor’s payoff under our proposed contracts can15
be made arbitrarily close to the optimal level, which completes
the proof. �17

Proof of Corollary 9. An argument similar to the proof of
Lemma 5 shows that in every interval, our contract menu C∗19
is the cheapest menu that extracts the reservation utility r(�)

from retailers with � ∈ [k, 1]. If there exists another contract21
Ĉ such that Ĉ extracts retailers’ reservation and is cheaper
than C∗, then it can be cheaper in at most a set of countable23
points (otherwise we would have found an interval over which
Ĉ outperforms C∗). Since the distribution Fr is equivalent to25
Lebesque measure (it has a density and no singularities), every
single point has measure zero, and a countable union of measure27
zero points also has measure zero (Ash & Doleans-Dade, 1999).
Thus the corollary is true. �29
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