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Abstract

We address the paradox that financial innovations aimed at risk-sharing appear to have made the

world riskier. Financial innovations facilitate hedging idiosyncratic risks among agents; however,

aggregate risks can be hedged only with liquid assets. When risk-sharing is primitive, agents

self-hedge and hold more liquid assets; this buffers aggregate risks, resulting in few correlated

failures. As risk-sharing improves, hedging low-probability aggregate risks with liquid assets be-

comes costly to agents; aggregate liquidity falls; and, the system becomes more exposed to ag-

gregate risks, resulting in more correlated failures. This insight provides a rationale for minimum

margin requirements for derivatives and clearing houses.



Risk-Sharing and the Creation of Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction

Over much of the last several decades, instruments and contracts aimed at facilitating risk-sharing

between financial agents have seen explosive growth. By and large (although not uniformly) over

this period, regulators viewed this as a benign and even beneficial development, a point of view

perhaps best exemplified by Federal Reserve Board Chairman Alan Greenspan’s remarks at the

American Bankers Association Annual Convention in October 2004.1 Referring to the unbundling

and transfers of risks facilitated by derivatives, Greenspan suggested that, as a consequence

. . . not only have individual financial institutions become less vulnerable to shocks

from underlying risk factors, but also the financial system as a whole has become

more resilient.

The advent of the financial crisis in 2007-08 led to a sharp reappraisal of these views. Today, it is

widely acknowledged that the very markets and contracts designed with the ostensible purpose of

facilitating risk-sharing among financial intermediaries—including derivatives such as credit de-

fault swaps and securitization instruments such as collateralized debt obligations—played a central

role in fanning the crisis, nearly bringing about a collapse of the entire financial system.

How could the facilitation of risk-sharing increase systemic risk and systemic fragility? In this

paper, we suggest an explanation of this apparently paradoxical situation. The intuition behind our

formal analysis is rather simply expressed. We begin with the observation that while risk-sharing

arrangements are effective at hedging against idiosyncratic shocks (such shocks are by definition

uncorrelated across agents), they have, at best, limited potential to provide a hedge against ag-

gregate shocks. When an aggregate shock hits the economy, everyone is affected by the common

shock and any existing risk-sharing arrangements face increased likelihood of counterparty default.

The only effective ex-ante defense against systemic shocks is to, so to speak, save for the rainy day,

viz., to increase holdings of safe, liquid assets (“cash”) and reduce investment in risky and illiquid

assets.
1http://www.federalreserve.gov/BOARDDOCS/Speeches/2004/20041005/default.htm,

accessed August 24, 2014.
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Now consider an agent who faces shocks that could be idiosyncratic or aggregate. Aggregate

shocks are those that hit all agents and firms; they may be far less likely (they may be “tail risks”)

than the idiosyncratic risk exposures, and as such, the agent may find it privately costly to hold

liquidity purely for withstanding such aggregate shocks. But when risk-sharing opportunities are

absent or scarce, the more-likely idiosyncratic shocks also need to be hedged, providing the agent

with an incentive to hold liquid assets to withstand the shocks and making it privately optimal to

save to hedge the risk exposures. As a consequence, in the (perhaps low-likelihood) event that an

aggregate risk materializes, the system has adequate liquidity to deal with it, so systemic crises are

averted or unlikely.

In contrast, when financial innovations allow agents and firms to share idiosyncratic risks with

each other, the hedging motive for holding liquidity to withstand these shocks is reduced. Risk-

sharing allows the financial system to economize on its pool of liquidity. Now, the principal benefit

of holding liquidity arises in case of aggregate shocks, but if these are low-likelihood events, it will

not generally be in the interest of individual agents or firms to hedge against these states. As

a consequence, while idiosyncratic risks are shared and risk-sharing promises are honored when

idiosyncratic shocks arise, there is inadequate liquidity and insufficient savings for the rainy day

when an aggregate shock hits, making it difficult or impossible to honor risk-sharing promises.

The result is financial fragility or systemic risk as an equilibrium outcome.

In short, financial innovations facilitating risk-sharing may increase systemic vulnerability by

inducing agents to invest resources more fully in high-return risky projects by reducing liquidity

for dealing with low-risk aggregate shocks. To be sure, the increased systemic fragility could be

very costly for the economy when an aggregate shock arises since a meltdown of the financial

sector could produce an elongated period of financial disruption affecting payment and settlement

systems, transactional services, and savings schemes. This suggests that while prohibiting all in-

struments of risk-sharing may (evidently) be undesirable, unbridled financial innovation without

coincident investments in ensuring resilience of the system to aggregate shocks may also be unde-

sirable from a societal standpoint.



Risk-Sharing and the Creation of Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

We deliver this insight in a series of models. Section 3 introduces the foundation on which we

build, the problem of an individual firm seeking to hedge against total risk exposure in the absence

of risk-sharing possibilities. (We call this no-risk-sharing setting one of “autarky.”) We show

that if the risk exposure is sufficiently large, the autarkic firm finds it privately optimal to fully

hedge against the exposure by holding adequate liquidity. In Sections 4-6, we embed this one-firm

setting in different multi-firm contexts (with each firm’s risk exposure consequently broken into

idiosyncratic and systematic parts), and study the consequences of permitting risk-sharing among

the firms.

Section 4 looks at the simplest and most transparent of these extensions, that of a two-firm

setting in which the firms can write a risk-sharing contract to make transfers to each other in

idiosyncratic risk states. When risk-sharing is disallowed, each firm is, of course, in the autarky

setting of Section 3, and for the reasons explained in the previous paragraph, there is adequate

liquidity in the system to handle the aggregate risk state. But when risk-sharing is allowed, we

show that the firms optimally choose to economize on liquidity and increase their investment in

risky assets; and, as a consequence, when the (possibly low-likelihood) aggregate risk state does

materialize, the system-wide liquidity proves inadequate to meet the shock, and both firms fail.

Sections 5 and 6 then generalize the setting to a setting with a large number of firms and a richer

description of uncertainty, and analyze two risk-sharing arrangements of interest. Section 5 looks

at the setting where risk-sharing takes the form of insurance against shocks that may be purchased

from a third-party insurance firm (think of AIG Financial Products) operating in a competitive

insurance sector. Section 6 looks at risk-sharing via a co-insurance arrangement akin to a clearing-

house. Under insurance, the insurance firm collects premia up-front to build its reserves that are

then used to honor insurance claims from individual firms that are hit by shocks; the insurance firm

is insolvent if claims exceed the reserves so accumulated. In the clearinghouse-style setting too,

the clearinghouse collects premia up-front to build its reserves but it can further also make ex-post

“capital calls” on liquidity-surplus banks to aid (co-insure) the liquidity-short firms. Clearinghouse

insolvency and systemic failure occur if the reserves and capital calls are collectively insufficient

to meet the needs of liquidity-short firms.
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We show that in either case our general insight prevails: risk-sharing arrangements can incen-

tivize firms to take on greater risk at the individual level, reduce overall liquidity, and increase

systemic fragility. The level of correlation in firm risks plays a key role. When the correlation

between underlying risks of firms is low, risk-sharing arrangements are enabled that do not require

high upfront premia, and both the insurance and clearinghouse settings provide risk-sharing of

good quality in most states of the world, offering a clear benefit over a world without risk-sharing.

But when a large aggregate shock materializes, these arrangements fail, creating greater systemic

fragility than in a world without risk-sharing. Conversely, when underlying risks of firms are highly

correlated, upfront premia required by insurance and clearinghouse rise correspondingly, reducing

the attractiveness of risk-sharing. At sufficiently high correlations, premia become so high that

autarky is preferable and aggregate outcomes mirror the no risk-sharing setting. In either case,

when collective failures result in negative externalities and large societal costs (accompanying the

breakdown of a payments system), regulation in the form of minimum reserve requirements or

minimum margin requirements may improve matters.

These issues have come to the fore as the Dodd-Frank Act in the United States and similar re-

forms of the financial sector world-wide are moving standardized (or “standardizable”) derivative

products to centrally cleared arrangements and mandating a minimum level of risk-management

standards at clearinghouses. For products that remain over the counter, minimum margin require-

ments are being designed. To provide normative guidance for considerations that should drive the

minimum margin requirements on derivative contracts and clearinghouse arrangements, we an-

alyze a regulatory design problem for setting these margin requirements when the regulator has

imperfect information about how correlated the risks are (we consider risk-sharing via a clearing-

house setting; the results are similar for the case of third-party insurance). The optimal clearing-

house margin level trades off the benefit of limiting systemic risk when the underlying correlation

turns out to be high against the cost of limiting investments excessively when it turns out to be low;

we illustrate the precise nature of this trade off via a detailed numerical example. Importantly, reg-

ulation in the form of minimum margin requirements—even under incomplete information—can

lower the probability of systemic failure compared to the private setting.
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These models help illustrate our main point that aggregate risk translates into systemic risk

or collective failures depending on the liquidity choices of agents which are endogenous to the

available risk-sharing opportunities.

The ideas in this paper may have general applicability beyond the immediate concerns analyzed

here. Consider any setting in which much of the activity is “routine” but there is an occasional need

to face a complex unexpected scenario. (Most organizations can, in fact, be described in this fash-

ion as largely requiring a set of routine activities which in principle may be implemented following

protocol or ”rules,” but occasionally an unexpected—and consequential—query arises that cannot

be addressed within the rules. In our model, the routine is the management of idiosyncratic risk,

the dramatic is that of systemic risk.) With primitive technology, the same resources are used to

manage both sets of activities, the routine and the rare, so, as a consequence, there are generally

adequate resources available to address crises when they arise. But as technology improves fa-

cilitating specialized handling of activities, the management of the routine can be separated from

the management of the unexpected; the consequent specialization reduces resources available to

address the rare hit (it may no longer be economically viable to maintain resources just to address

the rare complex event), and so makes the organization more vulnerable to derailment from tail

events.

Section 2 discusses the related literature. Sections 3-6 contain our analysis. Section 7 examines

social costs of bank failures and the case for regulatory action. Proofs not contained in the main

body of the paper may be found in the appendices.

2 Related Literature

As noted in the Introduction, prior to the financial crisis, the view that risk-sharing and derivatives

enhanced systemic stability was widely held, but there were important notes of dissent. Speaking

in Jackson Hole, Wyoming, in August 2005, Raghuram Rajan, then Chief Economist of the IMF,

commented that
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While the system now exploits the risk-bearing capacity of the economy better by

allocating risks more widely, it also takes on more risks than before. . . . [T]he linkages

between markets, and between markets and institutions, are more pronounced. While

this helps diversify the system against small shocks, it also exposes the system to large

systemic shocks.2

Rajan’s (qualitative) case for why financial innovations may have made the world riskier focuses

on tail-risk seeking that is driven by short-termism of financial sector pay and incentives. Our

paper offers a formalization that is complementary and leads to similar conclusions that the growth

of markets for risk-sharing could result in greater risk-taking and make the system more vulnerable

to “large systemic” shocks.

Acharya, Cooley, Richardson and Walter (2010) document in detail the process of “manufac-

turing tail risks” that took hold during 2003-07 and the reasons behind it, in particular, excessive

seeking of aggregate risk due to the presence of government guarantees, imperfect regulation and

its arbitrage, and inadequate internalization by the financial sector of externalities from collective

failures. Our paper offers a viewpoint that is complementary to these. It suggests that improve-

ments in financial risk-sharing technology and innovations, and the resulting moral-hazard effect

on private liquidity choices, may be the subtle underlying force behind the growing inadequacy of

private reserves to withstand aggregate shocks.3

Several papers consider the effect of risk-sharing on risk-taking. In early work, Bhattacharyya

and Gale (1987) consider how inter-bank contracts to share liquidity can lead to free-riding on

the common pool of liquidity as individual banks, privately informed about own liquidity shocks,

aim to transfer risks to counterparties. Acemoglu and Zilibotti (1997) provide a model in which

risk-averse agents when offered diversification opportunities are willing to take on risks that were

privately too risky to undertake otherwise. Allen and Carletti (2006) model how ability to transfer

risks from banking to the insurance sector can create risk of contagion from one sector to the other.
2See Cassidy (2009), Chapter 1, p.21.
3This, in turn, may also explain the explosive growth of the financial sector over the past two decades (Philippon

and Reshef, 2012) relative to other sectors of the economy; the growth occurred at the cost of grave risk of future
crises whose costs were partly borne by sectors other than the financial sector.
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Acharya and Bisin (2009) examine how managerial incentives to take on aggregate or idiosyncratic

risks are altered by the ability to privately hedge these risks by trading in capital markets. Zawad-

owski (2009) considers a market for insurance in an “entangled” financial network and shows how

the presence of network externalities can lead in equilibrium to inefficiently little insurance pur-

chase against low-risk events. Yorulmazer (2013) studies how access to insurance against default

risk can lead the insured and the insurer to “herd” as they collectively prefer correlated underlying

risks to transfer risks outside of the financial sector, e.g., on to the taxpayer.

Like these papers, our paper too links risk-sharing to risk-taking, but our primary insight is

somewhat different—that the ability to share risks alters the cost-benefit tradeoff in holding liq-

uidity to hedge against aggregate risk states and this alteration can endogenously transform such

states into collective failure or systemic risk states.

Also related to our paper is the recent literature on clearinghouses. Duffie and Zhu (2009)

study whether risks will be better pooled by single versus multiple clearinghouses. Leitner (2013)

and Acharya and Bisin (2014) examine the extent to which clearinghouses can resolve incom-

plete information about agents’ positions. Pirrong (2009) argues that costs relating to information

asymmetry are higher with a clearinghouse and may potentially outweigh the benefits associated

with the mutualization of risks. Menkveld (2015) identifies the systemic risk arising from crowded

trades by clearinghouse members and proposes a margin methodology to account for it. Tucker

(2014) is a discussion of the moral hazard consequences of clearinghouse arrangements that res-

onates with both our positive analysis of these arrangements (the creation of systemic risk relative

to autarky) as well as the normative analysis (the need for minimum margin requirements).

Koeppl, Monnet and Temzelides (2012) consider the tradeoff faced by a clearinghouse in pro-

viding liquidity to members, while ensuring incentives are in place for carrying out and settling

transactions. Biais, Heider and Hoerova (2011) examine if centralized clearing makes trading

parties better off and whether it eliminates counterparty risk of its members. In their model, risk-

averse buyers of protection trade with risk-neutral sellers who may default. To reduce this default

risk, buyers have an incentive to expend effort and trade with a “good” protection seller. They

show that if risks are idiosyncratic, the clearinghouse is able to fully insure agents against possible
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future losses; but if there is aggregate risk, agents expend effort to search for good counterparties

and are fully insured only in the case when effort is observable and contractible.These findings are

broadly in line with our own, but our model is evidently different in that focuses on the assumption

of risk undertaken by every bank (and hence the aggregate) when risk sharing is and is not possible.

We show that risk sharing endogenously incentivizes the agents in our model to take on more risk

leading to an increased likelihood of systemic failure.

Finally, Rochet and Roger (2014) build a general contracting theory of “risky utilities” - firms

that provide public benefits while still at the risk of default, such as clearinghouses, large banks and

infrastructure companies. They show that the optimal regulatory contract is implemented with a

capital requirement, which, if breached, results in restructuring and expropriation. In contrast, we

show that a simple margin requirement can serve to increase welfare when clearinghouse members

do not internalize the cost of systemic risk, and that this regulation is at its most effective when the

correlation between the shocks to member banks is high.

3 The One-Bank Setting

In this section, we introduce the foundational one-bank model that we embed in multi-bank settings

in Sections 4–6. We consider a model with three dates t ∈ {0, 1, 2}. At date 0, a bank has initial

investable capital of $1. Banks have access to two investment opportunities. The first is a safe

asset (“cash”). The safe asset has a net return of zero; an investment of ` at time t returns ` at time

t+ 1.

The second investment opportunity is in a risky asset or risky project. Figure 1 summarizes

the consequences of investing in this opportunity. Investment in this risky project at time 0 yields

returns at time 2. The risk in the project comes from the potential need to refinance the investment

at time 1. There is a probability α that such refinancing will be required. Refinancing is a zero-

one decision; partial refinancing of the project is not possible. The refinancing amount required is

$ϕ per $1 that was invested in the project. For specificity, we take ϕ = 1; i.e., if refinancing is

required, the refinancing need is 100% of the initial invested amount in the risky project.
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Figure 1: The Risky Investment Opportunity

This figure summarizes the salient features of the risky investment opportunity described in Sec-
tion 3.

Time	  0	   Time	  1	   Time	  2	  

Refinancing	  
required	  

Refinancing	  
not	  required	  

Prob	  α	  

Prob	  1-‐α	  

Refinanced	  

Not	  
Refinanced	  

Payoff	  =	  R	  

Payoff	  =	  0	  

Payoff	  =	  R	  

If the project does not require refinancing at time 1, or if it requires refinancing and is refi-

nanced, then the expected return at time 2 is R > 1 per unit investment in the project at time 0. If

refinancing is needed and the project is not refinanced, the investment returns zero with certainty

at time 2.

Since R > 1, it is always worth refinancing the project at time 1 should such refinancing be

required (and should it be feasible). We make two assumptions concerning the refinancing. First,

we assume that the refinancing need is observable and verifiable. This assumption plays no role

in the current section, but is used in a later section when we consider allowing the bank to use a

contingent claim to guard against this state. Second, we assume that the cash flows from the risky

project are not pledgeable, so the bank cannot raise outside financing against these cash flows. For

the time being (until we introduce risk-sharing possibilities), this means the project may only be

refinanced using the bank’s own internal resources, which in turn means it can only be refinanced

using the amount the bank has invested in the riskless asset.
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The Bank’s Optimal Investment Decision

The tradeoff driving the bank’s investment decision is a simple one: the riskless asset’s return

is lower than that from the risky project, but investing (a suitable amount) in the riskless asset

provides the bank with the ability to refinance the project should refinancing be required—which

happens with probability α. We show that if α is small, then it is not worthwhile for the bank to

divert investment away from the risky project; there is no investment in the riskless asset and the

risky project fails with probability α. As α increases past a critical level, then refinancing becomes

optimal; the bank fully self-insures and invests enough in the riskless asset to meet the refinancing

need (should it arise), and the risky project never fails. Finally, at very high levels of α, investment

in the risky project becomes unprofitable and all investment is made in the riskless asset.

Specifically, let (`, 1− `) denote the investment strategy in which the bank chooses to invest `

in the riskless asset and 1− ` in the risky technology. We prove the following result:

Proposition 3.1 Let λ(R) and ν(R) be defined by

λ(R) =
R− 1

2R− 1
; ν(R) = R− 1.

Then:

1. If α ∈ [0, λ(R)), then the optimal action is `∗ = 0. Since there is no investment in the riskless

asset, the risky project is never refinanced so fails with probability α. The bank’s expected

payoff is (1− α)R.

2. If α ∈ [λ(R), ν(R)], the optimal action is `∗ = 1/2. There is always exactly enough to

refinance the risky project if this is required. The risky project is always refinanced, so never

fails. The bank’s expected payoff is

1

2
[R + 1− α]. (1)
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3. If α > ν(R), the optimal action is `∗ = 1. There is no investment in the risky project and the

bank’s expected payoff is 1.

Remark Note that Case 3 is irrelevant when R ≥ 2 since α ≤ ν(R) is always satisfied in this

case.

Proof See Appendix A. �

In the sections following we extend this model in several directions. Section 4 considers a basic

extension to a two-bank setting and looks at the consequences of permitting risk sharing in this set-

up. Sections 5 and 6 develop a many-firms model and look at the consequences of permitting risk-

sharing via a third-party insurance-style arrangement and a clearinghouse structure, respectively.

4 Two-Banks: Risk-Sharing and Increasing Systemic Risk

Consider a two-bank setting in which each bank faces exactly the same investment opportunities

as in the previous section with exactly the same payoffs, but in which the refinancing needs may

be correlated. Thus, there are four states of the world that are possible:

State Probability Risky Projects Outcome

1 p1 Neither project requires refinancing

2 p2 Only Bank 2 needs refinancing

3 p3 Only Bank 1 needs refinancing

4 p4 Both banks need refinancing

We refer to States 2 and 3 as the “idiosyncratic” risk states and to State 4 as the one of “aggregate”

or “systemic” risk. The total probability of Bank 1 needing refinancing (p3+p4) and the total prob-

ability of Bank 2 needing refinancing (p2+p4) are each taken to equal α, where α is the probability
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in the one-bank setting of a refinancing need. For an arbitrary correlation ρ in refinancing needs,

the probabilities pi take on the form

p1 = ρ(1− α) + (1− ρ)(1− α)2

p2 = (1− ρ)α(1− α)

p3 = (1− ρ)α(1− α)

p4 = ρα(1− α) + α2

(2)

Note that the banks are ex-ante identical. We focus on the case α ∈ [λ(R), ν(R)]. As noted in

Proposition 3.1, the bank under autarky then invests in the risky project but fully (self-)insures this

investment so there is no failure.

We allow the banks to “risk-share” by trading in contingent claims that pay off in specified

states of the world. When contingent claim trading is disallowed, each bank faces precisely the

one-bank model of Section 3 the solution to which is identified in Proposition 3.1; we refer to this

as the model of “autarky.” Of course, even if contingent claim trading is allowed, each bank has

the option to not participate in the contingent claim market; it will elect to participate if and only

if participation raises its expected payoff beyond that in the autarkic solution.

Risk-sharing affords each bank the possibility of lowering its investment in the safe asset while

increasing its investment in the risky asset and relying instead on additional funds from the con-

tingent claims should refinancing of its risky project be required. There is a chance, of course,

that the refinancing shock may be “systemic,” i.e., both banks may require refinancing and there

may not be enough cash to meet the combined refinancing needs.4 Thus risk-sharing involves a

trade-off between the larger returns obtained from investing in the risky project and its failure in

the systemic state.

Observe that risk-sharing benefits accrue in the idiosyncratic-risk States 2 and 3 but not in

the systematic-risk State 4. The likelihood of the idiosyncratic-risk states decreases, and that of

4Note that if there was enough cash to meet combined refinancing need, each bank must have invested enough in
the riskless asset to meet at least its own refinancing need, so we are effectively in the autarky solution.
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the systematic-risk state increases, as the correlation ρ in refinancing needs increases. Intuitively,

therefore, one would expect that there is a critical cut-off level of ρ below which risk-sharing

may dominate the autarkic outcome but above which autarky should dominate. Proposition 4.1

establishes precisely this to be the case:

Proposition 4.1 Fix any R > 1. There is a critical level of correlation ρ∗ > 0 given by

ρ∗ =
1

2R

such that

1. For ρ < ρ∗:

(a) There is an interval of values [λ(R), α∗) of α under any of which there is a risk-sharing

equilibrium in which each bank invests an amount 2/3 in the risky project and an

amount 1/3 in the riskless asset.

(b) Outcomes in this risk-sharing equilibrium strictly dominate outcomes under autarky.

(c) There is a positive probability given by ρα(1−α) +α2 in this risk-sharing equilibrium

of systemic failure (i.e., of both projects needing refinancing and neither obtaining it).

2. For ρ > ρ∗, the outcomes under autarky dominate those under risk-sharing.

Proof See Appendix B. �

The risk-sharing equilibrium described in Proposition 4.1 has the following properties:

1. There is greater individual risk-taking in the form of investment in the risky project by each

bank under risk-sharing than under autarky (2/3 compared to 1/2), and correspondingly lower

total liquidity/cash reserves held in the system under risk-sharing than under autarky (2/3

compared to 1).
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2. A systemic failure (State 4 with no accompanying refinancing) happens with positive proba-

bility in the risk-sharing equilibrium whereas, for the same parameters, there is no systemic

failure under autarky; indeed, there are no individual failures under autarky because each

bank maintains adequate reserves to insure itself.

3. Thus, expected systemic shortfall is zero under autarky but, under risk-sharing, each bank

falls 2/3 short of its refinancing need in the systemic failure state, so expected systemic

shortfall is equal to

2× 2

3
× (ρα(1− α) + α2) =

4

3
(ρα(1− α) + α2).

The results of this section have been derived in a setting that is simple and transparent but

also obviously restrictive (only two firms sharing risks, etc.). In the sections that follow, we de-

scribe a richer framework and examine the consequences of two methods of risk-sharing: insur-

ance purchased from a third-party (Section 5) and a clearinghouse-style co-insurance arrangement

(Section 6).

A final comment is relevant. The results of this section do not, in themselves, carry any welfare

implications, in particular, that risk-sharing is “bad” in the sense of being welfare-decreasing. In-

deed, if there are no externalities from systemic failures, then welfare is (trivially) increased by al-

lowing for risk-sharing. However, if there are social and macroeconomic costs of bank bankruptcy

and systemic failure (resulting, for example, from disruptions in the payment system), risk-sharing

may well be welfare-reducing also. We discuss this subject separately in Section 7.

5 Many Banks: A Centralized Insurance Model

In this section, we move to a setting with a large number of banks and a richer description of

uncertainty. Refinancing needs are driven by a common factor and also by idiosyncratic factors.

When viewed in isolation, each individual bank in this model continues to face the same decision
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problem as in the one-bank setting of Section 3; thus, if the bank decides to remain in autarky and

not participate in risk-sharing, its optimal actions are those specified by Proposition 3.1.

Risk-sharing in this section is achieved by paying a premium and buying insurance as described

below. To describe the full model, we first develop an n-bank model for finite n and then let

n→∞.

The n-Bank Model: Description of Uncertainty

Suppose there are n banks. If Bank i invests an amount ` > 0 in the risky project, it receives an

interim signal Ai ∼ N(0, 1) concerning the returns from the project. If Ai ≤ ci (where ci is a

given critical cut-off), then the project needs to be refinanced, i.e., an additional amount ` needs

to be invested in the project. If the project is not refinanced, it returns zero with certainty. If it is

refinanced, it returns R > 1 with certainty.

The banks are ex-ante identical, and in particular c1 = · · · = cn(= c, say). Denoting the

cumulative standard normal distribution by N(·), we let α = Prob(Ai ≤ c) = N(c) be the ex-ante

probability that a bank will need refinancing. We assume that the signals Ai satisfy5

Ai =
√
ρA+

√
1− ρ εi

where A, εi ∼ N(0, 1), and A and the εi’s are independent. Under this condition, banks’ refinanc-

ing needs have a pairwise correlation of ρ ∈ (0, 1). We refer to A as the common or systematic

factor in determining refinancing needs and to the εi’s as bank-specific or idiosyncratic factors.

Conditional on A = a, note that the probability p(a) that a generic bank needs refinancing is

p(a) = Prob{√ρ a+
√

1− ρ εi ≤ c}

= Prob
{
εi ≤

c−√ρ a
√

1− ρ

}
= N

(
c−√ρ a
√

1− ρ

)
.

5The uncertainty structure is similar to that introduced in Vasicek (2002) in a different context.
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Insurance and Solvency

There is a competitive insurance sector where banks may buy insurance against the refinancing

need by paying a premium of π ∈ [0, 1] per unit refinancing need in the risky project. That

is, if Bank i purchases insurance for a refinancing of b, it pays a premium πb; in exchange, the

insurance company undertakes to provide the bank with up to an amount b to refinance the project

should refinancing be required. We show in Appendix C.1 that if a bank purchases insurance, it is

inoptimal for the bank to also self-insure by investing in the riskless asset, i.e., that without loss

of generality the bank can be restricted to two choices: self-insure (autarky) or buy insurance and

invest in the risky asset. In the latter case, denoting the amount of investment in the risky asset

by b, the maximum size of b for the bank is determined by its resource constraint bπ + b = 1, so

b = 1/(1 + π). Since there is a one-to-one relationship between b and π, we will, for expositional

simplicity, refer in the sequel to k = bπ as the premium charged by the insurance company in

exchange for insuring a refinancing need of 1−k. Refinancing needs are assumed to be observable

and verifiable; a bank cannot file a false refinancing-need claim.

The insurance company’s only source of funds is the premiums it collects; it has no reserves.

We assume that the insurance company holds the premia it collects in the most liquid form (the

riskless asset—cash—in our model). The insurance company may become insolvent if the claims

exceed the total premium collection. Insolvency of the insurance company represents systemic risk

in this setting since it leads to failure of those banks unable to refinance their risky projects; note

however, that the number of such banks is random. Assuming a symmetric equilibrium in which

all n banks buy insurance, the insurance company is solvent as long as the number of banks m

filing for refinancing satisfies

nk ≥ m(1− k),
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or, equivalently, as long as the fraction m/n of banks requiring refinancing satisfies

m

n
≤ k

1− k
.

For a given premium k, this identifies the maximum number of claimants M(k) that will still leave

the insurance company solvent: M(k) = Int[nk/(1 − k)], where Int[x] is the largest integer that

is less than or equal to x. If the insurance company remains solvent, it keeps any profits (excess

of premia collected over payouts) from its operations; if it becomes insolvent, we assume that all

premia are returned to the banks.6

The Limiting Model as n → ∞

For a given realization a of the common factor A, let Xi = 1 denote the event that Bank i needs

refinancing, and Xi = 0 the event that it does not. We have, for any i,

Prob(Xi = 1) = 1− Prob(Xi = 0) = p(a).

Moreover, conditional on a, the Xi’s are independent. So the probability that Bank i needs refi-

nancing and will be able to get it (which is the probability that i and at most (M(k) − 1) of the

remaining n− 1 banks need refinancing) is

p(a)×Prob

{∑
j 6=i

Xj ≤
nk

1− k
− 1

}
= p(a)×Prob

{
1

n− 1

∑
j 6=i

Xj ≤
1

n− 1

(
nk

1− k
− 1

)}

By the Strong Law of Large Numbers, the term [1/(n − 1)]
∑

j 6=iXj on the left-hand side inside

the braces converges to p(a) almost surely as n → ∞, while the term on the right-hand side is

non-stochastic and converges to k/(1 − k) as n → ∞. It follows that as n becomes unboundedly

large, the probability of the term inside the braces is either 1 or 0, depending on whether k/(1−k)

6Since the banks are ex-ante identical, the analysis is essentially unchanged if we instead assume that in the event
of insolvency, the total premia collected are shared amongst only those banks filing refinancing claims.
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is greater than p(a) or not. Therefore, as the number of banks becomes very large, the probability

that Bank i needs refinancing and will receive it from the insurance company is

 p(a), if
k

1− k
> p(a);

0, otherwise.

Let a∗(k) denote the critical value of a below which p(a) < k/(1 − k); of course, a∗(k) also

depends on ρ, but in the interests of notational economy, we suppress this dependence. For a given

value of k, a generic bank obtains:

• a payoff of R(1 − k) if the insurance company remains solvent (a > a∗(k)), regardless of

whether or not the bank needed refinancing;

• a payoff of R(1− k) if the insurance company becomes insolvent (a < a∗(k)) and the bank

did not require refinancing (which happens with probability 1− p(a)); and,

• a refund of its insurance premium k if the insurance company becomes insolvent.

Therefore, the bank’s expected payoff EΠ(k) from purchasing insurance is given by

EΠ(k) =

∫ ∞
a∗(k)

R(1− k)φ(a) da+

∫ a∗(k)

−∞
[R(1− k)(1− p(a)) + k]φ(a) da

where φ(a) denotes the density of the standard normal distribution. Simplifying this expression,

we obtain

EΠ(k) = R(1− k) + kN(a∗(k))−R(1− k)

∫ a∗(k)

−∞
p(a)φ(a) da. (3)

Since the insurance sector is assumed to be competitive, equilibrium outcomes under insurance are

determined by the value of k that maximizes (3). The bank chooses insurance if this maximized

payoff dominates the payoff under autarky; else, it elects to remain autarkic and self-insure.

Our analysis in this section focuses on the situation where α ∈ [λ(R), ν(R)]; under this condi-

tion, recall that it is optimal under autarky to carry enough liquidity to fully self-insure investment
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in the risky project; so there are no individual (hence, no aggregate) bank failures. The autarky

payoff is given by

1

2
[1 +R− α].

Insurance versus Autarky

The principal questions in which we are interested are (i) when, if at all, the equilibrium payoff un-

der insurance can dominate the payoff under autarky (i.e., when will banks prefer buying insurance

to self-insuring), and, (ii) when risk-sharing is preferable, whether it leads to greater aggregate risk

than under autarky (in particular, whether it leads to a greater probability of systemic failure). And

in either case, what is the role played by the correlation ρ?

Under autarky, every bank is optimally fully self-insured with an investment of 1/2 in the

riskless asset and 1/2 in the risky asset. A bank will never buy insurance if k ≥ 1/2.7 If a bank buys

insurance for k < 1/2, the principal advantage gained over autarky is that it can invest 1−k > 1/2

in the risky asset to generate greater returns. The main downside to purchasing insurance is that if

the insurance company becomes insolvent—which will result from a suitably bad aggregate shock

a—the risky project cannot be refinanced if required. (Note too that under insurance, the premium

is lost if the individual bank does not need refinancing and the insurance company remains solvent,

a further downside.) Intuitively, then, we would expect that the benefits of insurance are maximal

at low correlation levels—other things being equal, a lower level of correlation implies a lower

probability of insolvency of the insurance company—so insurance should dominate autarky for

low values of correlation. At high levels of correlation, we would expect the opposite: given

that banks’ refinancing needs are occurring all together, the insurance company is likely to face

insolvency unless premia are very high, and either factor will make autarky more attractive than

purchasing insurance. And, indeed, we establish the following result:

7 A bank can always fully self-insure by investing 1/2 in the risky asset, so buying insurance for k ≥ 1/2 is
suboptimal. Indeed, it is strictly suboptimal even at k = 1/2 because the premium is lost under insurance if the bank
does not need refinancing and the insurance company is solvent, whereas under insurance, the bank retains control of
the investment in the riskless asset.
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Proposition 5.1 For α ∈ [λ(R), ν(R)]:

1. For low correlation levels, risk-sharing via insurance dominates autarky. The situation is

reversed at high correlation levels.

2. When ρ > 0 and equilibrium involves risk-sharing, there is a strictly positive probability of

insolvency of the insurance company and systemic failures.

Proof See Appendix C.2. �

Proposition 5.1 reinforces the two key ideas developed in the simpler model of Section 4,

that risk-sharing could lead to (a) greater risk-taking by banks, and (b) a greater likelihood of

systemic failure. We now move to a characterization of the firm- and market-level implications of

equilibrium, focusing in particular on how outcomes change as correlation changes.

Properties of Equilibrium

Unfortunately, closed-form solutions to the problem are not possible when ρ 6= {0, 1}, so we use

numerical analysis to examine equilibrium outcomes. The figures that follow describe the result

of numerical simulations as ρ varies for R = 2.50 and two values of α, α = 0.40 and α = 0.45.

(Similar payoff patterns hold for other values of the parameters; for reasons of space, we do not

report them here.) The figures reinforce the following key points:

1. For low values of correlation, insurance dominates autarky, but the distance between the two

narrows as correlation rises, and for high enough values of ρ, autarky dominates (upper left

panel of Figure 2).

2. Aggregate systemic liquidity is strictly lower under insurance than under autarky (so ag-

gregate risk-taking—investment in the risky asset—is higher under insurance than autarky)

(upper right panel of Figure 2).
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3. Insurance leads to a strictly positive probability of systemic failure, and this probability

increases as correlation increases (lower left panel of Figure 2).

The upper left panel of Figure 2 describes payoffs under insurance and autarky, and the result-

ing equilibrium payoffs. Equilibrium payoffs are strictly decreasing in ρ for low values of ρ and

become flat at higher values. At low values of ρ, insurance dominates autarky (as noted in Propo-

sition 5.1) and equilibrium payoffs are those resulting from insurance. Insurance becomes less

attractive as correlation increases. But as ρ increases beyond a point, insurance payoffs dip below

autarky payoffs; equilibrium payoffs are now given by the autarky payoffs which are independent

of correlation.

The upper right panel of Figure 2 plots aggregate systemic liquidity as correlation varies. At

low levels of correlation, equilibrium outcomes are those resulting from insurance; aggregate sys-

temic liquidity is equal to the total premia collected by the insurance sector. At high correlation

levels, autarky dominates; aggregate systemic liquidity is the total savings by individual banks

(i.e., their investment in the risk-free asset which, by Proposition 3.1, is equal to 1/2). Aggre-

gate systemic liquidity is increasing under insurance as correlation increases but is always strictly

lower under insurance than under autarky; therefore, aggregate risk-taking (investment in the risky

asset) is always strictly higher when equilibrium involves risk-sharing. Intuitively, as correlation

increases, banks are more likely to need financing together and this leads to an increase in the equi-

librium premium. However, as noted in footnote 7, equilibrium premia under insurance can never

exceed 1/2 because at such levels, autarky would strictly dominate insurance for the individual

bank. Thus, equilibrium liquidity typically involves a discontinuous jump up when autarky begins

to dominate insurance.

The lower left panel of Figure 2 presents the probability of failure of insurance as correlation

changes. The figure considers the same parameter configurations as the upper panel. As intuition

would suggest, the probability of insurance insolvency and systemic failure increases with ρ over

the relevant range where insurance also dominates autarky. When autarky begins to dominate, the

probability of failure drops to zero since there is always full self-insurance under autarky for the
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Figure 2: Equilibrium Under Insurance and Autarky

The four panels of this figure plot various properties of equilibrium in the model of Section 5. In all the figures, the
return from the risky project is set to R = 2.50. In Panels 1 and 4 (top-left and bottom-right, respectively), the value
of α (the probability that refinancing of the risky project will be required) is set to 0.45; the remaining two panels
consider two values each of α as noted in the figures. Panel 1 (top left) plots the payoff to a generic bank as correlation
changes. Panel 2 (top right) plots aggregate systemic liquidity in equilibrium as correlation changes. Panel 3 (bottom
left) plots the probability of systemic failure (i.e., insolvency of the insurance company) as correlation changes. Lastly,
Panel 4 (bottom right) describes the distribution function of the fraction of banks that fail in equilibrium for three levels
of the correlation ρ = 005, 0.15, and 0.25.
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chosen parameters.

Finally, what is the distribution of the fraction of banks which could fail under insurance? That

is, how severe could “systemic” risk be? The bottom right panel of Figure 2 provides an answer.

The figure takes the refinancing-need probability to be α = 0.45 and describes the cumulative

distribution function for the number of failing banks for each of three values of correlation ρ. (For

all three values, insurance dominates autarky.) These distribution functions are consistent with the

lower-left panel which showed that that the probability of default and systemic failure increases

with ρ (the distribution functions get “pushed down” as correlation rises). As also implied in that

panel, for each value of ρ, there is a substantial probability of zero failures (i.e., of insurance

remaining solvent), but in all cases when insurance does fail, it involves a significant fraction of

failing banks.

Once again, it must be emphasized that the possibility of lower liquidity and systemic failure

under risk-sharing has no immediate normative implications. Whether it is welfare enhancing—

and, if not, whether it can be made welfare-enhancing through regulation—depends on the social

and macroeconomic costs of bank failures. In Section 7, we use the distribution of failed banks

resulting from any choice of premium k to identify the first-best solution under insurance when the

costs of bank failures is taken into account. But first we undertake an investigation of an alternative

interesting form of risk-sharing.

6 Clearinghouse: A Co-Insurance model

In this section, we move from a third-party insurance provider model to one in which insurance

takes the form of co-insurance. Before we describe the specific structure of risk-sharing, we make

one small change to the underlying one-bank model; in this section, that model will be taken

to evolve according to the description in Figure 3. The only change from the earlier setting of

Figure 1 is that, when refinancing is not required, the risky project payoff is realized at time 1 itself.

Observe that this makes no difference at all to either the autarkic outcome (which continues to be
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as described in Proposition 3.1) or to the equilibrium and outcomes in the model of Section 5. But

having successful banks’ payoffs realized at time 1 enables us to consider a co-insurance setting

where these payoffs are used to fund those banks that experience refinancing needs. We describe

this setting below.

We assume that there is a “clearinghouse” wholly owned by the banks that provides insurance to

member banks from counterparty credit risk. The clearinghouse is funded with up-front premium

or “margin” payments of size k from each of the participating banks; in addition, the clearinghouse

also has the right to make ex-post capital calls on its members. Specifically, in period 1, when

banks’ refinancing needs are known, these are first funded out of the margins collected by the

clearinghouse. Should this prove insufficient, the clearinghouse can then tap the payoffs realized

by the investments of those banks that did not experience a refinancing need. However, if the initial

margins and the capital calls prove collectively inadequate to meet the total refinancing needs, then

the clearinghouse becomes insolvent and no bank’s refinancing insurance contract is honored. In

this event, we assume that the initial margins are returned to the banks.

Banks take into account this possibility of ex-post transfers in their decision to participate in

the clearinghouse. Conditional on insurance not becoming insolvent, the size of the transfers from

the successful banks to the failed banks is a function of the fraction of banks requiring refinanc-

ing. This fraction (or more accurately, the distribution of this fraction) depends on the size of the

aggregate shock. We look to characterize the equilibria that result in this setting.

As mentioned, k denotes the up-front margin paid by each bank to the clearinghouse. Notation

is otherwise unchanged from previous sections. Per dollar invested in the risky project, the bank

obtains a return ofR if it is successful on the investment. As in Section 5, each bank is subject to an

aggregate shock a as well as an idiosyncratic shock εi and needs to refinance if
√
ρ a+

√
1− ρ εi <

c. Banks are ex-ante identical. Conditional on the aggregate shock a, let p(a) be the fraction of

banks requiring refinancing. For expositional simplicity, we write p for p(a) in the steps that follow.

Conditional on the aggregate shock a, the aggregate revenue of the banks not requiring refi-

nancing is R(1− p)(1− k), while the total refinancing need is p(1− k). Given the initial margin
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Figure 3: The Risky Investment Opportunity: Alternative Version

This figure summarizes the salient features of the risky investment opportunity described in Sec-
tion 6.
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collection of k, this leaves a deficit of p(1 − k) − k to be shared between those banks that were

successful, i.e., did not experience a refinancing need. Thus, the share η(p) of its realized revenues

that each successful bank must give up to the clearinghouse is

η(p) =
p(1− k)− k

R(1− k)(1− p)

If η(p) > 1, then the clearinghouse cannot meet the refinancing needs even with the ex-post capital

calls, so becomes insolvent. Note that we may also have η(p) < 0; this simply means that the

clearinghouse has a surplus left over after meeting refinancing needs and returns this amount to the

successful banks.

Therefore, we now have two cases:

• p > [R(1 − k) + k]/[(1 − k)(1 + R)], i.e. η(p) > 1: The clearinghouse fails and a generic
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bank gets R(1 − k) if it succeeds and 0 otherwise. The initial margin is rebated back to

member banks.

• p ≤ [R(1 − k) + k]/[(1 − k)(1 + R)]: Failed banks have their refinancing needs honored,

realizing (after the bailout) a payoff of R(1− k). Successful banks also lose a fraction η(p)

of their payoff to fund the bailout.

Recall that (using the same notation as in Section 5)

p = p(a) = N

(
c−√ρa
√

1− ρ

)
.

Let a∗(k) be such that p(a∗(k)) = [R(1− k) + k]/[(1− k)(1 + R)]. Then the clearinghouse fails

if a < a∗(k), and is solvent for a ≥ a∗(k). Repeating exactly the analogous steps in Section 5, we

obtain the following expressions for the likelihood of a generic bank’s requiring refinancing and

the clearinghouse being solvent, conditional on a:

Probability if

Event a < a∗(k) a ≥ a∗(k)

Bank needs refinancing, clearinghouse is solvent 0 p(a)

Bank needs refinancing, clearinghouse is insolvent p(a) 0

Bank does not need refinancing, clearinghouse is solvent 0 1− p(a)

Bank does not need refinancing, clearinghouse is insolvent 1− p(a) 0

while the payoffs of the bank in the four cases are:
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Event Payoff

Bank needs refinancing, clearinghouse is solvent R(1− k)

Bank needs refinancing, clearinghouse is insolvent k

Bank does not need refinancing, clearinghouse is solvent R(1− k)[1− η(p(a))]

Bank does not need refinancing, clearinghouse is insolvent R(1− k) + k

Integrating over a, the ex-ante expected profit of a representative bank as a function of k is,

therefore:

EΠc(k) =

∫ a∗(k)

−∞
[R(1− k)(1− p(a)) + k]φ(a) da

+

∫ ∞
a∗(k)

{R(1− k)[1− η(p(a)](1− p(a)) +R(1− k)p(a)}φ(a) da

where, as usual, φ(.) is the density of the standard normal distribution. Substituting the expression

for η(.) and simplifying, we obtain

EΠc(k) = R(1− k) + k −R(1− k)

∫ a∗(k)

−∞
p(a)φ(a)da− (1− k)

∫ ∞
a∗(k)

p(a)φ(a)da

The initial margin k is chosen by the mutually-owned clearinghouse to maximize this profit.

The choice of k will evidently depend on the correlation ρ and other factors. We look to char-

acterize the optimal outcome, focusing in particular on the questions of whether risk-sharing can

dominate autarky; whether risk-sharing leads to greater individual risk-taking than autarky; and

whether risk-sharing leads to greater systemic failure (here insolvency of the clearinghouse) than

autarky.
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Properties of Equilibrium

Our main result is that co-insurance is never worse than autarky, and at low correlation levels, it is

strictly better. Moreover, whenever coinsurance dominates autarky, it involves greater investment

in the risky asset than under autarky and a non-zero probability of clearinghouse failure:

Proposition 6.1

1. For any correlation ρ, the payoff for a generic bank under co-insurance is at least as large

as that under autarky.

2. If ρ < 1/2, then co-insurance leads to strictly higher payoffs than autarky; involves a greater

investment in the risky asset than autarky; and has a non-zero probability of systemic (i.e.,

clearinghouse) failure.

3. There is ρ∗ ∈ (1/2, 1) such that for ρ ≥ ρ∗, the equilibrium value of k is either k = 0 or

k = 1/2.

Proof: See Appendix D.2. �

The four panels of Figure 4 illustrate the coinsurance-autarky comparison. The upper-left

panel presents a typical plot of payoffs in the clearinghouse model as correlation varies. The figure

considers R = 1.6, and α = 0.45. The payoff with the clearing house is at least as large as

that under autarky. As correlation increases, the benefits of risk-sharing decrease, so co-insurance

payoffs fall towards the autarky payoff.

The upper-right panel describes the size of the initial margin (the only cash reserves under

coinsurance since there is no other investment in the riskless asset) for two values of α. In either

case, when correlation is very low, the optimal initial margin is zero; the system relies entirely on

post-facto successful investments to bail out failing firms. But as correlation increases, more firms

fail together, so reliance on successful investments alone is insufficient and the initial margin level

becomes positive, eventually rising towards the autarky level of 0.50. The investment in the risky



Risk-Sharing and the Creation of Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

asset under coinsurance is therefore equal to 1, the maximum possible amount, at low levels of

correlation but decreases towards the autarky level of 1/2 as correlation increases.

The lower-left panel plots the probability of failure of the clearinghouse against correlation.

For the initial low levels of correlation where the optimal initial margin is zero, this probability

of failure increases with correlation. Beyond this point, the collection of initial margin causes the

probability of failure to fall back down, eventually reaching the zero probability level of autarky.

Observe the interesting feature that the peak probability of clearinghouse failure is higher for lower

α, since a lower alpha increases the zone over which zero initial margins are optimal.

Finally, the lower-right panel describes the cumulative distribution functions for the fraction of

bank failures for three different levels of correlation.

Insurance vs Co-insurance

One might expect that, given the possibility of ex-post transfers, co-insurance does at least as well

as the centralized insurance setting of Section 5 for any given level of correlation, and indeed, this

is not difficult to establish:

Proposition 6.2 Banks have a higher expected payoff under co-insurance than under centralized

insurance. EΠc > EΠins where EΠins is the expected profit under centralized insurance.

Proof: See Appendix D.2. �

We can also compare the systemic risk generated under each of the two models by comparing

the distribution of failures under each framework. We omit figures here, but it can be shown that

the number of failures under the centralized insurance model first-order stochastically dominates

outcomes under co-insurance, i.e., for any given threshold number of failures, the likelihood of

failures exceeding this threshold is always higher under the centralized insurance model than under

co-insurance. Thus the introduction of a clearinghouse lowers systemic risk, without eliminating

it entirely.
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Figure 4: Equilibrium Under Co-Insurance and Autarky

The four panels of this figure plot various properties of equilibrium in the model of Section 6. In all the figures, the
return from the risky project is set to R = 1.60. In Panels 1 and 4 (top-left and bottom-right, respectively), the value
of α (the probability that refinancing of the risky project will be required) is set to 0.45; the remaining two panels
consider two values each of α as noted in the figures. Panel 1 (top left) plots the payoff to a generic bank as correlation
changes. Panel 2 (top right) plots aggregate systemic liquidity in equilibrium as correlation changes. Panel 3 (bottom
left) plots the probability of systemic failure (i.e., insolvency of the insurance company) as correlation changes. Lastly,
Panel 4 (bottom right) describes the distribution function of the fraction of banks that fail in equilibrium for three levels
of the correlation ρ = 005, 0.15, and 0.25.
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7 Costs of Systemic Failures and the Case for Regulation

The paper has thus far focussed on the positive aspects of equilibrium and not its normative im-

plications. In particular, we have not yet modeled the potential social/macroeconomic costs bank

failure imposes. We now examine this issue. We assume that the social cost of bank failures is

convex (specifically, quadratic) in the number of failures. This is a natural condition to impose:

the marginal cost of a bank’s failing is likely low if the failure is an isolated event but could be

reasonably expected to increase as the number of other failed banks increases, i.e., as the failure

becomes “more” systemic.

We measure aggregate welfare by the total profits of the banks less the social costs of bank

failures. Since the latter quantity is not internalized by banks, equilibrium and first-best outcomes

will in general differ. The question we are interested in is whether and to what extent regulatory

requirements can improve welfare and lower systemic risk and how equilibrium outcomes under

regulation compare both to equilibrium without regulation and to the first-best outcomes.

We focus on the co-insurance model of Section 6 and take the policy tool available to regulators

in this setting to be the minimum level of initial margins the clearinghouse must require of its mem-

bers.8 We assume that the regulator acts in an environment of incomplete information (otherwise,

the regulator could trivially just impose the first-best margin level); we operationalize the incom-

plete information by assuming that the regulator knows the range within which the correlation ρ

in bank refinancing needs lies but not its exact level. The regulator maximizes expected welfare to

solve for the minimum margin level the clearinghouse should charge. Equilibrium outcomes are

then determined as in Section 6, but with this minimum margin level as a constraint.

We are interested in four questions concerning this “constrained” equilibrium: (i) How does the

equilibrium margin level compare to the unconstrained equilibrium and to the first best?, (ii) How

do the levels of welfare compare across the three settings?, (iii) How does the level of systemic

risk—i.e., failure of the clearinghouse—compare across the three settings?, and (iv) What are the

tradeoffs faced by the regulator in setting these margin levels and how are they reflected in the

8Qualitatively very similar results obtain in the insurance model.
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welfare and systemic risk outcomes?

Failure Costs and the First-Best Solution

Consider the coinsurance setting of Section 6. Let Π(k) denote the ex-ante expected profit to

a generic bank when the clearinghouse charges an up-front initial margin of k. In a first-best

solution, a social planner chooses premium levels k∗ to maximize welfare taking into account the

costs of insurance failure:

max
k∈[0,1]

[EΠ(k)− cE(f(k)2)]

Here, f(k) is the fraction of failures given the insurance premium k, and c is the parameter gov-

erning the social cost of bank failures; a higher value of c implies bank failures are more costly.

Expanding the objective function, the social planner picks k∗ to solve

maxk

[
R(1− k) + k −R(1− k)

∫ a∗(k)

−∞
p(a)φ(a) da− (1− k)

∫ ∞
a∗(k)

p(a)φ(a) da

−c
∫ a∗(k)

−∞
p(a)2φ(a) da

]

Constrained “Second-Best” Equilibrium: The Regulator’s Objective

A regulator in possession of perfect information concerning the model parameters could simply

mandate the level of initial margin that comes out of the first-best solution. Regulators in the

real world, however, typically operate under conditions of (very) incomplete information; bank

regulators may not know the exact composition of bank balance sheets and assets, and utility

regulators may be unaware of the utilities’ true cost structures. To operationalize this uncertainty in

our stylized setting, we assume that the regulator does not know the exact value of the correlation
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ρ in banks’ refinancing needs. Rather, the regulator knows only its ex-ante distribution F with

support [ρmin, ρmax]. Let W (ρ, k) denote the equilibrium welfare level (taking into account the

cost of bank failures) when the true correlation is ρ and the regulator imposes a minimum margin

level of k on the clearinghouse. Then, the regulator picks k∗ to solve

max
k

∫ ρmax

ρmin

W (ρ, k) dF (ρ), (4)

Our objective is to compare the outcome of this constrained equilibrium to those under the first

best and the unconstrained equilibrium.

Regulatory Outcomes and their Properties

Since it is not possible to solve for these equilibrium quantities in closed form, we undertake nu-

merical analysis. To this end, we assume that the regulator’s beliefs F concerning ρ are uniformly

distributed on [ρmin, ρmax] with ρmin = 0.10 and ρmax = 0.20.

Figure 5 compares the outcomes. The figure has three panels. The upper panel compares

equilibrium and the first-best margin levels, the lower left panel compares welfare levels, and the

lower right panel compares the likelihood of systemic risk. Outcomes are shown for a range of

values of the uncertain parameter, ρ, fixing R and α (at 1.8 and 0.4 respectively).

From the upper panel, we observe that in the unconstrained case, the equilibrium margin level

is zero for all ρ in the relevant range (0.10 to 0.20). The first-best level of initial margin is also zero

when ρ is sufficiently small (for reasons explained in Section 6), but then becomes positive and

rises with ρ, reaching a level of over 0.30 by the time ρ is at 0.20. The constrained equilibrium has

a margin level that is throughout equal to the regulator-imposed minimum margin level of 0.16.

The welfare levels shown in the lower left panel reflect these margin levels. For very low

values of ρ, the first-best and unconstrained equilibrium levels of k are very similar, so they lead to

similar welfare levels. However, the constrained equilibrium faces a much higher minimum margin
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Figure 5: Constrained Equilibrium, Unconstrained Equilibrium, and the First-Best

This figure compares outcomes under the constrained second-best equilibrium of Section 7 to the unconstrained equi-
librium and to the first-best solution. The figure has three panels. The upper panel compares the equilibrium margin
level across the three settings. The lower left panel compares the welfare levels that result while the lower right panel
compares the level of systemic risk. The value of R in all cases is taken to be 1.8 and that of α to be 0.4.
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Figure 6: Second-Best Margins

This figure plots the optimal margin levels set by the regulator for different values of R for three different values
of α (0.35, 0.40 and 0.45). As described in the text, the regulator’s belief concerning ρ is a uniform distribution on
[0.10, 0.20].
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requirement, so leads to a lower welfare level. But as ρ rises, and the first-best and unconstrained

levels of k begin to diverge so do their welfare levels, and the constrained equilibrium now does

better than the unconstrained one, achieving very favorable welfare levels compared to the first

best.

Similarly concerning systemic risk, shown in the lower right panel. At very low levels of ρ, the

first-best and unconstrained equilibrium offer similar levels of systemic risk, but the constrained

equilibrium (which has “too high” a level of k for low values of ρ) leads to an even lower prob-

ability of systemic risk than either. As ρ increases, the probability of systemic risk under both

the constrained and unconstrained equilibria increases, whereas that under the first-best drops off

sharply, and falls below that of the constrained equilibrium. In all cases, however, the constrained

outcome has a lower probability of systemic risk than the unconstrained outcome.

While Figure 5 analyzes the constrained equilibrium outcome (relative to the unconstrained and

first-best equilibria) for a given value of R and α, we now look to understand how the second-best
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margin (given by the solution to equation 4) varies across R and α. Figure 6 plots the second-best

margin levels as a function of R when α equals 0.35, 0.40 and 0.45. The regulator continues to

face uncertainty over the correlation parameter which ranges between 0.10 and 0.20 as before. We

observe that the second-best margin is higher when the riskiness of the project (α) increases and is

lower as R increases. This behavior is intuitive. As α increases, there is greater risk of failures and

output losses in the unconstrained equilibrium, and as R increases, there is greater ex-post payoff

to meet refinancing needs so that the risk of failures and output losses is diminished.

Figure 7 illustrates the tradeoffs involved in the design of the second-best margins. The four

panels of the figure show the potential gains from regulation in the form of changes in welfare

(upper two panels) and changes in systemic risk (lower two panels) as R and α vary. The upper

two panels display three statistics - the average, maximal and minimal welfare change - as R

changes, and when α equals 0.35 and 0.45 respectively. The three statistics are over different ρ, i.e.

for a given realization ofR and α, we compute the unconditional expected gain (or loss) in welfare,

where the uncertainty is over ρ, and similarly we compute the realized maximum and minimum

welfare change over different realizations of ρ. The lower two panels display the average, maximal

and minimal reductions in systemic risk (again, over realizations of ρ) as R changes for the same

two values of α.

From the upper and lower left panels, we observe that when α = 0.35, regulation always

lowers systemic risk, but it may also lower welfare. In particular, the minimal welfare change can

be negative, which occurs for realizations of low correlation. It is intuitive that regulation is at its

most effective when correlation between banks’ refinancing needs is high, and so is the expected

output loss from systemic failures. Similarly, the regulation is least effective when this correlation

is low. Note that when R > 1.7, the optimal second-best margin requirement set by the regulator

is exactly the same as the unconstrained equilibrium margin that banks choose.

The upper and lower right panels present the same data for α = 0.40, and we observe the same

qualitative effects. While regulation always lowers systemic risk and increases welfare on average,

there are states of the world where regulation may be counterproductive, lowering welfare. It is the

efficiency loss when realization of correlation is low that drives the tradeoff in the determination
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Figure 7: Welfare and Systemic Risk Effects of Regulation

This figure presents the effects of regulation on welfare levels (upper panels) and on the likelihood of systemic failure
(lower panels). The panels on the left consider a value of α = 0.35 and those on the right take α = 0.40. The results
are presented for a range of values of R from 1.60 to 1.90.
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of second-best margins between reducing systemic risk and reducing economic output.

In summary, regulation even under incomplete information can lower the probability of sys-

temic failure compared to the unconstrained setting. It leads to increased overall welfare in those

settings where the probability of systemic failure is high (because of high ρ) magnifying the social

costs of bank failure. However, when the correlation between banks’ refinancing needs is low,

regulation may be welfare-reducing. The policy implication of this welfare analysis is that the

lack of precise knowledge of all parameters in the economic environment gives rise to a tradeoff

that clearinghouses face between economic efficiency and systemic risk reduction while designing

margin requirements. The optimal margins that take account of this tradeoff should be higher when

the failure risk of clearing members (α) is high and their profitability (R) low.

8 Conclusion

This paper makes the fundamental point that whether aggregate shocks lead to systemic risk or

collective failure of financial firms depends on the liquidity choices of firms but that these liquidity

choices are intimately shaped by the risk-sharing opportunities in the economy. When risk-sharing

opportunities are abundant, holding liquidity to hedge against low-risk aggregate shocks is pri-

vately costly resulting in excessive investment and too little reserves in the system for dealing with

such shocks. This novel insight helps resolve the paradox that risk-sharing appears to have led

to greater systemic risk and incidence of financial crises. In turn, it provides a sound rationale for

minimum reserve requirements for insurance and co-insurance arrangements and minimum margin

requirements for derivative contracts. The need and effectiveness of such regulatory requirements

is the greatest when the correlation between banks’ refinancing needs is high. Important future

work that remains is to understand how such regulation would affect the price of liquidity and the

return on investments, both of which we took as given in this paper.
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A Proof of Proposition 3.1

Pick a strategy (`, 1− `). Since refinancing costs are a dollar per dollar of investment in the risky

asset, the total refinancing need (should a refinancing need arise) will be (1−`). Since only internal

resources may be used to refinance, this means the bank can refinance the risky investment if and

only if ` ≥ (1− `), i.e., if and only if ` ≥ 1/2.

If the bank chooses ` < 1/2, then refinancing is impossible, and investment in the risky project

yields a return of R (per dollar investment) with probability α and 0 with probability 1− α. Since

the riskless project has a return of 1 (per dollar investment) with certainty, the expected payoff

from the strategy (`, 1− `) is

`+ (1− α)(1− `)R = `[1−R + αR] + (1− α)R. (5)

On the other hand, if the bank chooses ` ≥ 1/2, then refinancing is always feasible. Since

refinancing is optimal when it is feasible, and since refinancing costs of a dollar (per dollar invest-

ment) are incurred with probability α, the expected payoff per dollar of investment in the risky

strategy is R− α. So the payoff from the strategy (`, 1− `), conditional on choosing ` ≥ 1/2, is

`+ (1− `)R− α(1− `) = `[1−R + α] +R− α. (6)

.

To identify the optimal strategy for the bank, we compare the maximized values of the pay-

offs (5) and (6), i.e., (i) the maximal payoff conditional on ` < 1/2, and (ii) the maximal payoff

conditional on ` ≥ 1/2. Consider expression (5) first. It is apparent from visual inspection that the

optimal action is to choose `∗ = 0 if 1−R+αR ≤ 0, and to choose `∗ as high as possible (subject

to ` < 1/2) if 1 − R + αR > 0. Thus, the maximum value of the payoff (or the supremum since
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there is no maximum in the latter case) is


(1− α)R, if 1−R + αR ≤ 0

1

2
[1 +R− αR], if 1−R + αR > 0

Now consider the choice of ` that maximizes expression (6) subject to ` ≥ 1/2. Again, simple

visual inspection shows that the optimal action is the smallest possible value of ` (which is `∗ =

1/2) if 1−R+α ≤ 0 and the largest possible value of ` (which is `∗ = 1) if 1−R+α ≥ 0. Thus,

the maximized value of the payoff is


1

2
[1 +R− α], if 1−R + α ≤ 0

1, if 1−R + α > 0

Since R > 1, this gives this three cases to consider:

• Case 1. 0 ≥ 1−R + αR > 1−R + α.

In this case, the maximized payoff under ` < 1/2 is (1−α)R, which corresponds to a choice

of `∗ = 0, while the maximized payoff under ` ≥ 1/2 is

1

2
[1 +R− α] (7)
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The former is greater if and only if 2(1− α)R > 1 +R− α, i.e., if and only if

α <
R− 1

2R− 1
= λ(R)

Thus, for α < λ(R), the optimal action is `∗ = 0 leading to a payoff of 1−α)R if α < λ(R),

while the optimal action is `∗ = 1/2 leading to a payoff of (7) if α ∈ [λ(R), (R − 1)/R].

This establishes Part 1 of the proposition.

• Case 2. 1−R + αR > 0 > 1−R + α.

Note that 1 − R + α < 0 ⇐⇒ α < ν(R) as defined in the statement of Proposition 3.1.

The supremum of the payoffs (there is no maximum) subject to ` < 1/2 here is

1

2
[1 +R− αR], (8)

while the maximized value of the payoffs subject to ` ≥ 1/2 (corresponding to the action

`∗ = 1/2) is the same as given by (7). Since R > 1, the latter is always greater, so it remains

optimal to choose `∗ = 1/2 and thence to obtain the expected payoff (7). This establishes

Part 2 of the proposition.

• Case 3. 1−R + αR > 1−R + α ≥ 0.

In this case, the supremum of the payoffs (there is no maximum) subject to ` < 1/2 continues

to be given by (8), while the maximized payoff subject to ` ≥ 1/2, corresponding to the

optimal action `∗ = 1, is 1. The latter is greater as long as

1 +R− αR < 2 ⇐⇒ R(1− α) < 1

But this always holds since we are considering the case 1−R+ αR > 0. Thus, the optimal

action in this case is to set `∗ = 1 and to receive an expected payoff of 1. This establishes

Part 3 and completes the proof of the proposition.
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B Proof of Proposition 4.1

Recall that when α ∈ [λ(R), ν(R)] (the case we are considering), under autarky each bank invests

an amount of 1/2 in the riskless asset and 1/2 in the risky project, and receives an ex-ante expected

payoff of

1

2
(1 +R− α). (9)

Consider the following strategies for the two banks that corresponds to a “mutualization” of

risk (equivalently, to each bank buying a specific contingent claim from the other bank):

1. Each bank contributes an amount `∗ = 1/3 to a common insurance “pool.” The pool is

invested in the riskless asset.

2. Each bank invests its remaining funds 1− `∗ = 2/3 in its risky project.

3. Either bank can claim the amount in the pool if its risky project requires refinancing. (Recall

that the refinancing need is observable and verifiable, so false claims cannot be made.)

4. If more than one bank makes a claim at the same time, then the banks share the available

money equally.

5. If neither bank experiences a refinancing need, the available money in the pool is equally

divided between the two banks at time 2.

Since each bank invests 2/3 in the risky project, and there is a total of 2/3 invested in the

riskless asset, there is exactly enough to refinance one project but not both. So if only one bank

needs refinancing (which happens in States 2 and 3), the project can be refinanced, but if both

banks need refinancing (State 4), refinancing is impossible and there is “systemic” failure. Note

too that if either bank deviates unilaterally to a lower contribution to the pool, there will not be
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enough cash to refinance even one project, so the only possible deviation that could dominate the

chosen allocation is autarky, a point we will return to shortly.

The state-wise payoff from the specified strategies for each bank is:

State Payoff

1 1/3 + 2R/3

2 2R/3

3 2R/3

4 1/3

So the expected payoff to each bank from the described strategies is

1

3
(p1 + p4) +

2

3
(1− p4)R, (10)

or, substituting for the probabilities pi,

1

3
[1− 2(1− ρ)α(1− α)] +

2

3
(1− α)(1 + α− αρ)R (11)

This risk-sharing payoff (11) dominates the autarky payoff (9) as long as

{
1

3
[1− 2(1− ρ)α(1− α)] +

2

3
(1− α)(1 + α− αρ)R

}
≥ 1

2
(1 +R− α)

A little bit of algebra shows that this condition is equivalent to the condition that

(R− 1) [1− 4α(α + ρ− αρ)] ≥ α (12)

When does (12) hold? As ρ ↓ 0, this reduces to the condition that

(R− 1)(1− 4α2) ≥ α (13)
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Now, as α approaches its lower bound λ(R) = (R− 1)/(2R− 1), the left-hand side of (13) tends

to

(
R− 1

2R− 1

)(
4R− 3

2R− 1

)

while the right-hand side approaches (R− 1)/(2R− 1). Therefore, in the limit, the left-hand side

is strictly larger as long as

4R− 3

2R− 1
> 1,

which always holds since R > 1. Since the inequality holds strictly, it follows that there exists

an interval [λ(R), α∗) such that for α in this interval, risk-sharing strictly dominates the autarky

payoff.

It is easy to see from this that for any such α the proposed strategies constitute an equilibrium.

From the dominance, neither party will prefer to revert to an autarkic equilibrium. Neither party

will also wish to deviate to a lower (but positive) contribution to the pool because there will then

not be enough resources in the pool to refinance even one project. And neither party will wish to

deviate to a zero contribution since payoff from a zero contribution leads, at best, to the autarkic

payoff which is dominated by the proposed risk-sharing strategies.

By continuity in ρ, it follows that for all suitably small ρ, there is an interval [λ(R), α∗) of

possible values of α such that the risk-sharing equilibrium dominates autarky for all α in this

interval. The upper-bound α∗ depends on ρ (and indeed, declines in ρ, since it is easily checked

that the payoff (11) from risk-sharing is declining in ρ).9

At high correlations, however, the situation reverses itself, i.e., autarky dominates the payoff

under risk-sharing:

1

3
[1− 2(1− ρ)α(1− α)] +

2

3
(1− α)(1 + α− αρ)R <

1

2
(1 +R− α). (14)

9How large can α∗ be? It must clearly be strictly less than 1/2, since (13) clearly fails for α ≥ 1/2.
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To see (14), note that as ρ ↑ 1, the left-hand side tends to the limit

1

3
+

2

3
(1− α)R,

and this is strictly less than the right-hand side of (14) if

2 + 4(1− α)R < 3(1 +R− α)

i.e., if α > (R−1)/(4R−3). But α > (R−1)/(2R−1) by hypothesis, and (2R−1) < (4R−3),

so certainly α > (R− 1)/(4R− 3), so the strict inequality (14) holds in the limit. Once again, by

continuity in ρ, it follows that for sufficiently high ρ, autarky dominates risk-sharing.

Finally, as observed earlier, the expected payoff from risk-sharing (11) is strictly decreasing in

ρ: differentiating this payoff with respect to ρ, we obtain

2

3
α(1− α)− 2

3
α(1− α)R =

2

3
α(1− α)(1−R) < 0 (15)

It follows that there is a unique ρ∗ such that (a) for ρ > ρ∗, autarky dominates risk-sharing for

all α ≥ λ(R), while (b) for ρ < ρ∗, there is an interval [λ(R), α∗) of possible values of α such

that risk-sharing dominates autarky for all α in this interval. Since α∗ declines in ρ, we can solve

explicitly for ρ∗ by taking α equal to λ(R) and setting the two sides of (12) equal:

(R− 1)

[
1− 4

(R− 1)2

(2R− 1)2
− 4ρ∗

R− 1

2R− 1

(
1− R− 1

2R− 1

)]
=

R− 1

2R− 1

or, rearranging and canceling common terms,

[
1− 4

(R− 1)2

(2R− 1)2
− 4ρ∗

R(R− 1)

(2R− 1)2

]
=

1

2R− 1

Multiplying through by 2R− 1,

2R− 1− 4
(R− 1)2

2R− 1
− 4ρ∗

R(R− 1)

2R− 1
= 1
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So

2R− 2 = 4
(R− 1)2

2R− 1
+ 4ρ∗

R(R− 1)

2R− 1

Multiplying through again by (2R− 1) and re-arranging, we have

2(R− 1)(2R− 1)− 4(R− 1)2 = 4ρ∗R(R− 1)

The left-hand side of this expression is 2(R− 1)[(2R− 1)− 2(R− 1)] = 2(R− 1), so we obtain

2(R− 1) = 4ρ∗R(R− 1), which finally gives us

ρ∗ =
1

2R
(16)

This completes the proof of Proposition 4.1. �

C Proofs for Section 5

C.1 Strategies in the Insurance Setting

In Section 5, we restricted attention to two choices of strategy for a generic bank: either stay in

autarky, or buy insurance (say, total premium paid = k) and invest the entire remaining balance

1 − k in the risky asset. We show here that this restriction is without loss of generality, i.e., that

even if we allow for the bank to purchase insurance, and invest in both the risky and riskless assets,

it will not be an equilibrium action for the bank to do so.

To this end, note that the only reason to invest additionally in the riskless asset (after purchasing

insurance) is to have enough funds for refinancing, so without loss, the only two possibilities we

need to consider when purchasing insurance are: The firm buys insurance for k and either

1. invests 1− k in the risky asset; or
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2. invests 1/2 in the risky asset and (1− 2k)/2 in the riskless asset.

Under the second strategy, the firm invests less in the risky asset than under the first strategy (so

there is less reward if that project pays off) but compensating for this, the firm always has enough

to bail out the risky project if the insurance company becomes insolvent.

We show that the payoff of the second strategy is always dominated by autarky. This means

that it is never an equilibrium action, so in identifying equilibria, it suffices to consider only the

choice between autarky and the first strategy, which is precisely what we do in Section 5. The

payoff under the second strategy is



1

2
R + (

1

2
− k), if the insurance company remains solvent

1

2
R +

1

2
, if no refinancing needed + insolvency

1

2
R if refinancing needed + insolvency

So its expected payoff is

1

2
R +

(
1

2
− k
)∫ ∞

a∗(k)

φ(a) da+
1

2

∫ a∗(k)

−∞
(1− p(a))φ(a) da

or, simplifying

1

2
R +

1

2
− k

∫ ∞
a∗(k)

φ(a) da− 1

2

∫ a∗(k)

−∞
p(a)φ(a) da

The payoff from autarky is
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1

2
R +

1

2
− 1

2
α =

1

2
R +

1

2
− 1

2

∫ ∞
−∞

p(a)φ(a) da

so autarky dominates if and only if

k

∫ ∞
a∗(k)

φ(a) da+
1

2

∫ a∗(k)

−∞
p(a)φ(a) da ≥ 1

2

∫ ∞
−∞

p(a)φ(a) da

i.e., if and only if

k

∫ ∞
a∗(k)

φ(a) da ≥ 1

2

∫ ∞
a∗(k)

p(a)φ(a) da

Since p(a) < k/(1− k) for a > a∗(k), we observe that

1

2

∫ ∞
a∗(k)

p(a)φ(a) da <
1

2
p(a∗(k))

∫ ∞
a∗(k)

φ(a) da =
k

2(1− k)

∫ ∞
a∗(k)

φ(a) da

Therefore, to prove that

k

∫ ∞
a∗(k)

φ(a) da ≥ 1

2

∫ ∞
a∗(k)

p(a)φ(a) da

it suffices to show that

k

∫ ∞
a∗(k)

φ(a) da ≥ k

2(1− k)

∫ ∞
a∗(k)

φ(a) da

But this is always true since k ≤ 1/2.
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C.2 Proof of Proposition 5.1

We first prove the following result for the two extreme values of ρ:

Proposition C.1 For α ∈ [λ(R), ν(R)]:

1. When ρ = 0, insurance strictly dominates autarky. There are no systemic failures under

autarky or insurance. However, insurance leads to higher aggregate risk-taking: the equi-

librium under insurance involves a strictly larger investment in the risky project by each

bank than under autarky.

2. When ρ = 1, autarky strictly dominates insurance.

Proof When correlation is zero, the systematic factor a is irrelevant (effectively, a∗(k) = −∞).

From the law of large numbers, the fraction of banks requiring refinancing is, with probability

one, equal to α, the failure probability of any one bank. Thus, for the insurance company to

remain solvent with certainty, the premium k collected from each bank must be at least equal to

the expected payout of α(1 − k) to that bank; any lower level of premium will lead to insolvency

with probability one. Solving for k, we obtain

k =
α

1 + α

Given this value of k, the expected payoff to each bank is the certainty quantity

R(1− k) =
R

1 + α

This is greater than the payoff (1 +R− α)/2 under autarky if and only if

2R ≥ (1 + α)(1− α) + (1 + α)R,

which is precisely the condition that R ≥ 1 + α or α ≤ R − 1 = ν(R). Moreover, since the

insurance company remains solvent with probability one, there are no failures of the risky project
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in the aggregate. Finally, note that under insurance, each bank invests an amount 1/(1 + α) in the

risky project whereas under autarky, the amount invested in the risky project is 1/2. The former

amount is always larger than the latter since α < 1. This establishes the first part of the proposition.

The second part is trivial. When correlation is perfect, the banks all need refinancing together,

so the only way the insurance company will remain solvent is if each bank’s insurance premium is

enough to refinance the bank. Thus, the premium is the same as the investment in the riskless asset

under autarky, but unlike autarky, this amount is lost under insurance if the bank does not require

refinancing. �

The proof of Proposition 5.1 now follows easily:

Proof of Proposition 5.1 Part 1 of the Proposition just follows from Proposition C.1 by continuity.

For Part 2, note that a∗(k) > −∞ for any k and, in particular, for the equilibrium value of k. So the

probability that the insurance company becomes insolvent is given by the strictly positive quantity

1−N(a∗(k)). �

D Proofs for Section 6

D.1 Strategies in the Co-Insurance Setting

If a bank in the clearinghouse setting buys insurance from the clearinghouse, the only motivation

for further investing in the risk-free asset is to ensure that it can refinance its risky project even if

the clearinghouse is insolvent. That is, if the bank buys insurance from the clearinghouse for (say)

k, we may without loss restrict attention to two investment strategies for the bank:

1. Invest the remaining 1− k in the risky asset.

2. Invest (1/2− k) in the riskless asset and 1/2 in the risky asset.

In this section, we show that the second of these strategies is always suboptimal, meaning that

we may, in our analysis of coinsurance, restrict attention to the first strategy and autarky. Consider



Risk-Sharing and the Creation of Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

a bank that invests k as margin in the clearing house and 1/2−k in the riskless asset. If the clearing

house fails, the bank’s payoff equals
1

2
(1 +R), if bank does not require refinancing
1

2
R, otherwise.

Recall that the clearing house fails if the aggregate shock(a) is less than a∗(k). If each bank invests

exactly 1/2 in the risky asset, the transfer function (conditioning on a fraction of p failures) satisfies

k +
R(1− p)

2
η(p) = f/2,

or

η(p) =
p/2− k

R(1− p)/2
.

If the insurance company remains solvent, it automatically refinances all projects. Further, banks

also obtain the payoff from their riskless investment. Therefore, the banks’ expected profit becomes

EΠc(k) =

∫ a∗(k)

−∞
[(
R

2
+

1

2
)(1− p(a)) +

R

2
p(a)] φ(a) da

+

∫ ∞
a∗(k)

[(
R

2
(1− p(a))(1− η(p(a))) +

R

2
p(a) + (

1

2
− k)] φ(a) da

Doing some algebra, we get that this equals (1 +R−α)/2, independent of k and equaling autarky

payoff. This proves the result.
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D.2 Proof of Proposition 6.1

The expected profit to a bank under the clearinghouse model

EΠins = R(1− k) + k −R(1− k)

∫ a∗(k)

−∞
p(a)φ(a)da− (1− k)

∫ ∞
a∗(k)

p(a)φ(a)da

Here, a∗(k) is the threshold value of a below which insurance fails;

p(a∗(k)) =
R(1− k) + k

(R + 1)(1− k)
where p(a) = N

(
c−√ρa
√

1− ρ

)

This implies

a∗(k) =
c−
√

1− ρN−1(R/(1 +R) + k/((1 +R)(1− k)))
√
ρ

Now, observe that if k = 1/2, a∗(k) = −∞, so EΠc = (1 + R − α)/2, which equals the payoff

under autarky. The optimal k∗ under the clearinghouse arrangement must do at least as well as

k = 1/2, so this establishes Part 1 of the result that payoffs under the clearinghouse are never

inferior to those under autarky.

To see Part 2, note first that since each bank can fully self-insure at k = 1/2, we may restrict

attention without loss of generality to the clearinghouse choosing k ∈ [0, 1/2]. Now, the probabil-

ity of systemic risk (i.e., of clearinghouse failure) is given by N(a∗(k)). Whenever a∗(k) > −∞,

this probability is always positive; moreover, as is easily checked, a∗(k) > −∞ whenever k < 1/2

(and more generally that as k ↑ 1/2, a∗(k) ↓ −∞).

We will show that for ρ < 1/2, we have k∗ < 1/2. This will establish Part 2 since (i) the

investment in the risky asset under the clearinghouse is then (1− k∗) > 1/2, and (ii) for k∗ < 1/2,

the probability of systemic failure is N(a∗(k)) > 0. Since k∗ ∈ [0, 1/2], we can prove this by
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showing that the payoff function is decreasing in k at k = 1/2, i.e., that ∂EΠc(k)/∂k < 0 at

k = 1/2.

Now,

∂EΠc(k)

∂k
= −R+1+α−(R−1)(1−k)p(a∗(k))φ(a∗(k))

∂a∗(k)

∂k
+(R−1)

∫ a∗(k)

−∞
p(a)φ(a)da

Notice that

lim
k↑1/2

p((a∗(k)) = 1 ; lim
k↑1/2

∫ a∗(k)

−∞
p(a)φ(a)da = 0

Also,

∂a∗(k)

∂k
= −

√
1− ρ

√
ρ(1 +R)(1− k)2

1

φ(N−1[ R
1+R

+ k
(1+R)(1−k) ])

Doing some algebra,

φ(a∗(k))
∂a∗(k)

∂k
= C × exp

{
1

2
[(
c−√ρa∗(k)
√

1− ρ
)2 − a∗(k)2

}

where

C = −
√

1− ρ
√
ρ

1

(1 +R)(1− k)2

We can see that, if ρ < 1/2, then limk↑1/2[φ(a∗(k)) · ∂a∗(k)/∂k] = 0. Therefore,



Risk-Sharing and the Creation of Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

lim
k↑1/2

∂EΠc(k)

∂k
= −R + 1 + α < 0,

where the final inequality follows from the maintained assumption thatR > 1+α. This establishes

the second part of Proposition 6.1.

To see Part 3 of the Proposition, we consider the behavior of the second derivative of the payoff

function with respect to k:

∂2EΠc(k)

∂k2
=

∂

∂k

[
−(R− 1)(1− k)p(a∗(k))φ(a∗(k))

∂a∗(k)

∂k
+ (R− 1)

∫ a∗(k)

−∞
p(a)φ(a)da

]

= 2(R− 1)p(a∗(k))φ(a∗(k))
∂a∗(k)

∂k
− (R− 1)(1− k)

∂p(a∗(k))φ(a∗(k))∂a
∗(k)
∂k

∂k

Now,

p(a∗(k)φ(a∗(k))
∂a∗(k)

∂k
=

[
R

1 +R
+

k

(R + 1)(1− k)

]
1

(1− k)2
exp(

1

2
η(k))C (17)

where C = C(k)(1− k)2 = −
√
1−ρ√
ρ

1
(1+R)

. Also,

∂

∂k

[
R

(1 +R)(1− k)2
+

k

(R + 1)(1− k)3

]
=

2R

(1 +R)(1− k)3
+

(1 + 2k)

(R + 1)(1− k)4
≡ f(k)

Therefore, the derivative of (17) is given by

∂(17)

∂k
= C exp(

1

2
η(k))

[
f(k) +

1

2
η′(k)× p(a∗(k)

(1− k)2

]
(18)
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Now, we obtain the expression for η′(k). Recall that

η(k) =

[
c2 + (2ρ− 1)a∗(k)2 − 2c

√
ρa∗(k)

1− ρ

]

Therefore,

η′(k) =
1

1− ρ

[
(2ρ− 1)× 2

∂a∗(k)

∂k
a∗(k)− 2c

√
ρ
∂a∗(k)

∂k

]
= 2

∂a∗(k)

∂k

[
1

1− ρ
((2ρ− 1)a∗(k)− c√ρ)

]

Substituting the expression for ∂a∗(k)/∂k, the above reduces to

η′(k) = −2

√
1− ρ
√
ρ

[
(2ρ− 1)

(1− ρ)

(
c−

√
(1− ρ)N−1(p(a∗(k))

√
ρ

)
−

c
√
ρ

(1− ρ)

]
× 1

(1 +R)(1− k)2
1

φ(N−1[ R
1+R

+ k
(1+R)(1−k) ])

After some algebra, this becomes

η′(k) = 2

[
c

√
1− ρ
ρ

+
(2ρ− 1)

ρ
N−1(p(a∗(k))

]
× 1

(1 +R)(1− k)2
1

φ(N−1[ R
1+R

+ k
(1+R)(1−k) ])

(19)

Now, we go back to the second derivative. Using the fact thatC exp(1
2
η(k)) = (1−k)2φ(a∗(k))∂a

∗(k)
∂k

,

we have that ∂2EΠc(k)/∂k2 equals

2(R−1)p(a∗(k))φ(a∗(k))
∂a∗(k)

∂k
−(R−1)φ(a∗(k))

∂a∗(k)

∂k
(1−k)3

[
f(k) +

1

2
η′(k)× p(a∗(k)

(1− k)2

]

Observing that f(k)(1− k)3 = 2p(a∗(k)) + 1
(1+R)(1−k) , the above simplifies to
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∂2EΠc(k)

∂k2
= −(R− 1)φ(a∗(k))

∂a∗(k)

∂k

[
1

(1 +R)(1− k)
+

1

2
η′(k)× (1− k)p(a∗(k))

]

Now, noticing that ∂a∗(k)/∂k < 0, we see that

∂2EΠc(k)

∂k2
> (<)0 iff

[
1

(1 +R)(1− k)
+

1

2
η′(k)× (1− k)p(a∗(k))

]
> (<)0

For ρ close to 1, we observe that η′(·) > 0, and so the above second derivative is positive. In

general, for c < 0, there will be a cutoff value of ρ above which η′ > 0 for all k. The payoff

function is then convex and so the maximand of the function is is either k = 0 or k = 1/2; k = 0

will be chosen if EΠc(0) = R − α − (R − 1)
∫ a∗(0)
−∞ p(a)φ(a)da > (1 + R − α)/2 = EΠc(1/2).

This completes the proof of Part 3 of Proposition 6.1. �

D.3 Proof of Proposition 6.2

Recall that

EΠins = R(1− k) + kN(a∗0(k))−R(1− k)

∫ a∗0(k)

−∞
p(a)φ(a) da

where a∗0(k) =
c−
√
1−ρN−1( k

1−k
)

√
ρ

is the threshold value of a below which insurance defaults in the

centralized insurance model. Note that ∆Πins = EΠc − EΠins is given by
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∆Πins = k(1−N(a∗0(k)))− (1− k)

∫ ∞
a∗(k)

p(a)φ(a)da+R(1− k)

∫ a∗(k)

a∗0(k)

p(a)φ(a)da

= k(1−N(a∗0(k)))− (1− k)

∫ ∞
a∗0(k)

p(a)φ(a)da+ (R− 1)(1− k)

∫ a∗(k)

a∗0(k)

p(a)φ(a)da

> k(1−N(a∗0(k)))− (1− k)p(a∗0(k))

∫ ∞
a∗0(k)

φ(a)da+ (R− 1)(1− k)

∫ a∗(k)

a∗0(k)

p(a)φ(a)da

= (R− 1)(1− k)

∫ a∗(k)

a∗0(k)

p(a)φ(a)da

> 0

This completes the proof of Proposition 6.2 �


