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Abstract

We provide an estimate of the value of a cure using the joint behavior of stock prices
and a vaccine progress indicator during the ongoing COVID-19 pandemic. Our indi-
cator is based on the chronology of stage-by-stage progress of individual vaccines and
related news. We construct a general equilibrium regime-switching model of repeated
pandemics and stages of vaccine progress wherein the representative agent withdraws
labor and alters consumption endogenously to mitigate health risk. The value of a cure
in the resulting asset-pricing framework is intimately linked to the relative labor sup-
ply across states. The observed stock market response to vaccine progress serves to
identify this quantity, allowing us to use the model to estimate the economy-wide wel-
fare gain that would be attributable to a cure. In our estimation, and with standard
preference parameters, the value of the ability to end the pandemic is worth 5-15%
of total wealth. This value rises substantially when there is uncertainty about the fre-
quency and duration of pandemics. Agents place almost as much value on the abil-
ity to resolve the uncertainty as they do on the value of the cure itself. This effect is
stronger – not weaker – when agents have a preference for later resolution of uncer-
tainty. The policy implication is that understanding the fundamental biological and
social determinants of future pandemics may be as important as resolving the imme-
diate crisis.
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1 Introduction

Quantifying the scale of the economic damage caused by a pandemic is a crucial step in assess-

ing policy responses along social, medical, fiscal, and monetary dimensions. This paper builds

on the hypothesis that stock markets may contain valuable information for gauging the value of

ending the pandemic. Stock markets, which corrected by as much as 40-50% at the outbreak of

the coronavirus pandemic in February-March 2020, have rebounded robustly within six months.

While there are many explanations proposed for the seeming disconnect between the real econ-

omy ravaged by the pandemic and the buoyant stock market, one candidate on the table relates

to the progress in development of vaccines1 to end the pandemic. On the one hand, only the ar-

rival (and delivery) of an efficacious vaccine is considered as a definitive event that will end the

pandemic and result in robust economic recovery.2 On the other hand, stock prices – by reflect-

ing forward-looking expectations – should reflect the economic value of credible progress in the

development of vaccines; this value arises from the ability of vaccines to end the pandemic and is

naturally related to the scale of the economic damage caused by the pandemic.

The relationship between stock prices and vaccine development is well-illustrated by the fol-

lowing examples. On May 18 and July 14, 2020, Moderna, one of the vaccine developing compa-

nies, announced good news relating to the progress in its Phase I clinical trials and moving to the

next stage of trials. Similarly, on November 9, 2020, Pfizer and BioNTech announced positive news

regarding their Phase III clinical trials. In response to these news, the U.S. stocks gained over $1

trillion in cumulative market capitalization over these three days, with several pandemic-exposed

sectors such as airlines, cruise ships, and hotels experiencing 10-20% appreciations on each day.

These moves were both economically large and indicative of time to deployment of a vaccine

being an important factor driving variation in stock market prices.3

We build upon these observations and offer an asset-pricing perspective to estimate the value

of a cure, i.e., the amount of wealth that a representative agent would be willing to pay for ob-

taining a vaccine that puts an end to the pandemic. While there are now several estimations in
1We use “cure" and “vaccine" interchangeably to denote something that brings the pandemic to an end, despite being
medically very different.

2See Lauren Fedor and James Politi, Financial Times, May 18, 2020 in the Appendix.
3See (1) Matt Levine, Money Stuff, May 19, 2020, (2) Matt Levine, Money Stuff, July 16, 2020, (3) John Authers,
Bloomberg Opinion, November 10, 2020, and (4) Laurence Fletcher and Robin Wigglesworth, Financial Times, Novem-
ber 14, 2020 in the Appendix.
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the literature of how costly the pandemic is to the economy, our approach is different in that it

uses stock market data to calculate the ex-ante value of a cure. Our approach is directly analogous

to the seminal work of Lucas (1987) in assessing the welfare costs associated with business cycle

risk. Just as that paper provides a framework for assessing the consequences of policy responses

to mitigate output volatility, our work speaks to the cost-benefit analysis of potential public sector

investment in alleviating the threat of current and future pandemics. Going beyond our baseline

estimate for the value of a cure, we can also shed light on which of the primitive elements of the

economy are driving that value.

Our analysis proceeds as follows.

First, we document empirically the joint behavior of stock returns (for market portfolio and

cross-section of industries) and expected time to deployment of a vaccine. To this end, we con-

struct a novel “vaccine progress indicator." Our indicator is based on the chronology of stage-by-

stage progress of individual vaccines (obtained from the Vaccine Centre at the London School of

Hygiene & Tropical Medicine) and related news (obtained from FactSet). Using data on vaccine

development for past epidemics and surveys during the COVID-19 pandemic, we calibrate the

probabilities of transition across different stages of vaccine development and use news to “tap"

these probabilities up or down. We then simulate over 200 vaccine “trials" corresponding to the

vaccines being developed, factoring in a correlation structure between trials based on relevant

characteristics such as their approach (“platform"), belonging to a common company, etc. The re-

sult of this exercise is a vaccine progress indicator using all available information at a given point

of time expressed in terms of expected time to deployment of a vaccine.4 The evolution of our

indicator is shown in Figure 1.

We then relate stock market returns to changes in the expected time to deployment of a vaccine

by regressing the returns on changes in our vaccine progress indicator, controlling for lagged

returns as well as large moves attributable to release of other macroeconomic news. Allowing

for some lead-lag structure in the relationship, e.g., due to leakage of news or dating noise in our

news data, we estimate that a reduction in the expected time to deployment of a vaccine by a year

results in an increase in the stock market return as a whole by between 4 to 8% on a daily basis.

4An analogy from credit risk literature is that of a first-to-default basket in which several correlated firms are part of a
basket and the quantity of interest is the expected time to a first default.
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The joint relationship exhibits the anticipated cross-sectional properties, with the co-movement

between returns and changes in the vaccine progress indicator being stronger for sectors most

affected by the COVID-19 pandemic (see Figure 4).

Second, we build a general equilibrium regime-switching model of pandemics with asset pric-

ing implications to translate this empirical co-movement of stock returns and vaccine progress

indicator into the value of a cure. We consider an economy with a representative agent who has

stochastic differential utility (Epstein-Zin preferences) with endogenous labor and consumption

choices. The state of the economy can be “normal," i.e., without a pandemic, or in a pandemic;

within the pandemic, there are several regimes mapping into the stages of vaccine development.

The economy transitions across these states based on a set of stationary probabilities. Once the

economy switches out of a pandemic, another pandemic may occur in future. Labor augments

agent’s capital stock that can be readily converted into consumption; however, labor exposes the

agent to the pandemic in that within the pandemic regime, the agent can be hit by a health shock

that destroys forever a part of the agent’s capital stock, and this likelihood is proportional to the

labor supply.5 A key feature of the model is that the agent withdraws labor in the pandemic states

in order to mitigate the economic exposure to a health shock. In other words, the arrival of a pan-

demic and the incidence of a health shock for the agent within the pandemic can be considered as

“rare disasters”, the exposure to which is partly controlled by the agent.

Third, we characterize the solution to the agent’s problem of choosing labor and consump-

tion in each state of the economy and derive the respective objective function values, which are

inter-dependent but are amenable to a straightforward numerical solution of a fixed-point prob-

lem. We can then examine the pricing kernel and asset prices in this framework; in particular,

we evaluate the value of a claim to future output, and study its relationship with the expected

time to switching out of a pandemic state. This provides a theoretical counterpart to our empirical

estimate of co-movement between stock market return and changes in vaccine progress indicator.

A principal insight of our asset-pricing perspective is the following: the improvement in the wel-

fare of the agent in switching out of a pandemic is related to the extent of contraction in labor in

5The permanent loss of capital stock can be due to a variety of factors such as loss of life, reduced productivity or
attrition of human capital in working from home amidst closures of schools and lack of child care support, filing of
bankruptcies with deadweight losses in asset value, and firing of labor with difficulty in re-matching to available jobs
at a future date.
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the pandemic state relative to the non-pandemic one; this same labor contraction is an important

statistic (modulated by preference and pandemic parameters) that determines how sensitive are

stock prices to progress towards deployment of a vaccine. The model delivers the implication that

the value of moving from a pandemic state to a non-pandemic state is simply the ratio of marginal

propensity to consume in the pandemic state to that in the non-pandemic state, augmented by the

intertemporal elasticity of substitution. Thus, the desire to resolve uncertainty sooner is informed

by the endogenous consumption choices made by the household in pandemic states.

We can therefore readily connect our empirical work to the theoretical asset-pricing perspec-

tive. With standard preference parameters employed in the literature, the value of a cure turns out

to be worth 5-15% of wealth (formally, capital stock in our model). At our baseline assumptions

for other parameters, this corresponds to an approximately 25% contraction of labor during the

pandemic relative to the non-pandemic state. The reason why the economy would attach such a

large value to the vaccine is because the pandemic causes a permanent loss of capital stock when

it effects agents, which in turn is reflected in the significant precautionary contraction of labor

during the pandemic. In spite of the simplicity of our model of the pandemic, we can readily

examine externalities in the setup. Specifically, the representative agent can impose through its

labor choice exposure for all other agents in the economy, but not internalize this spillover; we

examine the difference in the value of a cure with a precautionary labor choice being made by

the representative agent versus that by the central planner. Since the planner contracts the labor

more and optimally reduces pandemic exposure for the economy as a whole, the planner attaches

a lower value to the cure than the representative agent does.6

Finally, our estimate of the value of a cure depends crucially on the frequency and the ex-

pected duration of the pandemic, which raises the natural question of parameter uncertainty

around these pandemic properties. Such uncertainty is natural given the rare nature of such pan-

demics and the evolving understanding of connections between various pandemics (SARS, H1N1,

COVID-19, etc.).7 The final exercise we undertake is to assess the effect of imperfect information

6Note, however, that the planner may attach a higher value to the cure if the arrival of the pandemic were to result in
social costs outside the capital stock dynamics for the agent.

7See, for example, “COVID-19 Is Bad. But It May Not Be the ’Big One’", Maryn McKenna, Wired, June 17, 2020,
“Coronavirus Response Shows the World Is Not Ready for Climate-Induced Pandemics", Jennifer Zhang, Columbia
University Earth Institute, February 24, 2020, and “The next pandemic: where is it coming from and how do we stop
it?", Leslie Hook, Financial Times, October 29, 2020.
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on the value of a cure.

We specialize our framework to just two states, non-pandemic and pandemic (without indi-

vidual stages of vaccine development), but allow for uncertainty about frequency and duration of

pandemics. The agent learns about these parameters as pandemics arrive and end. We can extend

our asset-pricing framework also to this setting with uncertainty and learning. It turns out that

the value of the cure rises sharply when there is uncertainty about the frequency and duration of

pandemics. Indeed, we find that the representative agent would be willing to pay as much for res-

olution of this parameter uncertainty as for the cure absent such uncertainty. This effect is stronger

– not weaker – when agents have a preference for later resolution of uncertainty (formally, an elas-

ticity of intertemporal substitution, or EIS, which is lower than the inverse coefficient of relative

risk aversion) as this induces a more significant contraction of labor during pandemics. An impor-

tant policy implication is that understanding the fundamental biological and social determinants

of future pandemics, for instance, whether pandemics are related to zoonotic diseases triggered

more frequently by climate change, may be as important to mitigating their economic impact as

resolving the immediate pandemic-induced crisis.

A few caveats are in order. Our model of pandemics is close to that of rare disasters in asset-

pricing literature (Barro, 2006; Gabaix, 2012; Tsai and Wachter, 2015) but with endogenous ex-

posure of the agent to disasters as well as featuring endogenous consumption, labor and asset

prices. However, we do not feature SIR-style dynamics of an individual pandemic itself. Finally,

our model also does not feature the impact of economic-stabilization policies such as fiscal or

monetary support; however, we do control for the announcement effect of such policies in our

empirical work.

The rest of the paper is organized as follows. Section 2 relates to the existing literature. Section 3

describes the construction of vaccine progress indicator and estimates of its covariance with stock

market returns. Section 4 presents our general equilibrium regime-switching model of pandemics

with endogenous labor and consumption decisions, and derives asset prices in this framework

that help estimate the value of a cure for the pandemic. Section 5 extends (two-state version of)

the model to allow for parameter uncertainty and learning to study the impact on the value of a

cure from such uncertainty and the value attached to resolving it. Section 6 concludes with some
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further directions for research. All proofs not in the main text are contained in the Appendix.

2 Related Literature

As noted in the introduction, our approach to quantifying the cost of the pandemic parallels that

of Lucas (1987) in assessing the cost of business cycles. While Lucas (1987) finds small welfare

improvements to reducing this risk, Tallarini Jr (2000) shows that this conclusion is overturned

in models with recursive utility when calibrated to match asset pricing moments. Echoing this

finding and foreshadowing our own, Barro (2009) reports that, in a model with rare disasters,

moderate risk aversion, and an elasticity of intertemporal substitution greater than one, society

would willingly pay up to 20% of permanent income to eliminate disaster risk.

A number of papers have modeled climate risk using the approach that long-run risk of cli-

mate risk can manifest itself through Poisson shocks to the capital stock, which is the approach we

are pursuing here in the context of pandemics. A detailed survey of this literature is provided by

Tsai and Wachter (2015) for better understanding asset pricing puzzles. A number of papers, in-

cluding Pindyck and Wang (2013), explore the welfare costs associated with climate risk. The latter

work addresses the issue of how much should society be willing to pay to reduce the probability

or impact of a catastrophe.

While the literature studying the economic impact of COVID-19 has exploded in a short pe-

riod of time, there is relatively little focus on the role played by vaccine development and its

progress. We first relate to the theoretical literature in asset pricing that is closest to our model; we

then relate to the empirical literature on observed contraction in employment and consumption

during the pandemic.

Hong et al. (2020b) study the effect of pandemics on firm valuation by embedding an asset

pricing framework with disease dynamics and a stochastic transmission rate, equipping firms

with pandemic mitigation technologies. Similar to our paper, they model vaccine arrival as a

Poisson jump process between pandemic and non-pandemic states. Hong et al. (2020a) combine

the model of Hong et al. (2020b) with pre- and post-COVID-19 analyst forecasts to infer market

expectations regarding the arrival rate of an effective vaccine and to estimate the direct effect of

infections on growth rates of earnings. In particular, they develop a regime-switching model of

sector-level earnings with shifts in their first and second moments across regimes.

6



In both of these papers, the pricing kernel is exogenously specified for the pandemic and the

non-pandemic states. In contrast, our model is general equilibrium in nature with the represen-

tative agent optimally choosing labor and consumption (and, in turn, investment in capital) to

mitigate health risk. Deriving asset prices from first principles in a regime-switching framework

of pandemics – which allows for several sub-states in a pandemic relating to vaccine progress – is

an important theoretical contribution of our paper. We build upon this setup further to introduce

learning when there is parameter uncertainty about pandemic parameters.8

For empirical work, Hong et al. (2020b) fix expected pandemic duration around one year but

show in comparative statics that asset prices show considerable sensitivity to the arrival rate of

the vaccine. Hong et al. (2020a) use their model to infer the arrival rate of the vaccine. In contrast,

we provide a “vaccine progress indicator" in the form of an estimated time to vaccine deployment

using actual data and related news on the progress of clinical trials of vaccines for COVID-19.

We relate this vaccine progress indicator to stock market returns to infer labor contraction in the

pandemic relative to the non-pandemic state.

Elenev et al. (2020) incorporate a pandemic state with low but disperse firm productivity that

recurs with low probability for studying government intervention in corporate credit markets.

While we do not model credit markets in our setup, our differentiating novel features are: con-

struction of a vaccine progress indicator and estimation of its joint relationship with stock markets,

and mapping it into a general equilibrium regime-switching model of pandemics with asset prices

in order to derive an estimate of the value of a cure.

Kozlowski et al. (2020) model learning effects that lead to long-term scarring after the pan-

demic is over as policy responses relating to debt forgiveness in the current pandemic can lead to

lower leverage and consumption in the post-pandemic era. Through the learning channel in our

model, there can also be “scarring" effects wherein agent’s consumption upon exit from a pan-

demic does not revert to the pre-pandemic levels due to the increase in updated probability of

future pandemics. This, however, is not the focus of our paper.

Collin-Dufresne et al. (2016) show that learning can amplify the pricing of macroeconomic

shocks when the representative agent has Epstein-Zin preferences and Bayesian updating. Our

8On a technical front, Hong et al. (2020b,a) consider aggregate transmission risk into SIR-style model, whereas our
model of health risk arising from a pandemic is closer to the literature on rare disasters cited in the Introduction.
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results on learning and the impact of parameter uncertainty on the value of a cure are related to

the findings of both these papers; our model can generate both long-term scarring in consumption

due to updated probability of pandemics and significant contraction of labor and consumption

when parameter uncertainty is high, when the elasticity of intertemporal substitution (EIS) is low.

Interestingly, expected time to deployment of a vaccine can be considered as a “macroeconomic

shock" in our model that affects asset prices and depends crucially on parameter uncertainty in a

manner that interacts with deep preference parameters.

3 Vaccine Progress Indicator and its Covariance with Stock Returns

As described in the introduction, the paper’s hypothesis is that the stock market may convey

important information about the social value of resolving the pandemic. This section explains

how we attempt to extract that information. There are two distinct steps. First, we construct a

method for summarizing the state of vaccine research throughout 2020. Second, we estimate the

stock market response to its changes.

3.1 Measuring Vaccine Progress

Readers are, by now, broadly familiar with the contours of the global effort to develop a vaccine for

COVID-19. Through many of the excellent tracker apps, dashboards, and periodic survey articles

we were all educated about the dozens of candidates under study, and their progress through

pre-clinical work and clinical trials. On any given day, the state of the entire enterprise is a high-

dimensional object consisting of multiple pieces of information about all of the projects. Our goal

is to reduce that high dimensional object to a single number. Also, crucially, the number should

have a tangible physical (or biological or economic) interpretation.

The single most salient aspect of vaccine development, the number that nearly all discussions

boiled down to, was the anticipated time until widespread availability of a proven candidate. We

therefore construct estimators of that quantity, using information that was available to observers

at the time.

To do this, we introduce a stochastic model of candidate progress. We obtain the pre-clinical

dates and trial history of vaccine candidates from publicly available data collated by the London

School of Hygiene & Tropical Medicine (LSHTM). The model necessarily involves many param-
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eters for which we have little hope of obtaining precise estimates. Details of our choices of all

parameters are explained in Appendix B. We will validate our choices both by examining robust-

ness to reasonable variation and by comparing them to other actual ex ante forecasts published

during the sample period.9

Our stochastic model is a means to simulate, on each day t, the ultimate outcome of each of the

candidates given their state of development as of that day. That simulated outcome, for candidate

n ∈ {1, . . . , N}, is either reaching deployment by some date Tn > t or not in which case Tn = ∞.

Using the model, we can then run a large number, M, of joint simulations as of day t encompassing

all of the candidates. In each simulation, m, the earliest time to widespread deployment is T?
m =

minn{Tn}. The cross-simulation average value of T?
m < ∞ is the model’s expectation TD

t for the

time to widespread deployment, conditional on at least one of the active candidates reaching

deployment. Some fraction, µ, of simulations will result in all candidates failing and not reaching

deployment. Our forecast is the full expectation, EtT? defined as (1− µ)TD
t + µTND, where TND

is an estimate of the time to deployment by a project other than those that are currently active

(i.e., conditional on all active candidates not reaching deployment).10 In addition to the mean, the

model also delivers the full distribution, and hence all quantiles, of T? as of each date.

The model starts with a standard partition of the clinical trial sequences between pre-clinical,

Phases I, II, III, application submission, and approval stages. A candidate in each stage either

succeeds and moves to the next stage or fails.11 We append a final stage: deployment, which an

approved vaccine possibly still could not attain, e.g., due to technical infeasibility or emergence

of serious safety concerns. Our assumption is that each stage is characterized by an unconditional

probability of success, πs, and an expected duration, τs.12 We model each stage transition as a

2-state Markov chain with exponentially distributed times. Specifically, if we define two exponen-

9The appendix also presents evidence that our distributional assumptions are reasonably consistent with the (small) set
of observed trial outcomes.

10The model does not attempt to forecast the entry of new projects.
11This is a simplification. Candidate vaccines will actually undergo multiple overlapping trial sequences with different

patient populations, delivery modalities, or medical objectives (endpoints). One sequence could fail while others
succeed. Trials can also combine phases I and II or II and III. In our empirical implementation we focus on the most
advanced trial of a candidate. This follows Wong et al. (2018).

12Our success probabilities are taken from pharmaceutical research firm BioMedTracker and are based upon historical
outcomes of infectious disease drug trials. Our duration estimates are based on projections from the pharmaceutical
and financial press during 2020. See Appendix A for several examples.
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tially distributed random variables tu and td with intensities

λu
s =

πs

τs
and λd

s =
1− πs

τs
(1)

then it is straightforward to show that ts = min{tu, td} is exponentially distributed with intensity

1/τs and that the probability of success, defined as tu < td, is πs.

Since our objective is to model the joint outcomes of all the vaccine projects, we need to spec-

ify the joint distribution of successes and failures. We do this by assuming the exponential times

{tu
n}N

n=1 are generated by a Gaussian copula with correlation matrix R, and likewise for the times

{td
n}. The elements of the correlation matrix are set to positive values to capture the dependence

between candidates. This positive dependence arises most obviously because all the vaccines

are targeting the same pathogen, and will succeed or fail largely due to its inherent biological

strengths and weaknesses. Beyond that, we also capture the dependence of candidates on one of

a handful of strategies (or platforms) for stimulating immunological response. If, for example, an

RNA-based platform proves to be safe and effective, then all candidates in this family would have

a higher likelihood of success.13 Finally, some research teams (institutes or companies) have sev-

eral candidate vaccines. Positive correlation between their outcomes may arise through reliance

on common technological components, resources, or abilities.

As described so far, the “state” of a candidate is simply its current clinical-trial phase. This

is not realistic in the sense that initiation of a new phase, as captured by the commencement of a

new stage trial, is often known in advance. The trial start date (as reported to the U.S. government)

may not actually be the date of the arrival of news about the candidate. Likewise, within a stage

(as a trial is progressing), the “state” is not static. Information about the trial (preliminary results),

or more complete information about earlier trials, may be published or released to the press or

leaked. Trial schedule information (delays or acceleration) may be announced. Regulatory actions

by non-U.S. authorities may also convey information. For all of these reasons, we modify our

framework by adjusting the probability of each candidate’s current-stage success on the date of

arrival of news specific to it.14 Because positive news is more likely to be revealed than negative

13In October, two candidate vaccines had their trials paused due to adverse reactions: both were based on adenovirus
platforms.

14Our source of news is FactSet StreetAccount. We classify vaccine related stories into seven positive types and six
negative types. The types and probability adjustments are given in the appendix.
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news, we also deterministically depreciate each candidate’s success probability in the absence

of news. We will verify below that our conclusions about the stock market response to vaccine

progress are not driven by our assumptions regarding the arrival of interim trial news.15

Our indicator of vaccine progress aims to capture expectations about deployment principally

in the U.S. since this is likely to be the primary concern of U.S. markets. Because of political con-

siderations, we believe that observers at the time judged it to be very improbable that vaccines

being developed in China and Russia would be the first to achieve widespread deployment in the

U.S. Our base case construction for this reason omits candidates coded in the LSHTM data as orig-

inating in these countries.16 This assumption is consistent with the progress of these candidates

receiving minimal coverage in the U.S. financial press. We will also verify that including them in

our index does not change our primary results.

It is worth acknowledging that, in focusing on the scientific advancement of the individual

candidates, our measure does not currently attempt to capture general news about the vaccine de-

velopment environment and policy. For example, news about the acquisition and deployment of

delivery infrastructure by governments (or the failure to do so) could certainly affect estimates of

the time to availability. We also do not capture the news content of government financial support

programs, or pre-purchase agreements. The Fall of 2020 saw open debate about the standards that

would be applied for regulatory approval, the outcome of which could have affected forecasts as

well. While we could alter our index based on some subjective assessment of the impact of news

of this type, we feel we have less basis for making such adjustments than we do for modeling

clinical trial progress.

Figure 1 shows the model’s estimation of the expected time to widespread deployment from

January through October of 2020, and Figure 2 shows the number of active vaccine projects. The

starting value of the index, in January, is determined by our choice of the parameter TND because,

with very few candidates and none in clinical trials, there was a high probability that the first

success would come from a candidate not yet active. However this parameter effectively becomes

irrelevant by March when there are dozens of projects. The index is almost monotonically declin-

15Technically, altering the marginal success probabilities within a trial induces a non-exponential unconditional
marginal distribution of trial duration. We retain the exponential assumption of the Gaussian copula for tractability.
Our results are robust to using constant probabilities.

16We retain candidates coded as multi-country projects including Russia or China.
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ing, since there were no reported trial failures and very few instances of negative news through

at least August. The crucial aspects of the index for our purposes are the timing and sizes of the

down jumps corresponding to the arrival of good news.

3.1.1 Validation

We are aware of two datasets that contain actual forecasts of vaccine arrival times, as made in

real-time. As a validation check, we compare our index to these.

The two data sets are surveys, to which individuals supplied their forecasts of the earliest

date of vaccine availability. Comparisons between these pooled forecasts and our index require

some intermediate steps and assumptions. In both cases, the outcomes being forecast are given

as pre-specified date ranges. Thus, on each survey date, we know the percentage of respondents

whose point forecast fell in each bin. For each survey we estimate the median response, assum-

ing a uniform distribution of responses within the bin containing the median.17 Under the same

assumption, we can also tabulate the percentage of forecasters above and below our index.

The first survey is conducted by Deutsche Bank and sent to 800 “global market participants”

asking them when they think the first “working” vaccine will be “available”. The survey was con-

ducted four times between May and September. The second survey is conducted by Good Judge-

ment Inc., a consulting firm that solicits the opinion of “elite superforecasters.” Their question

asks specifically “when will enough doses of FDA-approved COVID-19 vaccine(s) to inoculate 25

million people be distributed in the United States?” (Information about the number of responders

is not available.) Responses are tabulated daily, starting from April 24th. For brevity, we examine

month-end dates. Table 4 summarizes the comparison.

Our forecasts align well with those of the Deutsche Bank survey, though ours are more opti-

mistic than the median. The optimism is more pronounced when compared to the superforecasters

early in the pandemic. Although we are within the interquartile range of forecasts after May, the

earlier dates see us in the left-tail of the distribution. A possible reason is the specificity of the

particular survey question, which specifies an exact quantity of the vaccine being distributed in

17While it is tempting to equate the surveys’ distribution of forecasts with a forecasted distribution, these are concep-
tually distinct objects that need not coincide. In addition, in each survey, the farthest out forecast bin is unbounded,
meaning that “never” (or “more than 3 years from now”) is a possible response. So, for both reasons, it is problematic
to compute a weighted average forecast across the response bins. The modal response bin is also not a good summary
statistic for the same reason, and also because it depends on the bin widths.
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the United States. Respondents may have more skeptical of feasible deployment than we have

assumed. We will examine robustness of our results below to increasing the probability of an

approved vaccine failing in the deployment stage.

3.2 Stock Market Response

Figure 3 plots vaccine progress (inverted) along with the market portfolio’s year-to-date perfor-

mance. In principle, assessing the stock market response to changes in vaccine progress should

be straightforward. However, the circumstance of 2020 complicate the task. In a nutshell, there

was a lot else going on. The amount of information for markets to digest was enormous and mul-

tifaceted. Even the information flow just about coronavirus research other than vaccine trials was

voluminous. Thus, how to control for non-vaccine related news becomes an important considera-

tion.

Our approach is to run daily regressions of stock market returns on vaccine progress and

exclude days that contained large stock market moves that have been reliably judged to have been

due to other sources of news. Specifically, we employ the classification of Baker et al. (2020b) for

causes of market moves greater than 2.5% in absolute value. Those authors enlist the opinion of

three analysts for each such day and ask them to assign weights to types of causes (e.g., corporate

news, election results, monetary policy, etc). Under their classification, research on vaccines falls

under their “other” category, whereas news about the pandemic itself was usually categorized as

“macroeconomic”. We view market returns on such days as very unlikely to have been driven by

vaccine news if none of the three analysts assigns more than 25% weight to the other category, or if

the return was more negative than -2.5%. The latter exclusion is based on the fact that there were

no significant vaccine setbacks prior to the end of our data window,18 and on the prior knowledge

that positive vaccine progress cannot be negative news. We include dummies for all of the non-

vaccine large-news days. There are 28 such days, 17 of which were in March.

Our approach is imperfect. We have no other controls outside these large move days when

there were certainly other factors influencing markets. Including dummy variables effectively

reduces our sample size. However, at a minimum we are limiting the ability of our estimation to

misattribute the largest market moves to vaccine progress.

18As of the time of this draft, Baker et al. (2020b)’s website had classified days through June. We append September 3
and September 23 as two dates with negative jumps but arguably were driven by non-vaccine progress related news.
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Table 2 shows the resulting regression estimates of market impact. These regression specifi-

cations include changes in the vaccine progress indicator in a five day window around each day,

t, on which stock returns are measured. Including changes on days other than the event day-t

guards against our imperfect attribution of the date of news arrival. A priori we suspect it is more

likely that, if anything, markets have information before it is reflected in our index, meaning the

relevant reaction would correspond to the t + 1 or t + 2 coefficients. On the other hand, given the

sheer volume of news being processed during this period, we do not rule out delayed incorpora-

tion of information, which would show up in the t− 1 or t− 2 coefficients. The specifications also

include two lags of the dependent variable to control for short-term liquidity effects. Specifically,

the regression is

Re
m,t = α +

2

∑
h=−2

βh∆VPIt+h + γ1Re
m,t−1 + γ2Re

m,t−2 +
28

∑
j=1

δj1jump j + εt (2)

where ∆VPIt is the change in vaccine progress indicator, and 1jump j is a dummy equal to one on

the jth jump date from Baker et al. (2020b). The dependent variable is the return to the value-

weighted CRSP index from January 1 through October 31, 2020.

The first column of the table shows results using our baseline vaccine progress indicator. The

coefficient pattern shows the largest negative responses on the t − 1 and t + 2 index changes.

Focusing on the cumulative impact, the sum of the βs is statistically significant at the 1% level. The

precisely estimated point estimate implies a stock market increase of 8.6 percent on a decrease in

expected time to deployment of one year. This number seems plausible: subsequent to our sample,

on November 9th the U.S. stock market opened almost 4% higher in response to positive news

from Pfizer on Phase III trial results. This would imply more sensitivity than the OLS estimate if,

as seems likely, the news revised estimates of time to deployment by less than six months.19

Returning to Table 2, the second and third columns implement the methodology of Kogan

et al. (2017) (hereafter KPSS). Those authors use an empirical Bayes procedure to estimate the

market value of patents using the stock returns to the patenting firm in an event window sur-

19While it is not the focus of the paper, it is also interesting to ask about the total contribution of vaccine progress to
the stock market performance during the sample period, and to the post-March rally in particular. From March 23 to
October 30 our forecast dropped by 2.5 years, of which 0.6 years was expected. The OLS point estimate then implies
that vaccine news in total would have induced a 16.3% positive return. The return on the S&P 500 during this period
was 47.7%. Hence, vaccine progress could have been responsible for 34% (16.3/47.7-1) of the rally.
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rounding patent publication date. As in our case, economic logic rules out a negative response:

vaccine progress cannot be unfavorable news just as the value of a patent must be positive. KPSS

employ a truncated normal prior distribution for the unobserved true response. Conditional on

knowing the return standard deviation, the posterior mean estimate of the response coefficient is

then also distributed as a truncated normal. The estimation methodology generalizes naturally to

a multivariate regression setting20 (O’hagan (1973)). The table reports posterior mean and stan-

dard deviations for the individual response coefficients and for their sum.21 The methodology

is sensitive to the specification of the prior variance of the coefficient distribution. Both column

2 and column 3 assume that the pre-truncated normal distribution for βt has standard deviation

equal to 1, which, after truncation, implies that 84% of the distribution mass is below 1.0. We

regard this as a conservative (or skeptical) choice.22 Results in the second column use the same

(independent) prior for all the response coefficients. The third column uses a smaller prior mean

for the lead and lag coefficients.23 Both priors produce posterior means for the sum of the five

response coefficients that are lower than the OLS estimate: -6.4% in column 2 and -4.1% in column

3. Note that the estimation is sharp in both cases in the sense that each posterior mean is several

standard deviations from zero. The calibrations in the next section will adopt the range of these

conservative estimates.

To examine the robustness of the response estimates to the assumptions built into the vaccine

progress index, we repeat the OLS specification estimation with five variants. These results are

shown in Table 3. The first column repeats the original specification from the prior table. The next

two columns vary the assumptions about the effect of news to phase success probabilities. (Col-

umn 2 includes no news adjustments. Column 3 applies the news adjustments to only the current

trial phase, as opposed to all future phases, and increases the ∆π from news on positive data re-

leases, positive enrollment and dose starts to 15%, 5% and 5%, respectively) The fourth column

increases the base copula correlation from 0.2 to 0.4. The fifth column lowers the assumed prob-

20We follow KPSS in assuming a zero mean under the prior for the pre-truncated normal distribution, assuming returns
are normally distributed, and in using the regression residual to estimate the return standard deviation. Note that
the estimation still includes dummy variable for market jump days making the normality assumption plausible.

21Moments of the truncated multivariate normal posterior are computed using the algorithm of Kan and Robotti (2017)
using software provided by Raymond Kan. http://www-2.rotman.utoronto.ca/~kan/research.htm.

22Note that making the prior more diffuse does not, in this case, correspond to making it less informative: the prior
mean increases with the standard deviation.

23Specifically, the assumption is that pre-truncated standard deviations are 0.7 for the first lead and lag and 0.5 for the
second lead and lag.
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ability of successful deployment following approval. Finally the sixth column includes vaccine

candidates whose research program is based in Russia or China. In all of these cases the sum of

the response coefficients is highly statistically significant and the point estimates are in the same

range as those in Table 2.24

3.3 Industry Responses

As a validity check for our primary findings, we examine the price impact of vaccine progress

in the cross-section of industries. We first gauge each industry’s exposure to COVID-19 by its

cumulative return from February 1, 2020 to March 22, 2020. This period captures the rapid onset

of COVID-19 in the US, with a public health emergency being declared on January 31, 202025

and a national emergency declared on March 13, 2020.26 Importantly, this period precedes the

Federal Reserve’s announcement of the Primary Market Corporate Credit Facility and Secondary

Market Corporate Credit Facility on March 23, 202027 and significant advances in vaccine progress,

helping us pin down industry covariances with COVID-19 itself, separate from covariances with

monetary policy responses and vaccine progress.

We then estimate industry sensitivity to vaccine progress over the non-overlapping sample

from March 23, 2020 to October 31, 2020. Specifically, we re-estimate (2) sector-by-sector,

Re
i,t = α +

2

∑
h=−2

βh.i∆VPIt+h + γ1,iRe
i,t−1 + γ2Re

i,t−2 +
28

∑
j=1

δj,i1jump j + εi,t (3)

where Re
i,t denotes value-weighted excess returns on the 49 Fama-French industry portfolios.

Figure 4 presents the results. Each industry’s sensitivity to vaccine progress is plotted against

its exposure to COVID-19. The relationship is negative and statistically significant – industries

that were more exposed to COVID-19 subsequently saw more positive price impact as the vac-

cine was expected to deploy sooner. The industries also exhibit notable variation. Oil, fabricated

products and recreation were among those with higher COVID-19 exposure and vaccine progress

24We further explore adjusting each candidate’s state-level duration, in addition to probability of success, using relevant
news. Our findings are robust to these additional specifications. Results are available upon request.

25https://www.hhs.gov/about/news/2020/01/31/secretary-azar-declares-public-health-emergency-us-2019-novel-
coronavirus.html

26https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-
coronavirus-disease-covid-19-outbreak/

27https://www.federalreserve.gov/monetarypolicy/pmccf.htm
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sensitivity, while pharmaceutical products, food products and computer software had lower ex-

posure and sensitivity. The association of industry exposure to COVID-19 with its subsequent

sensitivity to our index lends confidence to the construction and interpretation of the index as,

in fact, measuring vaccine progress. Hence, the results here make it unlikely that our primary

findings on the market’s sensitivity are due to omitted variables.

4 Regime-Switching Model of Pandemics

In this section, we introduce a regime-switching model of pandemics in order to derive the value

of a cure in terms of the economy’s primitive objects, such as the ratio of labor supply or marginal

propensity to consume between the pandemic and the non-pandemic states. In order to connect

the theory to our empirical exercise, we need a model with four attributes: a description of pan-

demics; a well-defined notion of the value of ending a pandemic; a depiction of progress towards

that objective; and a stock market that is sensitive to that progress.

4.1 S-State Model

We consider the state of the economy to be either in “non-pandemic" regime or in “pandemic"

regime.28 Within the pandemic regime, there can be several sub-states that correspond in our

context to different stages in the development of vaccines. We denote the state as s ∈ {0,1, . . . ,S−

1,S}, where for ease of notation both state 0 and state S are the same non-pandemic states, and the

others are pandemic states. We assume that the economy switches between these states based on a

Markov-switching or transition matrix. The transition probabilities are given as follows where η,

the probability of switching from the non-pandemic regime to the pandemic regime, and λd and

λu, the respective probabilities in a pandemic state to move “down" or “up" to the adjacent states,

28In the Appendix, we work out in detail the solution to the 2-state regime-switching model in which the pandemic
regime consists of just one state. Besides illustrating the detailed solution to the model (Hamilton-Jacobi-Bellman
(HJB) equations, labor and consumption choices, and system to determine the value function), it also serves as the
benchmark case for developing the model further with parameter uncertainty.
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are assumed to be exogenous:

P(st+dt =1|st = 0 or S) = ηdt (4)

P(st+dt =st|st = 0 or S) = 1− ηdt (5)

P(st+dt =s− 1|st = s ∈ [1,S− 1]) = λd(s)dt (6)

P(st+dt =s + 1|st = s ∈ [1,S− 1]) = λu(s)dt (7)

P(st+dt =st|st = s ∈ [1,S− 1]) = 1− λd(s)dt− λu(s)dt (8)

4.1.1 Agents, Labor and Capital Stock

We assume the economy has a unit mass of identical agents, each with the following production

function that in the non-pandemic state depends on the labor input l and generates a stochastic

output q gross of consumption as:

lαqµdt + σlα/2qdBt (9)

where {Bt, t > 0} is a Brownian Motion process. We can view q as capital stock – physical and

human – or wealth of the agent that is readily convertible into consumption (a form of “buffer

stock" therefore), and α ∈ (0,1) is the elasticity of instantaneous expected output with respect to

labor. The instantaneous expected return is lαµdt and the instantaneous variance in output is

lασ2dt. We will assume l ∈ [0,`], where ` is an upper bound representing technological or human

constraints on investment into the capital stock.

The production function of agent in the non-pandemic state, net of consumption flow, is there-

fore:

dq = lαqµdt− Cdt + σlα/2qdBt (10)

where C is the endogenous consumption rate.

In the pandemic regime, the production function has all of the above features but it becomes

exposed to the risk of an economic loss when hit by a “health" disaster:

dq = lαqµdt− Cdt + σlα/2qdBt − [lε + k + KL]qdP(t). (11)
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Then let

χ(l, L) ≡ [lε + k + KL], (12)

where ε is exposure to the pandemic via private labor, k is exposure to the pandemic unrelated to

labor, L is aggregate labor supply, and K is exposure to the pandemic via aggregate labor. P(t) is

a Poisson process with a parameter ζ and a known jump amplitude ∆∈ (0,1). When the Poisson

process is triggered, a part of the agent’s capital stock is destroyed and falls to q(1− χ∆), e.g., due

to health-induced disruptions to work, the need to work from home with attendant productivity

impact and loss of human capital, filing for bankruptcy with deadweight loss in asset value, and

firing of labor with difficulty to re-match at a future date, etc. We will assume parametric restric-

tions on ε, k and K to be small enough that (1− χ∆) ∈ (0,1). The specification allows for both the

labor supply choice (l) and the pre-existing conditions of the household unrelated to labor supply

(k) to potentially amplify the health shocks. In addition, aggregate labor supply (L) can also am-

plify exposure to the pandemic as a form of externality. The agent takes the aggregate supply of

labor L as given in her optimization problem.

4.1.2 Agent’s Preferences

We assume that each agent has stochastic differential utility or Epstein-Zin preferences (Duffie and

Epstein, 1992; Duffie and Skiadas, 1994) based on consumption flow rate C, given as

JJJt = Et

[∫ ∞

t
f (Ct′ ,JJJt′)dt′

]
(13)

and aggregator

f (C,JJJ) =
ρ

1− ψ−1

[
C1−ψ−1 − [(1− γ)JJJ]

1
θ

[(1− γ)JJJ]
1
θ−1

]
(14)

where 0 < ρ < 1 is the discount factor, γ≥ 0 is the coefficient of relative risk aversion (RRA), ψ≥ 0

is the elasticity of intertemporal substitution (EIS), and

θ−1 ≡ 1− ψ−1

1− γ
(15)
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We also assume that the state of the economy s is known to each agent and so are the transition

probabilities. Later on, we will consider parameter uncertainty for a two-state version of the

model.

4.1.3 Agent’s Optimization Problem and Equilibrium

The representative agent’s problem is to choose in each state s optimal consumption C(s, L∗(s))

and labor l(s, L∗(s)) that maximizes the objective function JJJ(s); in particular, the agent must have

rational expectations about L∗(s), the aggregate labor in equilibrium. In other words, individual

agents’ decisions in the aggregate should lead to a wealth (consumption) dynamic that is con-

firmed in equilibrium. This implies the following for wealth dynamics in the pandemic regime:

dq(s) = [l(s, L∗(s))]αqµdt− C(s, L∗(s))dt + σ[l(s, L∗(s))]α/2qdB− χ(l(s, L∗(s)), L∗(s))qdP(t) (16)

Since L∗(s) is a constant for each s, the above equilibrium dynamics are identical to the dynamics

assumed by the agent for q(s) as long as the agent has rational expectations about L∗(s). Sub-

stituting for the equilibrium fixed point that L∗(s) = l(s, L∗(s)), we can then obtain the rational

expectations equilibrium outcomes.

4.1.4 Solution

We show in the Appendix how to set up the HJB equation for the optimization problem of the rep-

resentative agent to determine the optimal consumption C(s, L∗(s)) and labor l(s, L∗(s)), making

the natural conjecture that the value function is given by

JJJ(s) ≡ H(s)q1−γ

1− γ
(17)

where H(s) are constants (depending on deeper parameters of the model) to be determined. Given

the transitions across states, H(s) are jointly determined as explained below; however, given the

structure of the problem, the equilibrium labor choices are more simply derived.

Proposition 1. Equilibrium labor in the non-pandemic state is given by

L(0) = L(S) = ` (18)
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Equilibrium labor in pandemic states L∗(s) ∀s ∈ {1, . . . ,S− 1} solves29

χ (L(s), L(s)) = k + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
γ ν
]

(20)

where

ν ≡
[

α
(
µ− 1

2 γσ2)
ζε∆

]− 1
γ

. (21)

Note: All proofs appear in the appendix.

In the non-pandemic state, the agent faces no cost to supplying labor to augment the capital

stock and exerts effort fully. However, in the pandemic states, the agent increases exposure to

health risk by supplying labor, which creates a tradeoff between augmenting the capital stock and

reducing the loss of capital stock that arises when the pandemic hits. A key property of the model

is that as the exposure to the pandemic is a function of the labor supply, the agent contracts labor

in general relative to the non-pandemic state. We will assume parameter restrictions are such that

this is in fact the case.

Next, the constants H(s) that pins down the agent’s equilibrium objective function in state s

are solved jointly as follows:

Proposition 2. Denote

g(x,y) ≡ (1− γ)ρ

(1− ψ−1)
− xα(1− γ)

(
µ− 1

2
γσ2

)
− y

(
[1− χ(x, x)∆]1−γ − 1

)
(22)

29It can be shown that given α ∈ (0,1), the second order condition for a maximum is satisfied whenever

µ− 1
2

γσ2 > 0 (19)

which also implies ν > 0.
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Then {H}’s are given by the system of S recursive equations E(0), . . . , E(S− 1) as follows:

E(0) : g0 ≡ g(`,0) =
(1− γ)

(ψ− 1)
ρψ (H(0))−ψθ−1

+ η

[
H(1)
H(0)

− 1
]

(23)

E(s) : g1 ≡ g(L(s),ζ) =
(1− γ)

(ψ− 1)
ρψ (H(s))−ψθ−1

+ λd(s)
[

H(s− 1)
H(s)

− 1
]
+ λu(s)

[
H(s + 1)

H(s)
− 1
]

(24)

for s ∈ {1, . . . ,S− 1}, and H(S) = H(0).

This captures another key property of the model. The solution to determining the agent’s

objective functions depends crucially on the relative values of g0 and g1, which serve as an im-

portant statistic for the extent of labor contraction in the economy in pandemic states relative to

the non-pandemic state. The lower is g1 relative to g0, the lower is the objective function in pan-

demic states relative to the non-pandemic state, and in turn, the greater is the value that the agent

attaches to finding a cure that can effect a switch out of the pandemic.

Corollary 1. Pandemic regime parameters (ζ, ε,κ,K,∆) affect the agent’s objective function, i.e., H(s),

only through the value of g1.

This observation will play a crucial role in using our empirical work to infer the value of a cure.

Next,

Proposition 3. Equilibrium consumption in state s can be determined based on H(s) as

C(s) =
(H(s))−ψθ−1

q
ρ−ψ

(25)

Marginal propensity to consume, c(s), which is defined as dC/dq, depends on the state (s) and

the elasticity of intertemporal substitution (ψ). Figure 5 illustrates for a 10-state regime-switching

model that c(s) in the pandemic states, s ∈ {1, . . . ,9}, is below (above) that in the non-pandemic

state, s = 0 or s = 10, when ψ is below (above) 1.

Combining Propositions 2 and 3, the equilibrium can also be characterized in terms of labor

and consumption outcomes in different states, s, the solution to the following system of recursive

equations,
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Corollary 2. Following Proposition 3, we can write the system of S recursive equations Ê(0), . . . , Ê(S− 1)

that characterize the {c}’s as:

Ê(0) : g0 ≡ g(`,0) =
(1− γ)

(ψ− 1)
c(0) + η

[(
c(1)
c(0)

)−θψ−1

− 1

]
(26)

Ê(s) : g1 ≡ g(L(s),ζ) =
(1− γ)

(ψ− 1)
c(s) + λd(s)

[(
c(s− 1)

c(s)

)−θψ−1

− 1

]
+ λu(s)

[(
c(s + 1)

c(s)

)−θψ−1

− 1

]
(27)

for s ∈ {1, . . . ,S− 1}, and c(S) = c(0).

4.1.5 Externality and the Central Planner

Before proceeding to the value of a vaccine in this setup, it is worth noting that in our model there

is an externality that the impact of labor on the effect of the pandemic via KL term (where L is the

aggregate labor) is not internalized by each agent. The planner would factor this in the socially

efficient choice of labor for each agent. This is tantamount to replacing ε by (ε + K) in ν above to

obtain νCP:

νCP ≡
[

α
(
µ− 1

2 γσ2)
ζ(ε + K)∆

]− 1
γ

(28)

Socially efficient labor choice LCP(s) in the pandemic states is then given by

χ (L(s), L(s)) = k + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
γ νCP

]
(29)

It is then straightforward to show that νCP > ν for K > 0 and γ > 0, and LCP(s) < L(s), i.e., the

socially efficient choice of labor in pandemic states is smaller than the privately optimal one. We

will see later that this insight will help understand the wedge between the values attached to a

cure by the planner and the private agents.

4.1.6 Value of a Cure

We have now all the ingredients to determine the value of a cure. We define it as the certainty

equivalent change in the representative agent’s lifetime value function upon a transition from
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state s to state 0 (or to state S):

V(s) = 1−
(

H(s)
H(0)

) 1
1−γ

(30)

This is the percentage of the agent’s stock of wealth q that, if surrendered, would be fully compen-

sated by the utility gain of reverting to the non-pandemic state.30

Using the optimal consumption characterized above, we obtain that

Proposition 4. The value of a cure in the pandemic state s is determined by the ratio of marginal propensity

to consume (c ≡ dC/dq) in the pandemic state s relative to that in the non-pandemic state, adjusted by the

agent’s elasticity of intertemporal substitution (EIS):

V(s) = 1−
(

c(s)
c(0)

)− 1
ψ−1

= 1−
(

C(s)
C(0)

)− 1
ψ−1

(31)

Note from Proposition 3 that the ratio of marginal propensities to consume for a given q is

simply the ratio of consumptions. Furthermore, when EIS (ψ) is less than one, the value of a cure

is higher the greater is the contraction of consumption in the pandemic states relative to the non-

pandemic state. Indeed, it can be shown that consumption is lower in the pandemic states relative

to the non-pandemic state (for a given q) if and only if ψ < 1.

Our next step is to derive this value. To this end, we will derive asset prices in the framework

above to show that the value of claim to the economy’s output (“stock market") changes in relation

to the expected time to switching out of a pandemic (“expected time to deployment of a vaccine") –

which we empirically estimated – is crucially determined by the contraction of labor in pandemic

state relative to the non-pandemic state, as described by g1
g0

. This helps us estimate the value of a

cure under assumptions of standard preference parameters.

4.2 Connection to the Data

We introduced the model in order to first define and study determinants of welfare and the value

of a vaccine. The second reason to introduce the model is to allow us to bring financial claims

30We acknowledge that this is essentially a comparative static exercise and the economy does not possess the technology
to actually effect this transition. We discuss in the Conclusion ways to enrich our model to introduce the vaccine
technology into the model as an important topic for future research, but one that is beyond the immediate scope of
this paper.
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into the picture, and, in particular, to examine the model’s counterpart to the sensitivity that we

estimated in Section 2.2.

As is standard in the asset pricing literature, we begin by interpreting “the market portfolio”

within the model as a claim to the economy’s output.31 Output is the net new resources per unit

time, which is implicitly defined by two endogenous quantities: the change in the cumulative

physical capital plus consumption, or dq+Cdt. (Note that the value of a claim to this flow is not

equal to the value of a claim to the capital stock, which is q.) Denote the price of the output claim

as P = P(s,q). By the fundamental theorem of asset pricing, the instantaneous expected excess

return to holding this claim is equal to minus the covariance of its returns with the pricing kernel.

From this, we derive the value of the claim and some key properties in the following proposition.

Proposition 5. The price of the output claim is P = p(s)q where the the constants p(s) solve a matrix

system Y = Xp where X is an S+1-by-S+1 matrix and Y is an S+1 vector both of whose elements are

given in the appendix. The system depends on the pandemic parameters through only two quantities, which

may be taken to be the risk-neutral expected growth of output and g1, defined in the preceding section.

Henceforth we assume the model parameters are such that the matrix X defined in the propo-

sition is of full rank. The behavior of the price-capital ratio, p(s), accords with economic intuition:

it declines sharply on a move from state s = 0 to s = 1, and then gradually (and approximately

linearly) recovers as s advances. Thus, the quantity ∆log P = log p(s+1)− log p(s) is positive for

s > 0 and, in practice, varies little with s.

Next, define T? as the time at which the state S is attained and the pandemic is terminated.

Assuming the progression and regression intensities λu and λd are constant, it is straightforward

to show that its time t expectation, Et[T?] is again given by a linear system, which we omit for

brevity. Moreover, for large S, the difference

∆E[T?] = E[T?|s+1]−E[T?|s] ∼ 1
λu

(32)

is effectively constant as well. (The expression is exact for s = 1.)

Combining the above two results, we can readily define the model’s analogue of the sensitivity

31We defer for now explicitly modeling the dividend share of output or incorporating leverage in the equity claim.
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that we empirically estimated as

∆log P
∆E[T?]

. (33)

For our purposes the crucial property of this quantity is that it allows us to approximately pin

down the pandemic parameters that determine the value of a cure. Specifically, it depends impor-

tantly on g1, modulated by the other pandemic parameters. This is illustrated in Figure 6, which

plots the sensitivity for a wide range of model solutions. The horizontal axis is g1 and each model

version corresponds to a single point. Here we allow all of the pandemic parameters to vary, as

well as the intensities η and λu. From the proposition above, g1 alone does not suffice to determine

the pricing function p. However, the second variable that the proposition identifies as mattering

– the risk neutral expected growth of output – is codetermined in equilibrium with g1, and as a

practical matter, its residual variation is small. That is, given g1, the expected growth rate varies

only marginally with the remaining parameters.

Hence, although the identification is not exact, we can infer from the figure that our empirical

estimates in the range of 5.0 are consistent with a value of g1 in range of approximately -0.39 to

-0.37, given the non-pandemic parameters used to compute the model solutions shown.

4.3 Calibrating the Value of a Cure

In this section and in Section 5 we present comparative static results exploring the determinants of

the value of a cure, V as defined in Section 4.1. In doing this, unless otherwise stated, we will fix

the non-pandemic parameters to be the values shown in Table 4. The preference parameters are

broadly consistent with the asset pricing literature under stochastic differential utility, although

we use a relatively low level of risk aversion because higher values of γ can lead to violations

of regularity conditions. The growth rate and volatility parameters are chosen as a compromise

between two interpretations of the model. On the one hand, we are viewing the output process

as representing national income (or GDP), which would suggest smaller mean and volatility. On

the other hand, our asset pricing exercise views the same process as depicting dividends, which

would suggest higher values for both.32 In addition, the solutions in this section will set the

32An additional consideration is that a relatively high growth rate is needed to obtain a solution when varying the
elasticity of intertemporal substitution, which we will do in Section 4.
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number of states to be S = 10, which is arbitrary but without loss of generality. Our results are not

too sensitive to the specific choice of the number of states as it is to the other pandemic parameters.

We also set the intensity of regress to be λd = 0, which limits vaccine related volatility. This choice

accords with recent experience: the research setbacks through the Fall of 2020 were few and had

little impact on our measure of progress.

Figure 7 plots the value of the cure as a function of the remaining timing parameters, η and λu

(hereafter we will denote λu/(S+1) as λ without a subscript). The left panel plots V against 1/λ

the expected duration of the pandemic, while the right panel uses the pandemic frequency η on

the horizontal axis. (The left panel sets η = 0.02 and the right panel sets λ = 0.5. Both panels take

the current state as s = 1.) From the left plot, agents in the economy would be willing to give up

five percent of their wealth for an immediate transition to state 0 even when the pandemic is only

expected to last one year. This value rises to approximately 15% when the expected duration is 4

years. The right panel shows that the value of a cure is actually lower when pandemics are more

frequent. Recall that a “cure” here only applies to the current pandemic. A one-time cure is less

valuable when a new one will be needed sooner.

Given the parameters used in the calibration, the (endogenous) expected decline in wealth

due to pandemic shocks is approximately 5% per year. Our estimation of the value of a cure is

quite close to this expected loss, which is intuitively sensible. Also, while the two quantities are

conceptually distinct, the value we are computing here is similar (on a per year basis) to the stock

market valuation of a year of pandemic experience as estimated in Section 3.

Table 5 shows the effect on V of the labor market externality, for a range of λ and η. Here the

right panel shows the benchmark case while the left panel shows what happens when the labor

market response to the pandemic is determined by a welfare maximizing central planner. The

result shows a small but not insignificant increase in the value of the vaccine in the presence of

the externality. In effect, the extra degree of lock-down that the planner would impose and the

vaccine are substitutes as countermeasures. Note that our baseline parameters in Table 5 imply

a labor contraction of approximately 25% in the pandemic regimes relative to the non-pandemic
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regime, in line with observed empirical data.33,34 Before proceeding, we acknowledge that if the

arrival of the pandemic were to result in social costs that are outside the capital stock dynamics

for the agent, then the planner might value the vaccine more than the representative agent.

5 Learning and Uncertainty

We have used the S-state version of our model to study the reaction of markets to vaccine news

within a pandemic. Relating its predictions to the empirical evidence in Section 3 has provided

evidence on plausible parameters affecting the value of a vaccine. Now we return to the two-

state version of our model in order to examine the role of vaccine news from a different angle.

Specifically, we are interested in the accumulation of information over longer horizons about the

frequency and duration of pandemics. We study the effect upon the value of a vaccine of uncer-

tainty about these quantities and of differing attitudes towards uncertainty.

5.1 Information Structure

Recall that in the two-state model η is the intensity of switching from state 0 (“off”) to state 1

(“on”) and λ is the intensity of switching from 1 to 0. In this section, we assume that agents have

imperfect information about these intensities.

Let us stipulate that at time zero the agent has beliefs about the two parameters that are de-

scribed by gamma distributions, which are independent of each other. Each gamma distribution

has a pair of non-negative hyperparameters, aη ,bη and aλ,bλ, that are related to the first and sec-

33Muellbauer (2020) models a larger drop in consumption than income during the pandemic with a credit-augmented
consumption function. Using customized survey data, Coibion et al. (2020a,b) find the pandemic led to a 20 million
decline in the number of employed workers by the first week of April 2020, and attributed 60 percent of the decline in
the employment-to-population ratio by May 2020 to lockdowns. Dingel and Neiman (2020), Mongey et al. (2020) and
Beland et al. (2020) classify occupations by their work from home feasibility, documenting more adverse labor market
outcomes for occupations with high proximity among coworkers. For those looking for employment, Forsythe et al.
(2020) find job vacancies had fallen 40% by April 2020 compared to pre-COVID-19 levels, with the largest declines
in leisure, hospitality and non-essential retail. Consequently, Bernstein et al. (2020) find a flight-to-safety effect, with
job seekers shifting searches from early-stage ventures to larger firms, while also considering lower salaries, and
alternative roles and locations.

34Baker et al. (2020a) deploy transaction-level data to study consumption responses to the pandemic, finding an in-
crease in the beginning in an attempt to stockpile home goods, followed by a sharp decrease as the virus spread and
stay at home orders were enforced. Using customized survey data, Coibion et al. (2020a) find lockdowns decreased
consumer spending by 30 percent, with the largest drops in travel and clothing. Bachas et al. (2020) find a rebound
in spending, especially for low-income households, since mid-April. Chetty et al. (2020) further find high-income
households significantly reduced spending, especially on services that require in-person interactions, leading to busi-
ness losses and layoffs in the most affluent neighborhoods. Outside the US, Sheridan et al. (2020) and Andersen
et al. (2020) find aggregate spending decreased 27% in the first seven weeks following Denmark’s shutdown, with
the majority of the decline caused by the virus itself regardless of social distancing laws. Chen et al. (2020) use daily
transaction data in China and find severe declines in spending, especially in dining, entertainment and travel sectors.
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ond moments via

E[η] =
aη

bη
, Std[η] =

√
aη

bη
, (34)

and likewise for λ.

By Bayes’ rule, under this specification, as the agent observes the switches from one regime to

the next, her beliefs remain in the gamma class with the hyperparameters updating as follows

aη
t = aη

0 + Nη
t

bη
t = bη

0 + tη

where tη represents the cumulative time spent in state 0 and Nη
t represents the total number of

observed switches from 0 to 1. Analogous expressions apply for λ. Thus, during the “off” regime,

the only information that arrives (on a given day, say) is whether or not we have switched to “on”

on that day. If that has occurred, the counter Nη increments by one and the clock tη turns off

(and tλ turns on). In this version of the model, that is the entirety of the information revelation.

In contrast to the previous section, no good or bad news arrives about progress during a regime.

Although this setting lessens the model’s ability to speak to high-frequency dynamics, it allows

us to study the role of uncertainty in the econmy’s longer term evolution.

Under the above information structure, the economy is characterized by a six-dimensional

state vector consisting of the stock of wealth, q, aη ,bη , aλ,bλ and the regime indicator S. However

this six-dimensional space can actually be reduced to three.

Since the switches between states alternate, let us define an integer index Mt to be the total

number of switches Nη
t + Nλ

t and then (assuming we are in state 0 at time 0) Nη
t = Mt/2 when M

is even, and Nλ
t = (Mt + 1)/2 when M is odd. Knowing M (along with the priors aη

0 and aλ
0 ) is

equivalent to knowing aη
t and aλ

t . Given these values, specifying the current estimates

η̂t ≡ Et[η] and λ̂t ≡ Et[λ] (35)

is equivalent to specifying the remaining hyperparameters bη
t and bλ

t . Thus, solutions to the model

can be described as a sequence of functions HM(η̂, λ̂) for the agent’s value function at step M.
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Compared to the full-information model in Section 4, within each regime the only new changes

to the state come through variation in the estimates η̂t and λ̂t which change deterministically with

the respective clocks tη and tλ. Holding M fixed, the dynamics of η̂t are given by

dη̂t = d
aη

t

bη
t
= aη

t d
1
bη

t
(36)

= − aη
t

(bη
t )

2
dt (37)

= − (η̂t)2

aη
t

dt. (38)

Under partial information, we proceed as in Section 4 to write-out the HJB equation with the

state variables following the dynamics determined by the representative agent’s information set.

As before, we can conjecture a form of the value function

JJJ =
q1−γ

1− γ
H(η̂, λ̂, M;C,`). (39)

And, as before the first order condition for consumption yields C = q (ρψ) He
1 (where e1 is defined

in Section 4.1). This follows because consumption does not enter into any of the new terms in-

volving the information variables. Also fortunately, none of the information variables appears in

terms affected by labor supply, `, and the function H drops out of the first-order condition for `.

(Intuitively, nothing about the likelihood of changing regimes affects the optimal choice of labor

within a regime.) This means that the solutions for `? can be computed independent of the rest of

the system.

Using these the results, the HJB system can be written as the infinite-dimensional linked PDEs:

g0 = ρψ

(
θ

ψ

)
H−ψ/θ

M + η̂

(
HM+1

HM
− 1
)
− (η̂)2

aη HM

∂HM

∂η̂
(40)

g1 = ρψ

(
θ

ψ

)
H−ψ/θ

M+1 + λ̂

(
HM+2

HM+1
− 1
)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
(41)

where M runs over the even integers.35

For large M, the estimation errors for both η and λ, expressed as a fraction of the posterior

35The constants g0 and g1 are as defined in Section 4. See the internet appendix for a derivation of (40)-(41).
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estimates, go to zero:

Std[η]
E[η]

=
1√
aη

=
1√

aη
0 + Mt

. (42)

Hence the system always converges to the full-information solution. This provides a bound-

ary condition, which, together with the single-regime solutions on the edges of the (η̂, λ̂) plane,

enables computation of all the individual H functions.36 It can be shown that, as in the full-

information case, a necessary and sufficient condition for existence of a solution is g0 > g1.

As in the previous section, once the value function is obtained, we can characterize the cer-

tainty equivalent value of a vaccine that produces an immediate transition from the pandemic

state to the non-pandemic state. The next section performs this calculation and analyzes the

drivers of variation in that value.

5.2 Results

Table 6 shows numerical solutions for the value of a vaccine using the benchmark parameters from

Section 4 but varying the elasticity of intertemporal substitution (EIS). The upper two panels show

the full-information solution, with the upper right case corresponding to the benchmark ψ = 1.5,

whereas the left panel lower the EIS to ψ = 0.15. There is almost no difference between the two

solutions (which verifies the robustness of the conclusions in Section 4 on this dimension). The

bottom two panels show the results under partial information. Specifically, results are computed

under the assumption that agents’ standard deviation of beliefs about the two parameters are

equal to their mean beliefs. Comparing the right-hand panels, we see that this degree of parame-

ters uncertainty has the effect of raising the level of wealth agents in the economy would be willing

to surrender for a cure in the baseline case of a high EIS by between 7 and 15 percentage points,

or up to a factor of three times the full information value. The left hand panels show the same

effect, but amplified to an extreme level. With a low intertemporal elasticity, the representative

agent would be willing to sacrifice on the order of 50 to 60 percent of accumulated wealth.

An additional computation that our framework can address is the value of a permanent cure.

36Knowing the solution for higher M enables direct evaluation of the jump-terms in (40)-(41). Knowing the solution on
the inner edges enables explicit approximation of the first partial derivatives.
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Table 7 shows the fraction of wealth agents in the economy would exchange to live in a world with

no pandemics. (Formally, this is equivalent to letting λ go to infinity.) As expected, the values

now show the same pattern as in Table 6, but exaggerated still further. In this case, eliminating the

threat and resolving the parameter uncertainty can lead to valuation of 25 to 50 percent for high

EIS agents and 60 to 80 percent for low EIS agents.

The latter finding may be counterintuitive based on the common understanding of Epstein-

Zin preferences under which agents with ψ < 1/γ can be viewed as having a preference for “later

resolution of uncertainty." In the current model, agents facing a pandemic are much worse off with

parameter uncertainty. This is verified in Table 8 where we compute the value that agents would

pay to resolve parameter uncertainty without ending the on-going pandemic.

For both values of the EIS the numbers are again extremely high, and for the low EIS case

they are even higher than in the previous table. Apparently, in this economy, low-EIS agents

would pay dearly for early resolution of uncertainty. The source of the extreme welfare loss in this

case is the endogenous consumption response. Recall that low-EIS agents cut their consumption

during a pandemic. With parameter uncertainty this response becomes extreme because agents

cannot rule out the worst case scenario that λ ∼ 0, i.e., that there will never be a cure and the

pandemic effectively lasts forever. This possibility leads to extreme savings and, consequently,

very little utility flow from consumption.

Even with high EIS however, the effect of parameter uncertainty is economically large, and

is again due to agents being unable to rule out worst-case scenarios. From a policy perspective,

the implication of this finding is that, while working to end the current pandemic is enormously

valuable, equally and perhaps even more valuable is anything that resolves uncertainty about the

frequency and, especially, the duration of current and future pandemics. In addition to devel-

oping cures and vaccines, understanding the fundamental science behind the fight against viral

pathogens and investing in the infrastructure for future responses can provide crucial gains to

welfare.

6 Conclusion

In this paper, we estimated the value of a “cure" – vaccine for a pandemic – using the joint behavior

of stock prices and a novel vaccine progress indicator based on the chronology of stage-by-stage
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progress of individual vaccine candidates and related news. We developed a general equilibrium

regime-switching model of repeated pandemics and stages of vaccine progress, wherein the repre-

sentative agent withdraws labor and alters consumption endogenously to mitigate the economic

consequences of health risk arising from pandemics. In the resulting asset-pricing framework, we

showed that the covariance of stock prices with the vaccine progress indicator gives an indirect

estimate of labor contraction during the pandemic relative to the non-pandemic states; in turn, the

empirical estimate of the covariance helps pin down the labor contraction which is an important

statistic for the value attached by the representative agent to finding a cure.

With standard preferences parameters, the value of a cure turns out to be worth 5-15% of

wealth (formally, capital stock in our model). The value of the cure rises sharply when there is un-

certainty about the frequency and duration of pandemics. Indeed, we find that the representative

agent would be willing to pay as much for resolution of this parameter uncertainty as for the cure

absent such uncertainty, an effect that is stronger – not weaker – when agents have a preference for

later resolution of uncertainty. An important policy implication is that understanding the funda-

mental biological and social determinants of future pandemics, for instance, whether pandemics

are related to zoonotic diseases triggered more frequently by climate change, may be as important

to mitigating their economic impact as resolving the immediate pandemic-induced crisis.

An interesting extension of our regime-switching framework could be one where as the pan-

demic evolves through various stages of vaccine progression, it may be simultaneously evolving

in its own characteristics. For instance, the arrival intensity (ζ) of the health shock might decline

due to “herd immunity" building up or its impact on capital stock (∆) be mitigated due to learning-

by-doing in working from home. Such variations across pandemic states would also generate the

realistic implication that labor contraction across pandemic states reduces as the pandemic gets

“weaker." Theoretically, this would add richness to the framework we have proposed; empiri-

cally, it would require substantially greater statistical power to estimate state-by-state covariance

of stock returns with changes in the vaccine progress indicator as there is progression across the

pandemic states.

Our empirical work could be extended in several other directions. First, long-short or “factor

mimicking" portfolios can be constructed to map into changes in the vaccine progress indicator

for use in future asset-pricing tests. Secondly, changes in the vaccine progress indicator may also

33



be relevant for fixed income markets and expectations of future interest rates; more generally,

progress in finding a cure could affect expectations of monetary and fiscal policies, which we

did not consider in this paper. Thirdly, we can numerically consider the possibility of setback or

regression in progress of the vaccine by allowing λd in our state-transition matrix to be greater

than zero, a feature that can have significant implications for asset price volatility, and in turn, for

options markets. Finally, vaccines may be more readily available for early deployment in some

countries (developed ones, for example) versus others; this would imply patterns in sensitivity of

cross-country returns to the vaccine progress indicator, which can be teased out in data.

One caveat to our estimate of the value of a cure is that it is essentially a comparative static

exercise. In particular, the economy in our model does not possess the technology to actually effect

the transition out of a pandemic. In reality, there is a “real option" to invest in vaccine technolo-

gies that affects the probability of switching out of a pandemic. It is an interesting open question

for future research to embed the vaccine production technologies into the model, allowing policy

analysis that can help answer questions such as: How much should the central planner invest or

co-fund the investment in vaccines given their value to the society may far exceed the value to in-

dividual vaccine production companies? Should the central planner cap user fees for deployment

of the vaccine once developed? How do these choices affect competition in the speed of vaccine

development and the endogenous probability of switching out of pandemics? Our asset-pricing

perspective on the value of a cure is hopefully a useful first step for further inquiry along these

lines.
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Figure 1: Expected Time to Vaccine Deployment

Note: Figure shows our estimate of the expected time to widespread deployment of a COVID-19 vaccine in
years. Dashed lines show one standard deviation bands.
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Figure 2: Number of Active COVID-19 Vaccine Projects

Note: Figure shows the number of active COVID-19 vaccine candidates. Data as of November 2020.
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Figure 3: Vaccine Progress and Market Performance

Note: Figure plots vaccine progress (inverted and left axis) along with the cumulated year-to-date excess
return on the value-weight CRSP index (right axis). The risk-free rate is the one-month Treasury bill rate.
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Figure 4: Industry Sensitivity to Vaccine Progress

Note: Figure plots industry sensitivity to vaccine progress against exposure to COVID-19 as measured by
cumulative returns. Cumulative returns are from February 1, 2020 to March 22, 2020. Sensitivity to vaccine
progress is estimated from March 23, 2020 to October 31, 2020 as in (3).
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Figure 5: Marginal Propensity to Consume in Pandemic and Non-Pandemic States

Note: Figure illustrates for a 10-state regime-switching model that c(s) in the pandemic states, s ∈ {1, . . . ,9},
is below (above) that in the non-pandemic state, s = 0 or s = 10, when ψ is below (above) 1. Parameters
chosen are in Table 4.
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Figure 6: Stock Market Sensitivity to Vaccine Progress

Note: Figure shows the sensitivity −∆log P/∆E[T?] as a function of g1 for model solutions varying the pandemic
intensity parameters η and λ and the risk neutral expected growth rate of output as described in the text. Each star
corresponds to a single model solution.
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Figure 7: Value of a Cure

Note: Figure shows the value V as a function of the pandemic intensity parameters η and λ. The left panel plots V
against 1/λ. The right panel plots V against η. The left panel sets η = 0.02 and the right panel sets λ = 0.5. Both panels
take the current state as s = 1.

45



Table 1: Forecast Comparison

Deutsche Bank
Date Survey median VPI % respondents below

May 1.158 0.958 35.0
June 1.162 0.893 31.2
July 0.920 0.595 20.8
Sep 0.625 0.561 44.3

Superforecasters
Date Survey median VPI % respondents below

April 1.902 1.291 16.1
May 1.603 0.958 14.6
June 1.189 0.893 31.0
July 0.808 0.595 32.7
August 0.519 0.606 58.4
September 0.445 0.518 57.2

Note: Table compares forecasts for the earliest date of vaccine availability in years. The top panel compares
the median from a survey conducted by Deutsche Bank, while the bottom panel compares the median from
a survey conducted by Good Judgement Inc. The column VPI denotes the forecast from our estimated
vaccine progress indicator, and the last column reports the percent of respondents from each survey with
forecasts below ours. Survey respondents are reported in calendar intervals. The comparison assumes
a uniform distribution of forecasts in time within the median bin. The survey dates are as of the end of
the month in the first column, except the Deutsche Bank September survey which is for the week ending
September 11, 2020.
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Table 2: Stock Market Sensitivity to Vaccine Progress News

(1) (2) (3)
OLS KPSS (Prior 1) KPSS (Prior 2)

γ1 -0.070 -0.088 -0.096
(0.067) (0.035) (0.035)

γ2 0.131 0.163 0.168
(0.092) (0.035) (0.035)

βt−2 1.316 -0.536 -0.382
(1.526) (0.423) (0.290)

βt−1 -4.124 -1.924 -1.269
(3.121) (0.746) (0.586)

βt -1.100 -0.942 -0.991
(0.739) (0.592) (0.606)

βt+1 0.719 -0.517 -0.432
(2.054) (0.412) (0.342)

βt+2 -5.404 -2.446 -1.011
(1.729) (0.760) (0.458)

α 0.204 0.240 0.279
(0.097) (0.079) (0.078)

∑2
h=−2 βt+h -8.593 -6.365 -4.086

(0.653) (1.345) (1.056)

N 206 206 206

Note: Table shows the results from regression (2). The dependent variable is daily excess returns on the mar-
ket portfolio in percent. Independent variables include two lags of excess returns on the market portfolio,
a five-day window of changes in vaccine progress indicator in years, and dummy variables for each jump
date from Baker et al. (2020b) unrelated to news about vaccine progress. The return on the value-weighted
CRSP index is used from January 1, 2020 to October 31, 2020. All columns are employ the baseline specifica-
tion with news applying to all states, deterministic depreciation, base copula correlation of 0.2, probability
of success in the application state equal to 0.95 and excludes candidates from China and Russia. Column 1
estimates the regression using OLS. Columns 2 and 3 employ the methodology of Kogan et al. (2017) and
assume the pre-truncated normal distribution for βt has standard deviation equal to 1. Column 2 further
uses the same prior for all response coefficients, while column 3 uses a pre-truncated standard deviation of
0.7 for the first lead and lag and 0.5 for the second lead and lag. OLS results display Newey-West standard
errors with four lags in parentheses and standard deviation of the F-statistic on ∑2

h=−2 βt+h. KPSS results
show posterior standard deviations in parentheses.

47



Table 3: Stock Market Sensitivity to Vaccine Progress News – Robustness

(1) (2) (3) (4) (5) (6)

News All states None Current state All states All states All states
Depreciation Y N Y Y Y Y
Cor(n,n′) 0.2 0.2 0.2 0.4 0.2 0.2
πbase

approval 0.95 0.95 0.95 0.95 0.85 0.95
Ex-China and Russia Y Y Y Y Y N

γ1 -0.070 -0.067 -0.068 -0.075 -0.073 -0.080
(-1.04) (-1.01) (-1.02) (-1.10) (-1.08) (-1.50)

γ2 0.131 0.116 0.127 0.131 0.134 0.111
(1.43) (1.32) (1.42) (1.42) (1.46) (1.37)

βt−2 1.316 2.389 1.543 1.275 0.959 1.980
(0.86) (1.07) (0.90) (0.73) (0.63) (1.19)

βt−1 -4.124 -5.400 -3.168 -3.566 -3.927 -5.331∗

(-1.32) (-1.36) (-1.21) (-1.16) (-1.31) (-1.80)

βt -1.100 -0.570 -1.046 -1.185 -1.157 1.084
(-1.49) (-0.50) (-1.41) (-1.57) (-1.56) (0.78)

βt+1 0.719 2.085 1.112 0.807 0.600 -0.696
(0.35) (0.79) (0.59) (0.43) (0.30) (-0.44)

βt+2 -5.404∗∗∗ -7.310∗∗∗ -5.189∗∗∗ -4.872∗∗∗ -5.057∗∗∗ -4.171
(-3.13) (-4.30) (-3.65) (-2.84) (-2.72) (-1.61)

α 0.204∗∗ 0.195∗ 0.226∗∗ 0.220∗∗ 0.203∗∗ 0.210∗∗

(2.11) (1.94) (2.28) (2.27) (2.11) (2.14)

Jump dummies Y Y Y Y Y Y

∑2
h=−2 βt+h -8.593 -8.806 -6.746 -7.541 -8.582 -7.134

F-stat 8.21 5.50 5.37 5.52 8.62 3.69
P-value 0.00 0.02 0.02 0.02 0.00 0.06

N 206 206 206 206 206 206

Note: Table shows the results from regression (2). The dependent variable is daily excess returns on the
market portfolio in percent. Independent variables include two lags of excess returns on the market port-
folio, a five-day window of changes in vaccine progress indicator in years, and dummy variables for each
jump date from Baker et al. (2020b) unrelated to news about vaccine progress. The first column is the base-
line specification with news applying to all states, deterministic depreciation, base copula correlation of 0.2,
probability of success in the application state equal to 0.95 and excludes candidates from China and Russia.
Column 2 removes news and depreciation; column 3 restricts news to the current state and increases the
∆π from news on positive data releases, positive enrollment and dose starts to 15%, 5% and 5%, respec-
tively; column 4 doubles the base copula correlation to 0.4; column 5 decreases the probability of success to
0.85 in the application state; and column 6 includes candidates from China and Russia. The return on the
value-weighted CRSP index is used from January 1, 2020 to October 31, 2020. The table uses Newey-West
standard errors with 4 lags; t-statistics are shown in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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Table 4: Parameter Values

Parameter Symbol Value

Coefficient of relative risk aversion γ 4.0
Elasticity of intertemporal substitution ψ 1.5
Rate of time preference ρ 0.04
Non-pandemic expected output growth µ 0.055
Non-pandemic output volatility σ 0.05

Note: Table shows parameter values used in estimating the value of a cure.
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Table 5: Value of a Cure: The Effect of Externality

Central Planner Benchmark
λ λ

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.197 0.094 0.048 0.01 0.242 0.116 0.058
η η0.05 0.154 0.084 0.045 0.05 0.185 0.102 0.055

Note: Table shows the fraction of wealth that the representative would be willing to surrender for a one-time transition
out of the pandemic state. The right panel shows the results when the labor supply decision is made by individual
agents acting atomistically. The left panel shows the case where the labor policy is determined by a central planner. All
cases use γ = 4,ψ = 1.5,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.055,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.
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Table 6: Value of a Cure under Parameter Uncertainty

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.242 0.114 0.058 0.01 0.242 0.116 0.058
η̂ η̂0.05 0.192 0.102 0.055 0.05 0.185 0.102 0.055

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.633 0.613 0.558 0.01 0.379 0.302 0.222
η̂ η̂0.05 0.456 0.479 0.477 0.05 0.256 0.222 0.186

Note: Table shows the fraction of wealth that the representative agent would be willing to surrender for a one-time
transition out of the pandemic state. The cases labeled High EIS set ψ = 1.5. Cases labeled Low EIS set ψ = 0.15.
Cases labeled Low Uncertainty correspond to agents knowing the parameters λ and η. Cases labeled High Uncertainty
correspond to agents having a posterior standard deviation for those parameters that is equal to their point estimates
of them. All cases use γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.
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Table 7: Value of a Permanent Cure

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.308 0.136 0.068 0.01 0.327 0.148 0.074
η̂ η̂0.05 0.430 0.214 0.111 0.05 0.429 0.239 0.130

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.813 0.720 0.613 0.01 0.503 0.378 0.265
η̂ η̂0.05 0.831 0.751 0.658 0.05 0.538 0.435 0.335

Note: Table shows the fraction of wealth that the representative agent would exchange to live in a world with no
pandemics. High uncertainty denotes agents having a posterior standard deviation for the regime parameters λ and η

that is equal to their point estimates of them. Low uncertainty denotes full information. The cases labeled High EIS set
ψ = 1.5. Cases labeled Low EIS set ψ = 0.15. All cases use γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆= 0.06,ε = 0.4,k =
0.1,K = 0.4 and ζ = 1.
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Table 8: Value of Information

Low EIS High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.733 0.675 0.587 0.01 0.270 0.273 0.209
η̂ η̂0.05 0.708 0.682 0.617 0.05 0.200 0.255 0.236

Note: Table shows the fraction of wealth that the representative would be willing to surrender for a one-time transition
from high parameter uncertainty to low parameter uncertainty. High uncertainty denotes agents having a posterior
standard deviation for the regime parameters λ and η that is equal to their point estimates of them. Low uncertainty
denotes full information. The cases labeled High EIS set ψ = 1.5. Cases labeled Low EIS set ψ = 0.15. All cases use
γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.
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Appendix

Appendix A includes news articles from the Introduction and Section 3.

Appendix B describes the simulation, data and parameters for the vaccine progress indicator

from Section 3.

Appendix C contains proofs to Section 4.

An online appendix includes additional details on the vaccine progress indicator from Section

3. It further derives the solution to the regime-switching model with just two states, Proposition 5

in Section 4, and (40)-(41) in Section 5.

A News Articles

This section includes news articles from the Introduction and Section 3.

A.1 News Articles from the Introduction

On May 18, 2020 Moderna released positive interim clinical data from their Phase I trials and an-

nounced a Phase III trial.

Federal Reserve chair Jay Powell has warned that a full US economic recovery may

take until the end of next year and require the development of a COVID-19 vaccine:

“For the economy to fully recover, people will have to be fully confident. And that

may have to await the arrival of a vaccine", Mr. Powell told CBS News on Sunday.

Lauren Fedor and James Politi, Financial Times, May 18, 2020

U.S. stocks gained about $1 trillion of market capitalization yesterday, and while there

are lots of reasons why any particular stock may have gone up or down, good news

about a vaccine that might allow reopening of the economy seems like a common factor

for a lot of stocks.

“U.S. Stocks Surge as Hopes for Coronavirus Vaccine Build," was the Wall Street Jour-

nal’s headline, citing the Moderna results... It is almost fair to say that Moderna added

$1 trillion of value to all the other stocks yesterday.

Matt Levine, Money Stuff, May 19, 2020
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On July 14, 2020 Moderna publishes positive Phase I data in the New England Journal of Medicine,

highlighted by its vaccine candidate producing antibodies in all patients.

The most interesting correlation in the stock market right now is the one between (1)

the prices of airline stocks and (2) the amount of antibodies produced by coronavirus

vaccine candidates in clinical trials. So far the vaccines are experimental and uncertain.

If you knew that they’d work really well—protect everyone perfectly, no side effects,

easy to produce, etc.—then you’d know with a pretty high degree of certainty that

airline stocks (and cruise ships, hotels, casinos, retailers, etc.) would go up. If you

knew that they’d be a disaster then you’d probably be short airlines.

So on Tuesday Moderna announced good news, and yesterday:... Royal Caribbean

Cruises Ltd. was up 21.2%. Norwegian Cruise Line Holdings Ltd. was up 20.7%.

Carnival Corp. was up 16.2%. American Airlines Group Inc. was also up 16.2%.

United Airlines Holdings was up 14.6%. The biggest gainers were the vaccine sensitive

industries, not Moderna itself.

Matt Levine, Money Stuff, July 16, 2020

On November 9, 2020 Pfizer and BioNTech announced positive news regarding interim analysis

from their Phase III Study.

Markets received a shot in the arm Monday from Pfizer Inc. and its encouraging Stage

III tests on a COVID-19 vaccine. As a result, the S&P 500, the MSCI World and the

MSCI All-World indexes all rose to records. But that misses the point of the impact.

The news triggered the biggest single-day market rotation I’ve witnessed in the 30

years since I started covering markets...

In technical terms, the clearest expression of the violence of the turnaround comes from

tracking the performance of stocks that have had the greatest positive momentum,

relative to the market. Bloomberg’s measure of the pure momentum factor in the U.S.

stock market shows that momentum dropped 4% Monday. Since Bloomberg started

tracking daily moves in 2008, it had never before fallen as much as 2%.

John Authers, Bloomberg Opinion, November 10, 2020
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Monday’s news that a COVID-19 vaccine being developed by Pfizer and Germany’s

BioNTech was more than 90 per cent effective sent markets soaring. But it also prompted

an abrupt switch out of sectors that have prospered during the pandemic, such as tech-

nology, and into beaten-down stocks such as real estate and airlines — and triggered

an earthquake in some popular investment “factors” such as value and momentum...

The value factor, which is centered on lowly-priced, unfashionable stocks, enjoyed a

6.4 per cent uplift, its strongest one-day gain since the 1980s, while the momentum

factor — essentially stocks on a hot streak — tumbled 13.7 per cent, its worst ever loss,

according to JPMorgan.

Laurence Fletcher and Robin Wigglesworth, Financial Times, November 14, 2020

A.2 News Articles from Section 3

Our duration estimates are based on projections from the pharmaceutical and financial press dur-

ing 2020. For example, see (1) Damian Garde, STAT News, January 24, 2020, (2) Chelsea Weidman

Burke, BioSpace, February 17, 2020, (3) Hannah Kuchler, Clive Cookson and Sarah Neville, Finan-

cial Times, March 5, 2020, (4) Bill Bostock, Business Insider, April 1, 2020, (5) Derek Lowe, Science

Translational Medicine, April 15, 2020, (6) The Economist, April 16, 2020, (7) Nicoletta Lanese,

Live Science, April 16, 2020, and (8) James Paton, Bloomberg, April 27, 2020.

B Vaccine Progress Indicator

This section describes the simulation, data and parameters for the vaccine progress indicator.

More details are included in the online appendix.

B.1 Simulation Procedure

Start with N positively correlated vaccine candidates, with correlation matrix R. Each candidate

n is in a state s ∈ S, where

S = {failure, preclinical, phase 1, phase 2, phase 3, application, approval, deployment}

and each state has known expected duration τs and baseline probability of success πbase
s .
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Next we augment the state-level, baseline probability of successes with candidate-specific

news. Let ωn,t ∈ Ω denote news published at time t about candidate n. For example, Ω could

span positive data releases, negative data releases, next state announcements, etc. Then let ∆π :→

[−1,1] be a mapping from news to changes in probabilities. For each candidate, we cumulate the

changes in probabilities from all news from the beginning of our sample t0 up to time t,

∆πnews
n,t =

t

∑
t′=t0

∆π (ωn,t′) . (A.1)

Finally, we combine it with the baseline probability of success, resulting in a candidate-specific

probability of success that potentially varies overtime, even within the same state,

πtotal
n,s,t =

expΥn,s,t

1 + expΥn,s,t
(A.2)

where Υn,s,t = log πbase
s

1−πbase
s

+ 2∆πnews
n,t .

Figure A.1 outlines the simulation procedure. We simulate stage-by-stage progress of each

candidate and generate the expected time to first vaccine deployment, similar to a first to “de-

fault" model. Specifically, on each day, one run of the simulation repeats steps one to three until

candidates have all failed or deployed:

1. Draw two N-dimensional multivariate Normal random variables

zu
t , zd

t ∼N (0,R) (A.3)

2. For each candidate, transform to exponentially driven time to success and failure,

tu
n,s,t = −

logΦ(zu
n,t)

λu
n,s,t

and td
n,s,t = −

logΦ(zd
n,t)

λd
n,s,t

(A.4)

where

λu
n,s,t =

πtotal
n,s,t

τs
and λd

n,s,t =
1− πtotal

n,s,t

τs
(A.5)

3. If tu
n,s,t > td

n,s,t =⇒ candidate’s run is over. Else, candidate advances states, continue run
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4. Calculate each candidate’s time to vaccine deployment as

Tn =


∑s tu

n,s,t candidate deploys

∞ candidate fails

5. Then calculate minimum time to vaccine deployment across candidates as T∗m = minn Tn

That finishes one run of the simulation. Repeat for M = 50,000 runs and then advance to t + 1.

On each day across runs, we calculate the average

E[T∗] = (1− µ)TD
t + µTND, (A.6)

where some fraction, µ, of simulations will result in all candidates not reaching deployment, so we

incorporate TND, an estimated expected time to deployment by a project outside of our sample.

B.2 Data and Parameters

The simulation takes as input a timeline of COVID-19 vaccine candidates’ stage-by-stage progress

from the London School of Hygiene & Tropical Medicine.1 We observe the start dates of each

pre-clinical and clinical trial, along with their vaccine strategy. Vaccines typically take years to de-

velop, and institutes have combined phases in an effort to accelerate the timeline. Following Wong

et al. (2018), we adopt each candidate’s most advanced state. We also observe each candidate’s

strategy.

Since candidates share a common virus target, and potentially common institutes or strategies,

we define pairwise correlations in an additive manner. For two candidates n 6= n′:

ρ(n,n′) =


0.2 baseline

add 0.2 if shared institute

add 0.1 if shared strategy.

Table A.1 lists our parameter choices of durations and baseline probabilities of success. Table

A.2 summarizes the distribution of time spent in each state in our simulation. Following Wong

1This version of the paper uses the timeline available on November 2, 2020.
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et al. (2018), we adopt each candidate’s most advanced state. We track days spent in each state

until the next state starts, only among candidates that have successfully transitioned to the next

state. The realized outcomes for durations are reasonably consistent with our choices of parame-

ters, in particular for Phase I and Phase II. And the standard deviations of durations are less than

the mean is consistent with the Gaussian copula assumption of positively correlated outcomes.

We then augment πbase
s with 233 news articles from FactSet StreetAccount, split into positive

and negative news types. Table A.3 lists the news types along with their changes in probabilities.

C Proofs to Section 4

C.1 Proof of Proposition 1

Proof. From the evolution of capital stock for the representative agent (16), we obtain the Hamilton-

Jacobi-Bellman (HJB) equation as follows for each state s ∈ {1, . . . ,S− 1}

0 = max
C,l

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(lαqµ− C) +

1
2

JJJqq(s)lαq2σ2 + ξ [JJJ(s) (q(1− χ∆))− JJJ(s)(q)]

+ λu(s) [JJJ(s + 1)(q)− JJJ(s)(q)] + λd(s) [JJJ(s− 1)(q)− JJJ(s)(q)]
]

(A.7)

Using the conjecture for the objective function (17) for JJJ(s), calculating the derivatives with respect

to q, JJJq(s) = H(s)q−γ and JJJqq(s) = −γH(s)q−γ−1, and differentiating with respect to labor l, we

obtain the first-order condition as

JJJq(q)αlα−1µq +
1
2

JJJqq(q)αlα−1σ2q2 − JJJq (q(1− χ∆)) ξε∆q = 0 (A.8)

where we have suppressed state s in the notation. This in turn simplifies to

[
α
(
µ− 1

2 γσ2)
ξε∆

]
lα−1 − [1− χ∆]−γ = 0 (A.9)

where χ(l, L) = k + εl + KL. In rational expectations equilibrium L(s) = l(s), which gives us that

optimal labor in pandemic state L?(s) ∀s ∈ {1, . . . ,S− 1} satisfies (20):

χ (L(s), L(s)) = k + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
γ ν
]

(A.10)
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where

ν ≡
[

α
(
µ− 1

2 γσ2)
ξε∆

]−1/γ

. (A.11)

The second-order condition with respect to l is satisfied (footnote 7, equation 19) whenever
(
µ− 1

2 γσ2)>
0. For the non-pandemic state s = 0 or s = S, the third term in first-order condition (A.8) is ab-

sent; therefore, we obtain that labor is at the highest possible level L(0) = L(S) = `, whenever

α
(
µ− 1

2 γσ2) > 0.

C.2 Proof of Propositions 2 and 3

Proof. Taking the first-order condition with respect to C(s) in HJB equation (A.7), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.12)

Using f (C,JJJ) from (14) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1− γ)JJJ(s)]
1
θ−1

, (A.13)

which substituting for conjecture JJJ(s) in equation (16) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.14)

Then, for state s ∈ {0, . . . ,S}, we obtain by substituting JJJq(s) in (A.12), and simplifying:

C(s) =
H(s)−θψ−1

q
ρ−ψ

, (A.15)

which proves Proposition 3.

To obtain the solution to state-by-state constants H(s), we

1. substitute the optimal controls {C(s), L(s)} into the HJB equation (A.7) for each s;

2. cancel the terms in q which have the same exponent; and
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3. group terms not involving H(s) constants into g(`,0) for state s = 0 and g(L(s),ξ) for state

s ∈ {1, . . . ,S− 1}

to reach equations (22) - (24). This system of recursive equations can be solved numerically with

the final condition in Proposition 2: H(s) = H(0), that states 0 and S are non-pandemic states. �

The detailed derivation of these equations for the two-state case (S = 2) is provided for il-

lustration in the online appendix where we refer to the non-pandemic state as state 0 and the

pandemic state as state 1.

C.3 Proof of Proposition 4

Proof. The value of a cure (vaccine) V(s) satisfies:

JJJ(0)(q) = JJJ(0) [(1−V(s))q] (A.16)

where JJJ(0) is evaluated at (1−V(s))q. Substituting for JJJ(s) from (17), we obtain

H(0)q1−γ

(1− γ)
=

H(0) [(1−V(s))q]1−γ

(1− γ)
(A.17)

which yields

V(s) = 1−
(

H(s)
H(0)

) 1
1−γ

. (A.18)

Then, substituting for C(s) from (25) and recognizing marginal propensity to consume, c(s),

equals dC
dq = C(s)

q , yields Proposition 4.

A.8



Figure A.1: Simulation Flow Chart

Note: Figure sketches the simulation procedure for estimating the expected time until vaccine deployment.
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Table A.1: State Durations and Probabilities of Success

State τs (years) πbase
s (%)

Preclinical 0.6 5
Phase I 0.2 70
Phase II 0.2 44
Phase III 0.4 69
Application 0.1 88
Approval 0.5 95

Note: Table shows the duration and probability of success at each state.
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Table A.2: Vaccine States

Days in State

Min Max Mean Median SD

Preclinical 1.0 233.0 94.6 90.5 59.2

Phase I
Safety Trials

17.0 103.0 51.9 27.0 39.8

Phase II
Expanded Trials

6.0 152.0 86.8 89.0 54.5

Phase III
Efficacy Trials

- - - - -

Note: Table shows statistics on the number of days spent in each state before transitioning to the next.
Following Wong et al. (2018), we adopt each candidate’s most advanced state. We track days spent in each
state until the next state starts, among candidates that have successfully transitioned to the next state. Data
are from the London School of Hygiene & Tropical Medicine’s COVID-19 Tracker. Data are as of November
2, 2020.
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Table A.3: News and Changes in Probabilities

Positive Negative
News type ∆π (%) News type ∆π (%)

Announce next state +5 Pause in state -25
State ahead of schedule +2 State behind schedule -15
Release positive data +5 Release negative data -60
Positive regulatory action +3 Negative regulatory action -50
Positive preclinical progress +1 Negative preclinical progress -2
Positive enrollment +1 Negative enrollment -5
Dose starts +1
State resumes after pause +5

Note: Table shows the positive and negative news types, along with their changes in probabilities.
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