Debt Constrained Asset Markets

Timothy J. Kehoe and David K. Levine
Review of Economic Studies, 1993

Presented By: Michelle Zemel
November 13, 2007
Motivation

- Complete Markets \Rightarrow Perfect Risk Sharing
Motivation

- Complete Markets \Rightarrow Perfect Risk Sharing
- In the data, however, changes in individual consumption are imperfectly correlated with those in aggregate consumption
In the data, however, changes in individual consumption are imperfectly correlated with those in aggregate consumption. What kind of friction can we introduce into the model to break this tight link between aggregate and individual consumption?
Motivation

- Full enforcement

Full enforcement means that if an agent has an incentive to default, there will be no default at any point in time. To relax the assumption of full enforcement, a punishment for default is introduced.

1) Seizure of public assets (collateral)
2) Permanent exclusion from intertemporal trade (but not from spot market)
Motivation

- Full enforcement
- ⇒ No default at any point in time if an agent has incentive to do so
Motivation

- Full enforcement
- \Rightarrow No default at any point in time if an agent has incentive to do so
- Relax the assumption of full enforcement, replace it with a punishment for default
Motivation

- Full enforcement
- ⇒ No default at any point in time if an agent has incentive to do so
- Relax the assumption of full enforcement, replace it with a punishment for default
- In this model, punishment for default is
 1) seizure of public assets (collateral)
 2) permanent exclusion from intertemporal trade (but not from spot market)
Motivation

Why does this lead to Equilibria with Partial Insurance?

- Even with the punishment in place, an agent might still have incentive to default at a certain state.
Motivation

Why does this lead to Equilibria with Partial Insurance?

- Even with the punishment in place, an agent might still have incentive to default at a certain state.
- However, in this model all information is publicly held and common knowledge.
Motivation

Why does this lead to Equilibria with Partial Insurance?

- Even with the punishment in place, an agent might still have incentive to default at a certain state.
- However, in this model all information is publicly held and common knowledge.
- No one would agree to enter into a contract in which the other party has an incentive to default.
Motivation

Why does this lead to Equilibria with Partial Insurance?

- Even with the punishment in place, an agent might still have incentive to default at a certain state.
- However, in this model all information is publicly held and common knowledge.
- No one would agree to enter into a contract in which the other party has an incentive to default.
- This limits the feasible allocations, can lead to an allocation which is not first-best, i.e. not full risk sharing.
Motivation

Relationship to Incomplete Markets Model

- The incomplete markets literature (Mankiw 1986, etc.) also generate the partial insurance result.
Relationship to Incomplete Markets Model

- The incomplete markets literature (Mankiw 1986, etc.) also generate the partial insurance result
- Inability to access certain contingent claims \Rightarrow partial insurance
Relationship to Incomplete Markets Model

- The incomplete markets literature (Mankiw 1986, etc.) also generate the partial insurance result
- Inability to access certain contingent claims \Rightarrow partial insurance
- This can be seen as an explanation for why these markets are incomplete - these contingent claims with default incentive will not be available for sale
Motivation

Relationship to Incomplete Markets Model

- The incomplete markets literature (Mankiw 1986, etc.) also generate the partial insurance result
- Inability to access certain contingent claims \Rightarrow partial insurance
- This can be seen as an explanation for why these markets are incomplete - these contingent claims with default incentive will not be available for sale
- Situations that are too expensive to insure
Main Findings

- Model can generate the partial insurance result
Main Findings

- Model can generate the partial insurance result
- Interest rates may be lower than in the constrained equilibrium (less borrowing demand)
Main Findings

Characterization of Equilibria and Allocations in the Constrained Model

- Efficiency
- Analogues of Social Welfare Theorems
Trade

- Intertemporal and Spot Markets
Trade

- Intertemporal and Spot Markets
- A-D Economy (All intertemporal trades are made at time 0)
Trade

- Intertemporal and Spot Markets
- A-D Economy (All intertemporal trades are made at time 0)
- Spot Markets open every period
Trade

- Intertemporal and Spot Markets
- A-D Economy (All intertemporal trades are made at time 0)
- Spot Markets open every period
- Markets are Complete
There are two types of endowments, private goods and public assets.
Endowments

- There are two types of endowments, private goods and public assets.
- Private endowments, $\bar{x}_i(\eta)$, cannot be seized from the agent.
Endowments

- There are two types of endowments, private goods and public assets.
- Private endowments, $\tilde{x}^i(\eta)$, cannot be seized from the agent.
- Public endowment, $\tilde{w}^i(\eta)$ represents assets that are available for consumption but can change hands, such as land and property.
Default

- Punishment for Default
Default

- Punishment for Default
- Central Agency
Default

- Punishment for Default
- Central Agency
- Default Punishment: seizure of assets and exclusion from intertemporal markets
Preferences

- Economy is populated by agents with V-NM utility functions
Preferences

- Economy is populated by agents with V-NM utility functions

The preferences of agent i are given by the von Neumann–Morgenstern utility function

$$U_i(x^i) = (1 - \delta) \sum_{s \in S} \delta^{i(s)-1} \pi_s u_i(x^i_s, \eta_s).$$

(A.1) $u_i(\cdot, \eta)$ is continuous, concave, strictly quasi-concave, and strictly monotonically increasing.
For $x^i_s > 0$, $u_i(x^i_s, \eta)$ is continuously differentiable.
Allocation Constraints

Which Allocations are Feasible?

- Standard Notion of Social Feasibility:

Timothy J. Kehoe and David K. Levine, Review of Economic Studies, 1993
Debt Constrained Asset Markets
Allocation Constraints

Which Allocations are Feasible?
- Standard Notion of Social Feasibility:

An allocation is \textit{socially feasible} if for each state history s

\begin{equation}
\sum_{i=1}^{m} x_{s}^{i} \leq \tilde{x}(\eta_{s}).
\end{equation}
Allocation Constraints

Which Allocations are Feasible?
Allocation Constraints

Which Allocations are Feasible?

- Individual Rationality Constraint
Allocation Constraints

Which Allocations are Feasible?

- Individual Rationality Constraint
- This constraint will rule out the allocations with default (despite punishment)
Allocation Constraints

Individual Rationality Constraint

we define the indirect utility function \(v_i(p_s, y_s^i, \eta_s) \) as the solution to

\[
\max u_i(x_s^i, \eta_s)
\]

subject to

\[
p_s \cdot x_s^i \leq y_s^i.
\]

We say that the allocation-price pair \((x, p)\) is spot market supporting if \((SS)\)

\[
u_i(x_s^i, \eta_s) = v_i(p_s, p_s \cdot x_s^i, \eta_s)
\]

for each state history \(s\) and agent \(i\). In other words, no agent has any incentive to recontract in spot markets.

An allocation-price pair \((x, p)\) is said to be (interim) individually rational if, for each state history \(s\) and agent \(i\),

\[
(\text{IR}) (1 - \delta)\sum_{\sigma \preceq s} \delta^{t(\sigma) - t(s)} \pi_\sigma u_i(x_\sigma^i, \eta_\sigma) \geq (1 - \delta)\sum_{\sigma \preceq s} \delta^{t(\sigma) - t(s)} \pi_\sigma v_i(p_\sigma, p_\sigma \cdot \tilde{x}_i(\eta_\sigma), \eta_\sigma).
\]
A constrained transfer equilibrium is a triple \((x, p, q)\) with the allocation \(x \in l_\infty\), spot prices \(p \in \mathbb{R}_\infty\), and intertemporal prices \(q \in l_\infty^x\) such that the allocation is socially feasible (SF); it exhausts the value of the social endowment,

\[(E.1)\quad \sum_{i=1}^{m} q(x^i) = q(\bar{x});\]

each agent's allocation \(x^i\) maximizes utility subject to a budget constraint and interim individual rationality constraints,

\[(E.2)\quad \max U_i(z^i)\]

subject to

\[q(z^i) \leq q(x^i)\]

\[(1 - \delta) \sum_{\sigma \in S} \delta^{t(\sigma) - t(s)} \pi_\sigma u_i(z^{\sigma}_s, \eta_\sigma) \geq (1 - \delta) \sum_{\sigma \in S} \delta^{t(\sigma) - t(s)} \pi_\sigma v_i(p_\sigma, p_\sigma \cdot \bar{x}(\eta_\sigma), \eta_\sigma), \quad s \in S;\]

and the spot prices \(p\) are consistent with the intertemporal prices \(q\) in the sense that

\[(E.3)\quad x, z \in l_\infty, \quad \text{and } p_s \cdot x_s = p_s \cdot z_s \text{ for all } s \in S \text{ imply } q(x) = q(z).\]
Example 1

Setting

- State Space: 3 states, $\eta_0 = 3$
Example 1

Setting

- State Space: 3 states, \(\eta_0 = 3 \)
- Transition Probabilities: \(\pi(1|3) = \pi(2|3) = \frac{1}{2} \) and \(\pi(1|2) = \pi(2|1) = 1 \)
Example 1

Setting

- State Space: 3 states, $\eta_0 = 3$
- Transition Probabilities: $\pi(1|3) = \pi(2|3) = \frac{1}{2}$ and $\pi(1|2) = \pi(2|1) = 1$
- Agents have log utility, $u_i(x, \eta) = u_i(x) = \log x$, $i = 1, 2$ $\eta = 1, 2$
Example 1

Setting

- State Space: 3 states, \(\eta_0 = 3 \)
- Transition Probabilities: \(\pi(1|3) = \pi(2|3) = \frac{1}{2} \) and \(\pi(1|2) = \pi(2|1) = 1 \)
- Agents have log utility, \(u_i(x, \eta) = u_i(x) = \log x, \ i = 1,2 \ \eta = 1,2 \)
- Private endowments vary with the state, no assets
Example 1

Setting

- State Space: 3 states, $\eta_0 = 3$
- Transition Probabilities: $\pi(1|3) = \pi(2|3) = \frac{1}{2}$ and $\pi(1|2) = \pi(2|1) = 1$
- Agents have log utility, $u_i(x, \eta) = u_i(x) = \log x$, $i = 1, 2$, $\eta = 1, 2$
- Private endowments vary with the state, no assets
- $\bar{x}_1(1) = \bar{x}_2(2) = \bar{x}_h$ and $\bar{x}_1(2) = \bar{x}_2(1) = \bar{x}_l$
Example 1

Solving for the Unique Unconstrained Equilibrium (First Best Allocation)
Example 1

Solving for the Unique Unconstrained Equilibrium (First Best Allocation)

\[x_{jt}^i = \frac{(x_h + x_l)}{2} \quad i = 1,2 \quad j = 1,2 \quad t = 1,2,\ldots \]
Example 1

Solving for the Unique Unconstrained Equilibrium (First Best Allocation)

- $x_{jt}^i = \frac{(\bar{x}_h + \bar{x}_l)}{2}$ $i = 1,2$ $j = 1,2$ $t = 1,2,....$
- $q_{jt} = \delta^{t-1}$ $j = 1,2$ $t = 1,2,....$
Example 1

Solving for the Unique Unconstrained Equilibrium (First Best Allocation)

- \(x_{jt}^i = \frac{(\bar{x}_h + \bar{x}_l)}{2} \quad i = 1, 2 \quad j = 1, 2 \quad t = 1, 2, \ldots \)
- \(q_{jt} = \delta^{t-1} \quad j = 1, 2 \quad t = 1, 2, \ldots \)
- Constant interest rate = \(\frac{q_{jt}}{q_{jt+1}} - 1 \)
Example 1

What about the Constrained Equilibrium?
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
- Suppose \((\bar{x}_h, \bar{x}_f) = (15, 4)\)
Example 1

What about the Constrained Equilibrium?
- Is the Unconstrained Allocation Feasible?
- Suppose $(\bar{x}_h, \bar{x}_l) = (15, 4)$
- Let $\delta = \frac{1}{2}$
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
- Suppose \((\bar{x}_h, \bar{x}_l) = (15, 4)\)
- Let \(\delta = \frac{1}{2}\)
- Agent i’s utility in state i is \(\log\left(\frac{19}{2}\right)\)
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
- Suppose $(\bar{x}_h, \bar{x}_l) = (15, 4)$
- Let $\delta = \frac{1}{2}$
- Agent i’s utility in state i is $\log\left(\frac{19}{2}\right)$
- In state 1, when agent 1’s endowment is \bar{x}_h, then his utility of autarky is $\frac{2}{3} \log(15) + \frac{1}{3} \log(4)$
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
- Suppose \((\bar{x}_h, \bar{x}_l) = (15, 4)\)
- Let \(\delta = \frac{1}{2}\)
- Agent i’s utility in state i is \(\log\left(\frac{19}{2}\right)\)
- In state 1, when agent 1’s endowment is \(\bar{x}_h\), then his utility of autarky is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4)\)
- but \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) > \log\left(\frac{19}{2}\right)\), so agent 1 has an incentive to default in state 1
Example 1

What about the Constrained Equilibrium?

- Is the Unconstrained Allocation Feasible?
- Suppose \((\bar{x}_h, \bar{x}_l) = (15, 4)\)
- Let \(\delta = \frac{1}{2}\)
- Agent i’s utility in state i is \(\log\left(\frac{19}{2}\right)\)
- In state 1, when agent 1’s endowment is \(\bar{x}_h\), then his utility of autarky is \(\frac{2}{3}\log(15) + \frac{1}{3}\log(4)\)
- but \(\frac{2}{3}\log(15) + \frac{1}{3}\log(4) > \log\left(\frac{19}{2}\right)\), so agent 1 has an incentive to default in state 1
- The unconstrained equilibrium violates (IR), thus constrained equilibrium will not be first best
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: $\bar{x}_1(1) = \bar{x}_2(2) = 10$ and $\bar{x}_1(2) = \bar{x}_2(1) = 9$
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: $\bar{x}_1(1) = \bar{x}_2(2) = 10$ and $\bar{x}_1(2) = \bar{x}_2(1) = 9$

- SF is clearly satisfied

Agent i's utility in state i is $\frac{2}{3} \log(10) + \frac{1}{3} \log(9)$.

Agent i's utility of autarky in state i is $\frac{2}{3} \log(15) + \frac{1}{3} \log(4)$.

But these two quantities are equal since $10^{\frac{2}{3}} 9^{\frac{1}{3}} = 15^{\frac{2}{3}} 4^{\frac{1}{3}}$. This allocation satisfies (IR).
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: $\bar{x}_1(1) = \bar{x}_2(2) = 10$ and $\bar{x}_1(2) = \bar{x}_2(1) = 9$
- SF is clearly satisfied
- IR is satisfied:

Agent i's utility in state i is $\frac{1}{3} \log(10) + \frac{1}{3} \log(9)$.

Agent i's utility of autarky in state i is $\frac{1}{3} \log(15) + \frac{1}{3} \log(4)$.

But these two quantities are equal since $10 \times 9 = 15 \times 4$. This allocation satisfies (IR).

Use first order conditions to obtain prices (such that the allocational is a optimal given prices)

$q_t = (\frac{5}{9}, -1)$

This is an equilibrium.
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: $\bar{x}_1(1) = \bar{x}_2(2) = 10$ and $\bar{x}_1(2) = \bar{x}_2(1) = 9$
- SF is clearly satisfied
- IR is satisfied:
- Agent i’s utility in state i is $\frac{2}{3} \log(10) + \frac{1}{3} \log(9)$
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: \(\bar{x}_1(1) = \bar{x}_2(2) = 10 \) and \(\bar{x}_1(2) = \bar{x}_2(1) = 9 \)
- SF is clearly satisfied
- IR is satisfied:
 - Agent i’s utility in state i is \(\frac{2}{3} \log(10) + \frac{1}{3} \log(9) \)
 - Agent i’s utility of autarky in state i is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) \).
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: \(\bar{x}_1(1) = \bar{x}_2(2) = 10 \) and \(\bar{x}_1(2) = \bar{x}_2(1) = 9 \)

- SF is clearly satisfied

- IR is satisfied:
 - Agent i’s utility in state i is \(\frac{2}{3} \log(10) + \frac{1}{3} \log(9) \)
 - Agent i’s utility of autarky in state i is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) \).

- But these two quantities are equal since \(10^2 9 = 15^2 4 \). This allocation satisfies (IR).
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: \(\bar{x}_1(1) = \bar{x}_2(2) = 10 \) and \(\bar{x}_1(2) = \bar{x}_2(1) = 9 \)
- SF is clearly satisfied
- IR is satisfied:
 - Agent i’s utility in state i is \(\frac{2}{3} \log(10) + \frac{1}{3} \log(9) \)
 - Agent i’s utility of autarky in state i is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) \).
- But these two quantities are equal since \(10^{\frac{2}{3}} \cdot 9^{\frac{1}{3}} = 15^{\frac{2}{3}} \cdot 4^{\frac{1}{3}} \). This allocation satisfies (IR).
- Use first order conditions to obtain prices (such that the allocational is a optimal given prices)
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: \(\bar{x}_1(1) = \bar{x}_2(2) = 10 \) and \(\bar{x}_1(2) = \bar{x}_2(1) = 9 \)
- SF is clearly satisfied
- IR is satisfied:
 - Agent i’s utility in state i is \(\frac{2}{3} \log(10) + \frac{1}{3} \log(9) \)
 - Agent i’s utility of autarky in state i is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) \).
- But these two quantities are equal since \(10^2 9 = 15^2 4 \). This allocation satisfies (IR).
- Use first order conditions to obtain prices (such that the allocational is a optimal given prices)
 - \(q_t = \left(\frac{5}{9} \right)^{t-1} \)
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: \(\bar{x}_1(1) = \bar{x}_2(2) = 10 \) and \(\bar{x}_1(2) = \bar{x}_2(1) = 9 \)
- SF is clearly satisfied
- IR is satisfied:
 - Agent i’s utility in state i is \(\frac{2}{3} \log(10) + \frac{1}{3} \log(9) \)
 - Agent i’s utility of autarky in state i is \(\frac{2}{3} \log(15) + \frac{1}{3} \log(4) \).
- But these two quantities are equal since \(10^{\frac{2}{3}} 9 = 15^{\frac{2}{3}} 4 \). This allocation satisfies (IR).
- Use first order conditions to obtain prices (such that the allocational is a optimal given prices)
 - \(q_t = \left(\frac{5}{9} \right)^{t-1} \)
- This is an equilibrium
Example 1

Constrained Equilibrium Allocations and Prices?

- Candidate Allocation: $\bar{x}_1(1) = \bar{x}_2(2) = 10$ and $\bar{x}_1(2) = \bar{x}_2(1) = 9$
- SF is clearly satisfied
- IR is satisfied:
 - Agent i’s utility in state i is $\frac{2}{3} \log(10) + \frac{1}{3} \log(9)$
 - Agent i’s utility of autarky in state i is $\frac{2}{3} \log(15) + \frac{1}{3} \log(4)$.
 - But these two quantities are equal since $10^29 = 15^24$. This allocation satisfies (IR).
- Use first order conditions to obtain prices (such that the allocational is a optimal given prices)
 - $q_t = (\frac{5}{9})^{t-1}$
- This is an equilibrium
Example 1

Constrainted vs. Unconstrained Equilibrium

- Unconstrained Equilibrium \Rightarrow First Best Allocation \Rightarrow Perfect Risk Sharing

\[q_{jt} = \delta_t - 1 \quad \Rightarrow \quad r = \left(\frac{1}{2} \right) \left(-1 \right) - 1 = -1 = 1 \]

\[q_{jt} = \left(\frac{5}{9} \right) t - 1 \quad \Rightarrow \quad r = \left(\frac{5}{9} \right) \left(-1 \right) - 1 = \frac{9}{5} - 1 = \frac{4}{5} \]
Example 1

Constrainted vs. Unconstrained Equilibrium

- Unconstrained Equilibrium \Rightarrow First Best Allocation \Rightarrow Perfect Risk Sharing
- Constrained Equilibrium \Rightarrow Only Partial Insurance (consumption volatility is reduced, but not eliminated)
Example 1

Constrained vs. Unconstrained Equilibrium

- Unconstrained Equilibrium \Rightarrow First Best Allocation \Rightarrow Perfect Risk Sharing
- Constrained Equilibrium \Rightarrow Only Partial Insurance
 (consumption volatility is reduced, but not eliminated)
- Interest Rate differs in the two equilibria:

\[
q_{jt} = \frac{\delta_t}{t - 1} \Rightarrow r = \left(\frac{1}{2}\right) \left(\frac{5}{9t - 1}\right) = \frac{9}{5t - 1} = \frac{4}{5}
\]
Example 1

Constrainted vs. Unconstrained Equilibrium

- Unconstrained Equilibrium \Rightarrow First Best Allocation \Rightarrow Perfect Risk Sharing
- Constrained Equilibrium \Rightarrow Only Partial Insurance (consumption volatility is reduced, but not eliminated)
- Interest Rate differs in the two equilibria:

 - Unconstrained Equilibrium:
 \[q_{jt} = \delta^{t-1} \Rightarrow r = \left(\frac{1}{2}\right)^{(1)} - 1) = 2 - 1 = 1 \]
Example 1

Constrainted vs. Unconstrainted Equilibrium

- Unconstrainted Equilibrium ⇒ First Best Allocation ⇒ Perfect Risk Sharing
- Constrained Equilibrium ⇒ Only Partial Insurance (consumption volatility is reduced, but not eliminated)
- Interest Rate differs in the two equilibria:
 - Unconstrainted Equilibrium:
 \[q_{jt} = \delta^{t-1} \Rightarrow r = \left(\frac{1}{2}\right)^{(1) - 1} - 1 = 2 - 1 = 1 \]
 - Constrained Equilibrium:
 \[q_{jt} = \left(\frac{5}{9}\right)^{t-1} \Rightarrow r = \left(\frac{5}{9}\right)^{(1) - 1} - 1 = \frac{9}{5} - 1 = \frac{4}{5} \]
Example 1

Can we force a first best allocation?
Example 1

Can we force a first best allocation?

- If the two agents are patient enough, then the threat of exclusion from intertemporal trade is enough to force the first best allocation as an equilibrium.
Example 1

Can we force a first best allocation?

- If the two agents are patient enough, then the threat of exclusion from intertemporal trade is enough to force the first best allocation as an equilibrium.
- Calculate the value of δ for which agents will have no incentive to default when in their high state.
Example 1

Can we force a first best allocation?

- If the two agents are patient enough, then the threat of exclusion from intertemporal trade is enough to force the first best allocation as an equilibrium
- Calculate the value of δ for which agents will have no incentive to default when in their high state

$$\log \frac{19}{2} = (1 - \tilde{\delta}) \sum_{t=1}^{\infty} \tilde{\delta}^{2t-2} \log 15 + (1 - \tilde{\delta}) \sum_{t=1}^{\infty} \tilde{\delta}^{2t-1} \log 4.$$

It is

$$\tilde{\delta} = \frac{\log 15 + \log 2 - \log 19}{\log 19 - \log 4 - \log 2} = 0.52805.$$

For all δ such that $\tilde{\delta} \leq \delta < 1$, the unconstrained equilibrium is the unique equilibrium of the debt constrained economy.
Efficiency Concepts

An allocation-price pair \((x, p)\) is said to be admissible if it satisfies (SF), (IR), and (SS). An allocation-price pair is said to be efficient if it is admissible and cannot be dominated by any other admissible allocation-price pair. An allocation-price pair is said to be conditionally efficient (conditional on price vector \(p\)) if it is admissible and cannot be Pareto dominated by any allocation \(\tilde{x}\) such that \((\tilde{x}, p)\) satisfies (IR) and \(\sum m_i \tilde{x}_i \leq \sum m_i \bar{x}_i(\eta)\) for all \(s\).
Efficiency Concepts

An allocation-price pair \((x,p)\) is said to be *admissible* if it satisfies (SF), (IR), and (SS).
Efficiency Concepts

- An allocation-price pair \((x,p)\) is said to be *admissible* if it satisfies (SF), (IR), and (SS).
- An allocation-price pair is said to be *efficient* if it is admissible and cannot be dominated by any other admissible allocation-price pair.
Efficiency Concepts

- An allocation-price pair \((x, p)\) is said to be *admissible* if it satisfies (SF), (IR), and (SS)
- An allocation-price pair is said to be *efficient* if it is admissible and cannot be dominated by any other admissible allocation-price pair
- An allocation-price pair is said to be *conditionally efficient* (conditional on price vector \(p\)) if it admissible and cannot be Pareto dominated by any allocation \(\tilde{x}\) such that \((\tilde{x}, p)\) satisfies (IR) and \(\sum_{i=1}^{m} p_s \tilde{x}^i_s \leq p_s \bar{x}(\eta_s)\) for all \(s\)
Efficiency Concepts

\[j = 1 \implies \text{Efficiency and Conditional Efficiency are equivalent} \]
Efficiency Concepts

- $j = 1 \Rightarrow$ Efficiency and Conditional Efficiency are equivalent.
- Conditional efficiency is stronger than efficiency: \tilde{x} need not be admissible, it can violate (SS) or (SF).
Efficiency Concepts

- \(j = 1 \Rightarrow \) Efficiency and Conditional Efficiency are equivalent
- Conditional efficiency is stronger than efficiency: \(\tilde{x} \) need not be admissible, it can violate (SS) or (SF)
- Conditional efficiency is weaker than efficiency: an admissible allocation-price pair at prices other than \(p \) might Pareto dominate \((x,p)\)
Propositions

Proposition 1. Efficient allocation-price pairs exist.

Proposition 2. Suppose that the Markov chain π has a single ergodic class and no transient states. Suppose further either (i) that every agent has positive assets or (ii) that u_i is strictly concave. Then there is a discount factor $\delta < 1$ and an allocation-price pair (x, p) with x stationary such that for all δ, $\delta \leq \delta < 1$, (x, p) is efficient, conditionally efficient, and first-best.

Proposition 3. If utility functions are identically homothetic, then an allocation-price pair is efficient if and only if it is conditionally efficient.
First Welfare Theorem
First Welfare Theorem

First Fundamental Theorem of Welfare Economics: If \((x,q)\) is a price equilibrium with transfers, then the allocation \(x\) is efficient.

Proposition 4. (First welfare theorem) If \((x, p, q)\) is a constrained transfer equilibrium, then \((x, p)\) is conditionally efficient.
Second Welfare Theorem

Second Fundamental Theorem of Welfare Economics: Any Pareto efficient allocation can be supported as a price quasi equilibrium with transfers.

Proposition 5. (Second welfare theorem) Suppose that \((x, p)\) is conditionally efficient. Then there exist prices \(q \in l^*_\infty\) such that \((x, p, q)\) is a constrained quasi-equilibrium.
Example 2

Setting
Example 2

Setting

- 4 states, $\eta_0 = 1$
Example 2

Setting

- 4 states, \(\eta_0 = 1 \)
- Transition probabilities: \(\pi(2|1) = \pi(3|1) = \frac{1}{2} \) and
 \(\pi(4|2) = \pi(4|3) = 1 \)
Example 2

Setting

- 4 states, $\eta_0 = 1$
- Transition probabilities: $\pi(2|1) = \pi(3|1) = \frac{1}{2}$ and $\pi(4|2) = \pi(4|3) = 1$
- In states 2 and 4 - 1 good, in state 3 - 2 goods. State 4 has no assets
Example 2

Setting

- 4 states, $\eta_0 = 1$
- Transition probabilities: $\pi(2|1) = \pi(3|1) = \frac{1}{2}$ and $\pi(4|2) = \pi(4|3) = 1$
- In states 2 and 4 - 1 good, in state 3 - 2 goods. State 4 has no assets
- Effectively, this reduces to a one period 2 state economy
Example 2

Preferences
Example 2

Preferences

Each consumer has preferences

\[U_i(x) = \frac{1}{2} a^i x_2^i - \frac{1}{2} (40)(b_1^i (x_{13}^i)^{-4} + b_2^i (x_{23}^i)^{-4}), \]

where \((a^1, b_1^1, b_2^1) = (1, 1, 243)\) and \((a^2, b_1^2, b_2^2) = (2, 243, 1)\)
Example 2

Endowments

- State 2: $\bar{x}_1^1 = \bar{x}_1^2 = 1, \bar{x}_1 = 4$
- State 3: $(\bar{x}_1^1, \bar{x}_1^2) = (1, 12), (\bar{x}_2^1, \bar{x}_2^2) = (11, 1), (\bar{x}_1, \bar{x}_2) = (13, 13)$
Example 2

Endowments

- State 2: $\bar{x}_1^1 = \bar{x}_1^2 = 1$, $\bar{x}_1 = 4$
- State 3: $(\bar{x}_1^1, \bar{x}_1^2) = (1, 12)$, $(\bar{x}_1^2, \bar{x}_2^2) = (11, 1)$, $(\bar{x}_1, \bar{x}_2) = (13, 13)$
- Agent 2 is endowed with the allocation (1,0) of the public good in state 3
Example 2

Endowments

- State 2: $\bar{x}_1^1 = \bar{x}_1^2 = 1$, $\bar{x}_1 = 4$
- State 3: $(\bar{x}_1^1, \bar{x}_1^2) = (3, 2.5)$, $(\bar{x}_2^1, \bar{x}_2^2) = (9.75, 3.25)$
- Agent 2 is endowed with the allocation (1,0) of the public good in state 3
- First Best Allocation-Price Pair (x, p)
Example 2

Endowments

- State 2: $\bar{x}_1^1 = \bar{x}_1^2 = 1$, $\bar{x}_1 = 4$
- State 3: $(\bar{x}_1^1, \bar{x}_2^1) = (1, 12)$, $(\bar{x}_1^2, \bar{x}_2^2) = (11, 1)$, $(\bar{x}_1, \bar{x}_2) = (13, 13)$
- Agent 2 is endowed with the allocation $(1,0)$ of the public good in state 3
- First Best Allocation-Price Pair (x,p)
 - x: State 2: $\bar{x}_1^1 = \bar{x}_1^2 = 2$ and // State 3: $\bar{x}_1^1, \bar{x}_1^2 = (3.25, 9.75)$, $\bar{x}_1^2, \bar{x}_2^2 = (9.75, 3.25)$
Example 2

Endowments

- **State 2**: $\bar{x}_1 = \bar{x}_2 = 1$, $\bar{x}_1 = 4$
- **State 3**: $(\bar{x}_1, \bar{x}_2) = (1, 12)$, $(\bar{x}_1, \bar{x}_2) = (11, 1)$, $(\bar{x}_1, \bar{x}_2) = (13, 13)$
- **Agent 2** is endowed with the allocation $(1,0)$ of the public good in state 3
- **First Best Allocation-Price Pair** (x, p)
 - x: **State 2**: $\bar{x}_1 = \bar{x}_2 = 2$ and **State 3**: $\bar{x}_1, \bar{x}_2 = (3.25, 9.75)$, $\bar{x}_1, \bar{x}_2 = (9.75, 3.25)$
 - p: $p_1 = p_2 = 1$ in state 3
Example 2

Efficiency

- Claim: This allocation-price pair is efficient, but not conditionally efficient
Example 2

Efficiency

- Claim: This allocation-price pair is efficient, but not conditionally efficient
- \((x,p)\) can be dominated by an alternate allocation at prices \(p\)
Example 2

Efficiency

- Claim: This allocation-price pair is efficient, but not conditionally efficient
- \((x,p)\) can be dominated by an alternate allocation at prices \(p\)
- Pareto improving trades: transfer good 1 and good 2 from agent 2 to agent 1 in state 3 and transfer good 1 from agent 1 to agent 2 in state 2
Example 2

Efficiency

- Claim: This allocation-price pair is efficient, but not conditionally efficient
- \((x, p)\) can be dominated by an alternate allocation at prices \(p\)
- Pareto improving trades: transfer good 1 and good 2 from agent 2 to agent 1 in state 3 and transfer good 1 from agent 1 to agent 2 in state 2
- \((\tilde{x}, p)\):
- State 2: \(\tilde{x}^1 = 1.8, \tilde{x}^2 = 2.2\)
- State 3: \((\tilde{x}_1^1, \tilde{x}_2^1) = (3.5, 10.1)\) and \((\tilde{x}_1^1, \tilde{x}_2^1) = (9.5, 2.9)\)
Example 2

Pareto Improvement

<table>
<thead>
<tr>
<th>(x,p): Allocations</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Good 1</td>
<td>Good 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3.25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9.75</td>
</tr>
</tbody>
</table>
Example 2

Pareto Improvement

<table>
<thead>
<tr>
<th>(x,p): Allocations</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Good 1</td>
<td>Good 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3.25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\tilde{x}, p): Allocations</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Good 1</td>
<td>Good 1</td>
</tr>
<tr>
<td>1</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Example 2

Feasibility

- Easy to see that (\tilde{x}, p) is socially feasible
Example 2

Feasibility

- Easy to see that \((\tilde{x}, p)\) is socially feasible
- \(p_1 = p_2 = 1\) and (SF) \(\Rightarrow\) value of the allocation on the spot market equals the value of the aggregate endowment on the spot market
Example 2

Feasibility

- Easy to see that (\tilde{x}, p) is socially feasible
- $p_1 = p_2 = 1$ and (SF) \Rightarrow value of the allocation on the spot market equals the value of the aggregate endowment on the spot market
- (\tilde{x}, p) satisfies (IR), neither agent has an incentive to default in either state
Example 2

Feasibility

- Easy to see that (\tilde{x}, p) is socially feasible
- $p_1 = p_2 = 1$ and (SF) \Rightarrow value of the allocation on the spot market equals the value of the aggregate endowment on the spot market
- (\tilde{x}, p) satisfies (IR), neither agent has an incentive to default in either state
- The threat of seizure of the public assets (in both states) allows this
Example 2

What is the Problem?

- \tilde{x}, $p)$ satisfies (SF) and (IR) and Pareto dominates (x,p)
Example 2

What is the Problem?

- (\tilde{x}, p) satisfies (SF) and (IR) and Pareto dominates (x, p)
- Notice, however, that (\tilde{x}, p) does not satisfy (SS)
Example 2

What is the Problem?

- \((\tilde{x}, p)\) satisfies (SF) and (IR) and Pareto dominates \((x, p)\)
- Notice, however, that \((\tilde{x}, p)\) does not satisfy (SS)
- In State 3, both agents would like to recontract on the spot market
Example 2

What is the Problem?

- (\tilde{x}, p) satisfies (SF) and (IR) and Pareto dominates (x, p)
- Notice, however, that (\tilde{x}, p) does not satisfy (SS)
- In State 3, both agents would like to recontract on the spot market
- Agent 1: value of allocation on spot market $= 3.5 + 10.1 = 13.6$
- Optimal reallocation $= (3.4, 10.2)$
Example 2

What is the Problem?

- \((\tilde{x}, p)\) satisfies (SF) and (IR) and Pareto dominates \((x, p)\)
- Notice, however, that \((\tilde{x}, p)\) does not satisfy (SS)
- In State 3, both agents would like to recontract on the spot market
- Agent 1: value of allocation on spot market = \(3.5 + 10.1 = 13.6\)
- Optimal reallocation = \((3.4, 10.2)\)
- Agent 2: value of allocation on spot market = \(9.5 + 2.9 = 12.4\)
- Optimal reallocation = \((9.3, 3.1)\)
Example 2

What is the Problem?

- (\tilde{x}, p) satisfies (SF) and (IR) and Pareto dominates (x, p)
- Notice, however, that (\tilde{x}, p) does not satisfy (SS)
- In State 3, both agents would like to recontract on the spot market
 - Agent 1: value of allocation on spot market $= 3.5 + 10.1 = 13.6$
 - Optimal reallocation $= (3.4, 10.2)$
 - Agent 2: value of allocation on spot market $= 9.5 + 2.9 = 12.4$
 - Optimal reallocation $= (9.3, 3.1)$
- Notice that this cannot be an equilibrium, the spot markets do not clear
Example 2

What have we seen?
Example 2

What have we seen?

- An allocation can be efficient but not conditionally efficient
Example 2

What have we seen?

- An allocation can be efficient but not conditionally efficient
- Failure of the standard second welfare theorem
Example 2

What have we seen?
- An allocation can be efficient but not conditionally efficient.
- Failure of the standard second welfare theorem.
- \((x, p)\) was efficient but could not be supported in an equilibrium.
Example 2

What have we seen?

- An allocation can be efficient but not conditionally efficient
- Failure of the standard second welfare theorem
- \((x,p)\) was efficient but could not be supported in an equilibrium
- Can also show example of allocation which is conditionally efficient, but not efficient, and which can be supported in an equilibrium
Conclusions

- General equilibrium models with endogeneous debt limits break the link between aggregate and individual consumption.
Conclusions

- General equilibrium models with endogeneous debt limits break the link between aggregate and individual consumption.
- An equilibrium in which the allocation is not first best will have only partial insurance and will have lower interest rates.
General equilibrium models with endogenous debt limits break the link between aggregate and individual consumption.

An equilibrium in which the allocation is not first best will have only partial insurance and will have lower interest rates.

However, we can obtain first best allocations under certain conditions.
Conclusions

- General equilibrium models with endogenous debt limits break the link between aggregate and individual consumption.
- An equilibrium in which the allocation is not first best will have only partial insurance and will have lower interest rates.
- However, we can obtain first best allocations under certain conditions.
- High subjective discount factor can also induce first best allocations.
Conclusions

- General equilibrium models with endogeneous debt limits break the link between aggregate and individual consumption.
- An equilibrium in which the allocation is not first best will have only partial insurance and will have lower interest rates.
- However, we can obtain first best allocations under certain conditions.
- High subjective discount factor can also induce first best allocations.
- The more public assets in the economy, the closer the constrained model to the unconstrained.
Kehoe and Levine (1993) provides a theoretical basis for the incomplete insurance result.
Kehoe and Levine (1993) provides a theoretical basis for the incomplete insurance result

- Fully characterized toolbox, almost ready for use
Today’s Papers

- Kehoe and Levine (1993) provides a theoretical basis for the incomplete insurance result
- Fully characterized toolbox, almost ready for use
- Alvarez-Jermann: Equivalence between A-D equilibrium and sequential trading equilibrium
Today’s Papers

- Kehoe and Levine (1993) provides a theoretical basis for the incomplete insurance result
- Fully characterized toolbox, almost ready for use
- Alvarez-Jermann: Equivalence between A-D equilibrium and sequential trading equilibrium
- Lustig and Van Nieuwerburgh (2007): an application of this model, relaxation of default punishment
Since it breaks the link between aggregate and individual consumption, the model can help resolve equity premium puzzle.
Extensions

- Since it breaks the link between aggregate and individual consumption, the model can help resolve equity premium puzzle.

- When the two are not perfectly correlated, there is not enough information about prices in aggregate consumption ⇒ familiar relationship between equity premium and aggregate consumption breaks down.
Extensions

- Since it breaks the link between aggregate and individual consumption, the model can help resolve equity premium puzzle.

- When the two are not perfectly correlated, there is not enough information about prices in aggregate consumption ⇒ familiar relationship between equity premium and aggregate consumption breaks down.

- Formulate and calibrate the model to generate equity premium, interest rates, and other interesting pricing moments.
Extensions

- Since it breaks the link between aggregate and individual consumption, the model can help resolve equity premium puzzle.
- When the two are not perfectly correlated, there is not enough information about prices in aggregate consumption ⇒ familiar relationship between equity premium and aggregate consumption breaks down.
- Formulate and calibrate the model to generate equity premium, interest rates, and other interesting pricing moments.
- What are you assuming when you use this model? How realistic is the story?
Discussion

- Differs from unconstrained model in the addition of the IR constraints
Discussion

- Differs from unconstrained model in the addition of the IR constraints
- IR constraints depend on the punishment (value of outside option)
Discussion

- Differs from unconstrained model in the addition of the IR constraints
- IR constraints depend on the punishment (value of outside option)
- Punishment can be broken down into two elements:
Discussion

- Differs from unconstrained model in the addition of the IR constraints
- IR constraints depend on the punishment (value of outside option)
- Punishment can be broken down into two elements:
 - Public Goods (Collateral)
 - Exclusion from Intertemporal Trade
Discussion

- Collateral assumption seems reasonable and will get us a lot of mileage
Discussion

- Collateral assumption seems reasonable and will get us a lot of mileage
- Examples include mortgages, trading on margin
Discussion

- Collateral assumption seems reasonable and will get us a lot of mileage
- Examples include mortgages, trading on margin
- Less collateral available will imply partial insurance, higher equity premium
Discussion

- Collateral assumption seems reasonable and will get us a lot of mileage
- Examples include mortgages, trading on margin
- Less collateral available will imply partial insurance, higher equity premium
- The assumption that you are entirely unable to borrow against labor income, however, is questionable (but not significant)
Discussion

- Assumption of permanent exclusion from intertemporal markets is less plausible
Discussion

- Assumption of permanent exclusion from intertemporal markets is less plausible
- There are examples of certain markets where permanent exclusion is a reasonable punishment
Discussion

- Assumption of permanent exclusion from intertemporal markets is less plausible
- There are examples of certain markets where permanent exclusion is a reasonable punishment
- For example, personal default on loans (credit, mortgage, bank loans, etc.) is reported in credit history and prevents (at least temporarily) from participating in certain intertemporal markets
Assumption of permanent exclusion from intertemporal markets is less plausible

There are examples of certain markets where permanent exclusion is a reasonable punishment

For example, personal default on loans (credit, mortage, bank loans, etc.) is reported in credit history and prevents (at least temporarily) from participating in certain intertemporal markets

Kehoe Levine model is used in international finance models of government debt, punishment for defaulting on sovereign debt is exclusion from international but not domestic markets
Assumption of permanent exclusion from intertemporal markets is less plausible

There are examples of certain markets where permanent exclusion is a reasonable punishment

For example, personal default on loans (credit, mortage, bank loans, etc.) is reported in credit history and prevents (at least temporarily) from participating in certain intertemporal markets

Kehoe Levine model is used in international finance models of government debt, punishment for defaulting on sovereign debt is exclusion from international but not domestic markets

Harder to think of an example for other financial markets, such as stock and bond markets