Can Housing Collateral Explain Long-Run Swings in Asset Returns?

Hanno Lustig - UCLA and NBER
Stijn Van Nieuwerburgh - NYU Stern and NBER

NYU Asset Pricing Theory Seminar, November 13, 2007
Two Leading Asset Pricing Paradigms

- Campbell-Cochrane (99) external habit model
 - Preferences: \(m_t = \log \beta - \gamma \Delta c_t - \gamma \Delta s_t \) where log surplus consumption ratio \(s_t \) is persistent and heteroscedastic.
 - Technology: consumption growth is i.i.d.: \(\Delta c_t = g + \varepsilon^c_t \)
 - Introduces time-variation in risk aversion
Two Leading Asset Pricing Paradigms

- Campbell-Cochrane (99) external habit model
 - Preferences: \(m_t = \log \beta - \gamma \Delta c_t - \gamma \Delta s_t \) where log surplus consumption ratio \(s_t \) is persistent and heteroscedastic.
 - Technology: consumption growth is i.i.d.: \(\Delta c_t = g + \varepsilon_t^c \)
 - Introduces time-variation in **risk aversion**

- Bansal and Yaron (04) long-run risk model
 - Preferences: Epstein-Zin (89, 91)
 \[
 m_t = \frac{1 - \gamma}{1 - \rho} \log \beta - \rho \frac{1 - \gamma}{1 - \rho} \Delta c_t + \frac{\rho - \gamma}{1 - \rho} r_t^w
 \]
 where \(r_t^w \) is log return on the total wealth portfolio
 - Technology: consumption and dividend growth have small, but very persistent component, as well as heteroscedastic innovations
 - Introduces time-variation in **expected growth rates** and **economic uncertainty**
Alternative: Heterogenous agents

- New mechanism to generate persistence and heteroscedasticity, based on an observable and important friction.
Alternative: Heterogenous agents

- New mechanism to generate persistence and heteroscedasticity, based on an *observable and important friction*.
- Idea: explore impact of housing collateral constraints on equity prices
 - High participation in housing markets : 2/3.
 - Housing wealth = 2 * Equity wealth for households
Alternative: Heterogeneous agents

- New mechanism to generate persistence and heteroscedasticity, based on an *observable and important friction*.
- Idea: explore impact of housing collateral constraints on equity prices.
- Households with heterogenous income realizations trade state-contingent claims to insure against income shocks:
 - Friction: limited contract enforceability
 - Households cannot commit to repay state-contingent promises; they can default
 - Borrowing only sustained by housing collateral
Alternative: Heterogenous agents

- New mechanism to generate persistence and heteroscedasticity, based on an observable and important friction.
- Idea: explore impact of housing collateral constraints on equity prices
- Households with heterogeneous income realizations trade state-contingent claims to insure against income shocks
- New asset pricing factor $\Delta \xi_t^a$ captures extent to which constraints bind

$$m_t = \log \beta - \gamma \Delta c_t + \gamma \Delta \xi_t^a$$

- Standard CRRA preferences
- i.i.d. consumption growth
- Heteroscedasticity and persistence: Times with scarce housing collateral \Rightarrow little risk sharing sustainable \Rightarrow high and volatile equity premia
Empirical Targets

1. **Time Series** Conditional equity premium and Sharpe ratio, and risk-free rate

2. **Cross-Section** Value-Growth premium

(3. Standard unconditional AP moments)
Empirical Targets

1. **Time Series** Conditional equity premium and Sharpe ratio, and risk-free rate

2. **Cross-Section** Value-Growth premium

(3. **Standard unconditional AP moments**)

Method: Quantitative General Equilibrium

- Calibrate and numerically solve model.
- Are the frictions large enough to generate plausible magnitudes?
A Helicopter Tour of the Model

- State $s_t = (z_t, y_t)$, history s^t, probability $\pi(s^t)$
- CRRA utility, CES over non-housing c and housing consumption h
- Aggregate consumption: $c^a(z^{t+1}) = \lambda(z_{t+1})c^a(z^t)$
- Labor income: $\eta(y_t, z^t) = \hat{\eta}(y_t, z_t)c^a(z^t)$
- Aggregate housing endowment $\{h(z^t)\}$, $r(z^t) = \frac{c^a(z^t)}{\rho(z^t)h^a(z^t)}$
- Complete menu of state-contingent claims $a(s^t, s')$, prices $q(s^t, s')$
- Households cannot commit to repay claims \Rightarrow solvency constraints
- Frictionless housing markets, rental price $\rho_t(z^t)$
Budget and Collateral Constraints

Budget constraint (sequential):
\[
c_t(\ell, s^t) + \rho_t(z^t) h_t^r(\ell, s^t) + \sum_{s^{t+1}} q_t(s^{t+1}) a_t(\ell, s^{t+1}) + p_t^h(z^t) h_{t+1}^o(\ell, s^t) \leq W_t
\]
where next period’s wealth is
\[
W_{t+1} = \eta_{t+1}(s^{t+1}) + a_t(\ell, s^{t+1}) + h_{t+1}^o(\ell, s^t) \left[p_{t+1}^h(z^{t+1}) + \rho_{t+1}(z^{t+1}) \right].
\]

State-by-state collateral constraints:
\[
-a_t(\ell, s^t, s') \leq h_{t+1}^o(\ell, s^t) \left[p_{t+1}^h(z^{t+1}) + \rho_{t+1}(z^{t+1}) \right], \text{ for all } s^t, s'.
\]
Equilibrium Allocations and Prices

- Cumulative multiplier (summarizes all past binding collateral constraints)

\[
\zeta_t(\ell, y^t, z^t) = \begin{cases}
\zeta_{t-1}(\ell, s^{t-1}) & \text{if } \zeta_{t-1}(\ell, s^{t-1}) > \zeta_t(y^t, z^t) \\
\zeta_t(y^t, z^t) & \text{if } \zeta_{t-1}(\ell, s^{t-1}) \leq \zeta_t(y^t, z^t)
\end{cases}
\]

- Aggregate multiplier across households

\[
\zeta^a_t(z^t) = \sum_{y^t} \int \frac{1}{\xi_t^\gamma(\ell, y^t, z^t)} d\mathcal{L}_0 \frac{\pi(y^t, z^{t}|y_0, z_0)}{\pi(z^{t}|z_0)}.
\]

- Equilibrium consumption allocation

\[
c_t(\ell, s^t) = \frac{\zeta_t(\ell, s^t)^{\frac{1}{\gamma}}}{\zeta^a_t(z^t)} c^a_t(z^t) \quad \text{and} \quad h_t(\ell, s^t) = \frac{\zeta_t(\ell, s^t)^{\frac{1}{\gamma}}}{\zeta^a_t(z^t)} h^a_t(z^t)
\]

- Stochastic discount factor

\[
m_{t+1} = \delta \left(\frac{c^a_{t+1}}{c^a_t} \right)^{-\gamma} \left(\frac{1 + r_{t+1}^{-1}}{1 + r_t^{-1}} \right)^{\frac{1-\varepsilon\gamma}{\varepsilon-1}} \left(\frac{\zeta^a_{t+1}}{\zeta^a_t} \right)^{\gamma}.
\]
A. Declining Volatility of Equity Premium and Risk-free Rate

<table>
<thead>
<tr>
<th>Decade</th>
<th>Equity Premium Volatility</th>
<th>Risk-free Rate Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>1930s</td>
<td>.31</td>
<td>.36</td>
</tr>
<tr>
<td>1940s</td>
<td>.13</td>
<td>.33</td>
</tr>
<tr>
<td>1950s</td>
<td>.10</td>
<td>.18</td>
</tr>
<tr>
<td>1960s</td>
<td>.12</td>
<td>.10</td>
</tr>
<tr>
<td>1970s</td>
<td>.15</td>
<td>.16</td>
</tr>
<tr>
<td>1980s</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>1990s</td>
<td>.11</td>
<td>.12</td>
</tr>
</tbody>
</table>
B. Risk-free Rate Level

Model Meets Twentieth Century Data

Lustig & Van Nieuwerburgh ()
Housing Collateral
11/13/2007
C. Equity Premium Level

Model Meets Twentieth Century Data

- Model – Equity Premium
- Data – Equity Premium
- Model – Conditional Volatility
- Data – Conditional Volatility
- Model – Conditional Sharpe Ratio
- Data – Conditional Sharpe Ratio

Lustig & Van Nieuwerburgh ()

Housing Collateral

11/13/2007 11 / 15
Other Conditional AP Moments

- Model quantitatively replicates long-horizon predictability facts
 - By the housing collateral ratio
 - By the dividend-price ratio and the risk-free rate

- Volatility of the conditional Sharpe ratio
 - is high and standard models (CCAPM, C&C) cannot generate enough (Lettau-Ludvigson, 2003)
 - Our model generates volatile Sharpe ratios
 - and Sharpe ratios that are higher when housing collateral is scarce.
2. Cross-sectional AP moments: Value premium

- Fact 1: Value stocks have returns that are 6% per year higher than growth stocks.
- Fact 2: Value stocks have higher Sharpe ratios than growth stocks.
- Goal: Endogenously generate value premium in GE model
- Method: Price portfolios with different cash-flow duration.
- Growth stocks are assets with longer maturities than value stocks (Lettau & Wachter, 2006).
Value premium in the Collateral Model

- We model growth stocks (value stocks) as a basket of consumption strips weighted towards longer (shorter) maturities.
- Positive value premium because shorter duration strips are riskier and carry higher risk premia.
- Short duration assets subject to both (temporary) consumption growth shocks and (persistent) collateral shocks.
- Habit model: consumption growth shocks are persistent through effect on habit \Rightarrow negative value premium.

![Graphs showing consumption strip risk premia, consumption strip Sharpe ratios, portfolio risk premium, and portfolio Sharpe ratio over maturity and duration.](image-url)
Conclusions

- Endogenous, state-contingent borrowing constraints interact with shocks in housing market to deliver plausible asset pricing predictions:
 - time-series variation in conditional asset pricing moments
 - cross-sectional variation in returns
 - unconditional asset pricing moments

- Mechanism: Equilibrium changes in the value of the housing stock
 - modify households’ ability to commit to allocations and prices
 - change the degree to which risk sharing takes place
 - endogenously generates time-varying volatility in the Sharpe ratio on equity

- Direct evidence on risk-sharing among regions lends credibility to the mechanism
 (Lustig and Van Nieuwerburgh, 2006)