Cyclical Dynamics in Idiosyncratic Labor Market Risk

Storesletten, Telmer & Yaron, JPE 2004
Presented by: Rustom Irani, NYU Stern

November 15, 2009
Outline

1 Introduction
 - Motivation
 - Contribution
2 Model
 - Modeling Idiosyncratic Risk
3 Estimation
 - Data
 - Identification
 - Estimation
 - Results
4 Conclusion
5 Discussion
 - Age-Pooled X-Sectional Volatility
 - Applications
 - Identification and Specification
Outline

1 Introduction
 - Motivation
 - Contribution

2 Model

3 Estimation

4 Conclusion

5 Discussion
Idiosyncratic Risk and Macroeconomics

- Quantitative macroeconomic literature has changed:
 - *Past:* Exclusive focus on aggregate dynamics;
 - *Present:* Incorporate distribution of allocations across individual economic actors;
- Central to our understanding:
 - What sources of risk do agents face?
 - What sources of insurance are available?
- Why is this interesting?
 - *Macro-Finance:* Market incompleteness and asset pricing;
 - *Household Finance:* Idiosyncratic risk and portfolio choice;
 - *Macro-Labor:* Social security design.
What does this paper do?

- Estimates a model of labor earnings that allows for time-variation in the variance of individual-specific component;
- Documents countercyclical cross-sectional variance of idiosyncratic earnings risk in US data;
- Incorporates macroeconomic data back to 1930, by conducting estimation on age-dependent moments;

Why is this useful?

- Better understanding of the nature of uninsurable idiosyncratic labor earnings risk;
- Process for earnings risk will be an input into other models.
Outline

1. Introduction
2. Model
 - Modeling Idiosyncratic Risk
3. Estimation
4. Conclusion
5. Discussion
Interested in a model of idiosyncratic labor income risk;

A competitive model of labor earnings: \(\text{wage}_t = MPL^i_t \)

1. Assume worker paid marginal product of labor at market wage;
2. Assume constant hours offered by each individual;
3. Thus lower individual earnings must reflect lower productivity.
Model of Labor Earnings

- Interested in a model of idiosyncratic labor income risk;
- A competitive model of labor earnings: \(\text{wage}_t = MPL^i_t \)
 1. Assume worker paid marginal product of labor at market wage;
 2. Assume constant hours offered by each individual;
 3. Thus lower individual earnings must reflect lower productivity.

\[
\text{wage}_t = MPL^i_t \\
\Rightarrow \text{wage}_t = \frac{(1 - \alpha_n) \text{output}^i_t}{\text{efficiency}^i_t \cdot \text{hours}} \\
\Rightarrow \text{labor earnings}^i_t = \text{wage}_t \cdot \text{efficiency}^i_t \cdot \text{hours}
\]
Condition on age \((h)\) too:

\[
labor\ earnings^h_{it} = wage_t \cdot efficiency^h_{it} \cdot \text{hours}
\]
Condition on age \((h)\) too:

\[
labor \ earnings_{it}^h = wage_t \cdot efficiency_{it}^h \cdot \text{hours}
\]

Model labor efficiency as follows:

\[
\text{efficiency}_{it}^h \equiv \exp \left[f(x_{it}^h) + u_{it}^h \right]
\]

- \(x_{it}^h\) are individual-age specific characteristics (education, etc.);
- \(f\) deterministically maps characteristics into efficiency;
- \(u_{it}^h\) reflects individual-age specific efficiency shock.
Thus our model for individual earnings:

$$E_{it}^h = \text{wage}_t \cdot \exp \left[f(x_{it}^h) + u_{it}^h \right] \cdot \overline{\text{hours}}$$

$$\implies \ln E_{it}^h = A_t + f(x_{it}^h) + u_{it}^h$$

Aggregate shock Characteristics Idiosyncratic shock
Thus our model for individual earnings:

\[E_{it}^h = \text{wage}_t \cdot \exp \left[f(x_{it}^h) + u_{it}^h \right] \cdot \text{hours} \]

\[\Rightarrow \ln E_{it}^h = A_t + f(x_{it}^h) + u_{it}^h \]

Aggregate shock Characteristics Idiosyncratic shock

What do we need next?

1. Structure for \(A_t \) and \(f(\cdot) \) \(\Rightarrow \) \(\{ u_{it}^h \}_{h,t} \);
2. Statistical representation for residual \((u_{it}^h) \) to better understand nature of idiosyncratic risk.
Assumptions on Labor Efficiency

\[\ln E_{it}^h = A_t + f(x_{it}^h) + u_{it}^h \]

1. Model \(A_t \) as a year dummy variable;
Assumptions on Labor Efficiency

\[\ln E_{it}^h = A_t + f(x_{it}^h) + u_{it}^h \]

1. Model \(A_t \) as a year dummy variable;
2. Deterministic component of efficiency:

\[f(x_{it}^h) = \beta \cdot [1, h, h^2, h^3, \text{education}_{it}, (\text{family size})_{it}] + \epsilon \]

- This function is invariant over time and across individuals.
Assumptions on Labor Efficiency

\[
\ln E_{it}^h = A_t + f(x_{it}^h) + u_{it}^h
\]

1. Model \(A_t \) as a year dummy variable;

2. Deterministic component of efficiency:

\[
f(x_{it}^h) = \beta \cdot [1, h, h^2, h^3, education_{it}, (family size)_{it}] + \epsilon
\]

 - This function is invariant over time and across individuals.

3. Idiosyncratic labor efficiency risk \(u_{it}^h \):
 - Permanent and transitory component;
 - Volatility of permanent component allowed to time-vary.
Statistical Representation of Idiosyncratic Risk

\[u_{it}^h = \alpha_i + z_{it}^h + \epsilon_{it} \]

- Fixed effect: \(\alpha_i \sim (0, \sigma_\alpha^2) \)
 - Time invariant and drawn once at birth;

Storesletten, Telmer & Yaron

Cyclical Dynamics in Idiosyncratic Labor Market Risk
Statistical Representation of Idiosyncratic Risk

\[u_{it}^h = \alpha_i + z_{it}^h + \epsilon_{it} \]

1. Fixed effect: \(\alpha_i \sim (0, \sigma^2_{\alpha}) \)
 - Time invariant and drawn once at birth;

2. Permanent component: \(z_{it}^h = \rho z_{i,t-1}^h + \eta_{it}, \quad z_{i,t}^0 \equiv 0 \)
 - Volatility of permanent shock: \(\eta_{it} \sim (0, \sigma^2_t) \)

\[\sigma^2_t = \begin{cases}
\sigma^2_E, & \text{if “Aggregate expansion”} \\
\sigma^2_C, & \text{if “Aggregate contraction”}
\end{cases} \]
Statistical Representation of Idiosyncratic Risk

\[u_{it}^h = \alpha_i + z_{it}^h + \epsilon_{it} \]

1. Fixed effect: \(\alpha_i \sim (0, \sigma_{\alpha}^2) \)
 - Time invariant and drawn once at birth;

2. Permanent component: \(z_{it}^h = \rho z_{i,t-1}^h + \eta_{it}, \ z_{i,t}^0 \equiv 0 \)
 - Volatility of permanent shock: \(\eta_{it} \sim (0, \sigma_t^2) \)

\[\sigma_t^2 = \begin{cases} \sigma_E^2, & \text{if "Aggregate expansion"} \\ \sigma_C^2, & \text{if "Aggregate contraction"} \end{cases} \]

3. Transitory component: \(\epsilon_{it} \sim (0, \sigma_{\epsilon}^2) \)
 - All shocks mutually independent and i.i.d. Normal;
 - Is Normality assumption necessary here?

Storesletten, Telmer & Yaron
Cyclical Dynamics in Idiosyncratic Labor Market Risk
Outline

1. Introduction
2. Model
3. Estimation
 - Data
 - Identification
 - Estimation
 - Results
4. Conclusion
5. Discussion

Storesletten, Telmer & Yaron
Cyclical Dynamics in Idiosyncratic Labor Market Risk
Panel Study of Income Dynamics (PSID) 1968 - 1993;
- Longitudinal panel tracks fixed cross-section of individuals;
- Information on earnings and transfers to the household;
- Time-t panel contains individuals from different cohorts (i.e., birth years c) and ages (h), since $t = c + h$;

What does the time-series of x-sectional moments look like?
- First pass: average across age.
Counter-Cyclical Volatility: First Pass

Let φ_h population share of age h;

Plot of age-pooled cross-sectional (detrended) mean earnings and variance of idiosyncratic risk:

1. $\text{mean}_t^X = \sum_h \varphi_h \frac{1}{N_{ht}} \sum_{i=1}^{N_{ht}} \ln \hat{E}_{it}^h$

2. $\text{std}_t^X = \sum_h \varphi_h \frac{1}{N_{ht}} \sum_{i=1}^{N_{ht}} (\hat{u}_{it}^h)^2$

Evidence of counter-cyclical cross-sectional variance ($\rho_{\mu,\sigma} = -0.74$), however, age-pooled magnitude too small.

Figure: Age-pooled X-sectional moments
Incorporating More Macroeconomic Data

- Consider “age” & “cohort” effects to overcome short time dimension of PSID:
 - Incorporate macroeconomic history back to 1930;
- Differences in x-sectional variance of cohorts identifies business-cycle variation in variance of permanent shock:
 - Cohort A (born 1910) will have worked during more recessions that B (born 1930);
 - Evident in earnings inequality ($\sigma_A[h] > \sigma_B[h]$), if:
 1. $\rho \approx 1$
 2. $\sigma_C > \sigma_E$
Want to estimate $\theta \equiv (\rho, \sigma_E, \sigma_C, \sigma_\alpha, \sigma_\epsilon)$;

- GMM on age-dependent moments;
- First, understand what is driving results and parameter identification.
Identification: Intuition

- Recall process for idiosyncratic earnings risk:

\[u_{it}^h = \alpha_i + z_{it}^h + \epsilon_{it} = \alpha_i + \epsilon_{it} + \sum_{j=0}^{h-1} \rho^j \eta_{t-j} \]

- Consider age-dependent cross-sectional variance:

\[\text{Var}_t^x[u_{it}^h] = \sigma^2_{\alpha} + \sigma^2_{\epsilon} + \sum_{j=0}^{h-1} \rho^{2j} \sigma^2_t \sigma_{t-j} \]

1. **Age effects**: Identify \(\rho, \sigma_{\alpha}, \sigma_{\epsilon}, \) and some average of \(\sigma_E \) & \(\sigma_C \);
2. **Cohort effects**: Disentangle \(\sigma_E \) from \(\sigma_C \).
Identification: Age Effects

\[
\text{Var}_t^x [u_{it}^h] = \sigma_\alpha^2 + \sigma_\epsilon^2 + \sum_{j=0}^{h-1} \rho^{2j} \sigma_{t-j}^2
\]

- Integrate over time and \(x\)-section:

\[
\sigma(h) = \frac{1}{T} \sum_t \frac{1}{N_{ht}} \sum_{i=1}^{N_{ht}} (u_{it}^h)^2
\]

- Intercept identifies \(\sigma_\alpha^2 + \sigma_\epsilon^2\);
 - One autocovariance separates;
- Linear profile identifies \(\rho\) and average of \(\sigma_E^2\) & \(\sigma_C^2\).

Figure: Sample age-specific \(x\)-sectional variance
Identification: Cohort Effects

\[\text{Var}_t^x[u_{it}^h] = \text{const.} + \sum_{j=0}^{h-1} \rho^{2j} \left[I\{t-j=E\} \sigma_E^2 + I\{t-j=C\} \sigma_C^2 \right] \]

- Each cohort (e.g. born in 1930) has its own fraction of working years in contraction (x-axis);
- Plot x-sectional variance of each cohort/history (y-axis):
 - Consistent with \(\sigma_C^2 > \sigma_E^2 \);
 - History permits separate identification of \(\sigma_E^2 \) & \(\sigma_C^2 \).

Figure: Cohort-specific X-sectional variance
Identification: Cohort Effects ($\rho = 1$)

\[\rho = 1 \implies \frac{1}{h} \text{Var}_t^x[u^h_{it}] = \frac{\sigma^2_\alpha + \sigma^2_\epsilon}{h} + \sigma^2_E + \left(\sigma^2_C - \sigma^2_E\right) f_{h,t} \]

- Same plot, but divide data by h;
- Let $f_{h,t}$ fraction of years in bust;
- If $\rho = 1$, slope $= \left(\sigma^2_C - \sigma^2_E\right)$.

Figure: Age normalized cohort-specific X-sectional variance
GMM Estimation

- Need to jointly estimate \((\beta, \theta) \) of:

\[
f(x^h_{it}) = \beta \cdot [1, h, h^2, h^3, \text{education}_{it}, (\text{family size})_{it}] + \epsilon
\]

\[
u^h_{it} = \alpha_i + z^h_{it} + \epsilon_{it}
\]

- Already argued that age-dependent cross-sectional variances and autocovariances are sufficient to identify \(\theta \);

- They perform estimation two ways:
 1. Exactly identified GMM using time-averaged \(h \)-moments;
 2. GMM using primitive \((h, t)\)-moments.
Robust evidence of high persistence & countercyclical volatility of idiosyncratic earnings risk!

Stdev of persistent shock 70%↑ in contraction vs. expansion.
Outline

1. Introduction
2. Model
3. Estimation
4. Conclusion
5. Discussion
Conclusion

1. Estimates competitive model of labor earnings with particular statistical representation of idiosyncratic risk:
 - Idiosyncratic component has permanent & transitory shocks;
 - Volatility of perm. shock can increase in recession;

2. Incorporation of cohort effects (macroeconomic history) to extend panel data back to 1930 and facilitate identification:
 - Achieved by doing estimation on age-dependent moments;

3. Robust evidence regarding shocks idiosyncratic earnings:
 - Highly persistent component;
 - Countercyclical volatility of persistent component;

4. Many interesting applications in macro-finance/labor.
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Estimation</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
</tr>
<tr>
<td>5</td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>- Age-Pooled X-Sectional Volatility</td>
</tr>
<tr>
<td></td>
<td>- Applications</td>
</tr>
<tr>
<td></td>
<td>- Identification and Specification</td>
</tr>
</tbody>
</table>
In previous picture, from 1968-93, the largest change in the age-pooled x-sectional volatility of earnings was 10%.

However, estimates in paper suggest a change of about 75%!

Why this inconsistency?

- Age-pooled vol. is closely related to unconditional moment;
- Paper estimates correspond to conditional distribution;

Paper confirms that large changes in the conditional variance are consistent with small changes in the age-pooled x-section:

- Algebraically;
- Monte Carlo experiment.
Applications of CCV

1. Incomplete markets and asset pricing:
 - Market price of risk (Krueger & Lustig, JET, 2009);
 - Can account for up to 25% of empirical equity premium in otherwise standard OLG general equilibrium incomplete markets model (STY, RED, 2007);

2. Portfolio choice:
 - Stock market participation puzzle (Lynch & Tan, JFE forth.);

3. Macro-Labor:
Fact: Earnings inequality (x-sectional variance) has increased since 1980;

We are interested in dynamics of earnings inequality with age;

Earnings inequality must have risen due to either:

1. *Time Effects*: Changes in economic environment causes changes in inequality within every age group;
2. *Cohort Effects*: Younger cohorts more unequally endowed with labor market skills than older cohorts.
Time or Cohort Effects?

- **Problem:** $\text{age}_t \equiv t - c \implies$ impossible to separately identify age, time & cohort effects!
- **What do people assume?**
 1. Age, time & cohort effects are additively separable;
 2. Only 2/3 of these effects are operable;
Problem: \(\text{age}_t \equiv t - c \implies \text{impossible to separately identify age, time \& cohort effects!} \)

What do people assume?

1. Age, time \& cohort effects are additively separable;
2. Only 2/3 of these effects are operable;

STY ignore time effects and focus on cohort effects:

- This is key for identifying \((\sigma_E, \sigma_C)\);

Heathcote et al. (JEEA, 2005; RED, 2010):

- Age profiles look very different depending on choice;
- Data suggests cohort effects are less important!
Old argument in the literature on labor income processes:

1. Individuals face very persistent income shocks and have similar life-cycle profiles (MacCurdy, JPE, 1982):
 - Restrict $\beta_i = 0$ and estimate persistent z_{it}^h (this paper!);

2. Shocks are modestly persistent and face individual-specific profiles (Lillard & Weiss, 1979):
 - Unrestricted β_i and low estimated persistence;
 - Age autocovariances and consumption suggest this is more suitable specification (Guvenen, AER, 2007; RED, 2009);
 - Implications not yet investigated by macro-finance literature.