
The geographic spread of COVID-19 correlates with the
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We use aggregated data from Facebook to show that COVID-19 was more likely to

spread between regions with stronger social network connections. Areas with more

social ties to two early COVID-19 “hotspots” (Westchester County, NY, in the U.S.

and Lodi province in Italy) generally had more confirmed COVID-19 cases as of the

end of March. These relationships hold after controlling for geographic distance to

the hotspots as well as for the income and population densities of the regions. As

the pandemic progressed in the U.S., a county’s social proximity to recent COVID-

19 cases predicts future outbreaks over and above physical proximity. These results

suggest data from online social networks can be useful to epidemiologists and others

hoping to forecast the spread of communicable diseases such as COVID-19.

To forecast the geographic spread of communicable diseases such as COVID-19, it is valuable

to know which individuals are likely to physically interact (Piontti et al., 2018). In particular,

since social ties shape patterns of physical interaction, the strength of social connections

between cities and regions are important for determining a locality’s level of risk for future

outbreaks. Yet, the geographic structure of social networks is difficult to measure on a

national or global scale. In this paper, we use aggregated data from Facebook to measure

social connections between regions. We show that these connectedness measures can help

forcecast the geographic spread of COVID-19.

We construct a measure of social connectedness between U.S. counties and between Ital-

ian provinces. This Social Connectedness Index captures the probability that Facebook users

in a pair of these regions are Facebook friends with each other (Bailey et al., 2018b). We

hypothesize that regions connected through many friendship links are likely to have more

physical interactions between their residents, providing opportunities for the spread of com-

municable diseases. Indeed, our measure has been shown to be predictive of travel patterns
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across Europe (Bailey et al., 2020c) and within urban areas (Bailey et al., 2020a), suggesting

it contains important information about real-world interactions. Most directly, Coven and

Gupta (2020) use our Social Connectedness Index to show that counties with higher levels

of social connectedness to New York were more likely to be destinations for those fleeing the

city during the pandemic. This provides direct evidence for our hypothesized mechanism.

After introducing our Social Connectedness Index, we show that regions with stronger

social ties to early COVID-19 “hotspots” — Westchester County, NY, in the United States,

and Lodi province in Italy — have more documented COVID-19 cases per resident as of

March 30, 2020. This relationship is robust to controlling for the geographic distance to these

early “hotspots”, as well as a number of demographic characteristics of the regions. These

case studies highlight that social connectedness might have served as a valuable predictive

measure in addition to physical distance and other existing epidemiological model inputs.

We then exploit the changing geography of the pandemic in the U.S. to conduct a more

systematic analysis. We construct regional measures of COVID-19 exposure through social

connectedness (“social proximity to cases”) and through physical distance (“physical prox-

imity to cases”). We find a county’s growth in social proximity to cases in one time period

is strongly correlated with the county’s growth in actual cases in the next time period. Even

after controlling for physical proximity to cases and other regional demographics, a doubling

in social proximity to cases in one two-week period corresponds to a 22.5% increase in actual

cases per 10,000 residents in the next two-week period. This positive relationship holds for

every two-week period between March 30 and July 20, 2020. To mimic a real-world use

case, we also conduct a simple out-of-sample prediction exercise. We find that models that

include our measure of social proximity to cases are better able to predict a region’s future

case growth than those that rely on geographic distance and other demographics alone.

Our use of the Social Connectedness Index to forecast COVID-19 outbreaks adds to an

active body of research that studies how different aspects of social media and internet-usage

patterns can be used for tracking and preventing disease (for an overview, see Aiello et al.,

2020). One strand of this literature uses the content of individuals’ internet searches or social

media posts; most famously, Google Flu Trends used search queries related to influenza for

early outbreak detection (Ginsberg et al., 2009). Other researchers have also used content

from Twitter posts (Rodŕıguez-Mart́ınez and Garzón-Alfonso, 2018; Jahanbin and Rahma-

nian, 2020), Facebook likes (Gittelman et al., 2015), Wikipedia searches (Generous et al.,

2014), and Instagram posts (Correia et al., 2016) to predict public health outcomes. A sec-

ond strand of research, which has received much attention during the COVID-19 pandemic,

uses geolocation data to track individuals’ movement patterns. These data have been used

to explore the determinants and effects of social distancing behavior (for an overview, see



Giuliano and Rasul, 2020), as well as forecast disease spread (see e.g. Bengtsson et al., 2015;

Wesolowski et al., 2012, 2015; Peixoto et al., 2020). A third strand uses crowdsourced infor-

mation, including surveys, to monitor disease symptoms and detect potential outbreaks (see

Facebook Symptom Survey; Smolinski et al., 2015; Paolotti et al., 2014).

In comparison to this literature, our stable network-based measure is less likely to suffer

from changes in internet behavior or seasonality, both of which have hampered Google Flu

Trends (Olson et al., 2013). In addition, our measures do not require individuals to have

experienced symptoms, which potentially allows us to identify at-risk localities before disease

transmission.1 Finally, because our measures are based only on aggregated connections

(instead of individual movement), they are easily accessible to researchers and consistently

available for a large number of geographies around the world.

More generally, our results add to a literature that has applied aspects of network the-

ory to build spatial epidemiological models (for overviews, see Keeling and Eames, 2005;

Keeling and Rohani, 2011; Danon et al., 2011). Works in this literature move beyond the

basic assumption that individuals within a population are “fully mixed”, or equally likely

to interact; instead, they better represent the dynamics of real-world connections (see e.g.

Newman, 2002; Klovdahl, 1985; Klovdahl et al., 1994; Mossong et al., 2008; Yang et al.,

2020). While some of these studies parameterize models with information on local networks,

we are unaware of any that introduces a measure with comparably high levels of coverage

and granularity.2 Our hope is that our unique measure of social connectedness can help pa-

rameterize future epidemiological work. In addition, we hope that the Social Connectedness

Index can advance the literature on the determinants and effects of urban and regional social

networks (see Bailey et al., 2020a; Kim et al., 2017; Büchel and von Ehrlich, 2016; Mossay

and Picard, 2011; Brueckner and Largey, 2008; Glaeser et al., 1992).

It is important to note that our objective in this paper is not to incorporate social

connectedness data into a state-of-the-art epidemiological model. Instead, we provide a

unique measure to assess regions’ outbreak risk, answering the call of Avery et al. (2020),

among others, who highlight the “urgent need” for “creative and entrepreneurial methods”

of interpreting and sharing data to model coronavirus spread. To that end, the data in this

paper, as well as similar data for a wide range of other geographies, are accessible by emailing

sci.data@fb.com. We encourage interested researchers to do so.

1However, it suggests that our data might partner well with these measures. For example, if one can
detect an early outbreak using surveys, they could then predict (and potentially prevent) the next outbreak
using information on social connectedness.

2For example, the Social Connectedness Index is available at the ZCTA level in the U.S., the NUTS3
level in Europe, the GADM2 level in the Indian Subcontinent, and the GADM1 level throughout much of
the rest of the world.



1 Data Description

To measure the intensity of social connectedness between locations, we use a de-identified

and aggregated snapshot of all active Facebook users and their friendship networks from

March 2020. As of the end of 2019, Facebook had nearly 2.5 billion monthly active users

around the world: 248 million in the U.S. and Canada, 394 million in Europe, 1.04 billion in

Asian-Pacific, and 817 billion in the rest of the world (Facebook, 2020). The data therefore

has extremely wide coverage, and provides a unique opportunity to map the geographic

structure of social networks around the world. Locations are assigned to users based on their

information and activity on Facebook, including their public profile information, and device

and connection information. Establishing a connection on Facebook requires the consent

of both individuals, and there is an upper limit of 5,000 on the number of connections a

person can have. As a result, Facebook connections are generally more likely to be between

real-world acquaintances than links on many other social networking platforms.

Our measure of the social connectedness between two locations i and j is the Social

Connectedness Index (SCI) introduced by Bailey et al. (2018b):

Social Connectednessi,j =
FB Connectionsi,j

FB Usersi ∗ FB Usersj
. (1)

Here, FB Connectionsi,j is the total number of Facebook friendship links between Facebook

users living in location i and Facebook users living in location j. FB Usersi and FB Usersj

are the number of active users in each location. Social Connectednessi,j thus measures the

relative probability of a Facebook friendship link between a given Facebook user in location

i and a given Facebook user in location j: if this measure is twice as large, a given Facebook

user in region i is twice as likely to be friends with a given Facebook user in region j.

In previous work, we have shown that this measure predicts a large number of important

economic and social interactions. For example, social connectedness as measured through

Facebook friendship links is strongly related to patterns of sub-national and international

trade (Bailey et al., 2020b), patent citations (Bailey et al., 2018b), and investment decisions

(Kuchler et al., 2020). More generally, we have found that information on individuals’

Facebook friendship links can help understand their product adoption decisions and their

housing and mortgage choices (Bailey et al., 2018a, 2019a,b).

Data on COVID-19 cases in the United States by county come from Johns Hopkins

University Center for Systems Science and Engineering. Similarly, data for COVID-19 cases

for each Italian province come from the Italian Dipartimeno della Protezione Civile. As with

any data on cases, some bias may be introduced by differential testing across regions.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/pcm-dpc


2 Early Hotspot Analysis

In this section, we explore how the domestic spread of confirmed COVID-19 cases is related

to social connectedness to two early COVID-19 “hotspots”: Westchester County, NY in the

U.S., and Lodi Province in Italy. Westchester County includes New Rochelle, a community

that had the first major COVID-19 outbreak in the eastern United States (Chappell, 2020).

As of March 20th, the county had over 9,300 cases, second only to nearby New York City.

Additionally, a number of articles reported wealthy residents from Westchester and the New

York area had fled to other parts of the U.S. (Tully and Stowe, 2020), providing a vector that

could potentially spread the disease. Indeed, geneticists and epidemiologists later found that

travel from New York seeded much of the first wave of U.S. COVID-19 outbreaks (Carey and

Glanz, 2020). Social connections to Westchester may thus provide particularly important

information for tracking COVID-19 spread, especially given that Coven and Gupta (2020)

found that connectedness to New York predicted travel patterns from the city early in the

pandemic. Lodi is an Italian province of around 230,000 inhabitants in the heavily impacted

region of Lombardy. It contains Codogno, where the earliest cases of COVID-19 in Italy

were detected, and was at the center of Italy’s outbreak (Horowitz et al., 2020).

Panel (a) of Figure 1 shows a heatmap of the social connectedness of Westchester County,

NY, to all other U.S. counties; darker colors correspond to stronger social ties. Panel (b)

shows the distribution of COVID-19 cases per 10,000 residents across U.S. counties on March

20, 2020, with darker colors corresponding to higher COVID-19 prevalence. These maps show

a number of similarities. Perhaps most notably, coastal regions and urban centers appear to

have both high levels of connectedness to Westchester and larger numbers of COVID-19 cases

per resident. But a number of more subtle patterns emerge as well. Both measures are high

in the communities along the coasts of Florida (in particular along the southeastern coast,

near Miami), in western and central Colorado (in particular in areas with ski resorts), and

in the upper northeast. These areas are all popular vacation destinations and second home

locations for many well-heeled residents of Westchester. Indeed, the governors of Florida

and Rhode Island both publicly lamented the number of New York area residents fleeing

to their states and spreading COVID-19 (Mower, 2020; Carlisle, 2020). By contrast, many

areas that are geographically closer but less socially connected to Westchester, such as in

western Pennsylvania and West Virginia, had fewer confirmed COVID-19 cases on March

20, 2020. There are also a number of patterns of COVID-19 prevalence that connectedness

to Westchester alone cannot explain. Areas surrounding King County, WA (Seattle), for

example, have relatively low levels of connectedness to Westchester, but were an independent

early hotspot of COVID-19. Some states in the southern U.S. where residents were slower



Figure 1: Social Network Distributions from Westchester and COVID-19 Cases in the U.S.

(a) Log of SCI to Westchester County, NY (b) COVID-19 Cases per 10k Residents by County

(c) Westchester binscatter without controls
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(d) Westchester binscatter with controls
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Note: Panel (a) shows the social connectedness to Westchester for U.S. counties. Panel (b) shows the number
of confirmed COVID-19 cases by U.S. county on March 30th, 2020. Panels (c) and (d) show binscatter plots
with counties more than 50 miles from Westchester as the unit of observation. To generate the plot in Panel
(c), we group log(SCI) into 100 equal-sized bins and plot the average against the corresponding average
case density. Panel (d) is constructed in a similar manner. However, we first regress log(SCI) and cases
per 10,000 residents on a set of control variables and plot the residualized values on each axis. Red lines
show quadratic fit regressions. The controls for Panel (d) are 100 dummies for the percentile of the county
distance to Westchester from the Nation Bureau of Economic Research; population density and median
household income made available from (Chetty et al., 2016); and dummies for the six National Center for
Health Statistics Urban-Rural county classifications.



to limit travel also have higher case densities than would be predicted purely by social

connectedness to Westchester (Glanz et al., 2020).

The two bottom panels of Figure 1 explore the relationship between COVID-19 preva-

lence and social ties to Westchester more formally. Panel (c) shows a binscatter plot of

social connectedness to Westchester County and the number of COVID-19 cases per 10,000

residents. We exclude those counties within 50 miles of Westchester County: while those

areas have strong social links to Westchester, they are also close enough geographically such

that their populations might interact physically with Westchester residents even in the ab-

sence of social links (e.g., in supermarkets and houses of worship). There is a strong positive

relationship between COVID-19 prevalence and social ties to Westchester. Quantitatively,

a doubling of a county’s social connectedness to Westchester is associated with an increase

of about 0.88 COVID-19 cases per 10,000 residents. The R-Squared of this relationship is

0.093, suggesting that, in a statistical sense, 9.3% of the cross-county variation in COVID-19

cases can be explained by counties’ social connectedness to Westchester.

One concern with interpreting these initial correlations is that they might be primarily

picking up other factors that affect the spread of COVID-19, and that are correlated with

social connectedness. Specifically, even after dropping counties within 50 miles of Westch-

ester, the correlations might be primarily picking up geographic distance to Westchester

(which is related to the number of friendship links to Westchester). As a result, including

social connectedness might not improve predictive power for models that already control

for some of these other variables. In Panel (d), we therefore present a binscatter plot of

the relationship between social connectedness to Westchester County and COVID-19 cases

that controls for a number of these possible confounding variables (in addition to excluding

nearby counties). Most importantly, we non-parametrically control for the geographic dis-

tance between each county and Westchester County by including 100 dummies for percentiles

of that distance. We also control for income, population density, and a classification of how

urban/rural a county is. Even conditional on these other factors, Panel (d) shows a strong

positive relationship between COVID-19 cases as of March 30, 2020 and social connectedness

to Westchester County. With these controls, a doubling of a county’s social connectedness

to Westchester is associated with an increase of about 0.80 COVID-19 cases per 10,000 res-

idents. The total R-Squared of the statistical relationship is 0.190, while the incremental

R-Squared from controlling for social connectedness to Westchester is 0.037.

It is important to highlight that the purpose of this exercise is to demonstrate the pre-

dictive power of social connectedness measured via online social networks for COVID-19

prevalence. We chose the current set of control variables to highlight that the Social Con-

nectedness Index has such predictive power over and above a number of variables on which



Figure 2: Social Network Distributions of Lodi and COVID-19 Cases in Italy

(a) Percentile of SCI to Lodi Province, Italy (b) COVID-19 Cases per 10k Residents by Province

(c) Lodi binscatter without controls
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(d) Lodi binscatter with controls
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Note: Panel (a) shows a measures of Social Connectedness to Lodi for Italian provinces. Panel (b) shows
the number of confirmed COVID-19 cases by Italian province on March 30th, 2020. Panels (c) and (d) show
binscatter plots with provinces more than 50 kliometers from Lodi as the unit of observation. To generate the
plot in Panel (c) we group log(SCI) into 30 equal-sized bins and plot the average against the corresponding
average case density. Panel (d) is constructed in a smaller manner. However, we first regress log(SCI) and
cases per 10,000 residents on a set of control variables and plot the residualized values on each axis. Red lines
show quadratic fit regressions. The controls for Panel (d) are 20 dummies for the quantile of the province
distance to Lodi; GDP per inhabitant; and population density.



data is already easily available, and that may partially proxy for social connections in models

of communicable disease spread. The observed increase in predictive power thus suggests

that the Social Connectedness Index might serve as a valuable measure above some existing

proxies for social interactions.3

Figure 2 explores the analogous relationships for Lodi province in Italy.4 The provinces

with highest COVID-19 case densities and connectedness to Lodi are in the surrounding

Lombardy region, as well as the nearby Piemonte and Veneto regions. There are also rela-

tively high levels of both connectedness to Lodi and COVID-19 cases in Rimini, a popular

tourist destination along the Adriatic sea. A number of provinces in southern Italy send

workers and students to the industrial Lombardy region, and therefore have strong social

ties to that region. While some of these areas have seen a number of COVID-19 cases, they

are not disproportionally larger, perhaps reflecting the efforts of Italian authorities to re-

strict the movement of individuals (Kington, 2020). Panels (c) and (d) repeat the binscatter

exercise from Figure 1. We exclude provinces within 50 kilometers. In Panel (d) we control

for geographic distance using 20 dummies for the quantile of the distance from each province

to Lodi, as well as GDP per inhabitant and population density. Again we find that the So-

cial Connectedness Index appears to have predictive power above these other measures that

might commonly be used to proxy for social interactions. Quantitatively, a doubling of SCI

corresponds to an increase of 16.6 COVID-19 cases per 10,000 residents after controlling for

these relevant factors. The incremental R-Squared of including social connectedness to Lodi

over the other control variables is 0.057.

These cases studies illustrate the potential usefulness of our measure of social connect-

edness for predicting disease spread. In the next section, we use a time series of case growth

from March through July to explore this relationship in more detail.

3 Time Series Analysis

In this section, we exploit the changing geography of the pandemic in the U.S. to more

systematically investigate the predictive value of the Social Connectedness Index in fore-

casting the spread of COVID-19. Specifically, we construct two metrics: “Social Proximity to

Cases”, a county-level measure of exposure to COVID-19 cases through social networks, and

3This is not to suggest that the Social Connectedness Index is the only such measure, and we believe
that further advances can be made using other data sources, such as cell-phone location pings. But the social
connectedness index has a number of advantages, including the fact that it is easily accessible to researchers
and consistently available for a large number of global geographies.

4Because Italian provinces on the island of Sardinia do not align with European NUTS3 regions (the
level at which we measure social connectedness), we include Sardinia as a single observation in our analysis.



“Physical Proximity to Cases”, a county-level measure of exposure through physical prox-

imity. While the two measures will be related (because individuals generally have stronger

social ties to those who are geographically nearby, as documented in Bailey et al., 2018b),

the examples in the previous section illustrate that some geographically distant places —

such as Westchester and the east coast of Florida — can have strong social ties. These

relationships, and many others which would not be predicted by physical distance, are the

unique predictive value added by the social connectedness data.

Key Variable Construction. We construct our measure of social proximity to cases as:

Social Proximity to Casesi,t =
∑
j

Cases Per 10kj,t ∗
Social Connectednessi,j∑
h Social Connectednessi,h

(2)

Cases Per 10kj,t is the number of confirmed COVID-19 cases per 10,000 residents in county

j as of time t. The sums j and h are over all counties. Analogously, we construct a measure

of a county’s physical proximity to cases as:

Physical Proximity to Casesi,t =
∑
j

Cases Per 10kj,t ∗
1

1 +Distancei,j
(3)

Here, Distancei,j is the physical distance between counties i and j measured in miles.

Empirical Specification. We first study the relationship between actual case growth in

different time periods and “lagged” (i.e. in past time periods) growth in our measures. We

hypothesize that if social connectedness is an important predictor of the path of COVID-19

spread, a lagged measure of social proximity to new cases will have a positive relationship

with new case counts in the next period. For each county i and time period t, we then

estimate the equation:

log(∆ Cases per 10k + 1)i,t = β1 ∗ log(∆Cases per 10k + 1)i,t−1

+ β2 ∗ log(∆Cases per 10k + 1)i,t−2

+ β3 ∗ log(∆Social Proximity to Cases)i,t−1

+ β4 ∗ log(∆Social Proximity to Cases)i,t−2

+ β5 ∗ log(∆Physical Proximity to Cases)i,t−1

+ β6 ∗ log(∆Physical Proximity to Cases)i,t−2

+ Xi,t + εi,t (4)



Here, t is defined as one of the eight two-week time periods between March 30 and July

20, 2020. For each time period t, prior two-week periods are denoted t − 2 and t − 1 (for

example, March 3-16 and March 16-30 for the first period starting March 30). We always

include two lags of own case growth, and explore the effects of lagged changes of social and

physical proximity to cases. Xi,t are a set of time-specific fixed effects, including percentiles

of population density and median household income. In our strictest specification we also

add time by state fixed effects.

Empirical Results. Table 1 shows that growth in social proximity to cases in one period

has a strong positive relationship with actual case growth in the next. In columns 1 and 4,

we see this relationship exists without controlling for physical distance. In columns 2 and

5, however, we show that past physical proximity to cases is also strongly correlated with

present case growth, a relationship which may confound the previous one. To address this,

in columns 3 and 6 we include both measures. While the coefficient on social proximity to

cases falls somewhat (suggesting some of the relationship is due to physical proximity), the

relationship remains highly significant in both the the statistical and real-world sense. In

our strictest specification, which includes state fixed effects interacted with week, a doubling

of social proximity to cases in one period corresponds to a 22.5% increase in actual cases per

10,000 residents in the next period. That this result persists in the presence of state fixed

effects allows us to rule out concerns that it may be due to differences in state-level public

health measures.

We next conduct a similar analysis, but report coefficients separately for each time period,

allowing us to study how the relationship between social connections and new COVID-19

cases changes over the course of the pandemic. Table 2 shows that in every two-week period

from March 30 to July 20, a one time period lagged measure of social proximity to cases was

a statistically significant predictor of actual case growth. The magnitudes of the coefficients

suggest that a doubling in social proximity to cases in one two-week period corresponds to

between a 9.8% and 50.7% increase in actual cases in the next time period, after controlling

for physical proximity to cases and all of our other previous controls.

In columns 1 and 2, which describe disease spread in March and the first days of April,

the relationship is particularly strong. A possible explanation is that COVID-19 spread

through areas with strong social ties before widespread social distancing. For example, trips

between Westchester and coastal Florida may have been common before public recognition

of the outbreak, but relatively infrequent later. Indeed, as social distancing peaked through

April and early May5 the importance of social proximity to cases falls while the importance

5For quantitative measures of these social distancing patterns see the Facebook Data for Good



Table 1: COVID-19 Case Growth and Prior Proximity to Cases

2 Week Lag: 0.592*** 0.434*** 0.437*** 0.325***
 log(Change in Social Proximity to Cases + 1) (0.071) (0.106) (0.043) (0.054)

4 Week Lag: -0.067 0.067 -0.077*** 0.020
 log(Change in Social Proximity to Cases + 1) (0.050) (0.084) (0.020) (0.029)

2 Week Lag: 1.266** 1.054** 1.622*** 1.266***
 log(Change in Physical Proximity to Cases + 1) (0.408) (0.372) (0.163) (0.212)

4 Week Lag: -1.170** -1.028** -1.287*** -1.092***
 log(Change in Physical Proximity to Cases + 1) (0.408) (0.374) (0.264) (0.305)

2 Week Lag: 0.319*** 0.635*** 0.376*** 0.330*** 0.549*** 0.376***
 log(Change in Cases per 10k Residents + 1) (0.043) (0.022) (0.052) (0.032) (0.025) (0.038)

4 Week Lag: 0.052 0.069*** 0.008 0.079*** 0.062*** 0.040*
 log(Change in Cases per 10k Residents + 1) (0.032) (0.016) (0.040) (0.012) (0.010) (0.017)

Time X Pop Density FEs Y Y Y Y Y Y

Time X Median Household Income FEs Y Y Y Y Y Y

Time X State FEs Y Y Y

Sample Mean 1.593 1.593 1.593 1.593 1.593 1.593

R-Squared 0.641 0.638 0.650 0.684 0.682 0.686

N 25,056 25,056 25,056 25,048 25,048 25,048

log(Change in Cases per 10k Residents + 1)

Note: Table shows results from regression 4. Each observation is a county, two-week period (between March
30 and July 20, 2020). The dependent variable in all columns is log of one plus the number of new COVID-19
cases per 10,000 residents. Columns 1 and 3 include log of growth in social proximity to cases lagged by
two and four weeks (one and two time periods). Columns 2 and 4 include analogous measures of physical
proximity to cases. Columns 3 and 6 include both measures. All columns include controls for two-week and
four-week lagged changes in cases, as well as time-specific fixed effects for percentiles of county population
density and median household income. Columns 3-6 include additional time-specific fixed effects by state.
Standard errors are clustered by time period. Significance levels: *(p<0.10), **(p<0.05), ***(p<0.01).

of local cases and physical proximity to cases rises. In the final four periods (columns 5-

8), the coefficients on social proximity again generally increase, corresponding to the time

in which mobility began slowly returning toward baseline levels. Together, these results

are consistent with a story in which social proximity matters most when there are fewer

restrictions on individuals’ mobility. This provides more evidence that social connectedness

is predictive of interactions that spread communicable disease.

Building on these results, we next conduct a simple prediction exercise. During a pan-

demic, local policymakers might want to determine their area’s risk for outbreak to inform

public health measures. With this use case in mind, we build a series of simple models that

use available data at time t to predict case growth in all counties at time t + 1. We test

Mobility Dashboard, available at https://www.covid19mobility.org/dashboards/facebook-data-for-good/,
and the SafeGraph Shelter in Place Index, available at https://www.safegraph.com/dashboard/
covid19-shelter-in-place.

https://www.covid19mobility.org/dashboards/facebook-data-for-good/
https://www.safegraph.com/dashboard/covid19-shelter-in-place
https://www.safegraph.com/dashboard/covid19-shelter-in-place


Table 2: COVID-19 Case Growth and Prior Proximity to Cases, by Two-Week Period

March 31 - 
April 13

April 14 -    
April 27

April 28 -    
May 11

May 12 -    
May 25

May 26 -    
June 8

June 9 -     
June 22

June 23 -   
July 6

July 7-         
July 20

2 Week Lag: 0.731*** 0.379*** 0.141** 0.189*** 0.577*** 0.182** 0.320*** 0.259***
 log(Change in Social Proximity to Cases + 1) (0.093) (0.087) (0.059) (0.061) (0.062) (0.073) (0.057) (0.070)

4 Week Lag: 0.384 -0.224* 0.137* 0.023 -0.111* 0.208*** 0.046 0.101
 log(Change in Social Proximity to Cases + 1) (0.449) (0.129) (0.082) (0.060) (0.061) (0.074) (0.057) (0.063)

2 Week Lag: 1.259*** 0.699* 2.105*** 1.232*** -0.074 2.270*** 1.361*** 2.025***
 log(Change in Physical Proximity to Cases + 1) (0.182) (0.395) (0.283) (0.261) (0.314) (0.434) (0.350) (0.427)

4 Week Lag: -2.425*** -0.273 -1.593*** -0.892*** 0.412 -2.742*** -1.556*** -1.871***
 log(Change in Physical Proximity to Cases + 1) (0.745) (0.463) (0.291) (0.282) (0.288) (0.443) (0.329) (0.403)

2 Week Lag: 0.174*** 0.403*** 0.556*** 0.466*** 0.278*** 0.365*** 0.306*** 0.320***
 log(Change in Cases per 10k Residents + 1) (0.059) (0.050) (0.036) (0.036) (0.035) (0.041) (0.033) (0.037)

4 Week Lag: -0.136 0.136* -0.019 0.068* 0.126*** -0.017 0.005 0.021
 log(Change in Cases per 10k Residents + 1) (0.256) (0.076) (0.047) (0.037) (0.035) (0.039) (0.033) (0.034)

Pop Density FEs Y Y Y Y Y Y Y Y

Median Household Income FEs Y Y Y Y Y Y Y Y

State FEs Y Y Y Y Y Y Y Y

Sample Mean 1.234 1.253 1.331 1.369 1.422 1.579 2.031 2.524

R-Squared 0.600 0.571 0.642 0.647 0.667 0.621 0.678 0.706

N 3,131 3,131 3,131 3,131 3,131 3,131 3,131 3,131

log(Change in Cases per 10k Residents + 1)

Note: Table shows time-specific results from regression 4. Each observation is a county. The dependent
variable is log of one plus the number of new COVID-19 cases per 10,000 residents in one two-week period
between March 30 and July 20, 2020. All columns include log of growth in social and physical proximity to
cases, as well as actual cases, lagged by two and four weeks (one and two time periods). All columns include
time-specific fixed effects for state, and percentiles of population density and median household income.
Significance levels: *(p<0.10), **(p<0.05), ***(p<0.01).



the added predictive value of social proximity to cases by building separate models that

include and exclude this measure. Because we do not use the “test” data in the training ex-

ercise, a reduction in prediction error would be reflective of a true improvement in real-world

predictions (as opposed to an increase in R2 in our previous analyses).

Table 3: Predicting COVID-19 spread in U.S., with and without Social Proximity to Cases

Without Social 
Proximity to Cases

With Social 
Proximity to Cases

Diff. from Social 
Proximity to Cases

Without Social 
Proximity to Cases

With Social 
Proximity to Cases

Diff. from Social 
Proximity to Cases

(1) April 14 - April 27 2.523 2.598 0.075 1.597 1.497 -0.099

(2) April 28 - May 11 1.082 1.168 0.086 0.922 0.845 -0.077

(3) May 12 - May 25 0.742 0.729 -0.014 0.754 0.726 -0.028

(4) May 26 - June 8 0.742 0.716 -0.026 0.701 0.678 -0.024

(5) June 9 - June 22 0.826 0.798 -0.027 0.795 0.770 -0.025

(6) June 23 - July 6 0.886 0.865 -0.022 0.862 0.840 -0.022

(7) July 7 - July 20 0.813 0.792 -0.020 0.802 0.786 -0.016

RMSE: Linear Regression RMSE: Random Forest

Note: Table shows results from county-level predictions of COVID-19 case growth. The predicted outcome
is log of one plus the number of new COVID-19 cases per 10,000 residents. Columns 1-3 show root mean
squared errors (RMSEs) from a linear regression model trained on data from all weeks prior to the week of
interest. Columns 4-6 show analogous results from a random forest model. The model inputs in columns 1
and 4 are population density; median household income; and log of growth in physical proximity to cases
and actual cases, lagged by two and four weeks (one and two time periods). Columns 2 and 5 add social
proximity to cases. Columns 3 and 6 show the change in RMSE from adding social proximity to cases.

Table 3 shows the results of this prediction exercise. Columns 1-3 describe the prediction

error from a simple linear regression model that includes the measures in Table 2 with non-

binned measures of population density and median household income. Column 1 includes

the two lagged measures of social proximity to cases and column 2 excludes them. Each

row shows the root mean squared error (RMSE) from a model trained using data from all

periods before the period of interest, then tested on that next period. In the first two periods

— which include the most limited training data — the RMSE is relatively large for both

models. Then, as the training sample gets larger, the RMSE is consistently between 0.71

and 0.89 log new cases per 10,000 residents. Column 3 shows that in each of these last five

rows, the RMSE is lower from including social proximity to cases, suggesting that it does

significantly improve our predictions.

The results in columns 4-6 are generated using a random forest, an ensemble prediction

algorithm commonly used in data science applications. The algorithm allows us to find non-

linear relationships, without overfitting, by aggregating mean predictions from a number of

regression trees generated over sample subsets of both observations and input variables.6

The out-of-sample predictions of the random forest model generally outperform those of

6In our analysis we use 500 trees. For more information on random forests, see Breiman (2001).



the linear model. In addition, including measures of social proximity to cases leads to an

improved forecasts of COVID-19 cases throughout the course of the epidemic.

The methodology used for these predictions are relatively simple and should not be

interpreted as a full epidemiological model. However, the results in Table 3 strongly suggest

that our measure of social connectedness may prove useful in future epidemiological work.

4 Conclusion

In the context of threats from communicable disease, a region’s ability to determine optimal

public health responses depends on its ability to forecast the risk of an outbreak (Reich

et al., 2019). A primary determinant of this risk is the likelihood of physical interactions

between the region’s residents and residents of other areas with severe outbreaks. Information

on the geography of social connections, which shape patterns of physical interactions, are

therefore crucially important for public health officials. In this paper, we use de-identified

and aggregated data from Facebook to measure social connections between regions, and

find it be an important predictor of future outbreaks during the COVID-19 pandemic. We

show that areas more connected to early pandemic hotspots in the U.S. and Italy had, on

average, higher case counts by March 20, 2020, even after controlling for physical distance

and other demographics. Furthermore, the inclusion of social proximity to cases improves

predictions of COVID-19 spread during the first four months of the U.S. pandemic, over and

above models that include only physical proximity to cases and other controls. Our results

should not be interpreted as an attempt to create a state-of-the-art epidemiological model;

instead, our hope is that our new measure provides a tool for epidemiologists and public

health officials hoping to forecast the spread of communicable diseases such as COVID-19.
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