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Big Data and Firm Dynamics†

By Maryam Farboodi, Roxana Mihet, Thomas Philippon, and Laura Veldkamp*

How does data affect firm dynamics? As 
markets become more concentrated and dom-
inated by data-savvy firms, it is important to 
understand the macroeconomic role of data. 
While Brynjolfsson and McElheran (2016) have 
already found a connection between information 
technology and market concentration, a macro 
framework allows economists to value firms’ 
data, perform counterfactuals, and understand 
why data has the effects it does. Therefore, we 
build a framework for measurement and policy 
analysis.

We argue that data has four important features: 
(i) data is a by-product of economic activity; 
(ii) firms use data to increase their efficiency; 
(iii) data is information, which is distinct from 
technology; and (iv) accumulated data is a valu-
able asset. Our objective is to write the simplest 
framework that includes these features.

We build a model where heterogeneous 
price-taking firms invest, produce, and accu-
mulate data. Data causes long-lived firms to 
grow bigger for two reasons. First, data helps 
firms become more productive. Productive firms 
invest more, grow larger, and produce more data. 
This is a “data feedback loop.” Second, firms 
invest more than they otherwise would because 
additional production generates more data. This 
is “active experimentation.” We also learn that 
initial size is not the most important factor in 
the success of a firm. A small firm that uses data 
efficiently, meaning that it harvests more data 
per unit of production, may lose money initially 
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while it builds up its data stock. But if the firm 
can finance this phase, it can quickly out-com-
pete a larger, less data-efficient firm.

We build on ideas of others who studied infor-
mation in the macroeconomy. The growth and 
learning-by-doing literatures model data as tech-
nology-augmenting.1 Modeling data as infor-
mation about the firm’s optimal choice, allows 
us to incorporate countervailing forces like 
the diminishing returns to data.2 In Veldkamp 
(2005) and Fajgelbaum, Schaal, and Taschereau-
Dumouchel (2017) information is a by-product 
of economic activity and a signal, but the focus is 
on asymmetric cyclical fluctuations. Our frame-
work differs because of its growth in data and its 
incorporation of heterogeneous firms. Both are 
essential to study changing firm dynamics.

I. Setup

We consider a competitive industry. Time is 
discrete and infinite. There is a continuum of 
firms indexed by  i . Firm  i  uses   k i,t    units of cap-
ital to produce   k  i,t  

α    units of goods of quality   A i,t   .  
Let   P t    denote the equilibrium price of quali-
ty-adjusted goods. The inverse demand function 
and the industry quality-adjusted supply are

(1)   P t   =  P ¯    Y  t  
−γ , 

(2)   Y t   =  ∫ 
i
  
 

   A i,t    k  i,t  
α    di. 

Firms take the industry price   P t    as given and their 
quality-adjusted outputs are perfect substitutes.

Quality depends on a firm’s choice of a 
production technique   a i,t   . In each period, and 
for each firm, there is one optimal technique 
with a persistent and a transitory component: 
  θ i,t   +  ϵ a,i,t   . The persistent component   
θ i,t    is unknown and follows an AR(1) process: 

1 Jones and Tonetti (2018), Jovanovic and Nyarko (1996), 
among many others.

2 Chiou and Tucker (2017) and Bajari et al. (2018).
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  θ i,t   =  θ ¯   + ρ ( θ i,t−1   −  θ ¯  )  +  η i,t    where   η i,t    is  i.i.d.  
across time and firms. The transitory shock   ϵ a,i,t    
is  i.i.d.  across time and firms and is unlearnable. 
Deviating from that optimum incurs a quadratic 
loss in quality:

(3)   A i,t   =   A ¯   i   [ A ˆ   −   ( a i,t   −  θ i,t   −  ϵ a,i,t  )    2 ] . 

Data helps firms infer   θ i,t   . The role of   ϵ a    is to 
prevent firms from inferring   θ i,t    at the end of 
each period. It makes the accumulation of past 
data a valuable asset. If a firm knew the current 
value of   θ i,t   , it would maximize quality by set-
ting   a i,t   =  θ i,t   .

A key idea of our model is that data is a 
by-product of economic activity. Therefore, we 
assume that the number of data points observed 
by firm  i  at time  t  depends on their  t − 1  produc-
tion   k  i,t−1  

α   :

(4)   n i,t   =  z i    k  i,t−1  
α  , 

where   z i    is the parameter that governs how 
“data-savvy” a firm is. A data-savvy firm is one 
that harvests lots of data per unit of output.

Each data point  m ∈  [1, …,   n i,t  ]   reveals

(5)   s i,t,m   =  θ i,t   +  ϵ i,t,m  , 

where   ϵ i,t,m    is  i.i.d.  across firms, time, and sig-
nals. For tractability, we assume that all the 
shocks in the model are normally distributed: 
fundamental uncertainty is   η i,t   ∼ N (μ,  σ  θ  

2 )  , sig-

nal noise is   ϵ i,t,m   ∼ N (0,  σ  ϵ  
2 )  , and the unlearn-

able quality shock is   ϵ a,i,t   ∼ N (0,  σ  a  
2 )  .

Firm Problem.—A firm chooses a sequence 
of production and quality decisions   k i,t  ,  a i,t    to 
maximize

(6)   E 0     ∑ 
t=0

  
∞

     β   t  ( P t    A i,t    k  i,t  
α   − r k i,t  )  .

Firms update beliefs about   θ i,t    using Bayes’ 
law. Each period, firms observe last period’s 
revenues and data, and then choose capital 
level  k  and production technique  a . The infor-
mation set of firm  i  when it chooses   a i,t    is 
   i,t   =  [  { A i,τ  }   τ=0  

t−1  ;   {  { s i,τ,m  }   m=1  
 n i,τ    }   τ=0  

t  ]  .

A. Solution

The state variables of the recursive prob-
lem are the prior mean and variance of beliefs 
about   θ i,t−1   , last period’s revenues, and the 
new data points. Taking a first order condition 
with respect to the technique choice, we find 
that the optimal technique is   a  i,t  

⁎   =  E i   [ θ i,t   |   i,t  ]  .  
Let the posterior variance of beliefs be 

  Σ i,t   :=  E i   [  ( E i   [ θ i,t   |   i,t  ]  −  θ i,t  )    
2
 ]  . Thus, expected 

quality is   E i   [ A i,t  ]  =  A ¯   −  Σ i,t   −  σ  a  
2  . We can thus 

express expected firm value recursively.

LEMMA 1: The optimal sequence of capital 
investment choices   { k i,t  }   solves the following 
recursive problem:

(7)   V t   ( Σ i,t  )  =  max  
 k i,t  

     P t   ( A ¯   −  Σ i,t   −  σ  a  
2 )   k  i,t  

α   

  − r k i,t   + β V t+1   ( Σ i,t+1  )  ,

where   n i,t+1   =  z i    k  i,t  
α    and

(8)    Σ i,t   =   1  _____________________________   
  [ ρ   2   ( Σ  i,t−1  

−1   +  σ  a  
−2 )    

−1
  +  σ  θ  

2 ]    
−1

  +  n i,t    σ  ϵ  
−2 

    .

See the online Appendix for the proof. This 
result greatly simplifies the problem by collaps-
ing it to a deterministic problem with only one 
state variable,   Σ i,t   . The reason we can do this is 
that quality   A i,t    depends on the conditional vari-
ance of   θ i,t    and because the information structure 
is similar to that of a Kalman filter, where the 
sequence of conditional variances is generally 
deterministic.3 This Kalman system has a 2-by-1 
observation equation, with   n i,t    signals about   θ i,t    
and one signal about   θ i,t−1   . The signal about   θ i,t−1    
comes from observing last period’s output, which 

3 For any   k i,t   , the optimal choice of technique is always the 
same:   a  i,t  

⁎   =  E i   [ θ i,t   |   i,t  ]  . The way   a i,t    enters into expected 
quality   A i,t    is through  E [  (E [ θ i,t   |   i,t  ]  −  θ i,t  )    2 ]  , which is the 

conditional variance   Σ i,t   . We can replace the entire sequence 
of   a  i,t  

⁎    with the sequence of variances, which is determinis-
tic here because of normality. The only randomness in this 
model comes from the signals and their realizations, but they 
never affect the conditional variance, since normal means 
and variances are independent. Thus, given   Σ i,t−1   ,   Σ i,t    is a 
sufficient statistic for   n i,t    and   Σ i,t+1  .  The mean  E [ θ i,t   |   i,t  ]   is 
not a state variable because it only matters for determining   
a i,t    and does not affect anything else.
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reveals quality   A i,t−1   , which, in turn, reveals 
  θ i,t   +  ϵ a,i,t   .

4

From this recursive expression, we can value 
data. The marginal value of an additional unit of 
data, as measured in units of forecast precision is 

   
∂  V i,t    ____ 
∂  Σ  i,t  

−1 
   =  Σ  i,t  

2   [ P t    k  i,t  
α   − β V  i,t+1  ′   ( Σ  i,t+1  

−1  )    
d Σ i,t+1   ______ 
d Σ i,t  

  ]  , 

where

   
d Σ i,t+1   ______ 
d Σ i,t  

   =  Σ  i,t+1  
2     [ ρ   2    ( Σ  i,t  

−1  +  σ  a  
−2 )    

−1
  +  σ  θ  

2 ]    
−2

  

 ×   ρ   2    ( Σ  i,t  
−1  +  σ  a  

−2 )    
−2

   Σ  i,t  
−2  .

The solution to the firm’s investment prob-
lem comes from the first-order condition, 
 ∂  V i,t   /∂  k i,t   = 0  and the Euler equation, 

 α p t   ( A ¯   −  Σ i,t   −  σ  a  2 )  + β V  i,t+1  ′    
∂  Σ i,t+1  

 _ ∂  k i,t  
   = r k  i,t  

1−α  . 

Substituting expressions above yields

(9)  r  k  i,t  
1−α  = α  P t   ( A ¯   −  Σ i,t   −  σ  a  

2 )  

  + αβ z i    Σ  i,t+1  
2    σ  ϵ  

−2   P t+1    k  i,t+1  
α   .

The first term on the right is the added con-
temporaneous value from additional investment. 
The second term represents gains from experi-
mentation. Firms invest more to improve their 
future dataset.

B. Data Changes Steady-State Firm Size

Our first numerical experiment studies how 
improvements in firm data processing are 
changing the size distribution of firms. We start 
by calibrating firm sizes in a model with no 
data processing to match the size distribution of 
US firms. Then, we turn on data processing to 
observe how sizes change. For most parameters, 
we choose round numbers that deliver sensible 
outcomes.

What governs the steady-state size of a firm is 
its product quality parameter    A ¯   i   . We choose 12 

4 Firms observe    ( θ i,t   +  ϵ a,i,t  )    2  . For tractability, we assume 
that firms know whether the root is positive or negative. For 
more on this and for the derivation of the belief updating 
equations, see online Appendix.

levels of    A ¯   i    as follows. We match the steady-state   
k i,t    of a firm, with that    A ¯   i    and with no data pro-
duction (  z i   = 0 ), to the average size of the firm 
in each of 12 firm-size categories, as defined by 
the 2016 Longitudinal Business Database. Each 
of these sizes has a market share associated with 
it, which is the number of firms in that size cat-
egory, divided by the total number of firms in 
2016. In Figure 1, the dashed line labeled “no 
data production” plots size and market share, as 
reported by our data.

To compute the change in size of firms when 
all firms process data, we change one parame-
ter and recompute the steady state. Instead of 
 z = 0 , we set  z = 1  for all firms, so that produc-
tion generates usable data. Figure 1 shows that 
the new firm size distribution (solid line, labeled 
“with data production”) has more large firms. 
The very largest firms get substantially larger.

While one expects larger firms with more 
data to benefit most, there is a counteracting 
force. Bayes’ law tells us that each unit of data 
increases the precision of a forecast by less and 
less. Diminishing returns to data works against 
increasing returns to scale. Our results suggest 
that scale wins. Of course, to make precise 
quantitative statements, future work should cali-
brate the model more carefully. But the exercise 
illustrates how one might use the framework for 
measurement and makes the point that the effect 
of data on firm size may be sizable.
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Figure 1. Steady State Size Distribution   k i,ss    of Firms 
With and Without Data

Notes: Dashed line is without data production ( z = 0 ,    A ¯   i    s 
calibrated to match US firm sizes in 2016). Solid line is with 
data production   (z = 1)  . Parameter values are:  α = 0.5 ,  
β = 0.98 ,  γ = 0.7 ,  ρ = 0.5 ,   A ˆ   = 3 ,   P ¯   = 1 ,  r = 0.2 ,   
σ  a  

2  = 1 ,   σ  e  
2  = 1 ,   σ  θ  

2  = 1 .
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C. Entry of New Tech Firms

We learned that data processing makes firms 
larger. But what are the dynamics of the tran-
sition to the new big-data steady state? To 
learn about how the economy might behave in 
the transition, we consider two types of firms. 
Type  old  firms are old-economy incumbents 
that either do not generate much data or do not 
make good use of the data they get. These firms 
have a low   z old   , meaning that they get few data 
points, per unit of output. Type new firms are 
data-savvy and have higher value of   z new   . They 
start small, with low capital, but they scrape lots 
of data from the transactions that they generate.

We consider an industry in steady state with 
a mass one of identical, old-economy firms. We 
then drop a mass  M  of new, data-savvy firms that 
have not accumulated any data yet. We solve for 
the dynamic transition path to the new steady 
state, with both types of firms in the economy.5

When new firms enter, they have no data to 
guide their choice of technique. They do not 
know what consumers want, thus they experi-
ment. They supply goods and services of random 
quality and do not generate much contempora-
neous value, on average. Figure 2 (dashed lines) 
shows the initial low capital investment and neg-
ative profits of the entrants. But these new firms 
learn quickly over time. As they accumulate 
data, their productivity improves. They scale up 
and generate even more data.

As soon as new firms enter, the market value 
of old firms drops. Old firms anticipate the rise 
of the new firms and expect their capital to gen-
erate less profit in the future. They cut invest-
ment and produce less. The output quality of 
new firms is initially low, so the industry-wide, 
quality-adjusted output initially falls (Figure 2, 
right panel) and the industry price initially rises. 
Output then expands as new firms learn, improve 
their quality and invest more.

5 There is a continuum of old and new firms so we can 
apply the law of large numbers to each group. The indus-
try equilibrium (output and price) is deterministic, although 
individual firms’ output and productivity are random. We 
solve for eight unknowns,   P t   ,   Y t   ,   A old,t   ,   A new,t   ,   Σ old,t   ,   Σ new,t   ,   
k old,t   , and   k new,t   . The old firms start with the stock of capital 
(and data) they had in the old industry steady state. The new 
firms start with   k new,0    close to zero, thus they have little data. 
Each type of firm has its own Bellman equation and antici-
pates correctly the future path of the price level.
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Figure 2. Dynamics When New, Data-Savvy Firms Enter 
at Time  t = 0 

Notes: Solid line is old incumbents with   z old   . Dashed line 
is new, data-savvy entrants with   z new   >  z old   . Parameters are 
as in Figure 1, except   A ¯   = 3 ,   A ˆ   = 2.5 ,  γ = 0.5 ,   P ¯   = 10 , 
and  ρ = 0.99 , for all firms.
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How quickly the entrants overtake the incum-
bents depends on their data accumulation advan-
tage   z new   −  z old   , as well as on the persistence of 
the optimal technique  ρ . If the state is persistent, 
old data remains useful and it takes more time 
for the entrant to overtake the incumbents. In 
fast-changing environments, new data is more 
valuable and the transition is quicker.

II. Future Research

Data is changing how firms operate and com-
pete. We offered a simple framework that can 
help us to think about these changes systemat-
ically. One could use this framework for many 
purposes. One would be to estimate the value of 
data. If we rewrite the value function as a func-
tion of precision,  V ( Σ   −1 )  , rather than variance, 
then   V ′   ( Σ   −1 )   is the marginal value of additional 
data precision. Since Bayes’ law tells us that 
precision is linear in signals, this is equivalent 
to measuring the marginal value of data, where 
the quantity of data has some natural economic 
interpretation as additional units of forecast 
precision.

Another feature that would be natural to add 
is to relax the perfect competition assumption 
and explore strategic firm behavior. Surely, 
there would be some interaction between market 
structure and the effects of data. Similarly, data 
can be bought and sold. One could add to (6) a 
term representing revenues from selling or a cost 
of buying additional data. That term would be a 
price of data, times a net quantity of data trans-
ferred. Small firms’ ability to buy data could 
change the competitive benefits of size.

Policy questions about data regulation 
abound. Without equilibrium reasoning, it is 

 difficult to say much about potential conse-
quences. A model like this can help us think 
through the non-obvious consequences of mar-
ket-wide regulatory changes. Theory models 
of big data are essential because theory guides 
thinking in environments where the future may 
look quite different from the past.
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