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Abstract

We analyze trading speed and fragmentation in asset markets. Trading venues make technolog-
ical investments and compete for investors who choose where and how much to trade. Faster
venues charge higher fees and attract speed-sensitive investors. Competition among venues
increases investor participation, trading volumes, and allocative efficiency but entry and frag-
mentation can be excessive, and speeds are inefficient. Regulations that protect transaction
prices (e.g., Securities and Exchange Commission trade-through rule) lead to greater fragmen-
tation and faster speeds but may reduce allocative efficiency. Our model sheds light on the
experience of European and U.S. markets since the implementation of Markets in Financial
Instruments Directive and Regulation National Markets System.
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1 Introduction

The securities exchange industry has been deeply transformed over the past decade. The speed at
which investors trade has dramatically increased and trading, particularly in the United States and
Europe, has become more fragmented. These transformations are the subject of heated debates in
academic and policy circles. To shed light on these issues, our paper provides a joint analysis of
trading speed, trading regulations, and market fragmentation.

Figure 1 provides an overview of the trading landscape. In recent years, and especially since the
second half of the 2000s, major market centers have made costly investments in trading platforms
and infrastructure to reduce order execution and communication latencies, in many cases to subhu-
man (“machine”) speeds. This process has gone beyond stock exchanges to include futures, options,
and currencies, and beyond the U.S. and Europe, to include virtually all global financial hubs. On
the other hand, trading speeds vary greatly across markets and much trading still relies on human
input. For instance, as explained in the Appendix,1 electronic trading covered only 21% of the
corporate bond market in 2014, while voice trading covered the remaining 79%. It is important to
keep in mind that high-frequency trading (HFT) is not the norm in most markets.

The second major feature of the new trading landscape is fragmentation, illustrated by Figure
2. Traditional markets such as the London Stock Exchange (right panel) have lost market share to
faster entrants such as Chi-X. The left panel shows an even more dramatic evolution: The fraction
of NYSE-listed stocks traded at the NYSE decreased from 80% in 2004 to just over 20% in 2009.
Most of the lost trading volume has been captured by new entrants (e.g., Direct Edge and BATS).
Overall, fragmentation has increased so dramatically that market participants now keep track of
fragmentation indexes across asset classes and countries.2

Market regulators have not been passive witnesses to this process. In the U.S., policy makers
have encouraged fragmentation to reduce the market power of trading venues, prominently with
the Regulation of Exchange and Alternative Trading Systems (Reg ATS) and Regulation National
Market System (Reg NMS). For example, the U.S. Securities and Exchange Commission (SEC,
2010) states:

Mandating the consolidation of order flow in a single venue would create a monopoly
and thereby lose the important benefits of competition among markets. The benefits of
such competition include incentives for trading centers to create new products, provide
high quality trading services that meet the needs of investors, and keep trading fees low.

Encouraged by the recent U.S. experience, many other economies have started promoting compe-
tition between market centers. In Europe, for example, a transformative role was played by the
Markets in Financial Instruments Directive (MiFID).

The effects are tangible: Large-cap stocks that previously traded in one or two venues are now
traded in almost 50 venues, including internalization pools and over-the-counter (OTC) venues.

1In Appendix A, we further discuss speed investments and provide a historical perspective.
2See, for example, the Fidessa fragmentation indexes.

1

https://www.sec.gov/rules/final/34-40760.txt
http://www.sec.gov/rules/final/34-51808fr.pdf
http://ec.europa.eu/finance/securities/isd/mifid/index_en.htm
http://fragmentation.fidessa.com


Figure 1. Assets classes and trading speeds.

Concerns about adverse effects of trading price fragmentation, in turn, motivated regulators to
design rules that promote investor order price protection. In the U.S., this notion of investor
protection is implemented by the trade-through rule provided by Rule 611 of Reg NMS, which
essentially requires that any venue execute its trades at the national best bid and offer quotes,
thereby consolidating prices from scattered trading.

Our goal is to analyze competition among trading venues, and how it affects the provision of
high-quality trading services. To be concrete, we refer to the quality of these services as speed,
but with a broad interpretation: By speed we mean a feature that reduces the time between the
occurrence of a desire to trade and the execution of the trade. This notion includes not only
communication latencies, but also all technological innovations that make trading more convenient
and more reliable, such as efficient data feeds, user-friendly software and reliable hardware.3

With this definition in mind, we examine the following questions. Why do venues compete
on speed? Is there a relation between the increase in trading speeds and the level of market
fragmentation? What are the consequences of these changes? Does fragmentation achieve policy
makers’ goals? Should price protection be fostered in the first place? We argue that technological
advances, competition in the securities exchange industry, and market regulations interact with

3In addition to collecting evidence on speed investments and trade fragmentation, to better understand some of
the relevant features of the trading landscape, we have also conducted informal interviews with traders in different
markets. In addition to pure speed, most traders emphasize convenience and reliability. This is a natural interpreta-
tion of the model, since all these factors affect the total expected time and effort between the decision to trade and
the execution of the trade. When we use the term speed it is with this broad interpretation in mind.
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Figure 2. Equity market volume fragmentation by listing venue: NYSE, NASDAQ, and the London
Stock Exchange (LSE). Source: Barclays Capital Equity Research.

each other to shape the trading landscape, asset prices, investor participation, and, ultimately,
social welfare. We start from the idea that speed has (at least) two important features. First, it
allows investors to realize higher gains from trade. Second, investors do not value speed equally.
Speed therefore allows venues to differentiate their intermediation services vertically by catering to
different clienteles, which can relax price competition.

Analysis of these issues is difficult because it requires modeling four separate components: (i)
why and how investors value trading speed, (ii) how differences in speed affect competition among
trading venues and the affiliation choices of investors, (iii) how trading regulations affect (i) and
(ii), and (iv) how these choices affect investment in speed and equilibrium fragmentation. These
requirements explain our modeling choices and the structure of our paper.

Our abstract model is meant to capture various assets classes and investors. At the slow end of
the spectrum, retail investors have access to several types of brokerage accounts. Brokers invest in
information technology to allow investors to trade more easily. Brokers compete in fees as well as
in the speed and the convenience of their trading systems.4 Banks and brokers also offer trading
platforms to their institutional clients. These are typically faster and more expensive. Venues can
be interpreted as exchanges, trading platforms, or dealer networks. Our framework relies on three
key assumptions: (i) Agents anticipate random trading needs, (ii) venues make costly investments
to allow for easier/faster trading, and (iii) these investments allow exchanges to cater to different
investors by offering different speeds/convenience levels.5

We start by providing the explicit microfoundation of how investors value speed in financial
markets. We consider a dynamic infinite-horizon model where heterogeneous investors buy and sell

4Some of the costs are fixed (as in opening an account) and some are on a per-trade basis. Our benchmark model
emphasizes fixed costs. We analyze trading costs in an extension of the model. Speed can also refer to the frequency
at which prices quotes are refreshed. For U.S. equities, anyone with access to the internet can obtain free quotes
with a few minutes’ delay. One must pay for a subscription to receive faster updates. Biais, Hombert, and Weill
(2014) propose an interpretation in which traders have continuous access to the market but are uncertain about the
preferences of their institutions. In that case, speed is related to the flow of information before trades happen. All
these interpretations are broadly consistent with the structure of our model.

5One can also interpret OTC (off-exchange) stock trading as a group of slow venues. This group includes dark
pools, internalization pools, OTC dealers, and crossing networks. It currently represents between one-fourth and
one-third of the U.S. stock trading volume.
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a single security. Ex post gains from trade arise from shocks to the marginal utility (or marginal
cost) of holding the asset.6 High–marginal-utility investors are natural buyers, while low–marginal-
utility investors are natural sellers of the asset. In this model, speed allows investors to realize a
larger fraction of potential gains from trade (see Proposition 1).

Our first contribution is to characterize the pricing decisions and equilibrium profits of trading
venues, together with the participation and affiliation choices of investors. To do so, we model ex
ante heterogeneity among venues and investors. Venues differ in their trading speeds and compete
in prices. Investors differ by the volatility of their private value processes. We show that investors
with high expected volatility attach higher value to speed. We characterize an equilibrium with
one venue (monopoly), and an equilibrium with two venues with different speeds (differentiated
duopoly). Competition leads to lower fees and greater investor participation. Faster venues charge
higher prices and attract speed-sensitive investors (see Proposition 2).

Our second contribution is to analyze the impact of trading regulations aimed at protecting
investor prices. We propose a stylized analysis of such regulations by considering two polar cases.
In one case, which we refer to as segmentation, a venue does not execute the trades of investors
from another venue. The markets are effectively segmented and trades occur at different prices. The
other case corresponds to price protection where investors have two “gates of entry” to a single asset
market with a unique price.7 We find that price protection acts as a subsidy for the relatively slow
venue. At the trading stage, investors in the slow venue enjoy the ability to trade with investors
from the fast venue. Anticipating this, they are more willing to join the slow venue under integration
than under segmentation. We explain how integration affects ex ante competition among venues
(see Propositions 2 and 7), as well as ex post trading. We find that price protection encourages
entry and that fragmentation leads to greater investment in trading technologies and thus faster
trading speeds. To the best of our knowledge, ours is the first formal analysis of this issue.8

The predictions of the model appear broadly consistent with recent U.S. experience. After the
implementation of Reg NMS, new market centers proliferated and trading speed increased rapidly
(see Propositions 4, 5, and 7). Our model offers a natural interpretation of these two phenomena.

Finally, we provide a welfare analysis of entry, speed, and investor protection. Our model allows
us to answer three important questions: When does competition increase welfare? When does
investment in trading speed increase welfare? Is price protection socially optimal? We find that the
market outcome is generally inefficient, but the inefficiencies play out differently, depending on the
market structure. Participation is always too low under monopoly and competition among venues

6As is well understood in the literature, these shocks can capture liquidity demand (i.e., the need for cash),
financing costs, hedging demand, portfolio rebalancing, or any other personal use of assets, including specific arbitrage
opportunities (for a discussion see Duffie, Garleanu, and Pedersen (2007)). The important point is that these shocks
affect the private value of an asset, not its common value. The shocks therefore generate gains from trade that are a
required building block of any trading model.

7We consider only the two polar cases of segmentation and integration. When we conduct policy experiments,
we consider the case in which integration is mandated by regulation using a price protection rule. For simplicity, we
do not consider intermediate cases with imperfect arbitrage between markets.

8At the time of writing, the SEC requested its Equity Market Structure Advisory Committee to assess the
effectiveness of the trade-through rule ( Rule 611 of SEC Regulation NMS).
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increases participation. On the other hand, speed differentiation relaxes price competition. The
slow venue chooses a speed that is too low in terms of both allocative efficiency and in terms of ex
post competition. A regulator would find it optimal to impose a minimum speed requirement but
not a maximum speed limit.

Regarding entry, there is tension between business stealing on the one hand and competition and
product diversity on the other. Diversity is always good in models of horizontal differentiation but
not necessarily so in models of vertical differentiation such as ours. The familiar excess entry theorem
of Mankiw and Whinston (1986) cannot be used in our environment. The welfare consequences of
entry and differentiation depend on the venues’ incentives to invest in their trading technologies.

The welfare consequences of price protection depend crucially on its impact on entry decisions.
When protection increases entry, it typically has a first-order positive impact on welfare. There is a
range of economies where entry costs are intermediate and only one venue can enter profitably in the
segmented market equilibrium. In such cases, the implicit subsidy embedded in price protection can
allow entry by a slower venue, stimulate competition, and result in higher investor participation and
greater allocative efficiency. When price protection does not increase entry, on the other hand, it
typically has a small negative impact on welfare because it dampens price competition and decreases
allocative efficiency. In all these calculations, the endogenous affiliation decisions of investors play
a crucial role.

Literature Review. Our paper relates to several strands of the literature in economics and fi-
nance. Early theoretical analyses of fragmentation include those of Mendelson (1987) and Pagano
(1989). These static models focus on the tradeoff between liquidity externalities, market power, and
trading costs.9 This tension was of the first order of importance when different market places were
not as integrated as they are nowadays. Venues can differentiate in areas other than speed. For
example, Santos and Scheinkman (2001) study competition in margin requirements, and Foucault
and Parlour (2004) study competition in listing fees. These papers do not analyze speed differen-
tiation and thus justifiably consider static frameworks. Our focus on technological speed reflects
its prominent role in modern asset markets and its direct relation with secondary market liquidity
and explains our effort in developing a suitable dynamic model where speed plays an explicit role.
We also provide, to the best of our knowledge, the first equilibrium analysis of price protection on
market structure and welfare.

Our trading model builds on the recent literature that models dynamic trading with friction,
spurred by Duffie, Garleanu, and Pedersen (2005), and is closest to that of to that of Lagos and
Rocheteau (2009, LR09 hereafter).10 We follow these models in that investors valuation change

9The literature that analyzes fragmented trading contains several additional themes. Biais (1993), Glosten (1994),
Hendershott and Mendelson (2000), Parlour and Seppi (2003), and Rust and Hall (2003) study competition between
markets with different trading rules. More recently, Colliard and Foucault (2012) study the effect of trading fees
in a context where an exchange competes with an OTC dealer. Chowdhry and Nanda (1991), Madhavan (1995)
and Baruch, Karolyi, and Lemmon (2007), in turn, analyze information transmission with multiple venues. For a
textbook analysis, see Chapter 26 of Harris (2003).

10Weill (2007) uses a related framework to analyze market making in exchanges. Vayanos and Wang (2007) and
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randomly. We do not, however, encompass all trading mechanisms. In contrast to Duffie et al.
(2005), we do not model decentralized OTC trades through random search, a specific matching
function, and a bargaining game. We do not model a limit order market as do Biais, Hombert, and
Weill (2014). For tractability and cleanness of analysis, we adopt instead a (frictional) Walrasian
clearing protocol, as do LR09 and Gârleanu (2009). We seek to capture different trading frictions
that affect the search for liquidity in a stylized fashion, by introducing a random delay in the
execution of a trade. A distinctive feature of our model is that the distribution of such delays
arises endogenously and is explicitly affected by the nature of the competition among venues. More
broadly, our work contributes to this literature by endogenizing the market design, thus analyzing
a “market for markets.” That is, by simultaneously studying interactions between strategic trading
venues and investor affiliation and trading decisions, we are able to explicitly study how (i) the entry
of trading venues, (ii) speed investments, (iii) participation levels, and (iv) investor protection affect
market dynamics and welfare. Pagnotta (2014) develops an analysis of the pricing implications.

Our work complements the recent literature that analyzes HFT (e.g., Aït-sahalia and Saglam
(2013), Budish, Cramton, and Shim (2013), Foucault, Hombert, and Rosu (2013), Biais, Foucault,
and Moinas (2015)). The literature models the speed-related advantages that some traders have
over others by introducing a form of (typically short-lived) asymmetric information. Although we do
not analyze asymmetric information explicitly, we provide a “macro” building block where positive
and normative issues related to investors with different speed capacities can be analyzed.

In the industrial organization literature, Mussa and Rosen (1978), Gabszewicz and Thisse (1979),
and Shaked and Sutton (1982; 1983) pioneered the analysis of vertically differentiated oligopolies.
Our framework enriches the classical environment by having agents consuming a differentiated
product first (liquidity), and a homogeneous product (the asset itself) second. Consequently, we
can endogenize the value of quality (trading delays here) through a micro-founded trading game.
This approach allows us to study, among other things, how trading regulations affect the market
design.

The remainder of the paper is organized as follows. Section 2 presents our benchmark trading
model and derives the value functions of investors. Section 4 analyzes competition among trading
venues with and without price protection. Section 5 analyzes trading venues’ investment in speed.
Section 6 analyzes entry. Section 7 develops a quantitative version of the model and discusses the
impact of several market interventions. Section 8 concludes the paper.

2 Trading Model

The structure of our paper is depicted in Figure 3. This section analyzes the trading stage. It
provides the explicit microfoundation of how investors value speed in financial markets. We present
our trading model and analyze the equilibrium in one venue. The key result of this section is a
characterization of value functions as a function of speed and investor characteristics.

Weill (2008) study the concentration of liquidity across assets instead of venues. Many additional contributions are
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Figure 3. Timing and structure of the model

2.1 Preferences and Technology

We start by describing the main building blocks of our model: investor preferences and trading
technology. Preferences need to incorporate heterogeneity to create gains from trade as well as
interesting participation decisions among venues. The trading technology must capture the role of
speed in financial markets.

Time is continuous and we set a probability space. The model has a continuum of heterogeneous
investors, two goods, and one asset. The measure of investors is normalized to one and their
preferences are quasilinear. The numéraire good (cash) has a constant marginal utility normalized
to one and can be freely invested at the constant rate of return r. The asset is in fixed supply, ā,
which is also the (expected) endowment of each investor. We restrict asset holdings to at 2 [0, 1].
One unit of asset pays a constant dividend equal to µ of a perishable non-tradable good. The flow
utility that an investor derives from holding at units of the asset at time t is

u�,✏
t

(at) = (µ+ �✏t) at,

where (�, ✏t) denotes the type of investor. This type is defined by a fixed component � and a time-
varying (random) component ✏t. The fixed component � 2 [0, �̄) is known at time 0 and distributed
according to the twice-differentiable cumulative distribution G, with a log-concave density function
g that is positive everywhere. The type ✏t 2 {�1,+1} changes randomly over time. The times
when a change can occur are distributed exponentially with parameter �. Conditional on a change,
✏ is i.i.d. and each value has equal probability.

As explained in the introduction, the ✏-shocks can capture time-varying liquidity demands,
financing costs, hedging demands, specific investment opportunities, and specific requirements such
as margins. For instance, a portfolio manager may need to buy and sell to meet inflows and outflows
from investors. Traders may need to rebalance their portfolios to track their benchmarks. Corporate
investors may need to sell their financial assets to finance real investments. Household may do the
same for purchases of a durable good or a house. The parameter � then simply measures the size of
these shocks. In the context of delegated management, the shock represents the sum of the shocks
affecting all the investors in a given fund or brokerage house. The parameter � measures the mean

surveyed by Lagos, Rocheteau, and Wright (2014).
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reversion of the utility flow process and is assumed, for simplicity, to be the same for all investors.11

Our paper focuses on the trading technology for the asset. For clarity, we describe here the
case in which all investors trade at the same speed (later, we endogenize speed choices and consider
venues with different speeds). The venue where investors trade the asset is characterized by the
constant contact rate ⇢. Conditional on being in contact, the market is Walrasian and clears at
price pt.12 Any investor in contact with the venue at time t can trade at the price pt. Investors who
are not in contact simply keep their holdings constant.

Our assumptions about technology and preferences imply that the value function of a class-�
investor with current valuation ✏s and current asset holdings a at time t is

V�,✏
t

(a, t) = Et

ˆ T

t
e�r(s�t)u�,✏

s

(a)ds+ e�r(T�t)
(V�,✏

T

(aT , T )� pT (aT � a))

�

, (1)

where the realization of the random type at time s > t is ✏s and T denotes the next time the investor
makes contact with the venue. Expectations are defined over the random variables T and ✏s and
are conditional on the current type ✏t and the speed of the venue ⇢.

2.2 Trading Equilibrium

We show that the asset price remains constant during the trading game. The value functions are
thus time independent. Letting a⇤�,✏ denote the optimal choice of asset holding for type (�, ✏),
equation (1) becomes simply

rV�✏(a) = u�,✏ (a) +
�

2

X

✏0

[V�✏0(a)� V�✏(a)] + ⇢
⇥

V�✏(a
⇤
�,✏)� V�✏(a)� p(a⇤�,✏ � a)

⇤

. (2)

Following LR09, we define the adjusted holding utility as

ū (a;�, ✏) ⌘
(r + ⇢)u�,✏ (a) + �E

⇥

u�,✏0 (a) | ✏
⇤

r + ⇢+ �
.

LR09 (see Lemma 1 there) show that ū is the object that investors seek to maximize when deciding
how much to trade. Note that since ✏ is i.i.d. with mean zero, E

⇥

u�,✏0 (a) | ✏
⇤

= µa for any a and
any ✏. This expected utility over ✏0 does not depend on � or ✏. This result implies that

ū (a;�, ✏) =

✓

µ+ �✏
r + ⇢

r + ⇢+ �

◆

a.

11We introduce heterogeneity in � and not in � because the key point in our analysis is the link between gains from
trade and speed. It is important to understand that a higher value of � implies lower gains from trade. Investors
with a high value of � are not eager to trade, since they can simply wait for their type to mean-revert. In particular,
a high value of � would not capture, per se, the idea of fleeting trading opportunities. This idea is better captured
by a high value of �.

12It would be straightforward to add bargaining with market makers and bid-ask spreads, but this would not
bring new insights compared to the results of Duffie, Garleanu, and Pedersen (2005) and LR09. For simplicity, we
therefore assume competitive trading conditional on being in contact with the venue. A similar market mechanism
is considered in the monetary economy of Rocheteau and Wright (2005) (which they label competitive equilibrium).
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Recall that G is the ex ante distribution of permanent types. Let ˆG be the distribution of types in
the venue. The total number of traders who join the venue is n and ˆG is a cumulative distribution
function. If all potential investors join the venue, we simply have n = 1 and ˆG = G. In the generic
case, however, we have n ˆG  G since some investors do not participate. Indeed, we shall see that,
in the multiple-venue model, the distribution ˆG is typically discontinuous. We therefore present our
results without placing any restrictions on the function ˆG.

Lemma 1. An equilibrium with constant price p is characterized by the demand functions

a⇤ (p;�, ✏) = argmax

a
{ū (a;�, ✏)� rpa} (3)

and the market clearing condition
ˆ
�

X

✏=±1

a⇤ (p;�, ✏)

2

d ˆG (�) = ā. (4)

Proof. See Proposition 1 of LR09. The proposition only needs to be adapted to take into account
heterogeneity in �. Note that we assume ✏ = ±1 with probability 1/2. Q.E.D.

There is clear symmetry around ā =

1/2 since half the investors are of trading type ✏ = +1 and
half are of trading type ✏ = �1. It is therefore sufficient to analyze a market where ā  1/2. In this
case, supply is short and low-� types always sell their entire holdings when they contact the venue.
Moreover, there is a marginal buyer, that is, a type �̃, that is indifferent between buying and not
buying when ✏ = 1. This marginal trading type is defined by

�̃ (p, ⇢) ⌘ r + ⇢+ �

r + ⇢
(rp� µ) . (5)

The demand function is therefore a⇤ = 1 when ✏ = +1 and � � �̃. It is a⇤ = 0 in all other cases.
We can use these demand curves to rewrite the market clearing condition. All negative trading

types ✏ = �1 want to hold a = 0 and they represent half of the traders. The trading types ✏ = +1

want to hold one unit if � > �̃ and nothing if � < �̃. The demand for the asset is 1/2( ˆG (�̄)� ˆG (�̃)).
The ex ante supply of the asset (per capita) is ā. The market clearing condition is therefore

1� ˆG (�̃)

2

= ā. (6)

Note that the asset holdings of types � < �̃ are nonstationary, since they never purchase the asset.
They sell their holding ā on first contact with the venue and never trade again. The fact that they
stop trading is really just a consequence of linear preferences. With curvature in the utility function,
low-� types would trade repeatedly, but in smaller quantities. The only important point is that
they trade less than the high-� types. We call the traders with � < �̃ light traders, and traders
with � < �̃ repeat or heavy traders.13

13Alternatively, we could let light traders receive larger shocks from time to time (by making � itself random in
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Over time, the assets move from the low-� to the high-� types and then keep circulating among
the high-� types in response to ✏ shocks and trading opportunities. It is easy to see that the
price remains constant along the transition path. The gross supply of assets is always ⇢ā. The
gross demand from high-� types is always ⇢

⇣

1� ˆG (�̃)
⌘

/2. From equation (6), the market always
clears.14

We can now characterize the steady-state distribution among types � > �̃. Let ↵�,✏ (a) be the
share of class-� investors with trading type ✏ currently holding a units of asset. Consider first a
type (✏ = +1, a = 1). This type is satisfied with its current holding and does not trade even if
it contacts the venue. Outflows result only from changes of ✏ from +1 to -1, which occurs with
intensity �/2. There are two sources of inflow: types (✏ = �1, a = 1) that switch to ✏ = 1 and types
(✏ = +1, a = 0) that purchase one unit when they contact the venue. In steady state, outflows must
equal inflows:

�

2

↵�,+ (1) =

�

2

↵�,� (1) + ⇢↵�,+ (0) . (7)

The dynamics for types (✏ = �1, a = 0) are similar:

�

2

↵�,� (0) = ⇢↵�,� (1) +

�

2

↵�,+ (0) . (8)

For types (✏ = +1, a = 0) and (✏ = �1, a = 1), trade creates outflows, yielding
⇣�

2

+ ⇢
⌘

↵�,+ (0) =

�

2

↵�,� (0) (9)
⇣�

2

+ ⇢
⌘

↵�,� (1) =

�

2

↵�,+ (1) (10)

Finally, the shares must add up to one; therefore,

X

✏=±,a=0,1

↵�,✏ (a) = 1. (11)

We summarize our results in the following lemma

Lemma 2. The trading equilibrium is characterized by the price p and marginal trading type �̃

defined in equations (5) and (6), respectively. The transition dynamics are as follows. The price
remains constant while asset holdings shift from low-� types to high-� types. Low-� types (� < �̃)

sell their initial holdings ā and do not purchase the asset again. High-� types (� � �̃) buy when
✏ = 1 and sell when ✏ = �1. The distribution of holdings among high-� types converges to the

addition to ✏). Then all investors would trade as long as their � were large enough, but some would trade more
often than others. None of these extensions would change our main results, but they would complicate the (already
complicated) analysis of entry and investment in speed. We choose to use the model with linear preferences and
constant � because it facilitates aggregation across heterogeneous types. Heterogeneity among investors is, of course,
a key element of our analysis, but it is also a major source of complexity, so we need to make an assumption to keep
the analysis tractable.

14In the case ā = 1
/2 the marginal type is not well defined and a range of prices can clear the market. More

precisely, if �min is the lowest type in the market, then any price p 2
h
µ

r

� �min
r

r+⇢

r+⇢+�

,

µ

r

+ �min
r

r+⇢

r+⇢+�

i
is a market

clearing price.
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steady-state distribution of well-allocated assets ↵�,+ (1) = ↵�,� (0) =

1
4
2⇢+�
�+⇢ and misallocated assets

↵�,+ (0) = ↵�,� (1) =

1
4

�
�+⇢ .

We can formally define the instantaneous trade volume rate, V , which in the steady state is
given by

V =

⇢

2

(↵�,+ (0) + ↵�,� (1))⇥
⇣

1� ˆG (�̃)
⌘

. (12)

The right-hand side of equation (12) is given by the product of the contact rate, the proportion
of agents with misallocated assets, and the population of steady-state traders. Using equation (6)
and the equilibrium expressions for ↵�,+ (0) and ↵�,� (1) in Lemma 2, one obtains the (free market
participation) equilibrium trade volume rate V =

⇢
2

�
�+⇢a.

The best way to understand Lemma 2 is to focus on gains from trade and deviations from the
Walrasian allocation, which maximizes the gains from trade. Taking the limit ⇢ ! 1 in equations
(5) and (6), we obtain the following lemma.

Lemma 3. The Walrasian equilibrium has a price pw =

1
r

⇥

µ+G�1
(1� 2ā)

⇤

, the instantaneous
volume rate equals Vw =

a�
2 , and total gains from trade (welfare) are given by 1

2r

´ �
G�1(1�2a) �dG (�).

Note again the symmetry around ā =

1/2. When ā < 1/2, the price is higher than the mean
value µ/r. In that case, types � < �̃ sell and then do not buy again. For a given distribution of
investors ˆG in the market, the difference p�µ/r increases with the speed of trading. When ā > 1/2,
the price is lower than µ/r. At the investor level, � indexes the gains from trade. The general
properties are that high speed brings the equilibrium closer to the Walrasian outcome and that that
low-� investors trade less. A faster venue always realizes more gains from trade than a slower one.
Since high-� traders have higher gains from trade, they are more willing to pay for speed. When
a < 1/2 the price is higher in the faster venue and when a > 1/2 the price is lower in the faster venue.
Finally, when ā =

1/2, there is no unique equilibrium price but a range that includes µ/r.

2.3 Value Functions

Our goal is to analyze the provision of speed in financial markets. We therefore need to estimate
the value that investors attach to trading in each venue. We do so in two steps. We first compute
the steady-state value functions for investors that continue trading. We later compute the ex ante
values, taking into account the transition dynamics.

Consider the steady-state value functions for types � > �̃. They solve the following system: For
the types holding the assets,

rV�,+ (1) = µ+ � +

�

2

[V�,� (1)� V�,+ (1)] , (13)

rV�,� (1) = µ� � +

�

2

[V�,+ (1)� V�,� (1)] + ⇢ (p+ V�,� (0)� V�,� (1)) , (14)
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and, for the types not holding the assets,

rV�,� (0) =

�

2

[V�,+ (0)� V�,� (0)] , (15)

rV�,+ (0) =

�

2

[V�,� (0)� V�,+ (0)] + ⇢ (V�,+ (1)� V�,+ (0)� p) . (16)

Define I�,✏ ⌘ V�,✏ (1) � V�,✏ (0) as the value of owning the asset for type (�, ✏). Then, taking the
differences of equations (13) to (16), we obtain

rI�,� = µ� � +

�

2

(I�,+ � I�,�) + ⇢ (p� I�,�) ,

rI�,+ = µ+ � � �

2

(I�,+ � I�,�)� ⇢ (I�,+ � p) .

Note that the asset price p is pinned down by the marginal value (minimum type in each venue).
For now, we use it as a (venue-specific) parameter. We can then solve r (I�,+ � I�,�) = 2� �
(� + ⇢) (I�,+ � I�,�) and obtain the gains from trade for type � in venue ⇢:

I�,+ � I�,� =

2�

r + � + ⇢
.

Note that these gains from trade do not depend on the equilibrium price. Hence they do not depend
on the allocation of types to the venue. They only depend on the venue speed ⇢ and the individual
type �. Using the gains from trade I�,+� I�,�, we can reconstruct the functions I�,✏ and finally the
initial value functions. The no-trade outside option of any investor is

Wout =
µā

r
. (17)

The following proposition characterizes the ex ante value functions, taking into account the transi-
tion dynamics leading up to the steady-state allocations.

Proposition 1. The ex ante value W for type � of participating in a venue with speed ⇢ and price
p is the sum of the value of ownership and the value of trading:

W (�, �̃, s)�Wout =
s�̃

r
ā+

s

2r
max (0;� � �̃) , (18)

where the marginal trading type �̃, defined in equation (5), increases in p and decreases in ⇢ and
where effective speed s is defined by

s (⇢) ⌘ ⇢

r + � + ⇢
. (19)

The net value of participation, W �Wout, is composed of two parts. One is the option to sell
the asset on the exchange: sā�̃

r =

⇢
r+⇢

�

p� µ
r

�

ā. It is independent of � and is the value that can be
achieved by all types � < �̃ with a “sell and leave” strategy. The term ⇢

r+⇢ is the discount due to
expected trading delays. The second part, s

2r max (0;� � �̃), is the value of trading repeatedly and
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it depends on the type �. This part of the value function is supermodular in (s,�). Proposition 1
provides the building block for our analysis of the industrial organization of financial markets.

3 Market Structure and Welfare

This sections provides a formal definition of the market structure equilibrium and characterizes the
regulation problem.

3.1 Market Structure Equilibrium

Our market structure game is a sequential game where, taking regulations as a given, venues decide
whether to enter, select trading speeds, and post membership fees. Venues make these decisions
simultaneously at Stages II to IV in Figure 3. We introduce a fixed entry cost  to analyze the
entry game (Stage II). Venues face the same increasing and convex investment cost function C (s)

when they choose their speeds at Stage III. Venues compete à la Bertrand at Stage IV. Let qi be
the membership fee posted by venue i, and let ni be the number of investors who join venue i. The
total net profits of venue i are therefore

qini � C (si)� .

Given venues’ decisions, investors decide which venue to join at Stage V. Participation decisions are
described by a mapping from types � to venues

P : [0, �̄] �! {0, 1, ..., I} ,

where P (�) = i means joining venue i and P (�) = 0 means staying out. If an investor joins venue i,
it pays a membership fee qi and is then allowed to use the trading venue (staying out costs nothing,
so formally q0 = 0 and W = Wout).15 Recall that we have defined ˆGi (.) as the distribution of types
in venue i. Let us now formally define an equilibrium of the game.

Definition 1. A market structure equilibrium is a set of participation decisions by investors and
entry, speed, and fee strategies by trading venues, such that

• Venues maximize profits: The sequence of entry, speed, and fee strategies is a Nash equilibrium
of each corresponding stage game (Stages II to IV).

• Participation decisions are optimal: For all � and all i, P (�) = i implies W (�, �̃i, si)� qi �
W (�, �̃j , sj)� qj for all j 6= i; reciprocally, when W (�, �̃i, si)� qi > W (�, �̃j , sj)� qj for all
j 6= i, then we must have P (�) = i.

• The investor market clears:
P

i2I ni
ˆGi (�) = G (�) for all � 2 [0, �̄].

15Section 4 also discusses competition in trading fees as opposed to membership fees.
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• Subsequent asset prices and marginal types satisfy equations (5) and (6).

Sequential rationality of venue strategies is obtained by backward induction. We describe the fee-,
speed-, and entry-stage payoff functions in Sections 4, 5, and 6, respectively.

3.2 Welfare and Regulation

Let W measure the welfare gains of a given market structure with respect to the no-trade benchmark
Wout. From our previous definitions, we have

W ⌘
X

i=1:I

ni

ˆ
�
(W (�, �̃i, si)�Wout)d ˆGi (�)

| {z }

Total gains from trade

�
X

i=1:I

(+ C (si))

| {z }

.

Entry and speed investment

(20)

Welfare gains are the sum of investors’ expected participation gains minus the fixed entry costs
and the costs of investments in speed. Effective speed si enters the calculation because it affects
allocative efficiency. The following lemma characterizes the welfare function with two venues, taking
into account the results of Section 2.

As a benchmark, we can consider the case in which the planner can decide entry, speed, and
pricing. This is not realistic, but it will help us build intuition for our results on the regulation of
speed and entry in otherwise decentralized markets. The planner faces the same cost structure as
the private sector: a setup cost  for each venue, a default effective speed s available at no cost,
and a cost function C(s).

Lemma 4. The unconstrained planner’s solution is to operate one venue with full participation and
a level of speed satisfying

@C

@s
(s⇤) =

E [�]

2r
.

The proof follows directly from equations (18) and (20). The setup costs are fixed and there is
no marginal cost of adding traders to a venue. The unconstrained solution is then clearly to open
one fast venue with full participation financed by lump-sum taxes on all agents. Of course, the
venue is then a loss-making operation that must be subsidized by lump transfers from the agents.16

Entry and Speed Regulations. In the remainder of the paper, we analyze monopoly and
duopoly equilibria and study the regulation of speed and entry by a regulator. By regulator, we
mean a restricted planner, that is, an authority that can only affect one dimension, such as speed,
while taking as a given the structure of the game (entry and pricing).

The regulator fundamentally wants to (i) increase participation, (ii) avoid duplication costs, and
(iii) increase speed. A basic virtue of entry is to foster competition and reduce prices. This is the

16In Appendix G, we also solve a restricted planner problem in which direct subsidies are ruled out and therefore
venues must break even. Even in that case, however, we can show that the planner chooses to operate only one venue.
It chooses a speed that is lower than that in Lemma 4, but still higher than what a monopoly would choose.
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classic case for intermarket competition when liquidity externalities are moderate (e.g., Economides
(1996)). With fixed costs, however, there can be excessive entry. This creates a trade-off between
(i) and (ii). The fact that speed can be used for differentiation creates a tradeoff between (i) and
(iii). These tradeoffs are analyzed in Sections 5 and 6.

Trading Regulation: Price Protection Rule. An important aspect of the market structure
game is to study the impact of regulations that affect how asset prices in different venues relate.
There are two polar cases of analysis.

Definition 2. We say that there is segmentation if venues do not execute trades coming from
investors of another venue. If instead venues give access to the same market, with a single clearing
price, we say there is integration .

Definition 2 clarifies what we mean by a venue. In our model, a venue is an access gate to a
market where transactions clear at a market price, as described in Figure 4. The market clearing
condition is given in equation (4). Segmentation means that the venues give access to different
markets and therefore to different market clearing prices. Under segmentation, an investor joins a
venue and never buys from–and never sells to–an investor from the other venue. Integration means
that the two venues give access to the same market with a single market clearing price. The trades
cleared in that market come from both venues. A fast venue simply provides faster access to the
market.

The real world is, of course, somewhere in between these two polar cases. Arbitrage is imperfect
because of many well-recognized frictions.17 That is why we assume that integration is enforced by
a price protection rule and we refer to perfectly integrated markets as the protected case hereafter.18

We will show how trading regulations affect the expected profits of venues and therefore their entry
decisions.

4 Fee Competition and Venue Affiliation

In this section, we analyze competition among a given set of trading venues and the resulting
allocation of investors across these venues. We characterize the pricing decisions and equilibrium
profits of trading venues and the affiliations choices of investors. Importantly, we analyze how price
protection in the trading game affects these equilibrium outcomes. In other words, we analyze how
trading regulations affect the ex ante competition among venues. In this section we take the set of
venues as a given, as well as their speed. We endogenize speed in Section 5 and entry in Section 6.
We define venue 2 as the fast one, so s2 > s1.

17The literature has documented the lack of price integration in markets with no explicit order protection rule.
For example, Foucault and Menkveld (2008) study the competition between a London Stock Exchange order book
(EuroSETS) and Euronext Amsterdam for Dutch firms and find that, even when there is no formal entry barrier to
arbitrageurs, the trade-through rate in their sample equals 73%.

18This is our simple way of capturing access and trade-through rules in the SEC’s Reg. NMS. The distinction
between top-of-the-book (U.S. version) and full-depth (Canadian version) protection is not material in our model,
since we only consider unitary orders. See the discussion of investor protection in Appendix A for more details.

15

http://aww.sec.gov/rules/final/34-51808fr.pdf


Decision
Maker

Slow Venue Fast Venue

Asset
Market 2

Asset
Market 1

Segmentation

(multiple asset prices)

Decision
Maker

Slow Venue Fast Venue

Asset Market

Integration

(single asset price)

Figure 4. Fragmented markets: Analysis cases.

4.1 Monopoly

Consider the case of one venue charging a membership fee q. Let �̂ be the marginal participating
type, that is, such that

W (�̂, �̃, s)�Wout ⌘ q.

The value function (18) is flat for all types below the marginal trading type �̃. In any interior
solution, the marginal trading type must also be the marginal participating type:

�̂ = �̃.

The marginal trading type is indifferent between joining the venue and not joining the venue. Thus
we have W (�̂, �̂, s)�Wout = q, which implies

qm =

ā

r
sm�̂m. (21)

All types below �̂ are indifferent between joining and staying out. Let � be the mass of light traders.
Market clearing requires

� =

✓

1

2ā
� 1

◆

(1�G (�̂))

When ā is less than 1/2, there are � light traders who join to sell their asset but do not trade
repeatedly.19 The equilibrium is depicted in Figure 5. We have an interior solution as long as
� < G (�̂), that is, as long as G (�̂) > 1� 2a. In the remainder of the paper we assume that either
ā is close enough to 1/2 or that there is a sufficient mass of low-� type investors to ensure the

19There can also be a corner solution with full participation, characterized by the market clearing condition
G (�min) = 1 � 2ā. All investors pay the participation fee qmin, which is also the total profit of the trading venue.
Then, G (�min) investors sell and drop out, while the remaining 1 � G (�min) investors trade in the market with a
supply per capita of 1/2. The participation condition is simply V̂ � q � µ

ā

r

. There is full participation as long as
q  qmin = s

r

ā�min.
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existence of interior solutions.
Total profits for the venue are given by ⇡ = q (1�G (�̂) + �), which we can write using market

clearing:

⇡m =

sm�̂m
2r

(1�G (�̂m)) . (22)

The program of the monopolist is simply to maximize (22) with respect to q and subject to (21),
which leads to the following lemma.

Lemma 5. The monopolist chooses a level of participation �̂m that is independent of its speed and
satisfies

1�G (�̂m) = g (�̂m) �̂m. (23)

Equation (23) is the first-order condition of the monopoly problem.20 The result that �̂m is in-
dependent of the speed in the venue comes from our assumption that the marginal cost of adding
traders to an existing venue is zero. This assumption allows us to focus on speed choices. The
monopoly fee qm is proportional to the effective speed s.

Let us now consider the duopoly. Since we assume that venues compete in fees à la Bertrand,
the equilibrium without differentiation implies zero fees and zero profits. The interesting case arises
for differentiation by speed.

4.2 Duopoly with Segmented Prices

Consider first the case in which venues are segmented and thus prices can then be different. The
key issue is to understand the affiliation choices of investors. We proceed by backward induction.
Investors anticipate that each venue i will be characterized by its speed and price, which together
define the marginal trading type �̃i. Investors can then estimate their value functions W , defined
in equation (18). The net value from joining venue i = 1, 2 is W (�, �̃i, si)�Wout � qi. These value
functions are depicted in the middle panel of Figure 6.

It is important to keep in mind that the value functions are not supermodular for low-� types.
In addition, we know that each venue must attract a mass � of light traders. Because these types
must be indifferent between joining and staying out, we must have W (�̃i, �̃i, si)�Wout � qi = 0 in
both venues. In other words, as in the case of the monopoly, the marginal trading type �̃i must be
indifferent between participating in venue i and not. Therefore, we must have

q1 =
ās1�̃1
r

, (24)

20First-order conditions are sufficient in this environment. Note that since g is positive and log-concave, it is
also quasi-concave. Thus the tail distribution 1�G is quasi-concave as well, which results in the quasi-concavity of
⇡ = � (1�G (�)). If c were the marginal cost of adding a trader to the venue, profits would be ⇡ = (q � c) 1�G(�̂)

2ā =�
sā

r

�̂ � c

�
(1�G (�̂

m

)) and the first-order condition would be (1�G (�̂
m

)) = g (�̂
m

)
�
�̂

m

� rc

sā

�
. In this case �̂

m

would depend on s. This effect does not add new insight, so we drop it. Moreover, we think that this kind of
marginal costs is less important than fixed and investment costs in infrastructure. These costs are at the heart of our
analysis.
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Figure 5. Investor affiliation choices with one trading venue.

and
q2 =

ās2�̃2
r

. (25)

Note, however, an important difference from the monopoly case. The marginal trader in venue 2,
�̃2, would indeed be indifferent between joining venue 2 and not participating. But it is clear from
Figure 6 that �̃2 in fact joins venue 1. This means that, with two venues, marginal trading types and
marginal participating types are not the same. They coincide only for the slowest market: �̂1 = �̃1

but �̂2 > �̃2. We define a new marginal type, �̂2, that is indifferent between joining venue 1 and
joining venue 2. By definition, this type must be such that W (�̂2, �̃2, s2)� q2 = W (�̂2, �̃1, s1)� q1.
This implies

s2ā�̃2
r

+

s2
2r

(�̂2 � �̃2)� q2 =
s1ā�̃1
r

+

s1
2r

(�̂2 � �̃1)� q1

and, therefore, using equations (24) and (25), we obtain

�̂2 =
r

ā

q2 � q1
s2 � s1

. (26)

Note that �̂1 = �̃1 < �̃2 < �̂2. The set of types that join venue 2 cannot be continuous over
an interval. It is composed of all the types above �̂2 and some types below �̂1. The affiliation is
depicted in the top panel of Figure 6.

Market clearing in venue 2 requires (1�G (�̂2) + �2) ā =

1�G(�̂2)
2 . The second-stage payoff for

the fast venue under segmentation is ⇡seg
2 = q2 (1�G (�̂2) + �2) = q2

1�G(�̂2)
2ā . Market clearing for

the slow venue requires (G (�̂2)�G (�̂1) + �1) ā =

G(�̂2)�G(�̂1)
2 . The payoff for the slow venue is
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⇡seg
1 = q1

G(�̂2)�G(�̂1)
2ā . The affiliation of investors to venues 1 and 2 is given by the marginal types

described in (21) and (26), respectively. Venues 1 and 2 simultaneously solve

⇡seg
2 = max

q2

q2
2ā

(1�G (�̂2)) , (27)

⇡seg
1 = max

q1

q1
2ā

(G (�̂2)�G (�̂1)) . (28)

The first-order conditions from the previous system result in the following lemma.

Lemma 6. In a segmented duopoly, marginal participating types (�̂seg
1 , �̂seg

2 ) solve the system

1�G (�̂2) = g (�̂2)

✓

�̂2 +
�̂1

s2/s1 � 1

◆

, (29)

G (�̂2)�G (�̂1) =

✓

g (�̂1) +
g (�̂2)

s2/s1 � 1

◆

�̂1. (30)

The price of the asset is higher in the fast venue, p2 > p1, as long as ā < 1/2.

The system of equations (29) and (30) shows equilibrium participation depends only on the
degree of speed differentiation s2/s1 2 [1,1).

4.3 Duopoly with Protected Prices

Consider now the case in which both venues provide access to the same market with a single market
clearing conditions and a single price p. Venue 1 is still characterized by the indifference condition
(24) for the marginal type �̃1. However, this condition does not hold for venue 2 because low-�
types can join venue 1 and effectively sell their assets to investors in venue 2. Instead, the asset
price is the same in both venues. From equation (5), this implies the constraint

✓

1 +

�

r + ⇢1

◆

�̃2 =

✓

1 +

�

r + ⇢2

◆

�̃1. (31)

This means that �̃2 < �̃1. The indifference condition for �̂2 is still W (�̂2, �̃2, s2)�q2 = W (�̂1, �̃1, s1)�
q1. We show in Appendix C that this leads to

�̂2 =
2r

s2 � s1

⇣

q2 �
z

2ā
q1

⌘

, (32)

where

z ⌘ 1�
1 +

r
⇢1

1 +

r
⇢2

(1� 2ā) .

The structure of the value functions is still as depicted in the bottom panel of Figure 6. There is
now only one market clearing condition. Therefore, the light traders join venue 1, where they can
sell at a higher price because they can sell to investors in venue 2. We then have �2 = 0 and the
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Figure 6. Investor affiliation choice with two trading venues.
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market clearing condition is

(1�G (�̂1) + �1) ā =

1�G (�̂1)

2

.

The following lemma summarizes the protected price equilibrium.

Lemma 7. In a duopoly with protected prices, marginal participating types
⇣

�̂prot
1 , �̂prot

12

⌘

solve the
system

1�G (�̂2) = g (�̂2)

✓

�̂2 + z
�̂1

s2/s1 � 1

◆

,

G (�̂2)�
G (�̂1)

2ā
=

✓

g (�̂1)

2ā
+ z

g (�̂2)
s2/s1 � 1

◆

�̂1 + 1� 1

2ā
.

Note that the allocation under protected prices converges to that under segmented markets when
ā =

1/2. Recall that in that case we can set the price to µ/r without loss of generality.

4.4 Investor Participation in Different Market Structures

We analyze the properties of the affiliation game in various market structures, taking as a given for
now the entry decisions and speed choices. To prove some of our results, we need to make assump-
tions about the distribution of investor types. We maintain the following assumption throughout
the paper.

The distribution of types � is such that, for all �

2g (�) + g0 (�)
1�G (�)

g (�)
� 0

Assumption 4.4 is needed to prove a basic yet important result. At the core of our analysis is

the idea that vertical differentiation (via investment in trading technology) decreases price com-
petition. We then need to show that, in equilibrium, prices are higher and participation is lower
when trading speeds are more differentiated. Assumption 4.4 is needed to prove this comparative
static. Assumption 4.4 is not restrictive: It holds for all the distributions that we consider in our
numerical analysis and many more.21 Some results, however, can only be proven for specific classes
of distributions and we mainly use two such classes.

Definition of Distributions. To derive analytical results, we consider the exponential distribution
G (�) = 1� e�

�

⌫ and the uniform distribution G (�) = �
�̄1�2[0,�̄].

The following proposition characterizes the equilibrium of the affiliation game.

Proposition 2. The equilibrium of the affiliation game has the following properties:

21For example, it holds for exponential, normal, log-normal, Pareto, Weibull, inverse Gaussian, gamma, and
Kumaraswamy distributions.
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(i) Competition among venues increases participation. With or without price protection
and for a given speed, participation in the fast venue alone is higher than total participation under
a monopoly, that is, �̂2 < �̂m. Total participation is even higher, since �̂1 < �̂2.
(ii) Speed differentiation relaxes price competition. Under Assumption 1, participation with
a duopoly is lower (�̂1 and �̂2 are higher) when speeds are more differentiated.
(iii) Price protection increases the profits of the slow venue and decreases total par-

ticipation, that is, ⇡prot
1 � ⇡seg

1 and �̂prot
1 � �̂seg

1 . Conditional on speed, price protection has an
ambiguous impact on participation in the fast venue. (The proof is analytical for exponential and
uniform distributions and numerical in other cases).

The intuition for the first point is simply that price competition increases participation. A result
that is perhaps less obvious is that participation in the fast venue alone is already higher than total
participation with a monopoly. The second point of the proposition helps us understand how speed
affects the affiliation game. More precisely, we need to understand what happens to fees (q) and
marginal types (�̂) when speed differences increase or decrease. The system is given by equations
(29) and (30), which determines the participation as a function of the degree of speed differentiation
s2/s1. We show in Appendix B that @�̂1

@(s2/s1)
> 0 and @�̂2

@(s2/s1)
> 0. This result is fundamental since it

shows that differentiation decreases competition and therefore decreases participation.
The third point states that price protection has two main consequences: It increases the profits

of the slower venue and decreases fee competition and participation for given speeds and given
venues. Price protection is a subsidy for the slow venue because its investors are allowed to trade
with investors who access the market via the fast venue. The gains from trade are always higher
in the fast venue, both because of speed and because the fast venue attracts investors with high
� values. Under price protection, the investors in the slow venue benefit from these gains from
trade, which makes them more willing to join the slow venue for any given level of q1. This is why
�̂prot
1 � �̂seg

1 .22 Protection also softens the price elasticity of the marginal type �̂2 because it makes
the value function steeper, which again is good for the slow venue. Thus, the profits of the slow
venue increase under protection for two reasons: greater demand and less price elasticity.23 The
impact on participation in the high-speed venue is small, in practice, and positive for the parameter
values that we consider, as discussed in Appendix B: We typically find �̂prot

2  �̂seg
2 .

We can also relate these results to equilibrium asset prices. From equation (5), we know that
the equilibrium asset price in venue i is given by

pi =
µ

r
+

�̃i
r

⇥
✓

r + �si
r + �

◆

. (33)

22These results hold irrespective of the value of ā. When ā < 1/2, sellers are on the short side and they benefit
from the high price in the fast venue. When ā > 1/2, buyers are on the short side and they are attracted by the
low price in the fast venue. When there is excess demand, the price in the fast venue is higher than in the slow
venue. The converse holds when there is excess supply. In our simple setup with linear utility and [0,1] holdings, the
condition for excess demand is simply ā < 1/2. In a more general case with continuous holdings, the conditions are
more complicated but the intuition remains the same.

23We numerically checked the robustness of the result ⇡prot

1 � ⇡

seg

1 to alternative assumptions about the underlying
distribution of �.
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The key differences between our equilibrium price and the benchmark case of Duffie et al. (2005)
is that, in our study, both participation decisions among heterogeneous traders and market con-
tact frictions (driven by the venue speed) are endogenously determined. For example, under price
protection, �̂prot is given by Lemma 7. Under segmentation, there are two prices. The asset price
in venue i is as in equation (33), where �̂seg

1 and �̂seg
2 are given by equations (24) and (25). Con-

sequently, regulations, the venue structure, and speed and affiliation choices all affect asset prices.
This framework then offers a rich set of empirical predictions on asset prices, both at the domestic
level and internationally. These relations are explored by Pagnotta (2014).

Proposition 2 plays an important role in understanding the impact of price protection on entry
and therefore on the equilibrium market structure. The results regarding participation are important
in understanding the welfare implications of various regulations. We explore these issues in the next
section.

4.5 Extension: Trading Fees and Multivenue Participation

We study two extensions of the model in Appendices D and E, involving trading fees instead of
membership fees and access to both venues, respectively. In our benchmark model, investors pay
membership fees and then trade freely. We think that this setup describes modern financial markets,
where the relevant costs relate to trading infrastructure and investment in information technology
more than marginal costs per trade. Trading fees can still be significant in some markets, however,
so we analyze them carefully in Appendix D. We assume that each trade entails a cost �: If the
market price is p, a seller effectively receives only p � �, while a buyer effectively pays p + �. We
summarize our results in the following proposition:

Proposition 3. In a market with trading fees, the following equilibrium conditions hold:
(i) There is still a marginal type �̃ above which traders trade repeatedly and another marginal type
�̆ < �̃ below which traders sell, irrespective of their trading type ✏. Trading fees, however, create a
region of partial inaction for types � 2 (�̆, �̃): They sell when ✏ = �1 but, when ✏ = +1, they wait
until their trading type switches to ✏ = �1.
(ii) Trading fees improve price discrimination and can increase average profits of venues, but they
do not affect our analysis of price protection or of trading speed.

In particular, we find that when ā is close to 1/2, the equilibrium is the same with or without
trading fees. We conclude that trading fees convey a useful economic intuition about price discrim-
ination, but they do not change our main results and, since they add significant complexity to the
model, we relegate their analysis to Appendix D.

We have also analyzed the possibility that some traders may choose to pay both membership
fees and trade in both venues. To analyze this case, we first need to characterize the optimal trading
strategies of traders who can trade in two venues. The key issue is whether multivenue traders send
both buy and sell orders to both venues. If they do, asset allocations and prices p1 and p2 are the
same as with a single affiliation because these traders submit the same numbers of buys and sells to
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both venues. The key condition to check if therefore whether multivenue traders prefer to wait for
a good deal rather than sell at a low price in the slow venue or buy at a high price in the fast venue.
In the context of our model, however, we show in Appendix E that multivenue traders do not play
a quantitatively important role because only investors with extremely large � would choose to join
two venues. This possibility is clearly interesting, especially in its implications on asset prices and
arbitrage, but it is left for future research.

5 Trading Speed

This section analyzes investment in trading technology, taking as a given the set of active venues.
We study entry in the next section. We focus on the case in which ā = 1/2 to separate this analysis
from that of trading regulations in the previous section.24 Based on the analysis in Sections 3 and
4, we can rewrite equation (20) as the following lemma.

Lemma 8. Social welfare with one venue is

W (1) =

s

2r

ˆ �̄

�̂
�dG (�)� C (s)�  (34)

and with two venues it is

W (2) =

s1
2r

ˆ �̂2

�̂1

�dG (�) +
s2
2r

ˆ �̄

�̂2

�dG (�)�
X

i=1,2

C (si)� 2. (35)

When we want to derive closed-form solution, we assume that the cost of speed ⇢ is linear, c⇢, with
c � 0. Given that s ⌘ ⇢

r+�+⇢ , this implies the following cost expression.

The cost of reaching the effective speed s is C (s) = c (r + �) s
1�s .

5.1 Venue Speed Choices

Monopoly. Lemma 5 shows that the participation cutoff �̂m chosen by a monopolist does not
depend on its effective speed s. The monopoly chooses its speed to maximize s �̂m

2r (1�G (�̂m)) �
C (s), as in the following proposition.

Proposition 4. The monopolist chooses a speed level sm such that

@C

@s
(sm) = (1�G (�̂m))

�̂m
2r

, (36)

where �̂m is given by equation (23).

24This is just for simplicity. Recall that when ā = 1/2, price protection does not affect the venues’ profit functions.
See Appendix C for the general formula.
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Under Assumption 5, we can obtain closed-form solutions for various distribution of types:

• If types are exponentially distributed, the monopolist chooses sm = 1�
p

2rc (r + �) e/⌫.

• If the types are uniformly distributed, sm = 1�
p

8rc(r + �)/�.

The effective speed s (or the contact rate ⇢) decreases with the cost parameter c and increases
with the average size of private preference shocks (e.g., an increase in ⌫ and �). For instance, with
an exponential distribution, when ⌫ increases, the distribution has a fatter right tail, gains from
trade increase and the demand for speed also increases, as one would expect from Proposition 1.
The effective speed s decreases with the frequency of preference shocks � because when � is high,
the desired holding period shrinks. However, more interestingly, since ⇢ = (r + �) s/ (1� s), the
contact rate is concave in �. Starting from a low �, as the frequency of preference shocks increases,
investors will want to reallocate their assets more frequently, which increases the demand for speed.
When � is very high, the holding period effect dominates.

Duopoly. In a duopoly, venues have an incentive to offer different speeds to reduce price compe-
tition. Recall that the revenue functions ⇡ can be expressed as

⇡2 (s1, s2) = q2 (1�G (�̂2)) , (37)

⇡1 (s1, s2) = q1 (G (�̂2)�G (�̂1)) , (38)

prices are given by

q2 =
1

2r
(�̂2 (s2 � s1) + �̂1s1) ,

q1 =
1

2r
s1�̂1,

and the affiliation equilibrium is given in Lemma 6. Venues 1 and 2 then simultaneously solve

max

s
i

⇡i (si, sj)� C (si) . (39)

The following optimality conditions are straightforward to derive.25

Lemma 9. Speed choices (s1, s2) satisfy

@q2
@s2

(1�G (�̂2))�
@�̂2
@s2

g (�̂2) q2 =
@C

@s
(s2) , (40)

(G(�̂2)�G(�̂1))
@q1
@s1

+ q1

✓

g(�̂2)
@�̂2
@s1

� g(�̂1)
@�̂1
@s1

◆

=

@C

@s
(s1) . (41)

25To the best of our knowledge, the literature does not offer an existence result for the first stage of competition
in vertically differentiated oligopolies. In Section 7, we verify numerically that, for any parameter set, first- and
second-order conditions are satisfied.
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S1(s2)

S2(s1)
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s⇤1

s⇤2

s01 = s

s02
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�

Figure 7. Regulation of speed and venue differentiation. The function Si(sj) denotes venue

i’s best speed response to si; s⇤1 and s⇤2 are the (unregulated) equilibrium speed choices, s
represents the minimum speed that the regulator may want to impose, and s01 and s02 are the

optimal speed choices when s > s⇤1.

The solution to the system of equations (40) and (41) implicitly characterizes a function Si (sj)

that represents the best response of venue i to sj .
Figure 7 displays the speed choices. The 45-degree line represents the case in which there is

no product differentiation, which would lead to Bertrand competition and would be inconsistent
with entry by both venues for any arbitrarily small entry cost. The actual equilibrium satisfying
equations (40) and (41) is at point (s⇤1, s

⇤
2) where the best response functions intersect. In this

equilibrium, there is a fast venue and a slow venue.
Let us now compare the market equilibria under monopoly and duopoly. There is a fundamen-

tal tension between profitability and elasticity. On the one hand, the marginal return to speed
depends on �̂ (1�G (�̂)) for both the monopolist and the fast venue. The monopoly chooses �̂m

to maximize precisely this quantity; therefore, we know that �̂m (1�G (�̂m)) > �̂2 (1�G (�̂2)).
This profitability effect makes the monopolist more willing to invest in speed. On the other hand,
competing venues have an incentive to differentiate their services. As s2 increases, competition is
relaxed, q1 increases, and �̂2 decreases: @�̂2

@s2
< 0. This leads to greater participation and higher

profits for venue 2. Which effect dominates depends on the distribution of types. With a uniform
distribution of types, we are able to show in Appendix B that the second effect dominates and,
therefore, that the equilibrium speed is higher under a duopoly.

Proposition 5. When types are uniformly distributed, the fast venue of a duopoly chooses a higher
speed than a monopoly does: s2 � sm.
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5.2 Optimal Regulation of Speed

Let us now study the welfare consequences of speed choices. We consider a game where the regulator
can mandate speed limits to maximize social welfare, taking as a given venue fee choices and investor
affiliation decisions.

Definition. The regulator can set a minimum speed s and a maximum speed s.

Assuming a uniform distribution of types, we obtain the following proposition.

Proposition 6. When types are uniformly distributed, it is optimal for the regulator to mandate a
minimum speed but not a maximum speed, that is, s > s1 but s = 1.

Consider the monopoly first. The speed chosen by the monopolist is as in Proposition 4. The
regulator seeks to maximize social welfare and thus solves maxs

s
2r

´ �̄
�̂
m

�dG (�) � C (s). In this
constrained solution the regulator takes �̂m as a given. Since

´ �̄
�̂
m

�dG (�) > �̂m (1�G (�̂m)),
s⇤m > sm. This is a standard result and it holds for any distribution of types. The planner prefers a
higher speed than the monopoly because the planner values the welfare gain for the inframarginal
types (� > �̂m) while the monopoly does not.

Consider now the duopoly. Our first result is that maximum speed limits are not efficient. Under
the duopoly, speed allows venues to differentiate and relax Bertrand competition. The regulator
trades off efficiency for high-� types against participation for low-� types. The regulator’s first-order
condition is

2r
@C

@s
(s⇤2) =

ˆ �̄

�̂2

�dG (�)� (s2 � s1) �̂2g (�̂2)
@�̂2
@s2

� s1�̂1g (�̂1)
@�̂1
@s2

.

The term
´ �̄
�̂2

(� � �̂2) dG (�) is the surplus of the high-� types that the fast venue does not ap-
propriate and therefore does not internalize. Allocation efficiency for types � > �̂2 calls for higher
speed. On the other hand, @�̂2

@s2
and @�̂1

@s2
capture the impact of s2 on differentiation which softens

competition. The link between social welfare and speed depends on the tradeoff between participa-
tion and trading efficiency for the high-� types. We show in Appendix B that the trading efficiency
effect dominates when the types are uniformly distributed. This is particularly interesting, since
we have shown in Proposition 5 that the fast venue of a duopoly chooses a higher speed than a
monopoly does. Proposition 6 states that this is not enough and the regulator would like an even
higher speed. Therefore, the regulator does not find it optimal to impose an upper limit on speed.

On the other hand, it is optimal for the regulator to impose a minimum speed requirement that
is higher than that chosen by the slow venue. The intuition is that such a minimum speed increases
the welfare of the low-� types and also increases competition with the fast venue. The equilibrium
with a minimum speed requirement is represented by

⇣

s1, s
0
2

⌘

in Figure 7.
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Discussion and Interpretation. These results shed light on normative and positive issues.26

On the normative side, they show that, when order front running is not an issue, it is not optimal
to slow down markets. Moreover, we find that welfare can be enhanced by mandating a minimum
speed, which is a strong normative result. We return to this point in the calibrated model of Section
7.

On the positive side, our model can shed light on recent regulatory changes. Reg NMS contains
two provisions directly related to our paper. It requires the integration of prices, which, as we
argue in the next section, increases fragmentation and encourages entry, but it also effectively im-
poses a minimum speed requirement by conditioning price protection on the adoption of automatic,
computer-based trading. Reg NMS indeed worked as a minimum speed requirement for the NYSE
(see Figure A2 in Appendix A). Our model suggests that this is likely to be welfare improving.
Interestingly, the Dodd–Frank Act push for electronic trading is likely to have similar effects in
OTC derivatives. We discuss these points further in Appendix A.

6 Entry

This section completes the description of the equilibrium market structure by analyzing venue entry
decisions.

6.1 Price Protection and Entry

Let us first study the impact of trading regulations on entry for exogenous speeds. There are two
potential entrants, with exogenous speeds s1 and s2, respectively, with the convention that s1 < s2

and we assume for simplicity that C (s) = 0 (see below for a discussion of entry with endogenous
speeds). The entry cost  is the same for both venues, for simplicity. Venue i’s net profit is then
given by ⇡|

i �, where | 2 {seg; prot} denotes trading regulations.27 For a given speed, asset supply
a  1/2, and regulatory framework, the profit functions ⇡ are as in Section 4. A given venue i finds
it optimal to enter whenever net profits are non-negative.

We model entry as a simultaneous game. The payoffs of the entry game are shown in Table
I. From our previous analysis, we know that (i) for a given trading regulation |, ⇡|

1 < ⇡|
2 simply

26Our result for s can be seen as an extension of a result of Ronnen (1991), who analyzes minimum quality standards
in the canonical static Shaked-Sutton (1982) framework, with exogenous preferences for qualities. Although we do
not model venues offering menus of speeds to investors, our analysis could be extended in this direction. Champsaur
and Rochet (1989) analyze a multiproduct oligopoly where firms produce a range of qualities. They show that firms
produce non-overlapping quality ranges. Given this paper’s result, our intuition is that venues would likely offer
non-overlapping menus of speed and that investors with low and high types would still sort across venues in a similar
fashion.

27Evidence suggests that entry costs have decreased significantly over time. This is natural since some of these
setup costs relate to the development of knowledge and specific computer algorithms, which can be costly to develop
but cheaper to subsequently replicate. Entry costs can vary greatly across economies, however, and sometimes relate
to the vertical integration aspect of the securities exchange industry. One such example involves Brazil, where the
incumbent exchange BM&F Bovespa also controls the single national clearinghouse. By denying clearing access to
entrants, the incumbent forces new competitors to develop their own clearinghouses.
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Table I
Venues Entry Payoffs and Trading Regulation | 2 {seg; prot}

Venue 1 # and 2 ! In Out
In ⇡|

1 � ,⇡|
2 �  ⇡m

1 � , 0
Out 0,⇡m

2 �  0, 0

because venue 2 is faster and (ii) ⇡seg
1 < ⇡prot

1 from Proposition 2. Consequently, we have the
following proposition.

Number

of Venues

Entry Cost0

1

2

⇡seg
1

⇡prot
1

⇡m
1

⇡m
2

Segmentation

Price Protection

min{⇡seg
2 ,⇡prot

2 }

Non-unique
pure Nash
eq.

Unique
pure Nash
eq.

Figure 8. Entry cost, trading regulation, and equilibrium fragmentation. The graph shows the equilibrium
number of venues as a function of entry costs . Price protection affects the equilibrium number of venues
that enter the market when entry costs are between the expected profits of the slow venue under segmentation
⇡seg

1 and under price protection ⇡prot

1 . When there are two Nash equilibria, the outcomes are that either the
fast or the slow venue decides to enter and the other venue stays out.

Proposition 7. Price protection at the trading stage helps sustain entry at the initial stage.28

As shown in Figure 8, price protection expands the ex ante number of venues for economies with
intermediate entry costs (between ⇡seg

1 and ⇡prot
1 ). The expected level of fragmentation therefore

depends on price regulation. Depending on parameter values, the entry game may have more
than one Nash equilibrium in pure strategies. To simplify our presentation, we assume hereafter
that our economies satisfy the inequality ⇡m

1 < min

n

⇡seg
2 ,⇡prot

2

o

. Thus only the fast venue enters

whenever  > ⇡prot
1 . We characterize the cases with multiple equilibria in the proof of Proposition

7 in Appendix B. Finally, we have extended Proposition 7 to the case in which speed choices are
endogenous, but this can only be done numerically.

28We prove this result analytically for an exponential distribution and numerically for other distributions.
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6.2 Regulation of Entry

Let us now consider the problem of a regulator who can decide the number of venues but nothing else.
The regulator takes into account that entry affects speed choices, venues’ fees, investor participation,
and therefore welfare. We study when the regulator wants to encourage or restrict entry.

The traditional argument to restrict entry relies on the existence of thick market externalities,
as for Pagano (1989). When externalities are strong enough, the welfare gains from increased
competition are not enough to compensate for the loss of matching efficiency between buyers and
sellers. As discussed in the introduction, this type of externality is likely to be less relevant in today’s
markets, which is why it is not included in our model. Absent thick market externalities, the source
of excess entry can be related to cost duplication and speed choices. Mankiw and Whinston (1986)
identify three general conditions under which excess entry occurs: (i) some form of economies of scale
due to fixed costs, (ii) post-entry prices exceeding marginal cost, and (iii) enough business stealing
to decrease average firm output. The first two conditions are easily verified in our environment.
The third is not, however, since trading services are vertically differentiated. This is a fundamental
difference between our model and the Hotelling-like models considered by Spence (1976) and Mankiw
and Whinston (1986).

The welfare functions under monopoly and duopoly are given in Lemma 8. The welfare gain of
moving from a monopoly to a duopoly is therefore

�W1!2 =
s1
2r

ˆ �̂2

�̂1

�dG (�)� C (s1) +
s2
2r

ˆ �

�̂2

�dG (�)� C (s2)�
sm
2r

ˆ �

�̂
m

�dG (�) + C (sm)� .

On the other hand, entry is profitable for the slow venue if and only if ⇡1 > :

s1�̂1
2r

(G(�̂2)�G(�̂1)) > + C (s1) .

Excess entry occurs if and only if ⇡1 >  and �W1!2 < 0 hold simultaneously. We can then obtain
the following result.

Proposition 8. For any fixed cost , entry of a second venue is never excessive, as long as the cost
of speed is low enough.

Proposition 8 applies to the transition from a monopoly to a duopoly, which is unlikely to yield
excessive entry since monopoly distortions are typically large. The same might not be true when
there are already several venues and we consider an additional entrant. An interesting analysis
of entry therefore requires us to consider more than two venues, which is what we do in the next
section.
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6.3 General Oligopoly

Affiliation Game. Let I denote the number of active venues and, consistent with our previous
notation, let �̂i be the lowest type that joins venue i. This marginal type is indifferent between
venues i and i� 1; therefore

�̂i =
r

ā

qi � qi�1

si � si�1
.

By repeated substitutions, it is then easy to show that we must have

qi =
a

r

i
X

j=1

�̂j (sj � sj�1) ,

where s0 ⌘ 0. Defining �̂I+1 ⌘ �, we can write the profits of any venue i 2 {1, ..., I} as

⇡i = qi (G (�̂i+1)�G (�̂i)) .

We consider the affiliation game where venues compete in fees to attract investors. Taking first-order
conditions with respect to qi, we obtain the following proposition.

Proposition 9. Equilibrium of the Affiliation Game with I Active Venues. The set of
marginal participating types {�̂i} satisfies

G (�̂i+1)�G (�̂i) =

✓

g (�̂i)

si � si�1
+

g (�̂i+1)

si+1 � si

◆ i
X

j=1

�̂j (sj � sj�1)

for all i 2 {1, ..., I}.

Proposition 9 generalizes the results with two venues described in Lemma 6.29 It allows us to
compute the equilibrium of the affiliation game for an arbitrary number of venues.

Entry. We can now study entry with more than two venues. As explained above, moving from
one to two venues is likely to be socially efficient since it introduces competition in a market where
there is none. It is less clear whether moving from I to I + 1 is socially efficient when I is already
above one.

We analyze the unexpected entry of a third venue in an existing duopoly. The incumbents have
already chosen their speeds and paid their fixed entry costs, expecting to be in a duopoly. We then
ask if the entry of a third venue would raise welfare. The third venue chooses its speed optimally,
given the speeds of the existing duopoly. This approach allows us to bypass the issue of entry
deterrence. There is, of course, a large literature that studies entry deterrence and it would be
interesting to apply it to financial intermediaries, but this is beyond the scope of our paper.30

29The proof is a generalization of our result in Lemma 6 and is thus omitted. Generalization to the case of price
protection is also straightforward but is not our focus here.

30For instance, Donnenfeld and Weber (1995) consider a vertically differentiated duopoly facing the threat of
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The model can only be solved numerically and we use the baseline parameters described in the
next section. We highlight an example where entry can be inefficient

Lemma 10. Entry can reduce welfare when the speed of the new entrant is lower than the speed of
the slow incumbent.

Proof. The proof is numerical. See Section 7.6.

Entry always increases total participation but can also lead to misallocations and this effect can
be large if entry takes place at the low end of the range of incumbents’ speeds. Let us explain the
intuition for this result. To keep our notation simple, we denote the low- and high-speed venues
of the existing duopoly by (l, h) and the new entrant by e. In a duopoly, we have the mapping
(l, h) ! (1, 2). When we add venue e, the new ordering depends on the relative speed of the
entrant. As explained above, here we consider the case in which se < sl. In the oligopoly with three
venues, the ranking in terms of Proposition 9 is therefore

(e, l, h) ! (1, 2, 3) .

It is clear that entry creates direct competition for venue l. Therefore, venue l is forced to lower
its price. The important point is to consider the reaction of venue h. Venue h does not compete
directly with venue e, but it competes with l. Venue h reacts to the induced drop in ql. The optimal
pricing condition for venue h is

1�G (�̂h) = g (�̂h)

✓

�̂h + 2r
sl

sh � sl
ql

◆

, (42)

where �̂h is the marginal type for the fast venue.
Under Assumption 4.4, the function 1�G(�)

g(�) � � is decreasing in �.31 Therefore equation (42)
implies that �̂h is a decreasing function of ql. This result explains the potential inefficiency. Entry
by the third venue forces the middle venue to lower its fee, but it is not profitable for the fast venue
to fully accommodate this fee change. Therefore, qh � ql increases and �̂h goes up: Investors who
used to trade in the fast venue now trade in the middle venue. This is clearly a misallocation since
the planner would rather have more investors in the fast venue.32

7 Model Calibration and Discussion of Regulations

We now present a quantitative version of the model to study the impact of speed, fees, and entry
decisions on market participation, volume, and welfare. We calibrate for three different asset classes:

entry by a third firm. They show that incumbent firms can deter entry by choosing quality levels that reduce ex post
differentiation relative to an unchallenged duopoly. Therefore, entry deterrence may improve welfare, even without
actual entry.

31For instance, with a uniform distribution, 1�G(�)
g(�) � � = �̄ � 2�.

32Naturally, the private surplus increases for investors who move from h to l venue, but the profit losses of the
fast venue are even greater.

32



corporate bonds, equities, and Standard and Poor’s (S&P) 500 index futures. These three markets
capture the range of speeds discussed in Figure 1. We calibrate the model using secondary markets
data and we conduct comprehensive sensitivity analysis for the critical parameters.

7.1 Calibration

The baseline parameters are displayed in Table II. Unless otherwise noted, these parameters are held
constant across our experiments. We assume a uniform distribution of investor types and we use the
functional form in Assumption 5 for the cost function. We set the fixed entry cost  to zero except
when we study the welfare consequences of entry and we set the asset supply to 1/2 except when we
analyze the effects of price protection.33 The upper bound of the �-type distribution support is set
to µ/2.34 The value of r is set using the long-term composite rate of U.S. Treasury securities over 10
years from January 2007 to December 2013.35. We set the asset holding cashflow, µ, to match the
average S&P500 dividend yield over the same time period ( 2.13%).36 Trading days last 6.5 hours,
as in U.S. equity markets.

There is one new parameter that we need to specify to map the model into the data: the number
of investors, N . The setting so far assumes a unit mass of investors. To compare the model-implied
per-capita volume in equation (12) with the volume in the data, we need to specify N . We start
from the number of institutional funds in the U.S. as a proxy of the size of the buy side of financial
markets. According to Morningstar, at the end of 2007 there were 629 exchange-traded funds,
17,500 mutual funds, and 10,096 hedge funds. These 28,225 funds represent the set of potential
investors.37 This is an upper bound on the number of investors. The most difficult part of the
calibration is to determine how many of these investors are active in each market.

33Futures are, of course, in zero net supply but a > 0 can be interpreted as the case in which the sell side is
short the asset and we capture trades among buy-side investors. We could also allow for negative holdings as long as
holdings are bounded.

34This parameter is not easy to compute based on market data. Hence, we experimented with different values
of � for robustness. The results are qualitatively similar and are thus omitted here. To illustrate the economic
interpretation of these values, consider the median investor type, m (�) = 1

2 , when µ = 2. The annual holding flow
utility under a temporary shock ✏ is u

m(�),✏(1) = 2 + sign (✏) ⇥ 1
2 . This implies that, when facing a negative or

positive temporary shock, the annual flow utility equals 1.5 or 2.5 units of consumption, respectively.
35This rate is the unweighted average of bid yields on all outstanding fixed-coupon bonds neither due nor callable

in less than 10 years. Using instead the 10-year T-bond yield yields virtually the same results for the considered
period.

36With µ = 2.75 and r = 0.0375, relative to the Walrasian price, the dividend yield is µ

pw
⇡ 2.13%. The value

of µ affects the asset price in the model. Real asset prices obviously also reflect market risk exposure, among other
factors, which is not the focus of this paper. This parameter also affects global welfare. However, our analysis focuses
on the fraction of welfare that is earned in excess of the autarchy value, that is, W (�, ·)�W

out

, as in equation (20).
This is the main reason why we do not calibrate µ separately for each asset class (and that we abstract from the fact
that the futures contract yields no cashflow).

37This number was 31,610 in 2013.
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Table II
Baseline Parameter Values

g (�) �  a r µ N

1/� µ/2 0 0.5 3.75%/252 2.75/252 28, 225
This table displays the following parameters: asset supply (a), discount rate (r), cash flow (µ), investor �

type density (g), maximum investor type (�), entry costs (), and number of potential investors (N).

Volume-Implied �. Let k denote an asset class (bonds, stocks, futures). A critical parameter
for our calibration is Nk, defined as the potential number of traders for a typical asset in class k.
Participation would be Nk in the first best allocation, Nk/2 with a monopoly, and an in-between
value with a duopoly. Once we calibrate Nk, we can use the observed volume Vk and speed ⇢k to
back out the rate of preference shocks �k. For instance, with a single venue, the model-implied
transaction rate for a typical asset in class k is

Vk = Nk
�k
4



⇢k
�k + ⇢k

(1�G (�̂m))

�

. (43)

Using a uniform distribution of types, one then obtains �k =

8V
k

⇢
k

N
k

⇢
k

�8V
k

. The case of multiple venues
is more complicated but the principle is the same, as explained in Appendix F. We select different
values for Nk in the next section. Equation (43) implies that, for a given observed volume, choosing
a high Nk is equivalent to setting a low �k.

Speed-Implied c. We compute the implicit cost parameter c that rationalizes ⇢ as an optimal
speed, given all the other parameters. Inverting equation (36) and assuming a uniform distribution
of types, we obtain

ck =

�

8r

Nk (Nk⇢k � 8Vk) (Nkr⇢k + 8Vk (⇢k � r))

(Nk⇢k (⇢k + r)� 8rVk)
2 .

For the duopoly, we use the first-order condition of the fast venue, as explained in Appendix F. Once
all model parameters are set, we solve the duopoly program numerically to obtain the sub-game
perfect equilibrium values of critical types and speeds {⇢1, ⇢2, �̂1, �̂2}. The numerical results for
investor participation, volume, and welfare are presented in Section 7.3.

7.2 Stylized and Predicted Parameter Values by Asset Class

Table III presents our calibration of three asset classes: corporate bonds, equities, and S&P500
index futures. Our calibration is consistent with the common wisdom about the relative efficiency
of these three markets and, in particular, we have

⇣

⇢
�

⌘

Futures
>
⇣

⇢
�

⌘

Stocks
>
⇣

⇢
�

⌘

Bonds
. We test

the sensitivity of our results to values of Nk that are one-third lower or higher than our benchmark.

S&P500 Index Futures. The Chicago Mercantile Exchange (CME) has a monopoly over its E-
mini futures contracts and we calibrate the corresponding parameters using the monopoly formulas
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in Section 7.1. There is one contract and, as a benchmark, we consider that most investors are
active in this market, so NEmini = 3/4N . We use the average number of daily trades on May 6,
2010, as reported by Kirilenko, Kyle, Samadi, and Tuzun (2014).38 The stylized speed considered
is equivalent to an average delay of 200ms. This allows for round-trip communication at near light
speed to any location within the U.S.39 The implied � means that there are 390 shocks per trading
day and per investor, or approximately one shock every minute. When ±1/3NEmini, there is one
shock every 40 second or 80 seconds instead.

We choose c to match the contact rate. Using this value, we estimate that, if the market were
a duopoly, our model would imply trading speeds for the slow and fast venues such that average
delays would be 45 seconds and 185ms, respectively.40

Corporate Bonds. All trades for 2013Q4 are collected from the Trade Reporting and Compli-
ance Engine (TRACE) data set. The average daily number of trades for each of these bonds is
1.97, reflecting the fact that most corporate bonds trade infrequently. Our sample contains 21, 723

bonds. The non-transparent nature of the corporate bond market makes it difficult to estimate the
participants. According to the Investment Company Fact Book, out of 8,000 mutual funds surveyed
in 2007, about 800 are bond funds, so we assume that 10% of investors are active in corporate
bonds. As a starting point, we assume that each investor is active in 100 individual bonds, which
is consistent with anecdotal evidence. This gives us NBonds = 0.1 ⇤ 100 ⇤ 28, 225/21, 723 = 13. We
perform robustness checks with NBonds = 8 and NBonds = 17, as explained above. We calibrate the
corporate bond market as a duopoly. Corporate bonds trade in traditional phone-based OTC bro-
ker networks, stylized here as the first (slow) venue, or in modern electronic platforms, the second
(fast) venue. The stylized contact rates are one and 39, for the first and second venues. The first
is equivalent to an average trading delay of a day, a value that captures the delay in a traditional
voice-based OTC network. The latter value represents an average delay of 10 minutes, closer that
for an electronic platform based on the request for quote (RFQ) protocol. The implied � means
that there is 0.834 preference shock per trading day per investor in this market.

We choose c to match (approximately) the two contact rates. Interestingly, the model has no
difficulty in explaining the wide range of speeds observed in practice, and the predicted speeds are
close to the stylized values.

38This date corresponds to the so-called flash crash and displays both a large volume and a large number of
investors trading. Using instead the reported values for May 3 to May 5, 2010, yields a lower value for �. In our
calibration, participation in the monopoly then equals NEmini

/2 ⇡ 10, 584. Kirilenko et al. (2014) report the number
of daily active traders to be between 11, 875 and 15, 422 in their CME sample.

39With a normalized trading day of 6.5 hours, there are 23,400 seconds in a trading day. Thus, a contact rate
equal to five times this value, 117,000, is equivalent to an average contact delay of 200ms.

40One may interpret the competing slow venue here as a broker–dealer firm offering an asset with identical features,
or a traditional trading pit. In this regard, a delay of 45 seconds is consistent with human intervention.
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Table III
Stylized, implied, and predicted parameter values

Panel I: Stylized values
Corporate Bonds Equities S&P500 Futures

Volume 1.97 3, 023.4 1, 030, 204

Number of assets 21, 723 2, 805 1

Stylized ⇢
m

- - 117, 000
Stylized ⇢1 1 195 -
Stylized ⇢2 39 23, 400 -
Panel II: Implied and Predicted Values

Corporate Bonds Equities S&P500 Futures

Nk 8 13 17 61 92 122 14, 113 21, 169 28, 225

Implied � 1.378 0.834 0.588 299.72 182.95 129.22 586.93 390.63 292.73
Implied c⇥ 10

�3 36.444 36.201 36.415 0.1605 0.1570 0.1565 2.7457 2.7503 2.7526
Predicted ⇢

m

37.377 36.211 35.220 22,616 21,986 21,417 117,000 117,000 117,000
Predicted ⇢1 1.644 1.044 0.750 386.50 239.13 169.00 773.57 516.93 388.13
Predicted ⇢2 40.367 38.132 38.065 24,442 23,758 23,141 126,414 126,402 126,396

All rates are daily. For corporate bonds, the benchmark calibration is a duopoly where the low speed is
⇢1 = 1, the high speed is ⇢2 = 39, and there are 13 active traders per bond. The sensitivity analysis is
conducted with ±1/3N

k

. The implied � means that there is 0.834 preference shock per trading day per
investor in this market. For equity, there are 183 shocks per trading day, or one shock every 128 seconds.

Equities. We calibrate the model to 2007, because that was when Reg NMS was implemented.
According to data from the NYSE Group (www.nyxdata.com), the average number of daily trades
for a typical NYSE-listed stock in 2007 was equal to 3, 023. The number of listed stocks in 2007
was 2, 805. According to the Investment Company Fact Book, 46% of funds are US equity funds.
There is no simple way to estimate NStocks because many equity-related trades are index trades, not
trades on individual stocks. We choose the typical number of actively traded stocks to capture the
intuitive idea that the stock market lies somewhere in between the bonds market and the futures
market in terms of efficiency and number of traders per asset. Assuming that a trader is active
in 20 individual stocks, we obtain NStocks = 92. We perform robustness checks with values that
are higher and lower, as explained above. We calibrate the equity market as a duopoly, given the
prevalence of the NYSE and the NASDAQ at the time of Reg NMS implementation.41 To calibrate
the stylized contact rate parameters, we consider SEC Rule 605 data for the NYSE for 2007, before
the full implementation of Reg NMS. The value for the fast venue matches the average execution
delay of 1 second in 2007 for small automated orders. The value for the slow venue represents a
human broker–dealer round-trip delay of 1 minute and is consistent with the SEC data presented
in Figure A1 in the Appendix A. The implied � means that there is one shock per investor every

41According to the SEC (2010), the NYSE executed as much as four-fifths of the volume of NYSE-listed stocks
just before Reg NMS.
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Table IV
Calibration Outcomes (Walrasian case =100)

Corporate Bonds Equities S&P500 Futures

Investor Trading Welfare Investor Trading Welfare Investor Trading Welfare
Partic. Volume Partic. Volume Partic. Volume

I. 2
3Nk � = 1.378, c = 0.0364 � = 299.72, c = 0.000160 � = 586.93, c = 0.00275

Monopoly 50.00 48.22 70.62 50.00 48.35 73.37 50.00 49.75 74.38
Venue 1 29.09 15.83 8.56 29.16 16.42 8.89 29.17 16.58 8.98
Venue 2 58.18 56.26 77.94 58.31 57.61 80.92 58.33 58.06 81.99
Duopoly 87.28 72.09 86.50 87.47 74.03 89.82 87.50 74.64 90.97
II. Nk � = 0.834, c = 0.0362 � = 182.95, c = 0.000157 � = 390.63, c = 0.00275

Monopoly 50.00 48.87 72.21 50.00 49.59 73.97 50.00 49.83 74.58
Venue 1 29.14 16.20 8.77 29.16 16.52 8.95 29.17 16.61 9.00
Venue 2 58.27 57.05 79.67 58.32 57.88 81.56 58.33 58.15 82.20
Duopoly 87.41 73.25 88.44 87.49 74.40 90.51 87.50 74.76 91.20
III. 4

3Nk � = 0.588, c = 0.0364 � = 129.22, c = 0.000156 � = 292.73, c = 0.00275

Monopoly 50.00 49.18 72.96 50.00 49.70 74.25 50.00 49.88 74.69
Venue 1 29.15 16.35 8.85 29.16 16.56 8.97 29.17 16.63 9.01
Venue 2 58.30 57.41 80.48 58.33 58.00 81.86 58.33 58.20 82.31
Duopoly 87.45 73.76 89.33 87.49 74.57 90.83 87.50 74.82 91.32

Each cell is normalized by the Walrasian outcome. Participation with a monopoly is always 50% of total
participation but in the benchmark bond calibration, for instance, it achieves 72.2% of the maximum welfare.
A duopoly would reach 88.4% of total welfare, 8.77% in the slow venue and 79.67% in the fast one.

128 seconds in this market.42

We choose c to match the contact rates and, as in the case of bonds, we find that the model
correctly predicts the relative speeds of the two venues.

7.3 Welfare Analysis

Table IV shows the main equilibrium outcomes in the benchmark case with a =

1/2. All the values
in the table are relative to the Walrasian case, which represents a frictionless competitive market.
Panels I to III of Table IV, respectively, display the outcomes corresponding to the parameters
implied by the low, medium, and high values of Nk, as in Table III.

42It is important to keep several factors in mind when interpreting �. First, we calibrate our model using insti-
tutional investors, who indirectly represent multiple agents (such as retail investors), and it is natural to think of
institutional investors as receiving frequent shocks. There is no reliable information about the direct participation
of private corporations and wealthy individuals but, obviously, if we included those, N

k

would increase and � would
decrease. Finally, and most importantly, the common practice of order splitting increases the number of reported
trades. It is not possible to identify which trade represents a new trading shock as opposed to a fraction (“child
order”) of a larger trade. Our model offers a stylized description of the trading process where the incentive for order
splitting, namely the price impact, is absent. A more sophisticated specification with order splitting would naturally
imply a lower fundamental � for the same observed volume.
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Participation. Participation under monopoly and uniform distribution is always one-half. Par-
ticipation increases dramatically to around 87% when two venues compete. We verify numerically
that participation in the second venue alone is always greater than in the monopoly case, as pre-
dicted by the theory. Participation levels are similar across asset classes because the degree of
relative differentiation s2/s1 is similar across asset classes.43

Trading Volume. Even in markets with high speeds, the duopoly fails to realize an important
fraction of the potential trades that occur in the Walrasian setting. This fact reflects lack of full
participation in the duopoly relative to the Walrasian setting. It also reflects the inefficient allocation
of the asset across investors in the first venue due to the incentive of venues to differentiate speeds.
Thus, the slow venue volume share is roughly one-half of its relative investor participation for all
asset classes.

Welfare. Although the monopoly only attracts half of all investors, it achieves a larger fraction
of maximum welfare because those who choose to participate are high-value investors. Welfare
typically goes up by at least 15 percentage points when we move from a monopoly to a duopoly, so
the calibration suggests high social gains from encouraging entry.

7.4 Is Price Protection Socially Desirable?

Price protection affects investor participation and trading prices, as well as entry decisions, as shown
in Proposition 7. The welfare consequences of trading regulations | 2 {seg, prot} depend on the
entry game, the speed choices, and the affiliation game. There are three different cases to consider
but two have already been analyzed. When entry costs  are larger than ⇡prot

1 , only one venue can
enter and trading regulations are irrelevant. When ⇡seg

1 <   ⇡prot
1 , price protection increases the

number of venues and we have seen in Section 7.3 that this has a large positive effect on welfare.
Our goal in this section is to quantify the potential negative consequences of price protection.

When   ⇡seg
1 , price protection does not affect the entry game but it distorts competition ex post.

Table V presents our estimates of the welfare cost of these distortions. We set a = 0.45 in our
calculations and, as in Table IV, we report values relative to the Walrasian allocation.44

We know that �̂prot
1 > �̂seg

1 and that participation in venue 1 increases under protection. On the
other hand, �̂prot

2 < �̂seg
2 , so total participation and participation in the fast venue both decrease.

Participation at time 0 includes all the traders. Over time, the light traders drop out and at time 1
only the heavy traders remain. This process, however, is the same in the Walrasian allocation, so the
ratios reported in Table V do not change. For segmented bond markets, for instance, participation is
always 97.12% of Walrasian participation. In the protected case, this is true for total participation,

43Remember that s is given by ⇢/(⇢ + r + �), so a similar ratio s2/s1 across assets does not imply similar ⇢2/⇢1

ratios. The ratio s2/s1 lies in between 1.5 and 2 for all assets, whereas ⇢2/⇢1 ranges from a lower bound of roughly
24 for corporate bonds to over 300 for S&P500 index futures.

44To facilitate the connections with the propositions in Section 4, we keep the same speeds regardless of trading
regulations. Endogenizing speeds in the first stage has a second-order effect on outcomes relative to the fee distortions
in the second stage of the game.
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Table V
Segmented and Protected Equilibria Outcomes (Walrasian case=100)

Corporate Bonds Equities S&P500 Futures

Participation V W Participation V W Participation V W
t = 0 t = 1 t = 0 t = 1 t = 0 t = 1

Segmented

Venue 1 32.37 32.37 18.00 8.86 32.41 32.41 18.36 9.04 32.41 32.41 18.46 9.09
Venue 2 64.74 64.74 63.39 80.48 64.80 64.80 64.31 82.38 64.81 64.81 64.61 83.03
Duopoly 97.12 97.12 81.39 89.34 97.21 97.21 82.67 91.42 97.22 97.22 83.07 92.12
Protected

Venue 1 35.08 28.52 15.85 8.075 35.11 28.54 16.17 8.24 35.11 28.54 16.26 8.29
Venue 2 59.04 65.60 64.23 81.11 59.11 65.67 65.17 83.03 59.11 65.68 65.48 83.68
Duopoly 94.12 94.12 80.08 89.01 94.21 94.21 81.34 91.25 94.23 94.23 81.74 91.97

The parameters values are the same as in Panel II of Table III, except for a, which equals 0.45 here.
Participation at t = 0 includes both light and heavy investors and is equal to total affiliation. Participation
at t = 1 includes only those investors who trade in the steady state (types � � �̃

i

in venue i). For any asset
class k, participation in the Walrasian case is equal the total number of investors N

k

at t = 0 and is equal
to 2aN

k

in the steady state. The terms V and W denote trading volume and welfare in the steady state.

but not for the allocation across venues, since the assets migrate from the slow venue to the fast
venue over time.45

The impact of price protection on participation is about three points but the impact on welfare
is only about 0.2 point. This is an important result, since there is a debate on whether policies such
as the SEC’s trade-through rule are beneficial or detrimental to market quality. The bottom line
is that the welfare effects in Table V are small relative to those in Table IV. The effects of price
protection on equilibrium profits are significant, however. For the three asset classes considered, we
find that profits for the slow venue increase by 7–8% under price protection. Therefore, it is likely
that price protection has a significant impact on welfare, because it encourages entry, as predicted
by our model and observed in U.S. markets. On the other hand, for markets that are already
fragmented, as in Europe, implementing this policy may not increase the number of venues and
may decrease welfare.46

45Participation at time t = 0 for the protected case is (2āG (�̂2)�G (�̂1) + 1� 2ā) for venue 1 and 1�G (�̂2) for
venue 2. At time t = 1, participation in venue 1 is G (�̂2) � G (�̂1). Participation at time t = 0 in the segmented
case is 1

2a (G (�̂2)�G (�̂1)) and 1
2a (1�G (�̂2)) for venues 1 and 2. At time t = 1, participation is 1 � G (�̂2)

and G (�̂2) � G (�̂1) for venues 1 and 2. These terms represent the same fraction of the Walrasian market for all t.
The welfare expressions for the segmented case are given in Lemma 8 and those for the protected case are given in
Appendix C.

46The social value of protection technically depends on the value of a (0.45 here), but welfare differences remain
small in any case. Perhaps more importantly, we do not capture welfare gains from mitigating execution price
uncertainty, given that our traders are risk neutral. Therefore, the value -0.2% maybe seen as a lower bound on
welfare gains.
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Table VI
Speed cost, speed regulation, and social outcomes (Walrasian case=100)

Corporate Bonds Equities S&P500 Futures

⇢ P V W ⇢ P V W ⇢ P V W
I. Baseline � = 0.834, c = 0.0362 � = 182.95, c = 0.000157 � = 390.63, c = 0.00275

Monopoly 36.211 50.00 48.87 72.21 21,986 50.00 49.59 73.97 117,000 50.00 49.83 74.58
Venue 1 1.044 29.14 16.20 8.77 239.13 29.16 16.52 8.95 516.93 29.17 16.61 9.00
Venue 2 38.132 58.27 57.05 79.67 23,758 58.32 57.88 81.56 126,402 58.33 58.15 82.20
Duopoly - 87.41 73.25 88.44 - 87.49 74.40 90.51 - 87.50 74.76 91.20
II. c # � = 0.834, c = 1

20.0362 � = 182.95, c = 1
20.000157 � = 390.63, c = 1

20.00275

Monopoly 51.555 50.00 49.2 73.02 31,169 50.00 49.71 74.27 165,625 50.00 49.88 74.71
Venue 1 1.066 29.15 16.36 8.86 240.6 29.16 16.57 8.97 518.11 29.17 16.63 9.01
Venue 2 55.719 58.3 57.44 80.55 33,677 58.33 58.01 81.88 178,924 58.33 58.21 82.33
Duopoly - 87.45 73.80 89.04 - 87.49 74.58 90.85 - 87.50 74.83 91.34
III. ⇢ " � = 0.834, c = 0.0362 � = 182.95, c = 0.000157 � = 390.63, c = 0.00275

Venue 1 1.565 29.99 19.57 9.74 358.69 30.00 19.87 9.92 775.40 30.00 19.95 9.97
Venue 2 40.538 59.99 58.78 81.06 24,587 60.01 59.57 82.93 130,767 60.01 59.83 83.57
Duopoly - 89.98 78.35 90.81 - 90.01 79.44 92.85 - 90.01 83.57 93.54

The parameters values are as in Panel II of Table III. The terms P, V, and W denote participation, trading
volume, and welfare, respectively.

7.5 Speed and Welfare

Table VI analyzes the welfare consequences of speed regulations. Panel I reviews the outcomes
with baseline parameters and Nk investors. In Panel II, we lower the cost of speed by 50%. Speed
increases dramatically in the fast venue but barely moves in the slow venue. Welfare increases
slightly. For corporate bonds, welfare increases by 60 basis points, from 88.44% to 89.04%. For
stocks and futures, the welfare gains are 34 basis points and 14 basis points. In our simulations, the
fast venue becomes much faster as c decreases, but the slow venue does not. The important point
is that welfare gains are small, even for asset classes that are initially slow. Even when the cost
of speed decreases by 90%,47 welfare gains are less than 1% and the first venue barely accelerates,
while the fast venue selects a speed that is several times as fast.

In Panel III of VI, on the other hand, we enforce a minimum speed requirement that is 50%
higher than the unregulated equilibrium: ⇢ = 1.5⇢1. The increases in welfare are much more
significant: 237 basis points for bonds and 234 basis points for stocks and futures. Forcing the slow
equity venue to reduce trading delays from 2 minutes to a bit over 1 minute increases welfare seven
times more than what is achieved by a 50% decrease in the cost of speed.

The positive predictions of the model seem to fit what we have observed over the past 20 years.
The normative analysis suggests limited welfare gains from purely technological improvements and
highlights the importance of regulations.

47Detailed results not reported in this case but they are available upon request.
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7.6 Example of Excess Entry with Three Venues

This section analyzes the possibility of excess entry in a market with three venues. Following the
notation of Section 6.3, l and h denote the slow and fast incumbents, respectively, and e denotes
the entrant. We use the baseline calibration for equities (with Nk = 92) in our simulations. We
report �̂

i/� instead of �̂i because it is easier to interpret. We also normalize ⇧l (⇢l, ⇢h) = 100 in the
duopoly equilibrium. Welfare is defined relative to the Walrasian outcome, as in Table IV.

With two incumbents, the optimal speeds are ⇢l = 239.13 and ⇢h = 23, 758.2, as displayed in
Panel II of Table III. The marginal types are �̂

l/� = 0.125 and �̂
h/� = 0.417. Profits are ⇧l (⇢l, ⇢h) =

100 and ⇧h (⇢l, ⇢h) = 690.69 and aggregate welfare is W = 90.51 (again, as in Table III).
Consider now a slow entrant ⇢e  ⇢l. The entrant optimally chooses ⇢e = 127.70 and the

marginal types are �̂
e/� = 0.031, �̂

l/� = 0.146, and �̂
h/� = 0.458. There is a significant decrease in

participation in the fast venue, as predicted by Lemma 10. The profits are ⇧e (⇢e, ⇢l, ⇢h) = 7.09,
⇧l (⇢e, ⇢l, ⇢h) = 53.71, and ⇧h (⇢e, ⇢l, ⇢h) = 594.50. The profits of the slow incumbent are almost
halved by competition from the entrant. Aggregate welfare decreases to W = 89.48 mostly because
welfare generated by the fast venue decreases from 81.56 to Wh = 77.96.

The outcome is very different if the entrant has a high speed ⇢e � ⇢l. In that case, the entrant
would optimally choose ⇢e = 29, 319. The marginal types become �̂

e/� = 0.334, �̂
l/� = 0.241⇥ 10

�3,
and �̂

h/� = 0.802 ⇥ 10

�3. The venues generate welfare Wl ⇡ 0, Wh = 10.63, and We = 87.75.
Aggregate welfare increases to W = 98.38. We also find (in untabulated results) that welfare
increases when the entrant has an intermediate speed ⇢l  ⇢e  ⇢h.

This example shows that allowing for a third venue can lead to significant welfare gains. This
case of analysis could capture the welfare consequences of having new venues, such as BATS or
Direct Edge, enter and challenge the incumbents (NYSE and NASDAQ) after Reg NMS. The new
venues entered with, arguably, better technologies than the incumbents had.48

To summarize our numerical results, we find that entry can reduce welfare when the entrant has
a low speed relative to that of the incumbent. The reason is that increased participation by low-�
types is not enough to compensate for the misallocation of high-� types. On the other hand, when
entry takes place at the high end of the speed ladder, we find that it improves welfare. We view
these results as a first step and, as explained earlier, we think that the topic of entry deterrence
should be further explored in future research.

8 Concluding Remarks

We have provided an equilibrium analysis of entry, investment in speed, and competition among
trading venues. Let us briefly summarize our main conclusions.

48To be more precise, our calculations capture the welfare effects before the NYSE and NASDAQ could react by
subsequently investing in new trading platforms.
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Normative Results. On the normative side, our model clarifies the circumstances under which
competition, fragmentation, and speed improve or reduce welfare.

Regarding entry, we find that it is optimal to challenge monopolies and that welfare losses are
still significant in a duopoly. In addition, we find that entry by a fast venue is likely to increase
welfare, while entry by a slow venue might not. These results are relevant for several regulatory
initiatives around the world, such as MiFID, Reg ATS, and Reg NMS.

Regarding speed, we find that, barring front-running issues, it is not optimal to limit speed.
This does not mean, however, that there is much to expect from purely technological improvements
in trading speeds. Perhaps one of the most striking results of our quantitative analysis is that a
reduction is the cost of speed leads to a vast increase in speed by the fast venue, almost no increase
by the slow venue, and, as a result, very limited welfare gains. On the other hand, we find that
it can be optimal to increase both speed and competition by pushing the slow venues to upgrade
their technology. Slow and inefficient markets, such as that for corporate bonds, could benefit from
such a rule. This finding is also consistent with the effect that the automation mandate of Reg
NMS had on the NYSE, and the likely effect of recent regulatory efforts, such as Dodd–Frank and
European Market Infrastructure Regulation/MiFID II, that push for more electronic trading for
OTC derivatives.

Regarding price protection, we find it to be efficient when it encourages entry, but this comes at
the cost of (moderate) inefficiencies ex post. These findings are relevant for Reg NMS in the U.S.
and the order protection rule in Canada, and informative for similar regulations elsewhere.

Positive Results. On the positive side, our model provides an explanation for the joint evolution
of trading regulations, fragmentation, and speed.

The recent sharp increase in market fragmentation in developed countries has encouraged a new
wave of empirical studies whose results appear to be consistent with the predictions of our model.
Foucault and Menkveld (2008), O’Hara and Ye (2011), and Degryse, De Jong, and Kervel (2014),
among others, find that an increase in trading fragmentation is associated with lower costs and
faster execution speeds in a given asset class. Our result that price protection increases entry and
thus fragmentation helps to rationalize (i) the sharp increase in fragmentation experienced in U.S.
equity markets after 2007 and (ii) the fact that fragmentation levels since Reg NMS are the highest
in the world. One advantage of our model is that we can estimate the welfare consequences of these
evolutions.

It has been argued that moving away from continuous trading toward periodic auctions would
eliminate the speed investment frenzy (e.g., Budish, Cramton, and Shim, 2013). Our results suggest
that these reforms could mitigate but are unlikely to stop this phenomenon. As the cost of speed
decreases, trading speeds increase and become more differentiated. This is likely to encourage entry
by fast venues, further increasing the market average speed.

Let us conclude with some caveats and ideas for future work. One limitation of our analysis is
that it misses important sources of differentiation among exchanges, such as between lit and dark
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trading venues. One could also consider more sophisticated trading protocols to better describe
particular asset classes. The framework we have developed can, however, be generalized in such
directions. Another interesting extension would be to endogenize the contracts between trading
venues and liquidity providers, such as high-frequency firms. By introducing such features, one
could study the performance of incentive schemes for liquidity creation and stability, a key concern
in the debate over designated market makers in today’s electronic markets.

Another limitation of our analysis is that we do not take into account asymmetric information.
One can argue that the desire to take advantage of information is one reason behind the observed
increase in speed. It should be noted, however, that the joint increase in average speed, differentia-
tion, and fragmentation is not a new phenomenon, that it has been observed in virtually every asset
class, and that even investors who are not interested in any sort of front running still decide to trade
in fast exchanges, such as IEX, or fast venues with RFQ protocols. Current models of front running
in a single venue can explain why some traders have an incentive to become individually faster,
but they do not account for the relative participation of investors across trading venues. Nothing
prevents the formation of a relatively slow and cheap venue. If uninformed traders choose to join
fast venues, they must value speed; otherwise, they would all join the slow venue, depriving the
fast venue of liquidity. The idea that speed is provided exclusively to satisfy a fraction of informed
traders seems to be inconsistent with free entry.

Our model, on the other hand, captures a fundamental part of the demand for speed that would
be present in any model, with or without front running or other information-based demand for
speed. We argue that speed-sensitive gains from trade are required to explain investment in speed
and we therefore think that information-based models are a complement, rather than a substitute,
to the model that we have presented. Some participants may use speed to take advantage of other
investors and we certainly do not claim that asymmetric information is irrelevant, but we do claim
that the building blocks of our model are required to analyze speed, fragmentation, and welfare,
with or without asymmetric information.
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Supplement to “Competing on Speed”: Online Appendices

Emiliano Pagnotta and Thomas Philippon

Imperial College London and NYU Stern School of Business

This supplement comprises an appendix on the security exchange industry, proofs of propositions
and lemmas in the main paper, and two model extensions: Trading fees and investor multivenue
affiliation.

Appendix A Remarks on the Security Exchange Industry and its

Regulation

A.1 Trading Speed in Perspective

Historical perspective. Our model seeks to capture not only recent investments to achieve
ultra-low latencies but, more generally, any increase in transaction frequency enabled by changes in
technology or market organization. A few important historical examples include:

• The telegraph. Garbade and Silber (1977) study two important developments in the XIX
century: the telegraph system in the 1840s connecting New York with other American market
centers, and a trans-Atlantic cable connecting New York and London in 1866. These authors
find that these early examples of technological advances in financial markets accelerated the
search for liquidity and significantly reduced order execution delays. In the context of our
model, such developments also represent a move towards integration between markets that
were previously working as effectively segmented.

• Continuous trading. Early in the 1900s, all European stock markets (except London) con-
ducted periodic trading by auctions, once or many times a day. Progressively, but not si-
multaneously, markets moved to continuous trading, which represents a massive increase in
trading frequencies by comparison to auctions.

• Personal computers (1980s). Before the recent wave of trading technologies associated with
high-frequency trading, floor brokers in traditional exchanges such as the NYSE enjoyed ad-
vantages in trading speed compared to off-floor investors. The high cost of participating in the
exchanges floor was in this regard an instance of a speed-related fee, much like q in our model.
The arrival of computers allowed the development of early forms of electronic trading, and
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Figure A1. Trade speed in U.S. equity markets (Source: SEC, October 2013).

information systems such as the first Bloomberg terminals. Initially, only a very small fraction
of market participants took part in in electronic trading. The crash of 1987 and regulation
reforms accelerated the process by pushing exchanges to adopt automatic execution systems
(like the Small Order Execution System) that did not rely on traditional floor brokers (Lewis
(2014)).

The economic framework in our paper, with speed differentiation at the center, can be applied to
the historical analysis of such developments.

Communication speed and trade speed. Nowadays all major exchanges work as electronic
platforms that thousands of investors and brokerage firms can access directly. Table A1 displays
some (hand-collected) recent examples of the speed investments and speed capabilities of major
exchanges. It is important to make a distinction here between the speed of quote updating, and the
speed of trades, given that we model the latter. Figure A1, based on a recent SEC study, shows that
over 50% of all fully executed orders in exchanges take place between 5 seconds and 10 minutes. For
partial trades that figure increases to virtually 60%. The blazing fast speeds advertised by trading
venues effectively correspond to quote revisions, not trades.

Global perspective. Although our discussion in the main body of the paper focuses on the Eu-
ropean and U.S. experiences, our analysis and results relate to other recent international cases. The
links between entry, competition and speed investments is apparent in regions like Asia, Australia
and Latin America, where traditional trading venues face the threat of alternative trading plat-
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Table A1
Selected Speed Investments by World Exchanges (2008-2012)

Exchange Quarter Investment Latency Reduction (as reported) Asset class

NYSE Euronext Q4 2008 Universal Trading Platform 150-400 microseconds from 1.5 ms Bonds
Q1 2009 Universal Trading Platform Cash Equities

NYSE Q2 2009 Super Display Book System Platform 5 ms from 105 ms (350 in 2007) Cash Equities
NYSE Amex Q3 2009 Super Display Book System Platform 5 ms from 105 ms (350 in 2007) Cash Equities
NYSE, NYSE Arca, NYSE Amex Q4 2009 Universal Trading Platform from 5 to 1.5 milliseconds Cash Equities
Tokyo Stock Exchange Q4 2009 Tdex+ System to 6 millisecond Options

Q1 2010 Arrowhead Platform 5 millicond from 2 seconds Cash Equities
Q4 2011 Tdex+ System 5 milliseconds Futures

Turquoise (LSE’s) Q4 2009 Millenium Exchange Platform Latency of 126 microsecond Derivatives
NASDAQ OMX (Nordic+Baltic) Q1 2010 INET Platform to 250 microsec Cash equities
Johannesburg Stock Exchange Q1 2011 Millenium Exchange Platform 400 times faster to 126 microsecond Cash equities
London Stock Exchange Q4 2010 Millenium Exchange Platform Cash equities
Singapore Stock Exchange Q3 2011 Reach Platform Cash equities
Hong Kong Stock Exchange Q4 2012 HKEx Orion Cash equities

forms. Indeed, Table A1 also illustrates that the emphasis on speed investment has been global
over recent years. Fragmentation has also increased in other regions of the world. Part of this
increase in fragmentation is due to the fact that several regulating agencies, encouraged by the U.S.
and European experiences, began removing barriers to entry during the last five to ten years (see
examples in Table A3).

A.2 Fast and Slow Venues: Examples Across Asset Classes

In this section we discuss speed-related choices that help to understand how our model maps into
various parts of the finance industry. Table A2 summarizes many of the examples across asset
classes that we discuss below.

Cash Equities. The simplest interpretation of speed choice in equity markets any has two ex-
changes, such as the NASDAQ vs. the NYSE in the U.S., or ASX vs. Chi-X in Australia, offering
trading services at differentiated speeds. Boehmer (2005) documents the trade-off between execu-
tion speed and costs in U.S. markets before Reg NMS. He finds that, analogously to venue 2 in
our model, the NASDAQ is more expensive than the NYSE, but it is also faster. More recent data
shows that the NASDAQ was still significantly faster than the NYSE at the time of Reg NMS
implementation in 2007 (Angel, Harris, and Spatt, 2011).

A second, broader, interpretation has investors sorting themselves between “exchanges” and a
range of “alternative trading venues.” According to the SEC classification, U.S. investors can opt to
direct their orders to registered exchanges, and a range of Alternative trading Systems or ATS, that
include Electronic Communication Networks or ECN, dark pools, or broker–dealer Internalizers or
Crossing Networks. According to the SEC, these alternative venues jointly represent 33-36% of
U.S. equity volume. Similarly, European regulators make a distinction between Regulated Markets,
Multilateral Trading Facilities (MTFs) and Systematic Internalizers. Although alternative and over-
the-counter venues have also made technical progress, as a group, organized exchanges typically offer
investors the fastest communication and trading responses. Summarizing, we can group venues as
follows.
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• Slow venue: broker–dealers/crossing networks, floor-driven exchanges.

• Fast venue: (lit) Electronic exchanges.

Each of these interpretations relates to a different market regulation: Reg NMS mandates order
protected prices among organized exchanges (see Section A.3). Order prices are not protected,
however, between exchanges and many ATS (especially dark venues that, by definition, do not
display prices).

Yet another interpretation relates to retail investors more directly, at much lower speeds. Con-
sider a given household that seeks exposure to a market risk factor. The default way of getting such
exposure is through a mutual fund that can generally be accessed through their default commercial
bank. However, mutual funds can only be traded daily. A speed-sensitive investor may instead
consider an ETF or an exchange-traded index future. For the latter, the additional cost of speed
is represented best by the cost of opening and maintaining a specific brokerage account, the cost
of accessing real-time quotes, as well as acquiring the necessary knowledge on how to use a given
trading platform. Of course, not all of these related costs are captured by the trading venues.

Corporate Bonds. The corporate bond market has traditionally operated in a decentralized
fashion and over the phone (Duffie et al., 2005). Since the last financial crisis, institutional investors
have begun migrating some of their orders execution away from voice and towards the electronic
request for quote protocol (eRFQ).49 The eRFQ represented an evolutionary step toward efficiency,
not a market structure change. Similar to picking up a phone and calling a handful of dealers, it
allows investors to gather a pool of potential liquidity providers. This mechanism can then be seen
as the electronic version of the status quo. More recently, there has been a proliferation of electronic
trading venues, some of them operating a central limit order book as well (CLOB). We list some of
them below.

• Slow venue: Voice trading using traditional dealer banks.

• Fast venue: (mainly eRFQ). Bank-sponsored electronic bond trading networks: GSessions
(Goldman Sachs), Bond Pool (Morgan Stanley), Price Improvement Network (UBS), Aladdin
Trading Network (BlackRock’s), BondPoint (Knight). Bond trading platforms: Bloomberg,
MarketAxxes, Tradeweb, Bonds.com.

• Faster venues. (mainly CLOB): ICAP’s BrokerTec, GFI, NYSE Bonds.

Despite the recent innovation in trading systems, slow voice trading is still dominant. The TABB
Group estimates that, as of 2014, approximately 15%-16% of the notional volume for investor-
initiated (otherwise known as dealer-to-client) trading is executed via some electronic medium (ap-
proximately 21% if accounting for retail transactions). The scope for further platforms development
and growth is illustrated by the fact that near four-fifths of the notional volume is still transacted in

49MarketAxxes introduced the list-based e-RFQ in 2002.
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the “old fashioned” way. In this market trading protocols are still evolving and it is still challenging
to find liquidity in off-the-run corporate bond issues (which account for most of the market).

Foreign Exchange (FX) FX is global and trades 24 hours. A large number of financial insti-
tutions, individuals and corporations that are active in this market select to trade in venues with
different speeds. We can group venues in two stylized groups.

• Slow Venue: Traditional banks/trading desks acting as voice brokers/dealers, trading at hu-
man speeds.

• Fast Venue. Multiple venues operating with different technologies. Inter-dealer electronic
brokers platforms (EBS, Reuters, in London); ECNs (such as Currenex), 10-15 single-banks
platforms. Trading speed is sub-second.

Despite the rapid growth of electronic venues in the FX market, by the end of 2012 only 60% of the
global trading volume was electronic50 (from 51% in 2010).

An important fraction of market centers’ speed investment is in the form of locating trading
venues where customers congregate (trading hubs such as Chicago, NY or London). Thus, a large
part of the speed premium that clients pay is in the form of co-location and developing trading
infrastructure in multiple cities. The FX market is traditionally highly unregulated and opaque.
In particular, there is not a trade-through-like rule protecting execution prices, resulting in a high
degree of price fragmentation.

Swaps: IRS, CDS. Until recently, financial institutions and corporations participating in these
markets were used to trading at much lower speeds than equities and paying higher commissions.
The landscape has been transformed by the strong regulation force of the Dodd–Frank Act, which
mandates electronic trading of large classes of derivatives – and the subsequent entry of new venues
with modern trading platforms. We can conceptually group venues as follows.

• Slow Venue: OTC broker–dealer (such as UBS, Credit Suisse and Morgan Stanley) trading
over the phone, or traditional RFQ.

• Fast Venue: Inter-dealer electronic platforms as ICAP i-Swaps, Tradition and BCG for IRS,
and Bloomberg’s BSEF for credit default swaps; several electronic Swap Execution Facilities
(SEF).

As of April 2014, there were 24 SEFs registered with the CFTC operating across interest rate, credit,
and foreign exchange asset classes, but only a handful have a market of more than five percent.

50Reported in Greenwich Associates’ Global Foreign Exchange Services Study, 2012.
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Table A2
Venue Speed Choices in Asset Markets: Some Examples

Market Slow Venues Fast Venues

Equities (institutional) Crossing networks, floor exchanges Direct access to lit exchange, co-location
Equities (retail) Retail bank (mutual funds) Premium broker (ETF, index futures,etc.)
Foreign exchange (FX) OTC dealer/bank (voice) Currenex, EBS, Reuters
Corporate Bonds OTC voice trading Aladdin, Tradeweb, Bonds.com

Liquidnet, NYSE Bonds, BrokerTec
Interest rate swaps (IRS) OTC dealer/bank SEFs. ICAP, BCG, Tradition
Credit swaps (CDS) OTC dealer/bank SEFs. Bloomberg, GFI, MarketAxxes

A.3 Venue Competition and Order Price Protection

There are essentially two approaches to investor protection: the trade-through model and the
principles-based model (see Table A3).

Trade-through Model. Under this approach market centers are connected to one another and
they prevent trading through better prices available elsewhere. Price is thus the primary criterion
for best execution. This requires complex and costly connections as well as strong monitoring
activity from market regulators. In the U.S. this rule is implemented by SEC’s Reg NMS and is
subject to the following features51: (i) eligible NMS securities prices are aggregated in the Securities
Information Processor (SIP) and then disseminated to market participants. (ii) Prices are quoted
gross of trading fees. (iii) The SEC sets an access fee cap of $0.003 per share. (iv) Only the top of
the book is protected: When a big trading order arrives at a given marketplace, only the amount
of shares represented by the depth of the book at the National Best Bid and Offer is protected. As
an example, suppose that the NASDAQ and the NYSE are the only market centers and that an
investor submits a market order to buy 100,000 shares of a given stock to the NASDAQ. Currently
the ask price at the NASDAQ is higher than the ask price at the NYSE (where the ask depth is
10,000 shares). Then the NASDAQ can either match the price at the NYSE or the first execution
occurs at the NYSE for 10,000 shares. The remaining 90,000 shares “walk up” the book at the
NASDAQ.

In Canada, the Order Protection Rule (OPR) implemented by the Investment Industry Regula-
tory Organization of Canada shares the same spirit but aims to protect orders beyond the top level
of the book.

Principles-based Model. Multiple criteria other than prices can be included in the best
execution policy, such as the type of investor behind the trade. This approach then allows for more
discretion and less transparency in the assessment of the results. In Japan, for example, Article
40-2(1) of the Financial Instruments and Exchange Act defines best execution policy as a “method
for executing orders from customers ... under the best terms and conditions.” Considerations to
be taken into account are the place of listing, price, liquidity, execution probability, and execution

51For more details See the SEC’s Reg NMS documentation.
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Table A3
Venue Competition and Investor Protection in Selected Countries

Economic Area Reg. Agency Regulation Year Investor Protection Model
USA SEC Reg.NMS 2005 Trade-through (top of the book)
Europe ESMA MiFID I 2007 Principles-based
Japan FSA, FIEA FIEA 2007 Principles-based
Canada IIROC, CSA OPR 2011 Trade-through (full book)
South Korea FSC FSCMA 2011 Principles-based
Australia ASIC MIR 2011 Principles-based

Source: www.fidessa.com and regulating agencies’ websites

speed. This system in Japan does not apply to professional investors. In Europe, MiFID deregulated
price competition in European markets in 2007. A “transparency” regime was introduced, but no
formal trade-through rule that venues are held responsible for.

Both in Europe and Japan, sell-side best execution policies do not mandate to consider or
monitor every venue. Monitoring of execution quality is generally left to clients, which can be a
problem in countries where investors have inadequate knowledge of financial markets. The claimed
advantages of the principles-based approach lie in a much simpler set of linkages between markets,
and in promoting innovation by not forcing uniformity.

In real markets arbitrageurs and smart routing technologies work to (at least partially) undo
price differentials between markets. Does this fact make a trade-through rule redundant? Pre
MiFID I empirical evidence by Foucault and Menkveld (2008) suggests that the answer is no. These
authors study the competition between a London Stock Exchange order book (EuroSETS) and
Euronext Amsterdam for Dutch firms and find that, even when there is formal entry barrier to
arbitrageurs, the trade-through rate in their sample equals 73%.52 In the U.S., the SEC estimated
that, prior to the implementation of Reg NMS, one out of eleven shares traded in NASDAQ listed
stocks was a significant trade-trough.53

In our model, beyond its effect on execution prices, order protection affects the nature of com-
petition between venues. This is consistent with the view of Stoll (2006), who argues:

“The casual observer of the heated debate that has surrounded the order protection
rule may well wonder what the fuss is all about. After all, we are just talking about
pennies. But for the exchanges, it may be a matter of business survival. Pennies matter,
but more important, the rule requires the linkage of markets, which threatens established
markets and benefits new markets. The battle appears to be over pennies, but in fact,
it is over the ability of markets to separate themselves from the pack.”

52Prior to MiFID I there was a ’concentration’ rule in most European markets. Countries like Spain, Italy or
France forced trading of stocks listed in their countries to trade domestically.

53Regulation NMS Adopting Release, 70 FR at 37502.
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Figure A2. Average small order execution speed for the NYSE, executed at the top of the book (seconds).
Source: SEC Rule 605 reports.

A.4 Regulation of Speed

Minimum Speed. Regulation NMS differentiates market centers based on manual or automated
quotations. A manual quotation is one that is considered not immediately and automatically acces-
sible and which does not receive protection against trade-throughs. The SEC defines “immediate”
as the fastest response possible without any programmed delay.54 Given that only automated
quotes are protected, the NYSE was deeply affected by Reg NMS’s forced adoption of automation,
a de-facto minimum speed requirement. Figure A2 illustrates this fact: At the time of full imple-
mentation in 2007, the average execution delay sharply declined from human to machine-driven
speeds. A similar increase in the speed of the slow venues is to be expected in non-equity products
due to the Dodd–Frank Act and MiFID II/EMIR push for electronic trading of OTC derivatives.

Maximum Speed. Several market interventions have been proposed to reduce trading speed,
chiefly in equity markets. The motivation is typically to mitigate the front-running of institutional
orders. Although most large financial institutions are now sophisticated enough so as to avoid
simple detection algorithms by ’predatory’ high-frequency traders, continuous-time markets do not
eliminate this possibility entirely (Budish, Cramton, and Shim, 2013). The current regulatory
framework for equities in the U.S. and Europe does not impose explicit speed limits. Despite
more intense scrutiny over algorithmic trading, speed limits are also absent in the current MiFID II
proposals. Non regulatory speed limits, however, are sometime adopted. In foreign exchange market,
for example, inter-dealer brokerage platforms such as Electronic Broking Services and Reuters have
minimum quote life or minimum fill ratios that act effectively as a limit on maximum trading speed.

54For an exchange like IEX, the response time is not a result of a programmed delay; rather, the response time is
merely a result of the coiled cable inside the “magic shoebox” to get to the matching engine where all participants
are afforded equal access. This is essentially identical to a colocation center equally measuring connectivity cable to
matching engines. In this regard, IEX would qualify as an automated market center under Reg NMS.
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Appendix B Proofs of Propositions

B.1 Proof of Proposition 1

Define I�,✏ ⌘ V�,✏ (1) � V�,✏ (0) as the value of owning the asset for type (�, ✏). Then, taking
differences of equations 13-16 we get

rI�,� = µ� � +

�

2

(I�,+ � I�,�) + ⇢ (p� I�,�)

rI�,+ = µ+ � � �

2

(I�,+ � I�,�)� ⇢ (I�,+ � p)

We can then solve r (I�,+ � I�,�) = 2� � (� + ⇢) (I�,+ � I�,�) and obtain the gains from trade for
type � in venue ⇢:

I�,+ � I�,� =

2�

r + � + ⇢
.

Using the gains from trade I�,+ � I�,�, we can reconstruct the functions I�,✏

I�,� =

µ+ ⇢p

r + ⇢
� �

r + � + ⇢

I�,+ =

µ+ ⇢p

r + ⇢
+

�

r + � + ⇢

and the average values

¯V� (0) =
⇢

2r
(I�,+ � p)

¯V� (1) =
µ

r
+

⇢

2r
(p� I�,�)

where ¯V� (0) ⌘ V
�,+(0)+V

�,�(0)
2 and ¯V� (1) ⌘ V

�,+(1)+V
�,�(1)

2 .
Let us now compute the ex ante value functions. Let us first consider types � < �̃. They join

the venue to sell at price p, and then do not trade again. Averaging over types ✏ = ±1, the ex ante
value function ˜W solves the Bellman equation r ˜W = µā+⇢

⇣

pā� ˜W
⌘

, and thus ˜W =

µ+⇢p
r+⇢ ā. Since

µ+ ⇢p =

µ
r (r + ⇢) + ⇢

�

p� µ
r

�

we can rewrite

˜W =

µā

r
+

⇢

r + ⇢
(rp� µ)

ā

r

From the definition of �̂ we also now that ⇢
r+⇢ (rp� µ) = s (⇢) �̃, with s (⇢) ⌘ ⇢

r+�+⇢ , therefore
˜W =

µā
r + s ār �̃. The marginal type �̃ (p, ⇢) is defined in (5), is increasing in p and decreasing in ⇢.

The key point is that ˆW does not depend on the type �, but only on the price and speed of the
venue. Of course we also have ˜W = ā ¯V�̃ (1).

Let us now consider the steady state types, � > �̃. Their average endowment is ā. There are
two interpretations. Either they all have ā or they have a probability ā to have one unit. Since all
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agents are risk neutral, the two interpretations are equivalent.

W (�) = ā ¯V� (1) + (1� ā) ¯V� (0)

Using the expression above, we get

W� = āµ+ ā
⇢

2r
(p� I�,�) + (1� ā)

⇢

2r
(I�,+ � p)

=

µā

r
+ ā

⇢

2r
(2p� I�,� �H�) +

⇢

2r
(I�,+ � p)

=

µā

r
+ ā

⇢

r

rp� µ

r + ⇢
+

1

2r

✓

⇢

r + ⇢
(µ� rp) +

⇢

r + � + ⇢
�

◆

=

µā

r
+

ā

r
s (⇢) �̃ +

1

2r
s (⇢) (� � �̃)

Therefore, we have, when � > �̃, we have

W (�, ⇢) = ˜W +

1

2

s (⇢)
� � �̃

r

Q.E.D.

B.2 Proof of Proposition 2

Let us introduce some notations to simplify the exposition:

↵ ⌘ 2ā

k ⌘ s1
s2 � s1

(44)

⌫ (�̂) ⌘ 1�G (�̂)

g (�̂)

The monopoly allocation �̂m is the solution to �̂m = ⌫ (�̂m). Rearranging the first order conditions,
the segmentation allocation (�̂seg

1 , �̂seg
2 ) is the solution to

�̂2 = ⌫ (�̂2)� k�̂1

�̂1

✓

g (�̂1)

g (�̂2)
+ k

◆

=

g (�̂1)

g (�̂2)
⌫ (�̂1)� ⌫ (�̂2)

The price protection allocation
⇣

�̂prot
1 , �̂prot

2

⌘

is the solution to

�̂12 = ⌫ (�̂2)� z (↵)k�̂1

�̂1

✓

g (�̂1)

g (�̂2)
+ ↵z (↵)k

◆

=

g (�̂1)

g (�̂2)
⌫ (�̂1)� ↵⌫ (�̂2)

where we highlight in red the differences to help the comparison. Remember that z (↵) is increasing.
Notice first �̂2 < �̂m irrespective of whether prices are free or protected.
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Proof of Point 2. We use the following notations to simplify the algebra

x ⌘ �̂1, y ⌘ �̂2.

The duopoly system with segmented prices (or with ā = 1/2) is

G (y)�G (x) = (g (x) + kg (y))x

1�G (y) = g (y) (y + kx)

We can differentiate the system with respect to k:

g (y) dy � g (x) dx = g (x) dx+ kg (y) dx+ x
�

g0 (x) dx+ g (y) dk + kg0 (y) dy
�

�g (y) dy = g0 (y) dy (y + kx) + g (y) (dy + d [kx])

After some manipulations and simplifications, we get

dx
�

2g (x) + xg0 (x) + kg (y) ✓
�

= �xg (y) ✓dk

dy = �g (y)
d [kx]

2g (y) + g0 (y) (y + kx)

where
✓ ⌘ 3g (y) + yg0 (y)

2g (y) + g0 (y) (y + kx)

We can then prove that under 4.4, we have:

@y

@k
< 0 and

@x

@k
< 0.

First note that the second duopoly FOC implies that 1�G(y)
g(y) = y + kx. Therefore, under 4.4, we

have
2g (y) + g0 (y) (y + kx) � 0.

This shows that the denominator in ✓ is strictly positive. Let’s study the numerator and show that
it is also strictly positive. Either g0 (y) > 0 and then 3g (y) + yg0 (y) > 0. Or g0 (y) < 0 but then,
since kx > 0,

3g (y) + yg0 (y) > 2g (y) + yg0 (y) > 2g (y) + (y + kx) g0 (y) > 0.

Therefore ✓ > 0. It is then easy to see that

@x

@k
< 0.

For @y
@k , we need to check that . This is true since

@x

✓

2g (x) + xg0 (x)

g (y) ✓
+ k

◆

+ x@k = 0,
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and x > 0, and 2g (x) + xg0 (x) > 0 under 4.4). Therefore

@y

@k
< 0.

QED.

Uniform Distribution Let us define differentiation as

d ⌘ s2/s1.

With a uniform distribution over [0,�] the system is

y = � � y � z (↵)x

d� 1

x

✓

1 +

↵z (↵)

d� 1

◆

= � � x� ↵ (� � y)

so

2y = � � z (↵)x

d� 1

x

✓

2 +

↵z (↵)

d� 1

◆

= (1� ↵)� + ↵y

so

y =

� (d� 1)� z (↵)x

2(d� 1)

x =

�

1� ↵
2

�

(d� 1)

2 (d� 1) +

3
2↵z (↵)

�

The solution for x is clear: x is decreasing in ↵. Price protection means ↵ goes down, so x goes up.
The impact on y is ambiguous since

y =

 

1� z (↵)
1� ↵

2

2 (d� 1) +

3
2↵z (↵)

!

�

2

and z (↵) = 1 �
1+ r

⇢1
1+ r

⇢2

(1� ↵). Clearly, if ↵ is small, then y decreases with ↵. But if ↵ and d are
both close to 1, this can be reversed.
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Exponential Distribution. Under exponential distribution, we have G (�) = 1 � e��/⌫ and
therefore ⌫ (�̂) = ⌫ and the system is

�̂2
⌫

= 1� z (↵) k
�̂1
⌫

�̂1
⌫

⇣

e
�̂2��̂1

⌫

+ ↵z (↵) k
⌘

= e
�̂2��̂1

⌫ � ↵

It is convenient to defined

� ⌘ �̂2 � �̂1
⌫

(45)

x ⌘ �̂1
⌫

and , so that we can write the system in (x,�):

(1 + z (↵) k)x = 1�� (46)

e� � ↵ =

�

e� + ↵z (↵) k
�

x (47)

Impact of protection on �̂1

The second equation of the system is

1� x =

↵ (1 + zk)

e� + ↵zk

This leads to a schedule x increasing in �. The issue is how it changes with ↵. We study the
function on the RHS, namely: log

⇣

↵(1+zk)
e�+↵zk

⌘

= log (↵) + log (1 + zk)� log

�

e� + ↵zk
�

. Taking the
derivative w.r.t. ↵

1

↵
+

kz0

1 + zk
� ↵kz0 + kz

e� + ↵kz
=

1

↵
� 1

↵+

e�
kz

+ kz0

 

1

1 + kz
� 1

e�
↵ + kz

!

since e�

↵ > 1 we have 1
1+kz � 1

e

�

↵

+kz
> 0. Similarly 1

↵ � 1

↵+ e

�

kz

> 0. So ↵(1+kz)
e�+↵zk

is increasing in

↵. Therefore the equilibrium condition e� � ↵ =

�

e� + ↵kz
�

x implies a schedule x increasing in
� and decreasing in ↵. The first equilibrium condition (1 + z (↵) k)x = 1 �� gives a schedule x

decreasing in � and decreasing in ↵. Straightforward analysis then shows that x must be decreasing
in ↵. The free price structure corresponds to ↵ = 1, while the protected price structure corresponds
to ↵ = 2a < 1. Therefore, since �̂1 = ⌫x, �̂1 must be higher under price protection. The slow
venue enjoys higher participation under price protection.
Impact of protection on �̂2

The analysis of �̂2 is ambiguous. It is clear that when k ! 0 we have �̂2 ! ⌫, which is the monopoly
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solution. Define y =

�̂2
⌫ = x+�, and get the system

(1 + kz) y = 1 + kz�

1� y = kz
e� � ↵

e� + ↵kz

The first curve is y increasing in � and decreasing in ↵. The second curve can be written gives
y = 1� kz + kz↵(kz+1)

e�+↵kz
, which shows y decreasing in �. With respect to ↵, however, it is not clear.

In the realistic case where r
⇢1

is small, we have z (↵) = ↵ so

(1 + k↵) y = 1 + k↵�

1� y = k↵
e� � ↵

e� + k↵2

We study the case where ↵ is close to one. The free price solution is

(1 + k) ȳ = 1 +

¯

�k

1� ȳ = k
e�̄ � 1

e�̄ + k

and we look for small deviations: ↵ = 1� ✏, � =

¯

�+

ˆ

�, y = ȳ + ŷ. The first equation is simply

(1 + k) ŷ � kȳ✏ = k
⇣

ˆ

�� ¯

�✏
⌘

(1 + k) ŷ = k ˆ�+ k
�

ȳ � ¯

�

�

✏

The second one gives

1� ȳ � ŷ =

k

e�̄ + k

 

e�̄ � 1 +

ˆ

�e�̄ +

⇣

2� e�̄
⌘

✏� e�̄ � 1

e�̄ + k

⇣

e�̄ ˆ

�� 2k✏
⌘

!

�
⇣

e�̄ + k
⌘2

ŷ = ke�̄
⇣

(1 + k) ˆ�+

⇣

2� e�̄ + k
⌘

✏
⌘

From the first schedule we get k ˆ� = (1 + k) ŷ � k
�

ȳ � ¯

�

�

✏. The second schedule then becomes

�
✓

⇣

e�̄ + k
⌘2

+ e�̄ (1 + k)2
◆

ŷ = ke�̄
⇣

2 + k � e�̄ � (1 + k)
�

ȳ � ¯

�

�

⌘

✏

The evolution of y therefore depends on the sign of � = 2 + k � e�̄ � (1 + k)
�

ȳ � ¯

�

�

. From the
equilibrium condition at ↵ = 1, we get ȳ =

1+�̄k
1+k , and the � under free prices solves

�

¯

�+ k
�

e�̄ = 1 + k
�

2� ¯

�

�

In the special case k = 0, we get ȳ = 1 and ¯

�e�̄ = 1 implies ¯

� = 0.5671 then � = 1 � e�̄ +

¯

� =
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�0.1961 < 0. In this case ŷ increases with ✏: �12 is higher under price protection. However, as long
as k is not too small (k > 0.185), we have 2 + k � e�̄ � (1 + k)

�

ȳ � ¯

�

�

> 0 and ŷ decreasing with
✏: �12 is lower, and participation in the fast venue is higher under price protection.

Comparing Profits It is convenient to define a system that nests price protection and free
competition as special cases. Fist, define the scaled controls

t1 ⌘
2r

↵s1
q1,

t2 ⌘
2r

s1
q2.

Next the scaled profits by Fi ⌘ 2r
s1
⇡i. With these notations, the profit functions are

F1 (t1, t2,↵) =t1 (1� ↵+ ↵G (�̂2)�G (t1))

F2 (t1, t2,↵) =t2 (1�G (�̂2))

and we have �̂12 = k (t2 � z (↵) t1) and �̂1 = t1.
The general system is the one with protected prices with ↵ < 1 and z (↵) = 1 �

1+ r

⇢1
1+ r

⇢2

(1� ↵).
The segmentation case corresponds to ↵ = 1 and z = 1. We can always return to the system in �

using t2 =
�̂12
k + z�̂1 and t1 = �̂1. Let us now derive the FOCs. Using @⇡prot

1
@t1

= 0 and @⇡prot

2
@t2

= 0 we
get

1� ↵+ ↵G (�̂2)�G (�̂1) = t1 (↵z (↵) kg (�̂2) + g (�̂1))

1�G (�̂2) = t2kg (�̂2)

With exponential distributions we have that t2 does not depend on ↵: t2 =

⌫
k . Note that this

implies q2
2r
s1

=

⌫
k so q2 =

⌫
2r (s2 � s1). The fees of the fast venue are proportional to the difference

in effective speed. To understand the impact of price protection of profits, take the total differential

dF1

d↵
=

@F1

@t1

dt1
d↵

+

@F1

@t2

dt2
d↵

+

@F1

@↵

Optimality implies @F1
@t1

= 0, and we have just seen that dt2
d↵ = 0. Therefore dF1

d↵ =

@F1
@↵ and

@F1

@↵
= t1

✓

�1 +G (�̂12) + ↵g (�̂12)
@�̂2
@↵

◆

= t1
�

�1 +G (�̂2)� ↵g (�̂2) kt1z
0
(↵)
�

Since z0 (↵) > 0, we see that @F1
@↵ < 0: price protection increases the profits of the slow venue. The

economic intuition is simple. The term �1 + G (�̂2) corresponds to the “sell and leave” investors
who come to the slow venue under protection. The term with z0 corresponds to the softer price
effect on the marginal type �̂2.
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With a uniform distribution, we have

y =

m� z (↵)kx

2

x =

1� ↵
2

2 +

3
2↵z (↵)k

m

so

F1 =x (1� ↵+ ↵y/m� x/m)

F2 =

⇣y

k
+ zx

⌘

(1� y/m)

and

F1 =
1

2 +

3
2↵zk

⇣

1� ↵

2

⌘2
 

1� 1

2

2 + ↵zk

2 +

3
2↵zk

!

m

F2 =

 

1

k
+

z

2

1� ↵
2

2 +

3
2↵z (↵)k

! 

1

2

+

z (↵)k

2

1� ↵
2

2 +

3
2↵z (↵)k

!

m

So it is easy to see that @F1
@↵ < 0 as well. Q.E.D.

B.3 Proof of Proposition 4.

The interior solution FOC for speed is C 0
(s) = (1�G (�̂m))

�̂
m

2r . Using Assumption 5 we have
C 0

(s) = c(r+�)

(1�s)2
. Under exponential distribution of types we have �̂m = ⌫ and thus (1�G (�̂m))

�̂
m

2r =

⌫
2er . Combining these expressions yields sm = 1� (2rc(� + r)e/⌫) g1/2. Under uniform distribution
of types, we have �̂m = �/2 and (1�G (�̂m))

�̂
m

2r =

�
8r . Thus, sm = 1� (8rc(r + �)/�)

1
2 . Q.E.D.

B.4 Proof of Proposition 5.

Consider the venue 2’s program

max

s2

1

2r
(�̂2 (s2 � s1) + �̂1s1) (1�G (�̂2))� C (s2) . (48)

It is immediate that this program converges to the monopolist’s when s1 ! 0. We then have
lims1!0 S2 (s1) = sm. Thus, to show that s2 > sm, it suffices to show that S0

2 (s1) > 0.
Differentiating the FOC of equation 48 with respect to s1, and re-arranging, yields

S0
2 (s1) =

@2⇡2
@s2@s1

✓

C 00
(s2)�

@2⇡2
@s22

◆�1

. (49)

We now use the uniform distribution to sign the terms in the RHS of equation 49. The revenue
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functions are given by

⇡2 (s1, s2) =
1

2r
(�̂2 (s2 � s1) + �̂1s1)

✓

1� �̂2
�

◆

(50)

⇡1 (s1, s2) =
s1
2r

�̂1
�̂2 � �̂1

�
. (51)

Using equations 29 and 30, and
d ⌘ s2

s1
,

we have
�̂1 = �

d� 1

4d� 1

; �̂2 = �
2d� 1

4d� 1

. (52)

or
�̂1 = �

s2 � s1
4s2 � s1

; �̂2 = �
2s2 � s1
4s2 � s1

Replacing �̂1 and �̂2 in the revenue functions by the expressions in 52, yields

⇡1 (s1, s2) =
�

2r

s2 � s1

(4s2 � s1)
2 s1s2

⇡2 (s1, s2) =
�

2r

s2 � s1

(4s2 � s1)
2 (2s2)

2

Notice that
⇡2 = 4

s2
s1

⇡1.

After some algebra, one can show that

@2⇡2
@s22

= �4�

r

s21 (s1 + 5s2)

(4s2 � s1)
4 < 0

@2⇡2
@s2@s1

=

4�

r

s1s2 (s1 + 5s2)

(4s2 � s1)
4 > 0.

These inequalities, together with convexity of C, yield S0
2 (s1) > 0.

Q.E.D.

B.5 Proof of Proposition 6

Consider the maximum speed first. Holding market shares constant, the regulator seeks to maximize
social welfare in each venue i. For venue 1, the optimality condition is 1

2r

´ �̂2

�̂1
�dG (�) = C 0

(s1).
Using equation 52 we can compute 1

2r

´ �̂2

�̂1
�dG (�) =

�
4r

d(3d�2)

(4d�1)2
, where d ⌘ s2

s1
. The marginal

cost must equal the venue’s marginal revenue in an interior solution, which from equation 41 is
given by �

2r
d2(4d�7)

(4d�1)3
. Straightforward calculations then show that 1

2r

´ �̂2

�̂1
�dG (�) > C 0

(s1), im-
plying under provision of speed at the market equilibrium for venue 1. Similarly, the regulator
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optimality condition for venue two is 1
2r

´ �
�̂2

�dG (�) = C 0
(s2). Using equation 52 we can compute

1
2r

´ �
�̂2

�dG (�) =

�
r
d(3d�1)

(4d�1)2
. From equation 41 we have that the marginal cost must equal at an

market solution 2�
r

d2(2d+1)

(4d�1)3
. Straightforward calculations then show that 1

2r

´ �
�̂2

�dG (�) > C 0
(s2),

implying under provision of speed at the market equilibrium for venue 2.
Consider now the minimum speed. We start by computing the total derivative of the welfare

function 20 with respect to s1 at the market equilibrium.

dW
ds1

=

✓

1

2r

ˆ �̂2

�̂1

�dG (�)� C 0
(s1)

◆

+

✓

1

2r

ˆ �

�̂2

�dG (�)� C 0
(s2)

◆

S0
2 (s1)

� 1

2r

dd
ds1

✓

�̂1s1
@�̂1
@d

+ �̂2 (s2 � s1)
@�̂2
@d

◆

. (53)

We have shown above that bracketed expressions in the first two terms of equation 53 are positive,
and also that S0

2 (s1) > 0, thus the sum of the first two terms is positive. Consider the third term
of the RHS of equation 53. It is immediate from Proposition 2 that @�̂1

@d and @�̂2
@d are positive under

Assumption 4.4. Also notice that dd
ds1

=

S0
2(s1)�d

s1
. The revenue functions 37 and 38 are homogeneous

of degree one, implying that the marginal revenue functions are homogeneous of degree zero. By
Euler’s theorem then d = � @2⇡2

@s2@s1
/@2⇡2

@s22
, and S0

2 (s1) < d given equation 49, which yields dd
ds1

< 0.

We conclude that around the duopoly’s equilibrium dW
ds1

> 0.

B.6 Proof of Proposition 7.

The relationship between entry costs  and profits determines the number of active venues in
equilibrium. Let ⇡i ⌘ max

n

⇡prot
i ,⇡seg

i

o

and ⇡i ⌘ min

n

⇡prot
i ,⇡seg

i

o

. We analyze below the existence
of Nash equilibrium (NE) in pure strategies of the normal-form game shown in figure 8.

• Two-venues equilibriums. Suppose   ⇡1, By Proposition 2, we have that ⇡1 = ⇡seg
1 . It is

immediate then that entry is always optimal for the slow venue when   ⇡seg
1 and that, for

any ⇡seg
1 <   ⇡prot

1 , we have ⇡seg
1 �  < 0 and ⇡prot

1 �  � 0. A duopoly is never sustainable
whenever  > ⇡prot

1 .

• Single-venue equilibriums. Suppose ⇡prot
1 <   ⇡m

2 .

– Case 1: ⇡m
2 �  > ⇡m

1 . The only NE has the slow venue out and the fast venue entering,
with payoff ⇡m

2 .

– Case 2: ⇡1    ⇡2. In this case there is a single NE where only the fast venue enters.

– Case 3: ⇡2 <  < ⇡m
1 . There are two NE where only one venue enters, either the slow of

fast one.

– Case 4: ⇡2 <   min {⇡2,⇡
m
1 }. When ⇡|

2 = ⇡2, there is a single Nash equilibria where
only the fast venue enters. When ⇡|

2 = ⇡2, there are two NE where only one venue enters,
either the slow of fast one.
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• No-entry equilibrium. Whenever  > ⇡m
2 the only NE has both venues out. Q.E.D.

B.7 Proof of Proposition 8.

The welfare functions under monopoly and duopoly are given in Lemma 8. The welfare gain of
moving from a monopoly to a duopoly is therefore

�W1!2 =
s1
2r

ˆ �̂2

�̂1

�dG (�)� C (s1) +
s2
2r

ˆ �

�̂2

�dG (�)� C (s2)�
sm
2r

ˆ �

�̂
m

�dG (�) + C (sm)� .

On the other hand, entry is profitable for the slow venue if and only if ⇡1 > :

s1�̂1
2r

(G(�̂2)�G(�̂1)) > + C (s1) .

Excess entry happens if and only if ⇡1 >  and �W1!2 < 0 hold simultaneously. A necessary
condition for excess entry is therefore

s1
2r

ˆ �̂2

�̂1

�dG (�) +
s2
2r

ˆ �

�̂2

�dG (�)� C (s2)�
sm
2r

ˆ �

�̂
m

�dG (�) + C (sm) <
s1�̂1
2r

(G(�̂2)�G(�̂1))

which we can rewrite as

s1
2r

ˆ �̂2

�̂1

(� � �̂1) dG (�) +
s2
2r

ˆ �

�̂2

�dG (�)� sm
2r

ˆ �

�̂
m

�dG (�) < C (s2)� C (sm)

The first term is strictly positive. We know from Proposition 2 that �̂2 < �̂m and from Proposition
5 that s2 � sm, therefore the second term is also strictly positive. Finally, the term on the right
hand side goes to zero when the costs are small.

Q.E.D.

Appendix C Proofs of Lemmas

C.1 Proof of Lemma 2

To see the steady-state allocations, add (7) and (10) to get ↵�,� (1) = ↵�,+ (0). This immediately
implies ↵�,� (0) = ↵�,+ (1). Using (7), we obtain ↵�,+ (1) =

⇣

1 + 2

⇢
�

⌘

↵�,� (1). We can then solve

for the shares of each type ↵�,+ (1) =

1
4
�+2⇢
�+⇢ and ↵�,+ (0) =

1
4

�
�+⇢ . Notice also that the market

clearing condition among asset holders is simply ↵�,+ (1) + ↵�,� (1) = 1/2. Q.E.D.
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C.2 Proof of Lemma 3

In a frictionless competitive market we have maximum investor participation. Thus, the marginal
type is given by

G (�̂w)

1�G (�̂w)
=

1

2a
� 1,

and thus �̂w = G�1
(1� 2a). Using this fact and sw = 1 in 33 yields pw =

1
r

⇥

µ+G�1
(1� 2a)

⇤

.
Moreover, the instantaneous transaction rate becomes

Vw =

�

4

(1�G (�̂w)) =
�

2

a.

The expression Ww =

1
2r

´ �
G�1(1�2a) �dG (�) for welfare is obtained directly as a particular case of

Lemma 8. Q.E.D.

C.3 Proof of Lemma 7

First notice that W (�̂2, �̃2, s2)� q2 = W (�̂2, �̃1, s1)� q1 can be written as:

s2ā�̃2
r

+

s2
2r

(�̂2 � �̃2)� q2 =
s1ā�̃1
r

+

s1
2r

(�̂2 � �̃1)� q1.

Since q1 =

ās1�̃1
r , we get s2�s1

2r �̂2 = q2 � ās2�̃2
r +

s2�̃2�s1�̃1
2r . Using �̃2 = m�̃1, we get s2�s1

2r �̂2 =

q2 � q1

⇣

1
2ā � s2

s1
m
�

1
2ā � 1

�

⌘

where m ⌘
1+ �

r+⇢2
1+ �

r+⇢1

. Since s2
s1
m =

⇢2
⇢1

r+⇢1
r+⇢2

, we get

�̂2 =
2r

s2 � s1

⇣

q2 �
z

2ā
q1

⌘

where

z ⌘ 1�
1 +

r
⇢1

1 +

r
⇢2

(1� 2ā) .

Note that z is an increasing function of ā that satisfies z  1. When a ⇡ 0.5, we have z ⇡ 1, and
z ⇡ 2ā when r/⇢ is small (the realistic case). The profits of venue 1 are

⇡prot
1 = q1 (G (�̂2)�G (�̂1) + �1)

In the protected price equilibrium, firms therefore maximize

max

q2
⇡prot
2 = q2 (1�G (�̂2))

max

q1
⇡prot
1 =

q1
2ā

(1� 2ā+ 2āG (�̂2)�G (�̂1))
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The conditions @⇡prot

1
@q1

= 0 and @⇡prot

2
@q2

= 0 lead to

1�G (�̂2) = g (�̂2)

✓

�̂2 + z
s1

s2 � s1
�̂1

◆

1� 2ā+ 2āG (�̂2)�G (�̂1) =

✓

g (�̂1) + 2āz
s1

s2 � s1
g (�̂2)

◆

�̂1,

which, after using the definition of d, yields the system in Lemma 7. Q.E.D.

C.4 Proof of Lemma 8

The welfare formula in equation 20 reflects the joint trading surplus of investors. Transfers from
investors to venue owners do not represent net social gains.

Consider the segmented case first. The welfare of type � joining venue i is

Wi (�)�Wout =
si�̃ (pi, ⇢i)

r
ā+

si
2r

max (0;� � �̃ (pi, ⇢i)) ,

where the function �̃ is defined by

�̃ (p, ⇢) ⌘ r + ⇢+ �

r + ⇢
(rp� µ) .

The net value of participation, W �Wout, is composed of two parts. One is the option to sell the
asset on the exchange: sā�̃

r =

⇢
r+⇢

�

p� µ
r

�

ā. It is independent of �. It is the value that can be
achieved by all types � < �̃ with the “sell and leave” strategy. The term ⇢

r+⇢ captures the expected
trading delay . The second part, s

2r max (0;� � �̃), is the value of trading repeatedly and it depends
on the type �. This part of the value function is supermodular in (s,�).As explained in Proposition
1, when a “sell and leave” investor joins venue i her welfare gains W (�, �̂i, si)�Wout are independent
of her type and amount to siā�̃i/r. The mass of these investors equals

�

1
2ā � 1

�

(G (�̂2)�G (�̂1))

and
�

1
2ā � 1

�

(1�G (�̂2)) in venues 1 and 2, respectively. Thus, total social gains for this group are
given by

1

r

✓

1

2

� ā

◆

((G (�̂2)�G (�̂1)) s1�̃1 + (1�G (�̂2)) s2�̃2) (54)

The welfare gains of repeat traders investors are

s1

ˆ �̂2

�̂1

✓

ā�̃1
r

+

� � �̃1
2r

◆

dG (�) =

ˆ �̂2

�̂1

s1�

2r
dG (�)� (G (�̂2)�G (�̂1))

s1�̃1
r

✓

1

2

� ā

◆

(55)

s2

ˆ �̄

�̂2

✓

ā�̃2
r

� � � �̃2
2r

◆

dG (�) =

ˆ �̄

�̂2

s2�

2r
dG (�)� (1�G (�̂2))

s2�̃2
r

✓

1

2

� ā

◆

(56)

where for short we defined
�̃i ⌘ �̃ (pi, ⇢i) .
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Adding 54, 55 and 56, and subtracting speed investment costs yields total gains from trade:

W (2) =

s1
2r

ˆ �̂2

�̂1

�dG (�) +
s2
2r

ˆ �̄

�̂2

�dG (�)�
X

i=1,2

C (si)� 2.

The single venue expression in equation 34 is a particular case.
Consider now the case of price protection. In that case there is only one price so

Wi (�)�Wout =
si�̃ (p, ⇢i)

r
ā+

si
2r

max (0;� � �̃ (p, ⇢i)) .

All the temporary traders join market 1, therefore their utility is
✓

1

2

� ā

◆

(1�G (�̂1))
s1�̃1
r

For the repeat traders, we have as before

s1

ˆ �̂2

�̂1

✓

ā�̃1
r

+

� � �̃1
2r

◆

dG (�) =

ˆ �̂2

�̂1

s1�

2r
dG (�)� (G (�̂2)�G (�̂1))

s1�̃1
r

✓

1

2

� ā

◆

(57)

s2

ˆ �̄

�̂2

✓

ā�̃2
r

� � � �̃2
2r

◆

dG (�) =

ˆ �̄

�̂2

s2�

2r
dG (�)� (1�G (�̂2))

s2�̃2
r

✓

1

2

� ā

◆

(58)

Adding up, we get

ˆ �̂2

�̂1

s1�

2r
dG (�) +

ˆ �̄

�̂2

s2�

2r
dG (�)�

✓

1

2

� ā

◆

(1�G (�̂2))

✓

s2�̃2
r

� s1�̃1
r

◆

So the welfare
Wprot

(2) = W (2)�
✓

1

2

� ā

◆

(1�G (�̂2))

✓

s2�̃2
r

� s1�̃1
r

◆

,

and since ⇢
r+⇢ (rp� µ) = s (⇢) �̃, we can also write

Wprot
(2) = W (2)�

✓

1

2

� ā

◆

(1�G (�̂2))
⇣

p� µ

r

⌘

✓

⇢2
r + ⇢2

� ⇢1
r + ⇢1

◆

.

The welfare loss relative to the segmented case comes from the fact that temporary traders liquidate
their holdings more slowly since they only access the market via venue 1.

Q.E.D.

Appendix D Trading Fees

In this section we derive the equilibrium when venues charge a trading fee � per unit of trading.
We consider fees paid at execution (initiation/canceling fees yield similar results). The fee is paid
when the trade is executed. A seller effectively receives only p � � while a buyer effectively pays
p+ �. For ease of exposition, we highlight in red the trading fee.
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Trading fees create a new class of agents, between those who trade repeatedly and those who
sell and drop out. Formally, we have three regions:

1. If � � �̃, repeat trades

2. If � 2 (�̆, �̃), sell and drop out if ✏ = �1, but keep if ✏ = +1. This is the new “wait-to-sell”
strategy

3. If �  �̆, sell irrespective of ✏. This is the strategy in the case � = 0 that gives flat value
functions.

D.1 Value Functions

Repeat Traders

Consider the steady state value functions for any type � > �̃, i.e. for types that trade repeatedly
despite the fees. The value of the marginal type �̃ is affected by the trading fee, as explained below.
As before, define the value of ownership as I✏� ⌘ V�,✏ (1)� V�,✏ (0). We have

rV�,+ (0) =

�

2

[V�,� (0)� V�,+ (0)] + ⇢
�

I+� � p� �
�

rV�,� (1) = µ� � +

�

2

[V�,+ (1)� V�,� (1)] + ⇢
�

p� �� I��
�

The equations for V�,� (0) and V�,+ (1) are unchanged since these types do not trade. Therefore

rI�� = µ+ ⇢p� � +

�

2

�

I+� � I��
�

� ⇢
�

I�� + �
�

rI+� = µ+ ⇢p+ � � �

2

�

I+� � I��
�

� ⇢
�

I+� � �
�

The equilibrium gains from trade for type � in venue ⇢ become:

I+� � I�� = 2

� + ⇢�

r + � + ⇢
. (59)

Then we can solve

I�� =

µ+ ⇢p

r + ⇢
� � + ⇢�

r + � + ⇢

I+� =

µ+ ⇢p

r + ⇢
+

� + ⇢�

r + � + ⇢

The average value (across ✏) for types � � �̃ is therefore

¯V� (0) =
⇢

2r

�

I+� � p��
�

¯V� (1) =
µ

r
+

⇢

2r

�

p��� I��
�

(60)
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Marginal Type and ex-ante Value for Repeat Trades We define the marginal type �̃ as the
type who is indifferent between buying and not buying when ✏ = +1. The key Bellman equation is
that of V�,+ (0). The marginal type is then defined by I+�̃ = p+ �, therefore:

⇢

r + ⇢
(rp� µ) = s (�̃ � (r + �)�)

Let us now compute the ex ante value functions. For the marginal type �̃, we have the ex-ante
value function ˜W that solves:

˜W = ā ¯V�̃ (1) + (1� ā) ¯V�̃ (0) (61)

which, since ¯V�̃ (0) = 0, leads to

˜W (�) =
µā

r
+

ās

r
(�̃ � (r + �)�) .

For all types � > �̃, we obtain, taking the probabilistic allocation interpretation:

W (�, ⇢,�) = ā ¯V� (1) + (1� ā) ¯V� (0)

Using the Bellman equations, we get

W (�, ⇢,�) =
µā

r
+ ā

⇢

2r

�

2p� I�� � I+�
�

+

⇢

2r

�

I+� � p� �
�

=

µā

r
+ ā

⇢

r

rp� µ

r + ⇢
+

⇢

2r

✓

µ� rp

r + ⇢
+

� + ⇢�

r + � + ⇢
� �

◆

=

µā

r
+

ās

r
(�̃ (�)� (r + �)�) +

s

2r
(� � �̃ (�))

Notice that the value depends on the fee via � ⇢
2r

r+�
r+�+⇢�, which is the NPV of the fees paid by the

repeat traders. A convenient way to express the value function is

W (�, ⇢,�) = ˜W (�) +
s

2r
(� � �̃ (�)) for all� � �̃.

Infra-marginal types

Let us now consider types � < �̃. As before, they join the venue to sell but the key difference is
that they do not necessarily sell all the time. In fact, some sell only when ✏ = �1 and keep the
asset when ✏ = +1. That did not happen without trading fees, since in that case I+�̃ = p implied
V�̃,+,1 � V�̃,+,0 = p so type (�̃,+) was indifferent to buying starting from a = 0 and to selling
starting from a = 1. With trading fees, we have I+�̃ = p + �, so type type (�̃,+) is indifferent to
buying, but strictly prefers to keep the asset instead of selling it at price p��. This is the key point
of trading fees: there is now a difference between keeping the asset and buying the asset. Since the
types � < �̃ never want to buy, we have V (0) = 0.

One complication that arises here is that we cannot guarantee market clearing with a constant
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price without introducing a market maker. More precisely, if n investors join the exchange at
time 0, the gross demand for the asset is still n1�G(�̃)

2 but the gross supply is n (ā� ↵̆t) where
↵̆t is the number of traders with at = 1, ✏t = 1 and � 2 (�̆, �̃). We know that initially ↵̆0 =

nā
2 (G (�̃)�G (�̆)). But over time they sell and eventually ↵̆t ! 0. The long run market clearing is
1�G(�̃)

2 = ā but during the transition there is excess demand. Studying price dynamics in that case
is clearly beyond the scope of this paper, so we simply assume the presence of competitive market
makers who undo the temporary imbalance. Note that this is risk-less since the evolution of the
market imbalance is perfectly predictable.

Traders who sell irrespective of ✏. The value functions in this case are

rV�,� (1) = µ� � +

�

2

(V�,+ � V�,�) + ⇢ (p� �� V�,�)

rV�,+ (1) = µ+ � � �

2

(V�,+ � V�,�) + ⇢ (p� �� V�,+)

so
V�,+ (1)� V�,� (1) =

2�

r + � + ⇢

and
V�,+ (1) =

µ+ ⇢ (p� �)

r + ⇢
+

�

r + � + ⇢

and
V�,� (1) =

µ+ ⇢ (p� �)

r + ⇢
� �

r + � + ⇢

Define the marginal type �̆ who is indifferent to selling when ✏ = +1. It solves V�̆,+ (1) = p� � so

�̆ (�) =

✓

1 +

�

r + ⇢

◆

(r (p� �)� µ)

So that’s a curve in the (�, p) space that is parallel to the �̃ curve, but higher by �.
Types below �̆ sell irrespective of their types. On average this yields

V�,+ (1) + V�,� (1)

2

=

µ+ ⇢ (p� �)

r + ⇢

so since V (0) = 0, we have for �  �̆:

˘W (�) = ā ¯V� (1) = ā
µ+ ⇢ (p� �)

r + ⇢

= ā
µ

r
+ ā

⇢

r + ⇢

⇣

p� �� µ

r

⌘

= ā
µ

r
+ ās

�̆ (�)

r
.

Note that this is a flat value function. It does not depend on �.
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Wait-to-sell The types � 2 (�̆, �̃), sell if ✏ = �1, but keep if ✏ = +1. This is the new “wait to
sell” strategy. The Bellman equations are

r ˜V�,� (1) = µ� � +

�

2

⇣

˜V�,+ � ˜V�,�
⌘

+ ⇢
⇣

p� �� ˜V�,�
⌘

r ˜V�,+ (1) = µ+ � � �

2

⇣

˜V�,+ � ˜V�,�
⌘

+ ⇢ (0)

Let us define the value functions relative to the previous ones

˜V�,✏ = V�,✏ + x✏

Then we have

rx� = +

�

2

(x+ � x�)� ⇢x�

rx+ = ��

2

(x+ � x�) + ⇢ (V�,+ � p+ �)

so
x+ =

�
2x� + ⇢ (V�,+ � p+ �)

r + �
2

and
✓

r + ⇢+
�

2

r

r + �
2

◆

x� =

�

2

⇢ (V�,+ � p+ �)

r + �
2

or
x� =

�
2⇢ (V�,+ � p+ �)

r
�

r + � + ⇢+ ⇢ �
2r

�

so

rx� + rx+ = ⇢ (V�,+ � p+ �� x�)

= ⇢

 

V�,+ � p+ ��
�
2⇢ (V�,+ � p+ �)

r
�

r + � + ⇢+ ⇢ �
2r

�

!

x� + x+
2

=

⇢

2r

r + � + ⇢

r + � + ⇢+ ⇢ �
2r

(V�,+ � p+ �) .

Therefore

W (�, ⇢,�) = āE ˜V�,✏ (1)

=

˘W + ā
⇢

2r

r + � + ⇢

r + � + ⇢+ ⇢ �
2r

(V�,+ � p+ �)

=

˘W + ā
⇢

2r

r + � + ⇢

r + � + ⇢+ ⇢ �
2r

(V�,+ � p+ �)

Recall the definitions �̆ (�) = r+�+⇢
r+⇢ (r (p� �)� µ) and V�,+ =

µ+⇢(p��)
r+⇢ +

�
r+�+⇢ . Thus we have
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V�,+ � p+ � =

�

r + � + ⇢
+

µ� r (p� �)

r + ⇢
=

� � �̆ (�)

r + � + ⇢
.

And this leads to:
W (�, ⇢,�) = ˘W (�) +

ā⇢

2r

� � �̆ (�)

r + � + ⇢+ �⇢
2r

.

We can also summarize the dependence on � as

ā⇢

2r

r + �

r + � + ⇢+ �⇢
2r

�

Summary

The model with execution fee is characterized by:

1. Low types �  �̆ have average value

˘W (�̆) =
āµ

r
+

ās

r
�̆ (�)

where the marginal selling type is defined by V�̆,+ (1) = p� � as

�̆ (p,�) =

✓

1 +

�

r + ⇢

◆

(rp� µ� r�)

2. Wait to sell types � 2 [�̆, �̃] have value

W (�, �̆) = ˘W (�̆) + ā
s

2r + �s
(� � �̆)

3. Repeat traders � � �̃ where the marginal buying type is defined by I+�̃ = p+ � as

�̃ (p,�) =

✓

1 +

�

r + ⇢

◆

(rp� µ) + (r + �)�

with
˜W (p) =

āµ

r
+

ās

r
(�̃ � (r + �)�) =

āµ

r
+

ā

r

⇢

r + ⇢
(rp� µ)

have value
W (�, �̃,�) = ˜W (p) +

s

2r
(� � �̃ (�))

So the overall value function is

W (�, �̆, �̃,�) = ˘W (�̆) + ā
s

2r + �s
(� � �̆) I(�̆,�̃) +

n ās

r
(�̃ � �̆ � (r + �)�) +

s

2r
(� � �̃)

o

I���̃
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and note that the marginal types are both pinned down by the surplus price p � µ
r , so they are

related by:

�̆ = �̃ � (r + �)�� r

✓

1 +

�

r + ⇢

◆

�

�̆ = �̃ � 2r
⇢

r + ⇢

✓

1

s
+

�

2r

◆

�

As expected the gap between the marginal-repeat-trader type �̃ and the marginal-wait-to-sell type
�̆ increases with the trading fee �. Without trading fees, we recover our benchmark case where
there is only one marginal trading type since �̆ = �̃ when � = 0.

D.2 Venue’s Program

Suppose there is only one venue. The sequence of events and the structure of the equilibrium are
as follows:

1. The venue sets (q,�) and traders decide to join, or not. Traders above some cutoff �̂ enter.
So the mass of traders is 1�G (�̂).

2. Trading takes place. The assets migrate towards the high � types, while the low � one drop
out. There is a marginal trading type �̃ which must satisfy the market clearing condition

1�G (�̃) = 2ā (1�G (�̂)) .

This implies that, in equilibrium, �̃ is determined by �̂. The price p adjusts to ensure that �̃

is indeed the marginal trading type:

�̃ =

✓

1 +

�

r + ⇢

◆

(rp� µ) + (r + �)�

3. Given the price, we can solve for all the value functions. The free entry condition is then

W (�̂, ⇢,�) = Wout + q

Profits Investors above some cutoff �̂ decide to participate. They split between � temporary
traders and 1�G (�̃) repeat traders with

� =

✓

1

2ā
� 1

◆

(1�G (�̃))

Total profits of the exchange are

⇡TOT
= q (1�G (�̂)) + ⇡�
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Always sell

Wait-to-sell

Repeat trader
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(W �W
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� q)

��̆
�̃�̂

W �W
out

� q

Stay out Join and trade

Figure D3. Trading strategies and value functions with trading fees.
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where ⇡� denote the value of trading fees. These fees come from temporary and permanent traders.
There are � investors who only trade when their type is low. Let ⇡✏ be the value for the exchange
of trading fees paid by type ✏. We have

r⇡+
=

�

2

�

⇡� � ⇡+
�

r⇡�
=

�

2

�

⇡+ � ⇡��
+ ⇢

�

�� ⇡��

Therefore
r
�

⇡+
+ ⇡��

= ⇢
�

�� ⇡��

and ⇡+
=

⇢
r (�� ⇡�

)� ⇡�, so
�

r + � +

�

1 +

�
2r

�

⇢
�

⇡�
=

�

1 +

�
2r

�

⇢�, and ⇡+
+ ⇡�

=

⇢�
r

r+�
r+�+⇢+ �⇢

2r
.

The NPV is ⇡�
� = �ā⇡++⇡�

2 therefore

⇡�
� = �

ā⇢

2r

r + �

r + � + ⇢+ �⇢
2r

�

which corresponds to the NPV ā⇢
2r

r+�
r+�+⇢+ �⇢

2r
� paid by these wait-to-sell traders. Similarly, for the

permanent investors, we can see the value of the fees from the value function: ⇢
2r

r+�
r+�+⇢�. Therefore

the NPV of trading fees is
⇡�

= (1�G (�̃))
⇢

2r

r + �

r + � + ⇢
�+ ⇡�

�

and from the definition of �, we have

⇡�
= (1�G (�̃))

⇢

2r

✓

r + �

r + � + ⇢
+

✓

1

2

� ā

◆

r + �

r + � + ⇢+ �⇢
2r

◆

�

Total profits are then

⇡TOT
= (1�G (�̃))

 

q

2ā
+

⇢�

2r
(r + �)

 

1

r + � + ⇢
+

1
2 � ā

r + � + ⇢+ �⇢
2r

!!

⇡TOT
= (1�G (�̃))

✓

q

2ā
+

�

2r
(r + �)

✓

s+

✓

1

2

� ā

◆

s

1 +

�s
2r

◆◆

The indifference/participation condition for the marginal type �̂, assuming that �̂ 2 [�̆, �̃] is

˘W (�̆) + ā
s

2r + �s
(�̂ � �̆) = Wout + q

which implies
q =

ās

r
�̆ + ā

s

2r + �s
(�e � �̆)

Program The venue solves the following program:

max

q,�
⇡TOT ⌘ (1�G (�̃))

✓

q

2ā
+

�

2r
(r + �)

✓

s+

✓

1

2

� ā

◆

s

1 +

�s
2r

◆◆
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subject to

1�G (�̃) = 2ā (1�G (�̂))

�̆ = �̃ � 2r
⇢

r + ⇢

✓

1

s
+

�

2r

◆

�

q =

ās

r
�̆ +

ās

2r

1

1 +

�s
2r

(�̂ � �̆)

Let us first understand the tradeoff between q and �. Note that we can rewrite the last two
constraints as

�̆ = �̃ � 2r

s

⇢

r + ⇢

⇣

1 +

�s

2r

⌘

�

and
q =
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2r

�̂

1 +

�s
2r

+
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2r

✓

1 +

�s
r

1 +

�s
2r

◆

�̆

and combine them to get

q

ā
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s

r

�̂ +

�

1 +

�s
r

�

�̃

2 +

�s
r

�
⇣

1 +

�s

r

⌘ ⇢

r + ⇢
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This then implies that
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1�G (�̃)
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�s
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�s
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�
✓
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s
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◆
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2 +
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+ s�
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1 +
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1
2 � ā

1 +

�s
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This shows that, holding �̃ and �̂ constant, profits increase when � increases relative to q. In
other words, if we consider an iso-participation change in the composition of fees. Formally, keep
�̂ constant. From the first constraint, this means holding �̃ constant. Then consider how � and q
must change.

@�̆ = �2r

s

⇢

r + ⇢

⇣

1 +

�s

2r

⌘

@�

and

@q =

ās

2r

✓

2� 1

1 +

�s
2r

◆

@�̆

= �ā
⇣

1 +

�s

r

⌘ ⇢

r + ⇢
@�

Then profits actually increase if � goes up while q goes down. The intuition is that � allows for
better price discrimination. The repeat traders pay the fee repeatedly, while the temporary traders
pay the fee only once. Since the repeat traders value participation more, the trading fee is better
able to extract the surplus from the traders than the participation fee.
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However, notice two important points:

• This would not change our result that price protection increases the profits of the slow venue.

• The differences between � and q vanishes when ā is close to 1/2. Therefore our analysis of
endogenous speed is unchanged.

Appendix E Multivenue Traders

Let us now discuss the possibility that some traders might choose to pay both membership fees
and trade in both venues. To analyze this case, we need first to characterize the optimal trading
strategies in case a trader actually can trade in two venues. Let venue 1 be the slow venue, with the
low price p1 < p2, let us call the types that trade in both venues the multivenue traders (MVTs).
We consider the case ā = 1/2 for simplicity.

Bellman equations.

Suppose MVTs always send orders to both venues, and always trade when they get the chance. This
happens if and only if IMV

�,+ > p2 and p1 > IMV
�,� . In this case, the value functions are

rV MV
�,+ (0) =

�

2

⇥

V MV
�,� (0)� V MV

�,+ (0)

⇤

+ ⇢1
�

IMV
�,+ � p1

�

+ ⇢2
�

IMV
�,+ � p2

�

rV MV
�,� (1) = µ� � +

�

2

⇥

V MV
�,+ (1)� V MV

�,� (1)

⇤

+ ⇢1
�

p1 � IMV
�,�
�

+ ⇢2
�

p2 � IMV
�,�
�

and

rV MV
�,� (0) =

�

2

⇥

V MV
�,+ (0)� V MV

�,� (0)

⇤

rV MV
�,+ (1) = µ+ � +

�

2

⇥

V MV
�,� (1)� V MV

�,+ (1)

⇤

The key issue is whether MVTs send both buy and sell orders in both venues. This happens if
and only if IMV

�,+ > p2 and p1 > IMV
�,� , where the values of ownership are defined as before, and the

Bellman equations for MVT are equivalent to one venue with an average price pT =

⇢1p1+⇢2p2
⇢1+⇢2

and
a total speed ⇢| = ⇢1 + ⇢2. In particular the gains from trade are given by

IMV
�,+ � IMV

�,� =

2�

r + � + ⇢1 + ⇢2
.

There are two important points to understand. First, when MVTs always trade in both venues, the
equilibrium is the same as without MVTs because the MVTs submit the same numbers of buys and
sells in both venues. Asset allocations across venues do not change, p1 and p2 remain the same.

The second key point is that we must check that MVTs actually want to buy at the high price
and sell at the low price, rather than wait for a better deal. In other words, we must check that
IMV
�,+ > p2 and p1 > IMV

�,� . These conditions are equivalent to � > �MV
buy and � > �MV

sell , where we
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define two marginal types

�MV
buy

r + � + ⇢1 + ⇢2
= p2 �

µ+ ⇢1p1 + ⇢2p2
r + ⇢1 + ⇢2

and
�MV
sell

r + � + ⇢1 + ⇢2
=

µ+ ⇢1p1 + ⇢2p2
r + ⇢1 + ⇢2

� p1

Note in particular that we immediately obtain an upper bound for price dispersion:

p2 � p1 < IMV
�,+ � IMV

�,� =

2�MV

r + � + ⇢1 + ⇢2

This implies the following Lemma.

Lemma 11. The price difference cannot be higher than the gains from trade of the lowest MVTs.

Finally, we can solve for the marginal MVT, i.e. the type who is just indifferent between trading
only in venue 2 and trading in both venues. For this type, we must have

¯WMV (�̂MV )�W2 (�̂MV ) = q1

which, using the equilibrium conditions, we can write as

�̂MV ⌘
⇢1

r+⇢1
⇢1+⇢2

r+�+⇢1+⇢2
� ⇢2

r+�+⇢2

(rp1 � µ)

By definition, all types above �̂MV would like to become MVTs.
The possibility of MVTs is clearly interesting, especially for its implications on asset prices. For

the purpose of our model, however, they do not play a quantitatively important role. Using our
benchmark calibration, either for uniform or exponential distribution of types, we verify that, for
any �0 2

n

�̂MV ,�
MV
buy ,�MV

sell

o

, we have 1�G (�0
) ⇡ 0. Therefore, in our model, the equilibrium does

not change if we allow for MV trading.

Appendix F Details on the Calibration

We describe in this section the methodology to compute the values of �k and ck in the duopoly
case. Under a uniform distribution of types, and scaling the number of transactions by the number
of investors Nk, the duopoly volume formula becomes

Vk = Nk ⇥
�k
4



⇢1,k
�k + ⇢1,k

✓

�̂2,k � �̂1,k
�

◆

+

⇢2,k
�k + ⇢2,k

✓

1�
�̂2,k
�

◆�

. (62)
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Moreover, the results in Section 4 imply that �̂1 = � d�1
4d�1 , �̂2 = � 2d�1

4d�1 . Inserting these expressions
in equation 62 yields

Vk = Nk ⇥
�k
4

⇥
s2,k/s1,k

4

s2,k/s1,k � 1



⇢1,k
�k + ⇢1,k

+

2⇢2,k
�k + ⇢2,k

�

.

At this point we need to reintroduce the contact rates in order to back out �k. Let ⇢̃i,k denote the
stylized values for speed of venues i = 1, 2 in market k. We can then write

˜V (�k) = Nk ⇥
�k
4

⇥
⇢̃2,k (⇢̃1,k + �k + r)

4⇢̃2,k (⇢̃1,k + �k + r)� ⇢̃1,k (⇢̃2,k + �k + r)



⇢̃1,k
�k + ⇢̃1,k

+

2⇢̃2,k
�k + ⇢̃2,k

�

. (63)

Equation 63 makes it clear that, given a set of values for {r,Nk, ⇢̃1,k, ⇢̃2,k}, there is a mapping from
�k to trading volume ˜V . Given an empirical volume observation Vk, the value of �k is found by
solving ˜V (�k) = Vk.

The next question, of course, is whether the model can predict the correct values of ⇢̃1,k and
⇢̃2,k. To calibrate ck we simply use the first order conditions for speed. In the monopoly case there
is only one condition. In the duopoly case we use the fast venue FOC because it is by far the most
important in terms of welfare. It is also likely to be more precisely measured in the data. We can
then compare the predicted ⇢ with the stylized ⇢̃. This is what we do in Table III. Notice that ⇢2

and ⇢m are quite similar.

Appendix G Analysis of a Constrained Planner

We have seen in Section 3 the solution to the unconstrained planner problem. A more interesting
case is when external subsidies are ruled out. The planner can still decide entry, speed, and pricing
but we require that trading venues break even.

Let us first perform the analysis for a given value of s1. The program is

max

s2,q1,q2
W,

subject to the break-even constraint

q2 (1�G (�̂2)) � C (s2) .

Interestingly, we find that the planner still chooses a single venue.

Lemma 12. The Planner subject to break-even constraints chooses one venue with higher partici-
pation than under monopoly.55

55When the break-even constraint binds, it is possible for the planner to choose a lower trading speed than the
unconstrained monopolist. We provide an example in the Appendix. Intuitively, when the distribution of permanent
types has a fat right tail, the monopolist might choose to target investors with high private gains from trade, offering
a high-speed–high-price package. The planner may prefer to include the “middle class” of investors even if that means
a lower speed because of the break-even constraint. Note that in this case the planner trades off speed against
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With financing constraints one might expect the planner to create two trading venues. It could
potentially relax the break-even constraints by charging a high price for the fast venue while main-
taining participation in the slower, but cheaper, venue. Surprisingly, however, we find that the
planner chooses not to do so. To understand the intuition, it is better to think of �̂1 and �̂2 as
control variables instead of q1 and q2. We show in the appendix that the Lagrangian of the planner’s
problem is

L (s) = s1

ˆ �

�̂1

�dG (�) + (s� s1)

ˆ �

�̂2

�dG (�)� 2rC (s)

+ � {((s� s1) �̂2 + s1�1) (1�G (�̂2))� 2rC (s)}

where � is the multiplier of the budget constraint of the fast venue, and we have replaced q2 =

(s� s1) �̂2+s1�̂1. The welfare cost of raising �̂1 is s1�̂1g (�̂1), and the financing gain is �s1 (1�G (�̂2)).
It is simple to show that the ratio of gains to costs is always higher for �̂1 than for �̂12. This implies
that the planner chooses to increase �̂1 until it reaches �̂2. In other words, the slow venue is always
inactive. Note that the planner chooses a single venue for investors, even when there are no concerns
of cost duplication (the result holds for  = 0).

Obviously the result is the same if the planner also chooses s1, and it extends to the case where
prices in the venues can be consolidated.

Proof. In general, the objective function of the planner is

max

s2,q1,q2

s1
2r

ˆ �̂2

�1

�dG (�) +
s2
2r

ˆ �

�̂2

�dG (�)� C (s2)

and the marginal types are given by 24 and 26, so we have

q1 = s1
�̂1
2r

,

q2 = (s2 � s1)
�̂2
2r

+ q1.

The break-even constraint is q2 (1�G (�̂2)) � C (s2), so the Lagrangian (scaled by 2r) is

L = s1

ˆ �

�1

�dG (�)+(s� s1)

ˆ �

�2

�dG (�)�2rC (s)+� {((s� s1)�2 + s1�1) (1�G (�2))� 2rC (s)}

and the FOCs of the planner problem are

�⇤
1g (�

⇤
1) = � (1�G (�⇤

2)) ,

�⇤
2g (�

⇤
2) =

�

1 + �

✓

1�G (�⇤
2)�

s1
s� s1

g (�⇤
2)�

⇤
1

◆

.

participation. For a given participation, the planner always favors higher speed.
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Optimal speed satisfies

2rC 0
(s⇤) =

1

1 + �

ˆ �

�⇤
2

�dG (�) +
�

1 + �
(1�G (�⇤

2))�
⇤
2,

and the break-even constraint is simply 2rC (s⇤) = (1�G (�2)) ((s� s1)�
⇤
2 + s1�

⇤
1). From the first

two FOCs it is immediate that �⇤
1g (�

⇤
1) > �⇤

2g (�
⇤
2). From the second-order conditions we know

that �g (�) is increasing in � (at the optimum values). Therefore �⇤
1 > �⇤

2, which is inconsistent
with our assumption that venue 1 is active. We conclude that there must be a single venue.

This result can be extended to the case where the planner operates the two venues with one
budget constraint. In this case, the constraint is (G (�̂2)�G (�̂1)) q1+(1�G (�̂2)) q2 > C (s2) and
the Lagrangian is

L = s1

ˆ �

�1

�dG (�)+(s� s1)

ˆ �

�2

�dG (�)�2rC (s)+� ((1�G (�1)) s1�1 + (1�G (�2)) (s� s1)�2 � 2rC (s))

and the FOCs for affiliations are

1�G (�⇤
1) = g (�⇤

1)
1 + �

�
�⇤
1

1�G (�⇤
2) = g (�⇤

2)
1 + �

�
�⇤
2

Optimal speed satisfies the same equation as before. In this case, we see that �⇤
1 = �⇤

2, venue 1 is
still inactive.

With one venue, the Lagrangian of the planner is

L = s

ˆ �

�̂
�dG (�)� 2rC (s) + � (s�̂ (1�G (�̂))� 2rC (s))

From the previous section, it is immediate that

1�G (�⇤
) = g (�⇤

)

1 + �

�
�⇤
1

Since the monopoly solution is 1�G(�
m

)
g(�

m

) = �m, it is clear that �m > �⇤. Regarding speed, the
planner chooses

2rC 0
(s⇤) =

1

1 + �

ˆ �

�⇤
�dG (�) +

�

1 + �
(1�G (�⇤

))�⇤,

while the monopoly chooses 2r @C
@s (sm) = (1�G (�m))�m. If � = 0, it is clear that s⇤ > sm, as

expected. However, when the break-even constraint binds, the comparison is ambiguous, as shown
in the following example.

Example 1. Case where sm > s⇤

We provide a simple example to show that it is indeed possible for the monopoly to choose a
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higher speed that the planner. Consider a binary distribution. High �H
= �̄ with population share

n. Low sigma �L
= ↵�̄ with ↵ < 1 and population share 1 � n. Cost function 2rC =

c
2s

2. The
marginal price is qi = ⇢�i. The monopoly has two choices:

• Set price to ⇢↵�̄, get everyone to participate, then ⇡ = ⇢↵�̄ � c (s).

• Set high price ⇢�̄, only high types participate, then ⇡ = ⇢n�̄ � c (s).

The monopoly chooses high speed low participation if and only if n > ↵. The speed choice is
max (n,↵) �̄/c.

The Planner has two main choices. If all participate W = ⇢�̄ ((1� n)↵+ n) � c (s). Then it
depends on whether the break-even constraint binds. If it does not, then the planner chooses a
higher speed than any monopoly: s⇤ =

�̄((1�n)↵+n)
c . The break-even constraint binds if s⇤↵�̄ <

c (s⇤), which is equivalent to cs > 2↵�̄ , (1� n)↵ + n > 2↵ , ↵ < n (1� ↵). The planner
can still choose full participation, but at limit price c (s) = s↵�̄ , s =

2↵�̄
c . Then welfare is

W = s�̄n (1� ↵) = 2
c (�̄)

2 n↵ (1� ↵).
The other choice for the planner is that only high type participate. This is same program

as monopoly. Speed choice is n�̄/c. Welfare is 1
2c (n�̄)

2. The Planner chooses low speed high
participation if and only if 2

c (�̄)
2 n↵ (1� ↵) > 1

2c (n�̄)
2 or 4↵ (1� ↵) > n.

To summarize, for the planner to choose lower speed than monopoly, we need: (i) n > ↵

so monopoly goes for high speed low participation; (ii) 4↵ (1� ↵) > n so planner chooses high
participation; (iii) ↵ < n (1� ↵) so break-even violated; and (iv) n�̄/c > 2↵�̄

c , n > 2↵ so
monopoly speed indeed higher. It is easy to see that (i) is not binding. So we have the three
following conditions

1. 4↵ (1� ↵) > n

2. ↵ < n
1+n

3. n > 2↵

Take n = 1/4 then we need ↵ < 1/8 for third, second is not binding, and it is easy to find a solution
for the first. Q.E.D.
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