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Abstract

We analyze trading speed and fragmentation in asset markets. Trading venues make technolog-
ical investments and compete for investors who choose where and how much to trade. Faster
venues charge higher fees and attract speed-sensitive investors. Competition among venues
increases investor participation, trading volumes, and allocative & ciency but entry and frag-
mentation can be excessive, and speeds are Ineient. Regulations that protect transaction
prices (e.g., Securities and Exchange Commission trade-through rule) lead to greater fragmen-
tation and faster speeds but may reduce allocative ke ciency. Our model sheds light on the
experience of European and U.S. markets since the implementation of Markets in Financial
Instruments Directive and Regulation National Markets System.
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1 Introduction

The securities exchange industry has been deeply transformed over the past decade. The speed at
which investors trade has dramatically increased and trading, particularly in the United States and
Europe, has become more fragmented. These transformations are the subject of heated debates in
academic and policy circles. To shed light on these issues, our paper provides a joint analysis of
trading speed, trading regulations, and market fragmentation.

Figure 1 provides an overview of the trading landscape. In recent years, and especially since the
second half of the 2000s, major market centers have made costly investments in trading platforms
and infrastructure to reduce order execution and communication latencies, in many cases to subhu-
man (OmachineO) speeds. This process has gone beyond stock exchanges to include futures, options,
and currencies, and beyond the U.S. and Europe, to include virtually all global Pnancial hubs. On
the other hand, trading speeds vary greatly across markets and much trading still relies on human
input. For instance, as explained in the Appendix! electronic trading covered only 21% of the
corporate bond market in 2014, while voice trading covered the remaining 79%. It is important to
keep in mind that high-frequency trading (HFT) is not the norm in most markets.

The second major feature of the new trading landscape is fragmentation, illustrated by Figure
2. Traditional markets such as the London Stock Exchange (right panel) have lost market share to
faster entrants such as Chi-X. The left panel shows an even more dramatic evolution: The fraction
of NYSE-listed stocks traded at the NYSE decreased from 80% in 2004 to just over 20% in 2009.
Most of the lost trading volume has been captured by new entrants (e.g., Direct Edge and BATS).
Overall, fragmentation has increased so dramatically that market participants now keep track of
fragmentation indexes across asset classes and countrfes.

Market regulators have not been passive withesses to this process. In the U.S., policy makers
have encouraged fragmentation to reduce the market power of trading venues, prominently with
the Regulation of Exchange and Alternative Trading Systems Reg ATS) and Regulation National
Market System (Reg NMS). For example, the U.S. Securities and Exchange Commission (SEC,
2010 states:

Mandating the consolidation of order Bow in a single venue would create a monopoly
and thereby lose the important benebts of competition among markets. The benebts of
such competition include incentives for trading centers to create new products, provide
high quality trading services that meet the needs of investors, and keep trading fees low.

Encouraged by the recent U.S. experience, many other economies have started promoting compe-
tition between market centers. In Europe, for example, a transformative role was played by the
Markets in Financial Instruments Directive (MiFID ).

The €l ects are tangible: Large-cap stocks that previously traded in one or two venues are now
traded in almost 50 venues, including internalization pools and over-the-counter (OTC) venues.

YIn Appendix A, we further discuss speed investments and provide a historical perspective.
2See, for example, theFidessa fragmentation indexes.


https://www.sec.gov/rules/final/34-40760.txt
http://www.sec.gov/rules/final/34-51808fr.pdf
http://ec.europa.eu/finance/securities/isd/mifid/index_en.htm
http://fragmentation.fidessa.com
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Figure 1. Assets classes and trading speeds.

Concerns about adverse leects of trading price fragmentation, in turn, motivated regulators to

design rules that promote investor order price protection.

In the U.S., this notion of investor

protection is implemented by the trade-through rule provided by Rule 611 of Reg NMS, which
essentially requires that any venue execute its trades at the national best bid and!@r quotes,
thereby consolidating prices from scattered trading.

Our goal is to analyze competition among trading venues, and how it laects the provision of
high-quality trading services. To be concrete, we refer to the quality of these services as speed,
but with a broad interpretation: By speedwe mean a feature that reduces the time between the
occurrence of a desire to trade and the execution of the trade. This notion includes not only
communication latencies, but also all technological innovations that make trading more convenient
and more reliable, such as'ecient data feeds, user-friendly software and reliable hardwaré.

With this debnition in mind, we examine the following questions. Why do venues compete

on speed?

Is there a relation between the increase in trading speeds and the level of market

fragmentation? What are the consequences of these changes? Does fragmentation achieve policy
makersO goals? Should price protection be fostered in the brst place? We argue that technological
advances, competition in the securities exchange industry, and market regulations interact with

%In addition to collecting evidence on speed investments and trade fragmentation, to better understand some of
the relevant features of the trading landscape, we have also conducted informal interviews with traders in di " erent
markets. In addition to pure speed, most traders emphasize convenience and reliability. This is a natural interpreta-
tion of the model, since all these factors a' ect the total expected time and e" ort between the decision to trade and
the execution of the trade. When we use the term speedit is with this broad interpretation in mind.
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Figure 2. Equity market volume fragmentation by listing venue: NYSE, NASDAQ, and the London
Stock Exchange (LSE). Source: Barclays Capital Equity Research.

each other to shape the trading landscape, asset prices, investor participation, and, ultimately,
social welfare. We start from the idea that speed has (at least) two important features. First, it
allows investors to realize higher gains from trade. Second, investors do not value speed equally.
Speed therefore allows venues to derentiate their intermediation services vertically by catering to

di! erent clienteles, which can relax price competition.

Analysis of these issues is dicult because it requires modeling four separate components: (i)
why and how investors value trading speed, (ii) how dierences in speed!aect competition among
trading venues and the & liation choices of investors, (iii) how trading regulations d ect (i) and
(i), and (iv) how these choices & ect investment in speed and equilibrium fragmentation. These
requirements explain our modeling choices and the structure of our paper.

Our abstract model is meant to capture various assets classes and investors. At the slow end of
the spectrum, retail investors have access to several types of brokerage accounts. Brokers invest in
information technology to allow investors to trade more easily. Brokers compete in fees as well as
in the speed and the convenience of their trading systenfs.Banks and brokers also ber trading
platforms to their institutional clients. These are typically faster and more expensive. Venues can
be interpreted as exchanges, trading platforms, or dealer networks. Our framework relies on three
key assumptions: (i) Agents anticipate random trading needs, (ii) venues make costly investments
to allow for easier/faster trading, and (iii) these investments allow exchanges to cater to dlierent
investors by d ering di! erent speeds/convenience levefs.

We start by providing the explicit microfoundation of how investors value speed in Pnancial
markets. We consider a dynamic inbnite-horizon model where heterogeneous investors buy and sell

4Some of the costs are bxed (as in opening an account) and some are on a per-trade basis. Our benchmark model
emphasizes bxed costs. We analyze trading costs in an extension of the model. Speed can also refer to the frequency
at which prices quotes are refreshed. For U.S. equities, anyone with access to the internet can obtain free quotes
with a few minutes® delay. One must pay for a subscription to receive faster updates. Biais, Hombert, and Weill
(2014) propose an interpretation in which traders have continuous access to the market but are uncertain about the
preferences of their institutions. In that case, speed is related to the Row of information before trades happen. All
these interpretations are broadly consistent with the structure of our model.

5One can also interpret OTC (0 " -exchange) stock trading as a group of slow venues. This group includes dark
pools, internalization pools, OTC dealers, and crossing networks. It currently represents between one-fourth and
one-third of the U.S. stock trading volume.



a single security. Ex post gains from trade arise from shocks to the marginal utility (or marginal
cost) of holding the asset? HighPmarginal-utility investors are natural buyers, while lowbmarginal-
utility investors are natural sellers of the asset. In this model, speed allows investors to realize a
larger fraction of potential gains from trade (see Propositionl).

Our brst contribution is to characterize the pricing decisions and equilibrium probts of trading
venues, together with the participation and &' liation choices of investors. To do so, we model ex
ante heterogeneity among venues and investors. Venues! @i in their trading speeds and compete
in prices. Investors di er by the volatility of their private value processes. We show that investors
with high expected volatility attach higher value to speed. We characterize an equilibrium with
one venue (monopoly), and an equilibrium with two venues with di erent speeds (dierentiated
duopoly). Competition leads to lower fees and greater investor participation. Faster venues charge
higher prices and attract speed-sensitive investors (see Propositidl).

Our second contribution is to analyze the impact of trading regulations aimed at protecting
investor prices. We propose a stylized analysis of such regulations by considering two polar cases.
In one case, which we refer to as segmentation, a venue does not execute the trades of investors
from another venue. The markets are kectively segmented and trades occur at diierent prices. The
other case corresponds trice protection where investors have two Ogates of entryO to a single asset
market with a unique price.” We bnd that price protection acts as a subsidy for the relatively slow
venue. At the trading stage, investors in the slow venue enjoy the ability to trade with investors
from the fast venue. Anticipating this, they are more willing to join the slow venue under integration
than under segmentation. We explain how integration & ects ex ante competition among venues
(see Propositions2 and 7), as well as ex post trading. We bnd that price protection encourages
entry and that fragmentation leads to greater investment in trading technologies and thus faster
trading speeds. To the best of our knowledge, ours is the brst formal analysis of this isstie.

The predictions of the model appear broadly consistent with recent U.S. experience. After the
implementation of Reg NMS, new market centers proliferated and trading speed increased rapidly
(see Propositions4, 5, and 7). Our model 0! ers a natural interpretation of these two phenomena.

Finally, we provide a welfare analysis of entry, speed, and investor protection. Our model allows
us to answer three important questions: When does competition increase welfare? When does
investment in trading speed increase welfare? Is price protection socially optimal? We Pnd that the
market outcome is generally iné cient, but the ine" ciencies play out dl erently, depending on the
market structure. Participation is always too low under monopoly and competition among venues

5As is well understood in the literature, these shocks can capture liquidity demand (i.e., the need for cash),
Pnancing costs, hedging demand, portfolio rebalancing, or any other personal use of assets, including specibc arbitrage
opportunities (for a discussion see Du! e, Garleanu, and Pedersen(2007). The important point is that these shocks
a" ect the private value of an asset, not its common value. The shocks therefore generate gains from trade that are a
required building block of any trading model.

"We consider only the two polar cases of segmentation and integration. When we conduct policy experiments,
we consider the case in which integration is mandated by regulation using a price protection rule. For simplicity, we
do not consider intermediate cases with imperfect arbitrage between markets.

8At the time of writing, the SEC requested its Equity Market Structure Advisory Committee  to assess the
€" ectiveness of the trade-through rule ( Rule 611 of SEC Regulation NMS).
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increases participation. On the other hand, speed dierentiation relaxes price competition. The
slow venue chooses a speed that is too low in terms of both allocativé eiency and in terms of ex
post competition. A regulator would Pnd it optimal to impose a minimum speed requirement but
not a maximum speed limit.

Regarding entry, there is tension between business stealing on the one hand and competition and
product diversity on the other. Diversity is always good in models of horizontal di erentiation but
not necessarily so in models of vertical dierentiation such as ours. The familiar excess entry theorem
of Mankiw and Whinston (1989 cannot be used in our environment. The welfare consequences of
entry and di! erentiation depend on the venuesO incentives to invest in their trading technologies.

The welfare consequences of price protection depend crucially on its impact on entry decisions.
When protection increases entry, it typically has a brst-order positive impact on welfare. There is a
range of economies where entry costs are intermediate and only one venue can enter probtably in the
segmented market equilibrium. In such cases, the implicit subsidy embedded in price protection can
allow entry by a slower venue, stimulate competition, and result in higher investor participation and
greater allocative € ciency. When price protection does not increase entry, on the other hand, it
typically has a small negative impact on welfare because it dampens price competition and decreases
allocative €' ciency. In all these calculations, the endogenous"diation decisions of investors play
a crucial role.

Literature Review. Our paper relates to several strands of the literature in economics and p-
nance. Early theoretical analyses of fragmentation include those dflendelson (1987 and Pagano
(1989. These static models focus on the tradelo between liquidity externalities, market power, and
trading costs.” This tension was of the brst order of importance when dierent market places were
not as integrated as they are nowadays. Venues can!dérentiate in areas other than speed. For
example, Santos and Scheinkmar(200]) study competition in margin requirements, and Foucault
and Parlour (2004 study competition in listing fees. These papers do not analyze speed!diren-
tiation and thus justiPably consider static frameworks. Our focus on technological speed ref3ects
its prominent role in modern asset markets and its direct relation with secondary market liquidity
and explains our @ ort in developing a suitable dynamic model where speed plays an explicit role.
We also provide, to the best of our knowledge, the brst equilibrium analysis of price protection on
market structure and welfare.

Our trading model builds on the recent literature that models dynamic trading with friction,
spurred by Du" e, Garleanu, and Pederser{2005, and is closest to that of to that of Lagos and
Rocheteau (2009 LR09 hereafter)!® We follow these models in that investors valuation change

9The literature that analyzes fragmented trading contains several additional themes. Biais (1993, Glosten (1994),
Hendershott and Mendelson (2000, Parlour and Seppi (2003), and Rust and Hall (2003 study competition between
markets with di " erent trading rules. More recently, Colliard and Foucault (2012 study the e" ect of trading fees
in a context where an exchange competes with an OTC dealer. Chowdhry and Nanda (1991), Madhavan (1995
and Baruch, Karolyi, and Lemmon (2007), in turn, analyze information transmission with multiple venues. For a
textbook analysis, see Chapter 26 ofHarris (2003).

OWeill (2007) uses a related framework to analyze market making in exchanges. Vayanos and Wang (2007) and



randomly. We do not, however, encompass all trading mechanisms. In contrast tbu" e et al.
(2005, we do not model decentralized OTC trades through random search, a specibc matching
function, and a bargaining game. We do not model a limit order market as ddiais, Hombert, and
Weill (2014. For tractability and cleanness of analysis, we adopt instead a (frictional) Walrasian
clearing protocol, as do LR09 andG%.rleany(2009. We seek to capture dl erent trading frictions
that a! ect the search for liquidity in a stylized fashion, by introducing a random delay in the
execution of a trade. A distinctive feature of our model is that the distribution of such delays
arises endogenously and is explicitly laected by the nature of the competition among venues. More
broadly, our work contributes to this literature by endogenizing the market design, thus analyzing
a Omarket for markets.O That is, by simultaneously studying interactions between strategic trading
venues and investor & liation and trading decisions, we are able to explicitly study how (i) the entry
of trading venues, (ii) speed investments, (iii) participation levels, and (iv) investor protection d ect
market dynamics and welfare.Pagnotta (2014 develops an analysis of the pricing implications.

Our work complements the recent literature that analyzes HFT (e.g.,Ast-sahalia and Saglam
(2013, Budish, Cramton, and Shim (2013, Foucault, Hombert, and Rosu (2013, Biais, Foucault,
and Moinas (2019). The literature models the speed-related advantages that some traders have
over others by introducing a form of (typically short-lived) asymmetric information. Although we do
not analyze asymmetric information explicitly, we provide a OmacroO building block where positive
and normative issues related to investors with dierent speed capacities can be analyzed.

In the industrial organization literature, Mussa and Roser{1978, Gabszewicz and Thiss€1979,
and Shaked and Sutton (982 1983 pioneered the analysis of vertically di erentiated oligopolies.
Our framework enriches the classical environment by having agents consuming a!drentiated
product brst (liquidity), and a homogeneous product (the asset itself) second. Consequently, we
can endogenize the value of quality (trading delays here) through a micro-founded trading game.
This approach allows us to study, among other things, how trading regulations 'aect the market
design.

The remainder of the paper is organized as follows. Sectioh presents our benchmark trading
model and derives the value functions of investors. Sectios analyzes competition among trading
venues with and without price protection. Section5 analyzes trading venuesO investment in speed.
Section 6 analyzes entry. Section7 develops a quantitative version of the model and discusses the
impact of several market interventions. Section8 concludes the paper.

2 Trading Model

The structure of our paper is depicted in Figure3. This section analyzes the trading stage. It
provides the explicit microfoundation of how investors value speed in Pnancial markets. We present
our trading model and analyze the equilibrium in one venue. The key result of this section is a
characterization of value functions as a function of speed and investor characteristics.

Weill (2008) study the concentration of liquidity across assets instead of venues. Many additional contributions are
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Figure 3. Timing and structure of the model

2.1 Preferences and Technology

We start by describing the main building blocks of our model: investor preferences and trading
technology. Preferences need to incorporate heterogeneity to create gains from trade as well as
interesting participation decisions among venues. The trading technology must capture the role of
speed in Pnancial markets.

Time is continuous and we set a probability space. The model has a continuum of heterogeneous
investors, two goods, and one asset. The measure of investors is normalized to one and their
preferences are quasilinear. The numZraire good (cash) has a constant marginal utility normalized
to one and can be freely invested at the constant rate of returrm. The asset is in bxed supplya,
which is also the (expected) endowment of each investor. We restrict asset holdings & # [0, 1].
One unit of asset pays a constant dividend equal tqu of a perishable non-tradable good. The Bow
utility that an investor derives from holding a; units of the asset at timet is

@)=+ ") a,

where (!, ") denotes the type of investor. This type is dePned by a bPxed componehtand a time-
varying (random) component”;. The bxed component # [0, ) is known at time 0 and distributed
according to the twice-dil erentiable cumulative distribution G, with a log-concave density function
g that is positive everywhere. The type"; # {$1,+1} changes randomly over time. The times
when a change can occur are distributed exponentially with paramete#. Conditional on a change,
" is I.i.d. and each value has equal probability.

As explained in the introduction, the "-shocks can capture time-varying liquidity demands,
Pnancing costs, hedging demands, specibc investment opportunities, and specibc requirements such
as margins. For instance, a portfolio manager may need to buy and sell to meet inf3ows and out3ows
from investors. Traders may need to rebalance their portfolios to track their benchmarks. Corporate
investors may need to sell their Pnancial assets to Pnance real investments. Household may do the
same for purchases of a durable good or a house. The parametethen simply measures the size of
these shocks. In the context of delegated management, the shock represents the sum of the shocks
al ecting all the investors in a given fund or brokerage house. The parametdt measures the mean

surveyed by Lagos, Rocheteau, and Wright (2014).



reversion of the utility Bow process and is assumed, for simplicity, to be the same for all investors.

Our paper focuses on the trading technology for the asset. For clarity, we describe here the
case in which all investors trade at the same speed (later, we endogenize speed choices and consider
venues with dil erent speeds). The venue where investors trade the asset is characterized by the
constant contact rate $. Conditional on being in contact, the market is Walrasian and clears at
price p;.*? Any investor in contact with the venue at time t can trade at the pricep;. Investors who
are not in contact simply keep their holdings constant.

Our assumptions about technology and preferences imply that the value function of a clags-
investor with current valuation "g and current asset holdingsa at time t is

'o
' T
Vin@)=E € Yu . (ds+e TV ar T sprarsa) , @
t
where the realization of the random type at times >t is"s and T denotes the next time the investor
makes contact with the venue. Expectations are debned over the random variablds and " and
are conditional on the current type "; and the speed of the venué.

2.2 Trading Equilibrium

We show that the asset price remains constant during the trading game. The value functions are
thus time independent. Letting a'!',-- denote the optimal choice of asset holding for type(!,"),
equation (1) becomes simply

#

Ve (@)= us @+ 5 V(@ $ Ve @)+ sNe @S Ve @S pEsa . @

Following LR0O9, we debne the adjusted holding utility as

$ %
(r+$u @)+ #E u ~(a) "

al,") %
o(a;!,") % R

LRO9 (see Lemma 1 there) show thaw is the object that investors _seek to mg/ximize when deciding
0

how much to trade. Note that since" is i.i.d. with mean zero,E u, - (a) |" = pa for any a and
any ". This expected utility over "# does not depend ol or ". This result implies that
& L}
r+$

W(a;!,"): l..l+ !"m

“we introduce heterogeneity in | and notin " because the key point in our analysis is the link between gains from
trade and speed. It is important to understand that a higher value of " implies lower gains from trade. Investors
with a high value of " are not eager to trade, since they can simply wait for their type to mean-revert. In particular,

a high value of " would not capture, per se, the idea of Reeting trading opportunities. This idea is better captured
by a high value of ! .

121t would be straightforward to add bargaining with market makers and bid-ask spreads, but this would not
bring new insights compared to the results of Du! e, Garleanu, and Pedersen(2005 and LR09. For simplicity, we
therefore assume competitive trading conditional on being in contact with the venue. A similar market mechanism
is considered in the monetary economy of Rocheteau and Wright (2005 (which they label competitive equilibrium).



Recall that G is the ex ante distribution of permanent types. Let@ be the distribution of types in
the venue The total number of traders who join the venue isn and @ is a cumulative distribution
function. If all potential investors join the venue, we simply haven =1 and @ = G. In the generic
case, however, we have® & G since some investors do not participate. Indeed, we shall see that,
in the multiple-venue model, the distribution @ is typically discontinuous. We therefore present our
results without placing any restrictions on the function @.

Lemma 1. An equilibrium with constant price p is characterized by the demand functions
a (p;!,") =argmax {@(a;! ") $ rpa} (3)

and the market clearing condition

oA (g,
| 2

"=t

d8 () = a. (4)

Proof. See Proposition 1 of LR09. The proposition only needs to be adapted to take into account
heterogeneity in! . Note that we assume" = + 1 with probability ¥ 2. Q.E.D.

There is clear symmetry arounda = ¥ 2 since half the investors are of trading type" = +1 and
half are of trading type " = $ 1. It is therefore su' cient to analyze a market wherea & 1/ 2. In this
case, supply is short and low- types always sell their entire holdings when they contact the venue.
Moreover, there is amarginal buyer, that is, a type k, that is indi! erent between buying and not
buying when" = 1. This marginal trading type is debned by

r+$+#
L 0 -
E(p.$) % T3 (rp$ ). (5
The demand function is thereforea’ =1 when"=+1 and! ' k. Itis a =0 in all other cases.

We can use these demand curves to rewrite the market clearing condition. All negative trading
types " = $1 want to hold a =0 and they represent half of the traders. The trading types" = +1
want to hold one unit if I > & and nothing if ! < k. The demand for the asset is/2(@ () $ @ (+)).
The ex ante supply of the asset (per capita) i®s. The market clearing condition is therefore

1$ Q(+) .

- ®)

Note that the asset holdings of types! < k are nonstationary, since they never purchase the asset.
They sell their holding & on brst contact with the venue and never trade again. The fact that they
stop trading is really just a consequence of linear preferences. With curvature in the utility function,
low-! types would trade repeatedly, but in smaller quantities. The only important point is that
they trade less than the high! types. We call the traders with ! < & light traders, and traders
with | < k& repeat or heavy traders’®

13 Alternatively, we could let light traders receive larger shocks from time to time (by making ! itself random in



Over time, the assets move from the low- to the high-! types and then keep circulating among
the high-! types in response to" shocks and trading opportunities. It is easy to see that the
price remains constant along the transitiort pathl.. Th)e gross supply of assets is alwaya. The
gross demand from hight types is always$ 1$ @(¥) /2. From equation (6), the market always
clears!*

We can now characterize the steady-state distribution among type$ > k. Let % - (a) be the
share of clasd- investors with trading type " currently holding a units of asset. Consider brst a
type ("=+1,a=1). This type is satisped with its current holding and does not trade even if
it contacts the venue. Outl3ows result only from changes of from +1 to -1, which occurs with
intensity #/ 2. There are two sources of inBow: type¢"' = $1,a=1) that switchto " =1 and types
(" =+1,a=0) that purchase one unit when they contact the venue. In steady state, outl3ows must
equal infBows:

o ()= Do) (1) %, (0). @)
The dynamics for types(" = $1,a=0) are similar:

#0 = 0, ﬁo
54,! 0)=%%, (1)+ 2@,+ (0). 8)

Fortypes ("=+1,a=0) and ("= $1,a=1), trade creates outBows, yielding

)
P48 %, 0 = 2% (0 ©)
( )
Pis o, ) = Sw. (10)
2 2
Finally, the shares must add up to one; therefore,
#
% -(a)=1. (11)
"=+,a=0,1

We summarize our results in the following lemma

Lemma 2. The trading equilibrium is characterized by the pricep and marginal trading type %
debned in equations %) and (6), respectively. The transition dynamics are as follows. The price
remains constant while asset holdings shift from low-types to high! types. Low{ types(! < k)
sell their initial holdings & and do not purchase the asset again. High-types ( ' ¥) buy when
" =1 and sell when" = $1. The distribution of holdings among hight types converges to the

addition to #. Then all investors would trade as long as their ! were large enough, but some would trade more
often than others. None of these extensions would change our main results, but they would complicate the (already
complicated) analysis of entry and investment in speed. We choose to use the model with linear preferences and
constant ! because it facilitates aggregation across heterogeneous types. Heterogeneity among investors is, of course,
a key element of our analysis, but it is also a major source of complexity, so we need to make an assumption to keep
the analysis tractable.

In the case @ = ¥2 the marginal type is not well debned and g range of prices can clear the market. More

precisely, if ! mn is the lowest type in the market, then any price p! &* 'mn 0 4 lmn ' j5 3 market
clearing price.

r roor+tEHE T roor+t+#
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steady-state distribution of well-allocated asse® + (1) = %, (0) = %foj and misallocated assets

% . (0)= %, (1)= 1.

We can formally debne the instantaneous trade volume ratey, which in the steady state is
given by 3 ( )
V=S 0+ %, () ( 18 8() . (12)

The right-hand side of equation (L2) is given by the product of the contact rate, the proportion
of agents with misallocated assets, and the population of steady-state traders. Using equatiof)(
and the equilibrium expressions for% + (0) and % ; (1) in Lemma 2, one obtains the (free market
participation) equilibrium trade volume rate V = gﬁé.

The best way to understand Lemmaz2 is to focus on gains from trade and deviations from the
Walrasian allocation, which maximizes the gains from trade. Taking the limit$)" in equations
(5) and (6), we obtain the following lemma.

Lemma 3. The Walrasian equilibrium has a pricepy = %$u+ G'1(1$ Zai)O/,0
volume rate equald/y, = ?, and total gains from trade (welfare) are given byzir «g#l(u 23) 1dG ().

the instantaneous

Note again the symmetry arounda = ¥2. When a < Y2, the price is higher than the mean
value Wr . In that case, types! < k sell and then do not buy again. For a given distribution of
investors @ in the market, the di! erencep$ Wr increases with the speed of trading. Whem > ¥ 2,
the price is lower than Wwr . At the investor level, ! indexes the gains from trade. The general
properties are that high speed brings the equilibrium closer to the Walrasian outcome and that that
low-! investors trade less. A faster venue always realizes more gains from trade than a slower one.
Since high! traders have higher gains from trade, they are more willing to pay for speed. When
a < Y2the price is higher in the faster venue and whemm > ¥/ 2 the price is lower in the faster venue.
Finally, when @ = Y2, there is no unique equilibrium price but a range that includesp/r .

2.3 Value Functions

Our goal is to analyze the provision of speed in Pnancial markets. We therefore need to estimate
the value that investors attach to trading in each venue. We do so in two steps. We brst compute
the steady-state value functions for investors that continue trading. We later compute the ex ante
values, taking into account the transition dynamics.

Consider the steady-state value functions for types > k. They solve the following system: For
the types holding the assets,

v+ (1)

pa S @8 e ] (13)
US|+ g[v! LSV W]+ SE+ Vi 08 Vi (1), (14)

Vi (1)
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and, for the types not holding the assets,

BECER4 CEINO) (15)
Vis @)= SN 8 Vi O+ SV (S Vi 00 ). (16)

Debnel, » %V, » (1) $ Vi »(0) as the value of owning the asset for typg!,"). Then, taking the
di! erences of equationsi(3) to (16), we obtain

ue !+ #E(I!’+$ lhp)+ $(ps 1),
H+!$ #§(|1,+$ L )$ 8+ $p).

rly

I'|!'+

Note that the asset pricep is pinned down by the marginal value (minimum type in each venue).
For now, we use it as a (venue-specibc) parameter. We can then solvél, . $1,,) = 2! $
#+ 9l + $ 11, ) and obtain the gains from trade for type! in venue $:

2!

I!,+$ I!Y! = m

Note that these gains from trade do not depend on the equilibrium price. Hence they do not depend
on the allocation of types to the venue. They only depend on the venue spe&and the individual
type ! . Using the gains from tradel, + $ I, , we can reconstruct the functionsl, - and Pnally the
initial value functions. The no-trade outside option of any investor is

a
Wout = uT . (17)

The following proposition characterizes the ex ante value functions, taking into account the transi-
tion dynamics leading up to the steady-state allocations.

Proposition 1. The ex ante valuew for type ! of participating in a venue with speeds and price

p is the sum of the value of ownership and the value of trading:
sk S
W (!, Es)$ Wout = Ta+ Emax(o;! $F), (18)
where the marginal trading typek, debPned in equation §), increases in p and decreases in$ and

where @ ective speeds is debPned by 3

rr e S (19

s($) %

The net value of participation, W $ Wo%, is composed of two parts. One is the option to sell
the asset on the exchange% = % p$ £ a. Itisindependent of ! and is the value that can be
achieved by all types! < k with a Osell and leaveO strategy. The termﬁ—# is the discount due to

expected trading delays. The second part;- max(0;! $ k), is the value of trading repeatedly and

12



it depends on the type! . This part of the value function is supermodular in (s,!). Proposition 1
provides the building block for our analysis of the industrial organization of Pnancial markets.

3 Market Structure and Welfare

This sections provides a formal debnition of the market structure equilibrium and characterizes the
regulation problem.

3.1 Market Structure Equilibrium

Our market structure game is a sequential game where, taking regulations as a given, venues decide
whether to enter, select trading speeds, and post membership fees. Venues make these decisions
simultaneously at Stages Il to IV in Figure 3. We introduce a bxed entry cost& to analyze the
entry game (Stage Il). Venues face the same increasing and convex investment cost functiGn(s)
when they choose their speeds at Stage Ill. Venues compete " |la Bertrand at Stage IV. Lef be

the membership fee posted by venug and let n; be the number of investors who join venue. The

total net probts of venuei are therefore

gni$C(s)% &

Given venuesO decisions, investors decide which venue to join at Stage V. Participation decisions are
described by a mapping from typed to venues

P:[0,B]® {01,..1},

whereP (! ) = i means joining venuda and P (! ) = 0 means staying out. If an investor joins venue,
it pays a membership feeg and is then allowed to use the trading venue (staying out costs nothing,
so formally gp = 0 and W = Wo,;).*®> Recall that we have debned8; (.) as the distribution of types
in venuei. Let us now formally debPne an equilibrium of the game.

Debnition 1. A market structure equilibrium is a set of participation decisions by investors and
entry, speed, and fee strategies by trading venues, such that

¥ Venues maximize probts: The sequence of entry, speed, and fee strategies is a Nash equilibrium
of each corresponding stage game (Stages Il to V).

¥ Participation decisions are optimal: For all! and alli, P (!) = i impliesW (! ,%,s)$ g '
W (1,%,5)$ g forall j * i; reciprocally, whenW (!, %;,5)$ G >W (!,k,5)$ g for all
j i, then we must haveP (!) = i.

¥ The investor market clears:’ i1 ni@ (1)= G(!) forall ! # [0,k

15Section 4 also discusses competition in trading fees as opposed to membership fees.
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¥ Subsequent asset prices and marginal types satisfy equatio$ &nd (6).

Sequential rationality of venue strategies is obtained by backward induction. We describe the fee-,
speed-, and entry-stage payb functions in Sections4, 5, and 6, respectively.
3.2 Welfare and Regulation

Let W measure the welfare gains of a given market structure with respect to the no-trade benchmark
Wout. From our previous debnitions, we have

# 0O ) #
W % ni (W(,E,s)$ Wour)dG; (1) $ (&+ C(si)) - (20)
i=1:1 / 0 =Ll 0
Total gains from trade Entry and speed investment

Welfare gains are the sum of investorsO expected participation gains minus the bxed entry costs
and the costs of investments in speed. Eective speeds; enters the calculation because it hects
allocative €' ciency. The following lemma characterizes the welfare function with two venues, taking
into account the results of Section2.

As a benchmark, we can consider the case in which the planner can decide entry, speed, and
pricing. This is not realistic, but it will help us build intuition for our results on the regulation of
speed and entry in otherwise decentralized markets. The planner faces the same cost structure as
the private sector: a setup cost& for each venue, a default kective speeds available at no cost,
and a cost function C(s).

Lemma 4. The unconstrained plannerOs solution is to operate one venue with full participation and
a level of speed satisfying
'C

)=

2r
The proof follows directly from equations (18) and (20). The setup costs are bxed and there is
no marginal cost of adding traders to a venue. The unconstrained solution is then clearly to open

one fast venue with full participation Pnanced by lump-sum taxes on all agents. Of course, the
venue is then a loss-making operation that must be subsidized by lump transfers from the agents.

Entry and Speed Regulations. In the remainder of the paper, we analyze monopoly and
duopoly equilibria and study the regulation of speed and entry by aregulator. By regulator, we
mean a restricted planner, that is, an authority that can only a! ect one dimension, such as speed,
while taking as a given the structure of the game (entry and pricing).

The regulator fundamentally wants to (i) increase participation, (ii) avoid duplication costs, and
(iii) increase speed. A basic virtue of entry is to foster competition and reduce prices. This is the

1810 Appendix G, we also solve a restricted planner problem in which direct subsidies are ruled out and therefore
venues must break even. Even in that case, however, we can show that the planner chooses to operate only one venue.
It chooses a speed that is lower than that in Lemma 4, but still higher than what a monopoly would choose.
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classic case for intermarket competition when liquidity externalities are moderate (e.gEconomides
(1996). With bxed costs, however, there can be excessive entry. This creates a trade-between
() and (ii). The fact that speed can be used for di erentiation creates a traded between (i) and
(iii). These tradeo! s are analyzed in Section$ and 6.

Trading Regulation: Price Protection Rule. An important aspect of the market structure
game is to study the impact of regulations that d ect how asset prices in dierent venues relate.
There are two polar cases of analysis.

Debnition 2. We say that there is segmentation if venues do not execute trades coming from
investors of another venue. If instead venues give access to the same market, with a single clearing
price, we say there isintegration

DebPnition 2 clariPes what we mean by a venue. In our model, a venue is an access gate to a
market where transactions clear at a market price, as described in Figuré. The market clearing
condition is given in equation (4). Segmentation means that the venues give access to!dirent
markets and therefore to dl erent market clearing prices. Under segmentation, an investor joins a
venue and never buys fromband never sells toban investor from the other venue. Integration means
that the two venues give access to the same market with a single market clearing price. The trades
cleared in that market come from both venues. A fast venue simply provides faster access to the
market.

The real world is, of course, somewhere in between these two polar cases. Arbitrage is imperfect
because of many well-recognized frictions. That is why we assume that integration is enforced by
a price protection rule and we refer to perfectly integrated markets as therotected casehereafter®
We will show how trading regulations d ect the expected probts of venues and therefore their entry
decisions.

4 Fee Competition and Venue A ! liation

In this section, we analyze competition among a given set of trading venues and the resulting
allocation of investors across these venues. We characterize the pricing decisions and equilibrium
probts of trading venues and the & liations choices of investors. Importantly, we analyze how price
protection in the trading game a ects these equilibrium outcomes. In other words, we analyze how
trading regulations al ect the ex ante competition among venues. In this section we take the set of
venues as a given, as well as their speed. We endogenize speed in Sediiand entry in Section 6.
We debPne venue as the fast one, s, > s 1.

The literature has documented the lack of price integration in markets with no explicit order protection rule.
For example, Foucault and Menkveld (2008 study the competition between a London Stock Exchange order book
(EuroSETS) and Euronext Amsterdam for Dutch Prms and bnd that, even when there is no formal entry barrier to
arbitrageurs, the trade-through rate in their sample equals 73%.

18This is our simple way of capturing access and trade-through rules in the SECOsReg. NMS. The distinction
between top-of-the-book (U.S. version) and full-depth (Canadian version) protection is not material in our model,
since we only consider unitary orders. See the discussion ofnvestor protection in Appendix A for more details.
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Figure 4. Fragmented markets: Analysis cases.

4.1 Monopoly

Consider the case of one venue charging a membership fpel et b be the marginal participating
type , that is, such that
W (b, I_,S) $ Wout %q

The value function (18) is Rat for all types below the marginal trading type %. In any interior
solution, the marginal trading type must also be the marginal participating type:

b=+.

The marginal trading type is indi! erent between joining the venue and not joining the venue. Thus
we haveW (B, B,s) $ Wyt = g, which implies

a .

All types below b are indi! erent between joining and staying out. Let( be the mass of light traders.
Market clearing requires & -

(= .$1 (1$G(®)

When a is less than 1/2, there are( light traders who join to sell their asset but do not trade

repeatedly’® The equilibrium is depicted in Figure 5. We have an interior solution as long as
(<G (b), that is, as long asG (b) > 1$ 2a. In the remainder of the paper we assume that either
a is close enough tol/ 2 or that there is a su' cient mass of low! type investors to ensure the

¥There can also be a corner solution with full participation, characterized by the market clearing condition
G(mn)=1" 2a All investors pay the participation fee gmin , Which is also the total probt of the trading venue.
Then, G (! min ) investors sell and drop out, while the remaining 1" G (! min ) investors trade in the market with a
supply per capita of 1/ 2. The participation condition is simply ¥ " q# HZ. There is full participation as long as
q$ Omin = réﬂ! min -
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existence of interior solutions.
Total probts for the venue are given by) = q(1$ G (B) + (), which we can write using market

clearing:
_ SmbBm
Jm =
The program of the monopolist is simply to maximize @2) with respect to g and subject to (21),
which leads to the following lemma.

(1% G(bm)). (22)

Lemma 5. The monopolist chooses a level of participatiod,, that is independent of its speed and
satisbes
1$ G(Bm) = 9(bm) Bm. (23)

Equation (23) is the brst-order condition of the monopoly problem?° The result that By, is in-
dependent of the speed in the venue comes from our assumption that the marginal cost of adding
traders to an existing venue is zero. This assumption allows us to focus on speed choices. The
monopoly feeq, is proportional to the e! ective speeds.

Let us now consider the duopoly. Since we assume that venues compete in fees ~ la Bertrand,
the equilibrium without di ! erentiation implies zero fees and zero probts. The interesting case arises
for di! erentiation by speed.

4.2 Duopoly with Segmented Prices

Consider brst the case in which venues are segmented and thus prices can then bleedent. The
key issue is to understand the & liation choices of investors. We proceed by backward induction.
Investors anticipate that each venuei will be characterized by its speed and price, which together
debne the marginal trading typek;. Investors can then estimate their value functionsW, debned
in equation (18). The net value from joining venuei =1,2isW (! ,%,s)) $ Wout $ g. These value
functions are depicted in the middle panel of Figures.

It is important to keep in mind that the value functions are not supermodular for low-! types.
In addition, we know that each venue must attract a mass( of light traders. Because these types
must be indi! erent between joining and staying out, we must haveV (¥, %i,s) $ Woit $ g =0 in
both venues. In other words, as in the case of the monopoly, the marginal trading typg; must be
indi! erent between participating in venuei and not. Therefore, we must have

as 5

0= (24)

2Fjrst-order conditions are su! cient in this environment. Note that since g is positive and log-concave, it is
also quasi-concave. Thus the tail distribution 1" G is quasi-concave as well, which results in the quasi-concavity of
$="! (13 G(1)). If cwere the marginal cost of adding a trader to the venue, probts wauld be $& (q" ¢) ¥ 5& =
S8B" ¢ (1" G(bm)) and the brst-order condition would be (1" G(bm)) = g(bm) Bm " 55 . In this case bn
would depend on s. This e" ect does not add new insight, so we drop it. Moreover, we think that this kind of
marginal costs is less important than bxed and investment costs in infrastructure. These costs are at the heart of our

analysis.
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Figure 5. Investor &' liation choices with one trading venue.

and N
= L, (25)

Note, however, an important dil erence from the monopoly case. The marginal trader in venue 2,
k>, would indeed be indl erent between joining venue 2 and not participating. But it is clear from
Figure 6 that ¥, in fact joins venue 1. This means that, with two venues, marginal trading types and
marginal participating types are not the same. They coincide only for the slowest marketb, = +4
but B, > k. We debPne a new marginal typeB,, that is indi! erent between joining venue 1 and
joining venue 2. By debnition, this type must be such thatW (b2, %2,52)$ o = W (b2, ¥1,51) $ 1.

This implies
S18%

r

Sk
r
and, therefore, using equations Z4) and (25), we obtain

#2028 ) S = It OE (B8 ) S

_ T ®Sa
2 s, % s

(26)

Note that B; = +; < ¥, < By. The set of types that join venue 2 cannot be continuous over
an interval. It is composed of all the types aboveb, and some types belowb;. The a" liation is
depicted in the top panel of Figure®.

Market clearing in venue 2 requires(1$ G (b2) + (2) & = %(02) The second-stage payo for
the fast venue under segmentation i§ 5°° = (1 $ G (B2) + (2) = qz%;b”. Market clearing for
the slow venue requires(G (b2) $ G(b1) + (1) & = w The payad for the slow venue is
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309 = 802 60D The g Jiation of investors to venues 1 and 2 is given by the marginal types

described in 1) and (26), respectively. Venuesl and 2 simultaneously solve
)59 = max 2 (18 G (b)), (27)
2 @ 28
%9 = max = (G (by) $ G (b 28
L (b2) $ G (b1)) . (28)

The Prst-order conditions from the previous system result in the following lemma.

Lemma 6. In a segmented duopoly, marginal participating type$b;°%, b5°%) solve the system

& 1

L . . o]
1$ G(b2)= g(b2) B+ des 1 (29)
GBI GO = g+ D b (30

The price of the asset is higher in the fast venuey, > p4, as long asa < ¥o2.

The system of equations 29) and (30) shows equilibrium participation depends only on the
degree of speed dlierentiation s2/s; # [1," ).

4.3 Duopoly with Protected Prices

Consider now the case in which both venues provide access to the same market with a single market
clearing conditions and a single pricg. Venue 1 is still characterized by the indl erence condition
(24) for the marginal type &;. However, this condition does not hold for venue 2 because low-
types can join venue 1 and kectively sell their assets to investors in venue 2. Instead, the asset
price is the same in both venues. From equations), this implies the constraint
& ' & ‘
# #

= 1+
)
r+$; r+ %

k. (31)

This means thatk, < k4. Theindi! erence condition forb, is still W (b2, ¥2,52)$ @ = W (b1, ¥1,51)$
1. We show in Appendix C that this leads to

. ( z )
b, = %% s (o7 %Ch ) (32)
where
t
[0)
Z%1$ 1+#[—2(l$ 2a) .

The structure of the value functions is still as depicted in the bottom panel of Figure6. There is
now only one market clearing condition. Therefore, the light traders join venue 1, where they can
sell at a higher price because they can sell to investors in venue 2. We then hagg= 0 and the

19



Segmented case
Net participation

value in venuei
(Wi $ Wour $ g)
I o W2 $ Woue $
. : Wl $ Wout $ q1
doin
and ;
sell in
venue 1 .
"1 \—) 1
| I
Join and sell | ,
in venue 2 : !
2 7 —
Stay | |
Out | |
I : |
0 . - . !
By ) B,
Join Venue 1 Join Venue 2
Protected case
Net participation
value in venuei
(Wi $ Wou $ g)
: W2 $ Wout $ *7)
f W18 Wout $ o1
Join 1
and |
sellin | |
venue 1 | .
"1 1
Stay out l
: - !
0 B, / B,
L Join venue 1 Join venue 2
2

Figure 6. Investor &' liation choice with two trading venues.
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market clearing condition is
1% G(by)

2
The following lemma summarizes the protected price equilibrium.

(1$ G(bB1)+ ()aA=

Lemma 7. In a duopoly with protected prices, marginal participating types BY™, B>"  solve the

system
& N '
. . . B1
1$ G(b2) = g(by) B+ Zm ,
& 1
ye G(B1) _ g(b) , _ g(b) . 1
G(b2)$ e o 252/31$ 1 By +1$ 2a

Note that the allocation under protected prices converges to that under segmented markets when
a= Y2. Recall that in that case we can set the price tow/r without loss of generality.

4.4 Investor Participation in Di I erent Market Structures

We analyze the properties of the & liation game in various market structures, taking as a given for
now the entry decisions and speed choices. To prove some of our results, we need to make assump-
tions about the distribution of investor types. We maintain the following assumption throughout

the paper.

The distribution of types! is such that, for all!

1$G(!),
g(*)

Assumption 4.4 is needed to prove a basic yet important result. At the core of our analysis is

29(1) + g*()

the idea that vertical di! erentiation (via investment in trading technology) decreases price com-
petition. We then need to show that, in equilibrium, prices are higher and participation is lower
when trading speeds are more dierentiated. Assumption 4.4 is needed to prove this comparative
static. Assumption 4.4 is not restrictive: It holds for all the distributions that we consider in our
numerical analysis and many more’> Some results, however, can only be proven for specibc classes
of distributions and we mainly use two such classes.

Debpnition of Distributions . To derive analytical results, we consider the exponential distribution
G(1)=1$ € s and the uniform distribution G (! ) = 51 s[0.01-

The following proposition characterizes the equilibrium of the & liation game.

Proposition 2.  The equilibrium of the & liation game has the following properties:

2lror example, it holds for exponential, normal, log-normal, Pareto, Weibull, inverse Gaussian, gamma, and
Kumaraswamy distributions.
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() Competition among venues increases participation. With or without price protection
and for a given speed, participation in the fast venue alone is higher than total participation under
a monopoly, that is, B, < By,. Total participation is even higher, sinceb; < b,.

(il) Speed di [ergéntiation relaxes price competition. Under Assumption 1, participation with

a duopoly is lower p; and b, are higher) when speeds are more !derentiated.

(iii) Price protection increases the probts of the slow venue and decreases total par-

ticipation , that is, ) I ' ) 3% and B)" ' B7*%. Conditional on speed, price protection has an
ambiguous impact on participation in the fast venue. (The proof is analytical for exponential and
uniform distributions and numerical in other cases).

The intuition for the Prst point is simply that price competition increases participation. A result
that is perhaps less obvious is that participation in the fast venuealone is already higher than total
participation with a monopoly. The second point of the proposition helps us understand how speed
al ects the & liation game. More precisely, we need to understand what happens to feeg)(and
marginal types (b) when speed di erences increase or decrease. The system is given by equations
(29) and (30), which determines the participation as a function of the degree of speed ldérentiation

s2/'s;. We show in Appendix B that Ll) > 0 and % > 0. This result is fundamental since it

%s2 s
shows that di! erentiation decreases(czor;\petition and therefore decreases participation.

The third point states that price protection has two main consequences: It increases the probts
of the slower venue and decreases fee competition and participation for given speeds and given
venues. Price protection is a subsidy for the slow venue because its investors are allowed to trade
with investors who access the market via the fast venue. The gains from trade are always higher
in the fast venue, both because of speed and because the fast venue attracts investors with high
I values. Under price protection, the investors in the slow venue benebt from these gains from
trade, which makes them more willing to join the slow venue for any given level ofy. This is why
BP™' * B3°9.22 Protection also softens the price elasticity of the marginal typeb, because it makes
the value function steeper, which again is good for the slow venue. Thus, the probts of the slow
venue increase under protection for two reasons: greater demand and less price elastiéityThe
impact on participation in the high-speed venue is small, in practice, and positive for the parameter
values that we consider, as discussed in Appendi&: We typically bnd 55" & B5°C.

We can also relate these results to equilibrium asset prices. From equatiob)( we know that
the equilibrium asset price in venuei is given by

&
HoK r+ #s;
r

r r+ # (33)

Pi =

2 These results hold irrespective of the value of @& When a < 1/ 2, sellers are on the short side and they benebt
from the high price in the fast venue. When a > 1/ 2, buyers are on the short side and they are attracted by the
low price in the fast venue. When there is excess demand, the price in the fast venue is higher than in the slow
venue. The converse holds when there is excess supply. In our simple setup with linear utility and [0,1] holdings, the
condition for excess demand is simplya < 1/2. In a more general case with continuous holdings, the conditions are
more complicated but the intuition remains the same.

Z\We numerically checked the robustness of the result $" # $5°9 to alternative assumptions about the underlying
distribution of ! .
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The key di! erences between our equilibrium price and the benchmark case Bu" e et al. (2005
is that, in our study, both participation decisions among heterogeneous traders and market con-
tact frictions (driven by the venue speed) are endogenously determined. For example, under price
protection, BP™ is given by Lemma7. Under segmentation, there are two prices. The asset price
in venuei is as in equation @3), where b;*® and B3°° are given by equations g4) and (25). Con-
sequently, regulations, the venue structure, and speed and'diation choices all d ect asset prices.
This framework then ol ers a rich set of empirical predictions on asset prices, both at the domestic
level and internationally. These relations are explored byPagnotta (2014.

Proposition 2 plays an important role in understanding the impact of price protection on entry
and therefore on the equilibrium market structure. The results regarding participation are important
in understanding the welfare implications of various regulations. We explore these issues in the next
section.

4.5 Extension: Trading Fees and Multivenue Participation

We study two extensions of the model in Appendice and E, involving trading fees instead of
membership fees and access to both venues, respectively. In our benchmark model, investors pay
membership fees and then trade freely. We think that this setup describes modern Pnancial markets,
where the relevant costs relate to trading infrastructure and investment in information technology
more than marginal costs per trade. Trading fees can still be signibcant in some markets, however,
so we analyze them carefully in AppendixD. We assume that each trade entails a cost: If the
market price is p, a seller @ ectively receives onlyp $ *, while a buyer € ectively paysp+ *. We
summarize our results in the following proposition:

Proposition 3. In a market with trading fees, the following equilibrium conditions hold:

() There is still a marginal type ¥ above which traders trade repeatedly and another marginal type
0 < k below which traders sell, irrespective of their trading typé. Trading fees, however, create a
region of partial inaction for types ! # (U, %): They sell when" = $1 but, when" = +1 | they wait
until their trading type switches to" = $ 1.

(ii) Trading fees improve price discrimination and can increase average probts of venues, but they
do not a ect our analysis of price protection or of trading speed.

In particular, we Pnd that when a is close tol/ 2, the equilibrium is the same with or without
trading fees. We conclude that trading fees convey a useful economic intuition about price discrim-
ination, but they do not change our main results and, since they add signibcant complexity to the
model, we relegate their analysis to AppendiD.

We have also analyzed the possibility that some traders may choose to pay both membership
fees and trade in both venues. To analyze this case, we Prst need to characterize the optimal trading
strategies of traders who can trade in two venues. The key issue is whether multivenue traders send
both buy and sell orders to both venues. If they do, asset allocations and pricgs and p, are the
same as with a single 4 liation because these traders submit the same numbers of buys and sells to
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both venues. The key condition to check if therefore whether multivenue traders prefer to wait for
a good deal rather than sell at a low price in the slow venue or buy at a high price in the fast venue.
In the context of our model, however, we show in Appendi that multivenue traders do not play

a quantitatively important role because only investors with extremely large! would choose to join
two venues. This possibility is clearly interesting, especially in its implications on asset prices and
arbitrage, but it is left for future research.

5 Trading Speed

This section analyzes investment in trading technology, taking as a given the set of active venues.
We study entry in the next section. We focus on the case in whicla = 1/ 2 to separate this analysis
from that of trading regulations in the previous section?* Based on the analysis in Section8§ and

4, we can rewrite equation @0) as the following lemma.

Lemma 8. Social welfare with one venue is

0 7]
W(l):% 1dG(1)$ C(s)$ & (34)
o]
and with two venues it is
s 0 4, 5 0y "
WE@)=2 1de()+ 2 1dG(1)$ C(s)$ 2& (35)
2r g, 2r g, i1 2

When we want to derive closed-form solution, we assume that the cost of spe&ds linear, c$, with

c' 0. Given that s % M%#, this implies the following cost expression.

The cost of reaching the kective speeds is C (s) = c(r + #) 5.

5.1 Venue Speed Choices

Monopoly. Lemma 5 shows that the participation cuto! B, chosen by a monopolist does not
depend on its é ective speeds. The monopoly chooses its speed to maximizebz—"; 1$G(bm) S
C (), as in the following proposition.

Proposition 4. The monopolist chooses a speed levg), such that

'C

- .y Bm
< (5m)=(1 8 G (b)) 5 (36)

where By, is given by equation 23).

% This is just for simplicity. Recall that when &= 1/2, price protection does not a" ect the venuesO probt functions.
See Appendix C for the general formula.
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Under Assumption 5, we can obtain closed-form solutions for various distribution of types:
i
¥ If types are exponentially distributed, the monopolist choosesm, =1 $  2rc(r + #) e/ +.
i
¥ If the types are uniformly distributed, s, =1 $  8rc(r + #)/1.

The €l ective speeds (or the contact rate $) decreases with the cost parametec and increases
with the average size of private preference shocks (e.g., an increaseHmand T"). For instance, with

an exponential distribution, when + increases, the distribution has a fatter right tail, gains from
trade increase and the demand for speed also increases, as one would expect from Proposition
The € ective speeds decreases with the frequency of preference shocksbecause wher# is high,
the desired holding period shrinks. However, more interestingly, sinc& = (r + #)s/ (1$ s), the
contact rate is concave in#. Starting from a low #, as the frequency of preference shocks increases,
investors will want to reallocate their assets more frequently, which increases the demand for speed.
When # is very high, the holding period & ect dominates.

Duopoly.  In a duopoly, venues have an incentive to ber di! erent speeds to reduce price compe-
tition. Recall that the revenue functions ) can be expressed as

)2(s1,82) = (1% G(B2)), (37)
)1(s1,82) = (G (b2) $ G(b1)), (38)

prices are given by

1 . .
= E(b2(32$ s1) +b181),
1
= —s1b
sl o $101,
and the &' liation equilibrium is given in Lemma 6. Venues1 and 2 then simultaneously solve
max)i (si,s;) $ C(si) . (39)

The following optimality conditions are straightforward to derive. 2°

Lemma 9. Speed choicegs, sp) satisfy

LUSGENS 290 %= o (), (40)
. 2 8 o S2 oo ' S
(662 GB) &+ & gB) o2 8 Glbr) b = e (5). (41)

2570 the best of our knowledge, the literature does not 0" er an existence result for the brst stage of competition
in vertically di " erentiated oligopolies. In Section 7, we verify numerically that, for any parameter set, brst- and
second-order conditions are satisbed.
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No di" erentiation
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Figure 7. Regulation of speed and venue derentiation. The function Si(s;) denotes venue
iOs best speed responsesto s; and s, are the (unregulated) equilibrium speed choices,
represents the minimum speed that the regulator may want to impose, arsd and s} are the
optimal speed choices whega > s;.

The solution to the system of equations ¢0) and (41) implicitly characterizes a function S; (s;)
that represents the best response of venueto s;.

Figure 7 displays the speed choices. The 45-degree line represents the case in which there is
no product di! erentiation, which would lead to Bertrand competition and would be inconsistent
with entry by both venues for any arbitrarily small entry cost. The actual equilibrium satisfying
equations (0) and (41) is at point (s;,s,) where the best response functions intersect. In this
equilibrium, there is a fast venue and a slow venue.

Let us now compare the market equilibria under monopoly and duopoly. There is a fundamen-
tal tension between probtability and elasticity. On the one hand, the marginal return to speed
depends onb (1 $ G (b)) for both the monopolist and the fast venue. The monopoly chooseb,
to maximize precisely this quantity; therefore, we know that by, (1$ G (bm)) > B (1% G (B2)).
This probtability e! ect makes the monopolist more willing to invest in speed. On the other hand,
competing venues have an incentive to dierentiate their services. Ass, increases, competition is
relaxed, q; increases, andb, decreases:% < 0. This leads to greater participation and higher
probts for venue 2. Which ¢ ect dominates depends on the distribution of types. With a uniform
distribution of types, we are able to show in AppendixB that the second e ect dominates and,
therefore, that the equilibrium speed is higher under a duopoly.

Proposition 5.  When types are uniformly distributed, the fast venue of a duopoly chooses a higher
speed than a monopoly doess; ' S
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5.2 Optimal Regulation of Speed

Let us now study the welfare consequences of speed choices. We consider a game where the regulator
can mandate speed limits to maximize social welfare, taking as a given venue fee choices and investor
a" liation decisions.

Depnition. The regulator can set a minimum speed and a maximum speed.

Assuming a uniform distribution of types, we obtain the following proposition.

Proposition 6. When types are uniformly distributed, it is optimal for the regulator to mandate a
minimum speed but not a maximum speed, that is>s; buts=1.

Consider the monopoly brst. The speed chosen by the monopc()(list is as in Propositi@gn The
regulator seeks to maximize social welfare and thus solvenaxs«§ t?m 1dG(') $ C(s). In this
constrained solution the regulator takesby as a given. Since b.z 1dG(!) > B (1% G(bm)),
Sm > Sm. This is a standard result and it holds for any distribution of types. The planner prefers a
higher speed than the monopoly because the planner values the welfare gain for the inframarginal
types (! > By) while the monopoly does not.

Consider now the duopoly. Our brst result is that maximum speed limits are not & cient. Under
the duopoly, speed allows venues to Herentiate and relax Bertrand competition. The regulator
trades d €' ciency for highd types against participation for low-! types. The regulatorOs brst-order
condition is

0 . -

"C . B
2—(s)= 1dG(1)$ (s2$ s1)b20(B2) —2 $ s1b19(by) -
S Bo S2 S

1
>
The term «bbz (! $ B)dG (1) is the surplus of the high! types that the fast venue does not ap-
propriate and therefore does not internalize. Allocation & ciency for types! > b, calls for higher
speed. On the other hand,% and % capture the impact of s, on di! erentiation which softens
competition. The link between social welfare and speed depends on the tradebetween participa-
tion and trading e" ciency for the high{d types. We show in AppendixB that the trading e" ciency
el ect dominates when the types are uniformly distributed. This is particularly interesting, since
we have shown in Proposition5 that the fast venue of a duopoly chooses a higher speed than a
monopoly does. Proposition6 states that this is not enough and the regulator would like an even
higher speed. Therefore, the regulator does not bnd it optimal to impose an upper limit on speed.
On the other hand, it is optimal for the regulator to impose a minimum speed requirement that
is higher than that chosen by the slow venue. The intuition is that such a minimum speed increases
the welfare of the low! types and also increases cor(\petit"i(?n with the fast venue. The equilibrium
with a minimum speed requirement is represented by s;,s, in Figure 7.
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Discussion and Interpretation. These results shed light on normative and positive issues.
On the normative side, they show that, when order front running is not an issue, it is not optimal
to slow down markets. Moreover, we bPnd that welfare can be enhanced by mandating a minimum
speed, which is a strong normative result. We return to this point in the calibrated model of Section
7.

On the positive side, our model can shed light on recent regulatory changes. Reg NMS contains
two provisions directly related to our paper. It requires the integration of prices, which, as we
argue in the next section, increases fragmentation and encourages entry, but it alsd ectively im-
poses a minimum speed requirement by conditioning price protection on the adoption of automatic,
computer-based trading. Reg NMS indeed worked as a minimum speed requirement for the NYSE
(see Figure A2 in Appendix A). Our model suggests that this is likely to be welfare improving.
Interestingly, the DoddbFrank Act push for electronic trading is likely to have similar € ects in
OTC derivatives. We discuss these points further in AppendixA.

6 Entry

This section completes the description of the equilibrium market structure by analyzing venue entry
decisions.

6.1 Price Protection and Entry

Let us brst study the impact of trading regulations on entry for exogenous speeds. There are two
potential entrants, with exogenous speeds; and s;, respectively, with the convention that s; <s>
and we assume for simplicity thatC (s) = 0 (see below for a discussion of entry with endogenous
speeds). The entry cost& is the same for both venues, for simplicity. VenueOs net probt is then
given by) i! $ & where! # {seg prot} denotes trading regulations?’ For a given speed, asset supply
a & 1/ 2, and regulatory framework, the probt functions) are as in Sectiord. A given venuei bnds
it optimal to enter whenever net probts are non-negative.

We model entry as a simultaneous game. The pays of the entry game are shown in Table
I. From our previous analysis, we know that (i) for a given trading regulation!, )!1 < )!2 simply

% Qur result for s can be seen as an extension of a result odRonnen (1991), who analyzes minimum quality standards
in the canonical static Shaked-Sutton (1982 framework, with exogenous preferences for qualities. Although we do
not model venues d' ering menus of speeds to investors, our analysis could be extended in this direction. Champsaur
and Rochet (1989 analyze a multiproduct oligopoly where brms produce a range of qualities. They show that brms
produce non-overlapping quality ranges. Given this paperOs result, our intuition is that venues would likely o "er
non-overlapping menus of speed and that investors with low and high types would still sort across venues in a similar
fashion.

27Evidence suggests that entry costs have decreased signibcantly over time. This is natural since some of these
setup costs relate to the development of knowledge and specibc computer algorithms, which can be costly to develop
but cheaper to subsequently replicate. Entry costs can vary greatly across economies, however, and sometimes relate
to the vertical integration aspect of the securities exchange industry. One such example involves Brazil, where the
incumbent exchange BM&F Bovespa also controls the single national clearinghouse. By denying clearing access to
entrants, the incumbent forces new competitors to develop their own clearinghouses.
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Table |

Venues Entry Payoffs and Trading Regulation I {seg prot}
Venuel+and?2) In Out
In )1$5&),%& )'$&0
Out 0)0%$ & 0,0

because venue 2 is faster and (i) ;*¢ < ) from Proposition 2. Consequently, we have the
following proposition.

Number Price Protection
of Venues| : seg \ prot
Segmentation mint)2", )2
2 ““ Q Non-unique,’l E Unique
! | pure Nash, ! pure Nash
! | eq. ;i eq
i o Ot
; L VDY Entry Cost
0 seg rot m m
#, #?) #] #3

Figure 8. Entry cost, trading regulation, and equilibrium fragmentation. The graph shows the equilibrium
number of venues as a function of entry cost&. Price protection a" ects the equilibrium number of venues

that enter the market when entry costs are between the expected probts of the slow venue under segmentation

3%9 and under price protection) P . When there are two Nash equilibria, the outcomes are that either the

fast or the slow venue decides to enter and the other venue stays out.

Proposition 7.  Price protection at the trading stage helps sustain entry at the initial stagé®

As shown in Figure 8, price protection expands the ex ante number of venues for economies with
intermediate entry costs (between) ;¢ and ) P®"). The expected level of fragmentation therefore
depends on price regulation. Depending on parameter values, the entry game may have more
than one Nash equilibrium in pure strategies. To simplify ourpresentation, we assume hereafter
that our economies satisfy the inequality) ' < min ) 3%%,) 5" . Thus only the fast venue enters
wheneveré& > ) fmt. We characterize the cases with multiple equilibria in the proof of Proposition
7 in Appendix B. Finally, we have extended Proposition7 to the case in which speed choices are
endogenous, but this can only be done numerically.

Z\We prove this result analytically for an exponential distribution and numerically for other distributions.
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6.2 Regulation of Entry

Let us now consider the problem of a regulator who can decide the number of venues but nothing else.
The regulator takes into account that entry a! ects speed choices, venuesO fees, investor participation,
and therefore welfare. We study when the regulator wants to encourage or restrict entry.

The traditional argument to restrict entry relies on the existence of thick market externalities,
as for Pagano (1989. When externalities are strong enough, the welfare gains from increased
competition are not enough to compensate for the loss of matching'eciency between buyers and
sellers. As discussed in the introduction, this type of externality is likely to be less relevant in todayOs
markets, which is why it is not included in our model. Absent thick market externalities, the source
of excess entry can be related to cost duplication and speed choicddankiw and Whinston (1986
identify three general conditions under which excess entry occurs: (i) some form of economies of scale
due to bxed costs, (ii) post-entry prices exceeding marginal cost, and (iii) enough business stealing
to decrease average bPrm output. The brst two conditions are easily veribed in our environment.
The third is not, however, since trading services are vertically dierentiated. This is a fundamental
di! erence between our model and the Hotelling-like models considered Bpenceg 1976 and Mankiw
and Whinston (1986.

The welfare functions under monopoly and duopoly are given in Lemma&. The welfare gain of
moving from a monopoly to a duopoly is therefore

!wl&zz% !dG(!)$C(sl)+§ l!dG(!)$C(sz)$Z—T 1dG(1)+ C(sm) $ &

B B2 Bm
On the other hand, entry is probtable for the slow venue if and only if) 1 > &

s$16 . .

o (G(B2) $ G(b)) > &+ C(s1).
Excess entry occurs if and only if) 1 > &and! Wig 2 < 0 hold simultaneously. We can then obtain
the following result.

Proposition 8.  For any bxed cost&, entry of a second venue is never excessive, as long as the cost
of speed is low enough.

Proposition 8 applies to the transition from a monopoly to a duopoly, which is unlikely to yield
excessive entry since monopoly distortions are typically large. The same might not be true when
there are already several venues and we consider an additional entrant. An interesting analysis
of entry therefore requires us to consider more than two venues, which is what we do in the next
section.
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6.3 General Oligopoly

A! liation Game. Let | denote the number of active venues and, consistent with our previous
notation, let B be the lowest type that joins venuei. This marginal type is indi! erent between

venuesi and i $ 1; therefore
rg$gia

b = .
! HSi$ Si1 1

By repeated substitutions, it is then easy to show that we must have

G = B (sj $ sj1 1),

where sg % 0. Debningb, 11 %1, we can write the probts of any venud # {1,...,1} as
)i = G (G(bi+1)$ G(b)).

We consider the d liation game where venues compete in fees to attract investors. Taking brst-order
conditions with respect to g, we obtain the following proposition.

Proposition 9. Equilibrium of the A  [liaibn Game with | Active Venues. The set of
marginal participating types {b;} satisbes
i

& 1
N o 9®) L ogBu) F
G (Biva) $ G (01) = Si$Si!1+ Si+1 $ si j=1 o158 s

forall i # {1,...,1}.

Proposition 9 generalizes the results with two venues described in Lemm@a?° It allows us to
compute the equilibrium of the &' liation game for an arbitrary number of venues.

Entry.  We can now study entry with more than two venues. As explained above, moving from
one to two venues is likely to be socially & cient since it introduces competition in a market where
there is none. It is less clear whether moving from to | + 1 is socially € cient when| is already
above one.

We analyze the unexpected entry of a third venue in an existing duopoly. The incumbents have
already chosen their speeds and paid their bxed entry costs, expecting to be in a duopoly. We then
ask if the entry of a third venue would raise welfare. The third venue chooses its speed optimally,
given the speeds of the existing duopoly. This approach allows us to bypass the issue of entry
deterrence. There is, of course, a large literature that studies entry deterrence and it would be
interesting to apply it to Pnancial intermediaries, but this is beyond the scope of our papet?

2The proof is a generalization of our result in Lemma 6 and is thus omitted. Generalization to the case of price
protection is also straightforward but is not our focus here.
%0For instance, Donnenfeld and Weber (1995 consider a vertically di" erentiated duopoly facing the threat of
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The model can only be solved numerically and we use the baseline parameters described in the
next section. We highlight an example where entry can be irfecient

Lemma 10. Entry can reduce welfare when the speed of the new entrant is lower than the speed of
the slow incumbent.

Proof. The proof is numerical. See Section.6. O

Entry always increases total participation but can also lead to misallocations and this eect can
be large if entry takes place at the low end of the range of incumbentsO speeds. Let us explain the
intuition for this result. To keep our notation simple, we denote the low- and high-speed venues
of the existing duopoly by (I,h) and the new entrant by e. In a duopoly, we have the mapping
(I,h) ) (1,2). When we add venuee, the new ordering depends on the relative speed of the
entrant. As explained above, here we consider the case in which < s;. In the oligopoly with three
venues, the ranking in terms of Proposition9 is therefore

(e,l,h)) (1,2,3).

It is clear that entry creates direct competition for venuel. Therefore, venuel is forced to lower
its price. The important point is to consider the reaction of venueh. Venue h does not compete
directly with venue e, but it competes with |. Venue h reacts to the induced drop ing. The optimal
pricing condition for venue h is

& .

. _ . . S|
1$ G(bn) = g(bn) bh+2rsh$s|q : (42)

where by, is the marginal type for the fast venue.

Under Assumption 4.4, the function 1!98()!) $ ! is decreasing in! .2>* Therefore equation ¢2)
implies that By, is a decreasing function ofg. This result explains the potential ine" ciency. Entry
by the third venue forces the middle venue to lower its fee, but it is not probtable for the fast venue
to fully accommodate this fee change. Thereforegy, $ g increases andb, goes up: Investors who
used to trade in the fast venue now trade in the middle venue. This is clearly a misallocation since

the planner would rather have more investors in the fast venué?

7 Model Calibration and Discussion of Regulations

We now present a quantitative version of the model to study the impact of speed, fees, and entry
decisions on market participation, volume, and welfare. We calibrate for three dierent asset classes:

entry by a third Pbrm. They show that incumbent Prms can deter entry by choosing quality levels that reduce ex post
di" erentiation relative to an unchallenged duopoly. Therefore, entry deterrence may improve welfare, even without
actual entry.
31 f ; ; s tribg it WG() A
For instance, with a uniform distribution, == L=g" 2.
%2Naturally, the private surplus increases for investors who move from h to | venue, but the probt losses of the
fast venue are even greater.
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corporate bonds, equities, and Standard and PoorOs (S&P) 500 index futures. These three markets
capture the range of speeds discussed in Figufle We calibrate the model using secondary markets
data and we conduct comprehensive sensitivity analysis for the critical parameters.

7.1 Calibration

The baseline parameters are displayed in Tablé . Unless otherwise noted, these parameters are held
constant across our experiments. We assume a uniform distribution of investor types and we use the
functional form in Assumption 5 for the cost function. We set the bxed entry cosi& to zero except
when we study the welfare consequences of entry and we set the asset supplytoexcept when we
analyze the @ ects of price protection3® The upper bound of the! -type distribution support is set

to W 2.4 The value ofr is set using the long-term composite rate of U.S. Treasury securities over 10
years from January 2007 to December 201%. We set the asset holding cashRBowy, to match the
average S&P500 dividend yield over the same time period ( 2.13%§. Trading days last 6.5 hours,
as in U.S. equity markets.

There is one new parameter that we need to specify to map the model into the data: the number
of investors,N . The setting so far assumes a unit mass of investors. To compare the model-implied
per-capita volume in equation (1L2) with the volume in the data, we need to specifyN. We start
from the number of institutional funds in the U.S. as a proxy of the size of the buy side of Pnancial
markets. According to Morningstar, at the end of 2007 there were 629 exchange-traded funds,
17,500 mutual funds, and 10,096 hedge funds. These 28,225 funds represent the set of potential
investors3’ This is an upper bound on the number of investors. The most di cult part of the
calibration is to determine how many of these investors are active in each market.

3 Futures are, of course, in zero net supply but @ > 0 can be interpreted as the case in which the sell side is
short the asset and we capture trades among buy-side investors. We could also allow for negative holdings as long as
holdings are bounded.

%4This parameter is not easy to compute based on market data. Hence, we experimented with di" erent values
of T for robustness. The results are qualitatively similar and are thus omitted here. To illustrate the economic
interpretation of these values, consider the median investor type, m (! ) = % when p = 2. The annual holding Row
utility under a temporary shock #is um),{1) = 2+ sign (¥ % % This implies that, when facing a negative or
positive temporary shock, the annual Bow utility equals 1.5 or 2.5 units of consumption, respectively.

35 This rate is the unweighted average of bid yields on all outstanding bxed-coupon bonds neither due nor callable
in less than 10 years. Using instead the 10-year T-bond yield yields virtually the same results for the considered
period.

%with pu =2.75and r = 0.0375 relative to the Walrasian price, the dividend yield is pLW & 2.13%. The value
of p a" ects the asset price in the model. Real asset prices obviously also rel3ect market risk exposure, among other
factors, which is not the focus of this paper. This parameter also a" ects global welfare. However, our analysis focuses
on the fraction of welfare that is earned in excess of the autarchy value, that is, W (!, " Wou , as in equation (20).
This is the main reason why we do not calibrate p separately for each asset class (and that we abstract from the fact
that the futures contract yields no cashRow).

3" This number was 31,610 in 2013.
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Table Il
Baseline Parameter Values

g(!) ¥ & a r V1 N

Ur w2 0 05 375% 252 275252 28225
This table displays the following parameters: asset supply &), discount rate (r), cash Bow (1), investor !
type density (g), maximum investor type (1), entry costs (&), and number of potential investors (N).

Volume-Implied #. Let k denote an asset class (bonds, stocks, futures). A critical parameter
for our calibration is Ny, debPned as the potential number of traders for a typical asset in clads.
Participation would be Ny in the Prst best allocation, N/ 2 with a monopoly, and an in-between
value with a duopoly. Once we calibrateNy, we can use the observed volum¥y and speed$y to
back out the rate of preference shocks#. For instance, with a single venue, the model-implied
transaction rate for a typical assetin classk is

|
# (1% G (b)) . 43)

Vi = N X
k 4#+$

Using a uniform distribution of types, one then obtains#, = N:;in!#gvk.

is more complicated but the principle is the same, as explained in Appendik. We select dl erent
values forNy in the next section. Equation (43) implies that, for a given observed volume, choosing
a high N is equivalent to setting a low #.

The case of multiple venues

Speed-Implied c¢. We compute the implicit cost parameter c that rationalizes $ as an optimal
speed, given all the other parameters. Inverting equation36) and assuming a uniform distribution

of types, we obtain
= T Nk (NkSc 3 8Vie) (Nkr$x + 8 Vi (5 $ 1))

o8 (NS (3 + 1S 8rVk)
For the duopoly, we use the brst-order condition of the fast venue, as explained in Appendix Once

all model parameters are set, we solve the duopoly program numerically to obtain the sub-game
perfect equilibrium values of critical types and speedq $1, $,, b1, B2}. The numerical results for
investor participation, volume, and welfare are presented in Sectiof7.3.

7.2 Stylized and Predicted Parameter Values by Asset Class

Table Il presents our calibration of three asset classes: corporate bonds, equities, and S&P500
index futures. Our calibration is consistent with th% cpmmon WISEjOSH about tlae jelatlve & ciency

of these three markets and, in particular, we have i > > g . We test

$ Futures $ Stocks onds
the sensitivity of our results to values ofNy that are one-third lower or higher than our benchmark.

S&P500 Index Futures. The Chicago Mercantile Exchange (CME) has a monopoly over its E-
mini futures contracts and we calibrate the corresponding parameters using the monopoly formulas
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in Section 7.1. There is one contract and, as a benchmark, we consider that most investors are
active in this market, so Ngmini = ¥4N. We use the average number of daily trades on May 6,
2010, as reported byKirilenko, Kyle, Samadi, and Tuzun (2014.%® The stylized speed considered
is equivalent to an average delay of 200ms. This allows for round-trip communication at near light
speed to any location within the U.S3° The implied # means that there are 390 shocks per trading
day and per investor, or approximately one shock every minute. Whert ¥3Ngmn , there is one
shock every 40 second or 80 seconds instead.

We choosec to match the contact rate. Using this value, we estimate that, if the market were
a duopoly, our model would imply trading speeds for the slow and fast venues such that average
delays would be 45 seconds and 185ms, respectivély.

Corporate Bonds. All trades for 2013Q4 are collected from the Trade Reporting and Compli-
ance Engine (TRACE) data set. The average daily number of trades for each of these bonds is
1.97, relRecting the fact that most corporate bonds trade infrequently. Our sample contain®1, 723
bonds. The non-transparent nature of the corporate bond market makes it di cult to estimate the
participants. According to the Investment Company Fact Book out of 8,000 mutual funds surveyed
in 2007, about 800 are bond funds, so we assume that 10% of investors are active in corporate
bonds. As a starting point, we assume that each investor is active in 100 individual bonds, which
is consistent with anecdotal evidence. This gives uBlgongs = 0.1! 100! 28,225 21,723 = 13. We
perform robustness checks wittNggngs =8 and Ngongs = 17, as explained above. We calibrate the
corporate bond market as a duopoly. Corporate bonds trade in traditional phone-based OTC bro-
ker networks, stylized here as the brst (slow) venue, or in modern electronic platforms, the second
(fast) venue. The stylized contact rates are one and 39, for the pPrst and second venues. The Pbrst
is equivalent to an average trading delay of a day, a value that captures the delay in a traditional
voice-based OTC network. The latter value represents an average delay of 10 minutes, closer that
for an electronic platform based on the request for quote (RFQ) protocol. The implied4 means
that there is 0.834 preference shock per trading day per investor in this market.

We choosec to match (approximately) the two contact rates. Interestingly, the model has no
di" culty in explaining the wide range of speeds observed in practice, and the predicted speeds are
close to the stylized values.

%8 This date corresponds to the so-called Rash crash and displays both a large volume and a large number of
investors trading. Using instead the reported values for May 3 to May 5, 2010, yields a lower value for ". In our
calibration, participation in the monopoly then equals Nemini /2 & 10,584. Kirilenko et al. (2014) report the number
of daily active traders to be between 11,875 and 15,422 in their CME sample.

%9with a normalized trading day of 6.5 hours, there are 23,400 seconds in a trading day. Thus, a contact rate
equal to bve times this value, 117,000, is equivalent to an average contact delay of 200ms.

4°0ne may interpret the competing slow venue here as a brokerBdealer brm 8 ering an asset with identical features,
or a traditional trading pit. In this regard, a delay of 45 seconds is consistent with human intervention.
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Table 1lI
Stylized, implied, and predicted parameter values

Panel I: Stylized values

Corporate Bonds Equities S&P500 Futures
Volume 1.97 30234 1,030,204
Number of assets 21,723 2805 1
Stylized $n, - - 117,000
Stylized $; 1 195 -
Stylized $; 39 23400 -
Panel II: Implied and Predicted Values

Corporate Bonds Equities S&P500 Futures
Nk 8 13 17 61 92 122 1413 21169 28225
Implied # 1.378 0.834 0.588 299.72 18295 129.22 586.93 390.63 292.73
Implied c( 10 3 36.444 36.201 36.415 0.1605 0.1570 0.1565 2.7457 2.7503 2.7526
Predicted $, 37.377 36.211 35.220 22,616 21,986 21,417 117,000 117,000 117,000
Predicted $; 1.644 1.044 0.750 386.50 239.13 169.00 773.57 516.93 388.13
Predicted $, 40.367 38.132 38.065 24,442 23,758 23,141 126,414 126,402 126,396

All rates are daily. For corporate bonds, the benchmark calibration is a duopoly where the low speed is
$; = 1, the high speed is$, = 39, and there are 13 active traders per bond. The sensitivity analysis is
conducted with £ ¥3Nk. The implied # means that there is 0.834 preference shock per trading day per
investor in this market. For equity, there are 183 shocks per trading day, or one shock every 128 seconds.

Equities. We calibrate the model to 2007, because that was when Reg NMS was implemented.
According to data from the NYSE Group (www.nyxdata.com), the average number of daily trades
for a typical NYSE-listed stock in 2007 was equal t03,023 The number of listed stocks in 2007
was 2,805 According to the Investment Company Fact Book 46% of funds are US equity funds.
There is no simple way to estimateN siocks beCause many equity-related trades are index trades, not
trades on individual stocks. We choose the typical number of actively traded stocks to capture the
intuitive idea that the stock market lies somewhere in between the bonds market and the futures
market in terms of €' ciency and number of traders per asset. Assuming that a trader is active
in 20 individual stocks, we obtain Nsiocks = 92. We perform robustness checks with values that
are higher and lower, as explained above. We calibrate the equity market as a duopoly, given the
prevalence of the NYSE and the NASDAQ at the time of Reg NMS implementatiorf:' To calibrate
the stylized contact rate parameters, we consider SEC Rule 605 data for the NYSE for 2007, before
the full implementation of Reg NMS. The value for the fast venue matches the average execution
delay of 1 second in 2007 for small automated orders. The value for the slow venue represents a
human brokerbdealer round-trip delay of 1 minute and is consistent with the SEC data presented
in Figure Al in the Appendix A. The implied # means that there is one shock per investor every

41 According to the SEC (2010), the NYSE executed as much as four-bfths of the volume of NYSE-listed stocks
just before Reg NMS.
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Table IV
Calibration Outcomes (Walrasian case =100)

Corporate Bonds Equities S&P500 Futures
Investor  Trading  Welfare Investor Trading Welfare Investor Trading  Welfare
Partic. Volume Partic. Volume Partic. Volume
l. %Nk #=1.378 ¢c=0.0364 #=299.72, c=0.000160 # =586.93, c=0.00275
Monopoly 50.00 48.22 70.62 50.00 48.35 73.37 50.00 49.75 74.38
Venue 1 29.09 15.83 8.56 29.16 16.42 8.89 29.17 16.58 8.98
Venue 2 58.18 56.26 77.94 58.31 57.61 80.92 58.33 58.06 81.99
Duopoly 87.28 72.09 86.50 87.47 74.03 89.82 87.50 74.64 90.97
. Ng #=0.834 ¢c=0.0362 #=182.95 ¢c=0.000157 # =390.63, c=0.00275
Monopoly 50.00 48.87 72.21 50.00 49.59 73.97 50.00 49.83 74.58
Venue 1 29.14 16.20 8.77 29.16 16.52 8.95 29.17 16.61 9.00
Venue 2 58.27 57.05 79.67 58.32 57.88 81.56 58.33 58.15 82.20
Duopoly 87.41 73.25 88.44 87.49 74.40 90.51 87.50 7476  91.20
. %Nk #=0.588 c=0.0364 #=129.22, ¢=0.000156 # =292.73, ¢=0.00275
Monopoly 50.00 49.18 72.96 50.00 49.70 74.25 50.00 49.88 74.69
Venue 1 29.15 16.35 8.85 29.16 16.56 8.97 29.17 16.63 9.01
Venue 2 58.30 57.41 80.48 58.33 58.00 81.86 58.33 58.20 82.31
Duopoly 87.45 73.76 89.33 87.49 74.57 90.83 87.50 7482 91.32

Each cell is normalized by the Walrasian outcome. Participation with a monopoly is always 50% of total
participation but in the benchmark bond calibration, for instance, it achieves 72.2% of the maximum welfare.
A duopoly would reach 88.4% of total welfare, 8.77% in the slow venue and 79.67% in the fast one.

128 seconds in this market?
We choosec to match the contact rates and, as in the case of bonds, we Pnd that the model
correctly predicts the relative speeds of the two venues.

7.3 Welfare Analysis

Table IV shows the main equilibrium outcomes in the benchmark case with = ¥2. All the values

in the table are relative to the Walrasian case, which represents a frictionless competitive market.
Panels | to Ill of Table IV, respectively, display the outcomes corresponding to the parameters
implied by the low, medium, and high values ofNy, as in Table Il .

“2)t is important to keep several factors in mind when interpreting

of private corporations and wealthy individuals but, obviously, if we included those,

". First, we calibrate our model using insti-
tutional investors, who indirectly represent multiple agents (such as retail investors), and it is natural to think of
institutional investors as receiving frequent shocks. There is no reliable information about the direct participation

Nk would increase and" would

decrease. Finally, and most importantly, the common practice of order splitting increases the number of reported
trades. It is not possible to identify which trade represents a new trading shock as opposed to a fraction (Ochild
orderO) of a larger trade. Our model ¢ ers a stylized description of the trading process where the incentive for order
splitting, namely the price impact, is absent. A more sophisticated specibcation with order splitting would naturally
imply a lower fundamental " for the same observed volume.
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Participation. Participation under monopoly and uniform distribution is always one-half. Par-
ticipation increases dramatically to around 87% when two venues compete. We verify numerically
that participation in the second venue alone is always greater than in the monopoly case, as pre-
dicted by the theory. Participation levels are similar across asset classes because the degree of
relative di! erentiation sz/s, is similar across asset classés.

Trading Volume. Even in markets with high speeds, the duopoly fails to realize an important
fraction of the potential trades that occur in the Walrasian setting. This fact rel3ects lack of full
participation in the duopoly relative to the Walrasian setting. It also ref3ects the ing' cient allocation
of the asset across investors in the pbrst venue due to the incentive of venues td dientiate speeds.
Thus, the slow venue volume share is roughly one-half of its relative investor participation for all
asset classes.

Welfare.  Although the monopoly only attracts half of all investors, it achieves a larger fraction

of maximum welfare because those who choose to participate are high-value investors. Welfare
typically goes up by at least 15 percentage points when we move from a monopoly to a duopoly, so
the calibration suggests high social gains from encouraging entry.

7.4 Is Price Protection Socially Desirable?

Price protection a! ects investor participation and trading prices, as well as entry decisions, as shown
in Proposition 7. The welfare consequences of trading regulationss # {seg, prot depend on the
entry game, the speed choices, and the"diation game. There are three di erent cases to consider
but two have already been analyzed. When entry cost& are larger than) i’mt, only one venue can
enter and trading regulations are irrelevant. When) ;%9 < & & ) P, price protection increases the
number of venues and we have seen in Sectiah3 that this has a large positive @ ect on welfare.

Our goal in this section is to quantify the potential negative consequences of price protection.
When & & ) *9, price protection does not d ect the entry game but it distorts competition ex post.
Table V presents our estimates of the welfare cost of these distortions. We sat= 0.45 in our
calculations and, as in TablelV, we report values relative to the Walrasian allocation*

We know that BY™® > B3°9 and that participation in venue 1 increases under protection. On the
other hand, BY™" < B5%9, so total participation and participation in the fast venue both decrease.
Participation at time 0 includes all the traders. Over time, the light traders drop out and at time "
only the heavy traders remain. This process, however, is the same in the Walrasian allocation, so the
ratios reported in Table VV do not change. For segmented bond markets, for instance, participation is
always 97.12% of Walrasian participation. In the protected case, this is true for total participation,

“*Remember that s is given by % (%t+ r + "), so a similar ratio s,/s1 across assets does not imply similar%/ %
ratios. The ratio s;/s; lies in between 1.5 and 2 for all assets, wherea®s/ % ranges from a lower bound of roughly
24 for corporate bonds to over 300 for S&P500 index futures.

44To facilitate the connections with the propositions in Section 4, we keep the same speeds regardless of trading
regulations. Endogenizing speeds in the brst stage has a second-order'&ct on outcomes relative to the fee distortions
in the second stage of the game.
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Table V
Segmented and Protected Equilibria Outcomes (Walrasian case=100)

Corporate Bonds Equities S&P500 Futures
Participation \% w Participation \% w Participation \% W
t=0 t=" t=0 t=" t=0 t="

Segmented
Venue 1 32.37 32.37 18.00 8.86 3241 3241 18.36 9.04 3241 3241 18.46 9.09

Venue 2 64.74 6474 6339 8048 6480 6480 64.31 8238 64.81 64.81 64.61 83.03
Duopoly 97.12 97.12 81.39 89.34 97.21 97.21 82.67 9142 97.22 97.22 83.07 92.12
Protected

Venue 1 35.08 2852 1585 8.075 3511 28.54 16.17 8.24 3511 2854 16.26 8.29
Venue 2 59.04 65.60 64.23 81.11 59.11 65.67 65.17 83.03 59.11 65.68 6548 83.68
Duopoly 94.12 94.12 80.08 89.01 94.21 9421 81.34 9125 9423 9423 81.74 91.97

The parameters values are the same as in Panel Il of Tabléll, except for @, which equals 0.45 here.
Participation at t = 0 includes both light and heavy investors and is equal to total & liation. Participation
att =" includes only those investors who trade in the steady state (types$ ' & in venuei). For any asset
classk, participation in the Walrasian case is equal the total number of investorsNy at t =0 and is equal
to 2aNy in the steady state. The termsV and W denote trading volume and welfare in the steady state.

but not for the allocation across venues, since the assets migrate from the slow venue to the fast
venue over time?®®

The impact of price protection on participation is about three points but the impact on welfare
is only about 0.2 point. This is an important result, since there is a debate on whether policies such
as the SECOs trade-through rule are benebcial or detrimental to market quality. The bottom line
is that the welfare € ects in Table V are small relative to those in Table!V. The €l ects of price
protection on equilibrium probts are signibcant, however. For the three asset classes considered, we
Pnd that probts for the slow venue increase by 7D8% under price protection. Therefore, it is likely
that price protection has a signibcant impact on welfare, because it encourages entry, as predicted
by our model and observed in U.S. markets. On the other hand, for markets that are already
fragmented, as in Europe, implementing this policy may not increase the number of venues and
may decrease welfaré®

“Sparticipation at time t = 0 for the protected case is (2aG (b2) " G (b1)+1 " 2a) for venue 1 and 1" G (8,) for
venue 2. Attime t = ' , participation in venue 1is G (b2)" G (b1). Participation at time t = 0 in the segmented
case is 5= (G (b2) " G(b1)) and = (1" G(b2)) for venues 1 and 2. At time t = ' , participation is 1" G (b.)
and G (b2) " G (b1) for venues 1 and 2. These terms represent the same fraction of the Walrasian market for all t.
The welfare expressions for the segmented case are given in Lemma& and those for the protected case are given in
Appendix C.

4The social value of protection technically depends on the value of a (0.45 here), but welfare di" erences remain
small in any case. Perhaps more importantly, we do not capture welfare gains from mitigating execution price
uncertainty, given that our traders are risk neutral. Therefore, the value -0.2% maybe seen as a lower bound on
welfare gains.
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Table VI

Speed cost, speed regulation, and social outcomes (Walrasian case=100)

Corporate Bonds Equities S&P500 Futures

% P Y, w % P \Y, w % P Y w
|. Baseline " =0.834,c=0.0362 " =182.95,¢=0.000157 " =390.63,¢c=0.00275
Monopoly  36.211 50.00 48.87 72.21 21,986 50.00 4959 73.97 117,000 50.00 49.83 74.58
Venue 1 1.044 29.14 16.20 877 239.13 29.16 16,52 895 516.93 29.17 16.61 9.00
Venue 2 38.132 58.27 57.05 79.67 23,758 58.32 57.88 8156 126,402 58.33 58.15 82.20
Duopoly - 8741 7325 88.44 - 87.49 7440 90.51 - 8750 7476 91.20
1. c( "=0.834c= %0.0362 " =182.95c= %0.000157 " =390.63,c= %0.00275
Monopoly  51.555 50.00 49.2 73.02 31,169 50.00 49.71 74.27 165,625 50.00 49.88 74.71
Venue 1 1.066 29.15 16.36 8.86 240.6 29.16 16.57 8.97 51811 29.17 16.63 9.01
Venue 2 55.719 58.3 57.44 8055 33,677 5833 5801 8188 178,924 58.33 5821 82.33
Duopoly - 87.45 73.80 89.04 - 87.49 7458 90.85 - 8750 74.83 9134
. %) " =0.834,c=0.0362 " =182.95,¢=0.000157 " =390.63,¢c=0.00275
Venue 1 1565 29.99 1957 9.74 358.69 30.00 19.87 9.92 77540 30.00 19.95 9.97
Venue 2 40.538 59.99 58.78 81.06 24587 60.01 59.57 8293 130,767 60.01 59.83 83.57
Duopoly - 89.98 7835 90.81 - 90.01 79.44 9285 - 90.01 8357 9354

The parameters values are as in Panel Il of Tablell . The terms P, V, and W denote participation, trading
volume, and welfare, respectively.

7.5 Speed and Welfare

Table VI analyzes the welfare consequences of speed regulations. Panel | reviews the outcomes
with baseline parameters andNy investors. In Panel Il, we lower the cost of speed by 50%. Speed
increases dramatically in the fast venue but barely moves in the slow venue. Welfare increases
slightly. For corporate bonds, welfare increases by 60 basis points, from 88.44% to 89.04%. For
stocks and futures, the welfare gains are 34 basis points and 14 basis points. In our simulations, the
fast venue becomes much faster asdecreases, but the slow venue does not. The important point
is that welfare gains are small, even for asset classes that are initially slow. Even when the cost
of speed decreases by 90%,welfare gains are less than 1% and the brst venue barely accelerates,
while the fast venue selects a speed that is several times as fast.

In Panel Ill of VI, on the other hand, we enforce a minimum speed requirement that is 50%
higher than the unregulated equilibrium: $ = 1.5%;. The increases in welfare are much more
signibcant: 237 basis points for bonds and 234 basis points for stocks and futures. Forcing the slow
equity venue to reduce trading delays from 2 minutes to a bit over 1 minute increases welfare seven
times more than what is achieved by a 50% decrease in the cost of speed.

The positive predictions of the model seem to bt what we have observed over the past 20 years.
The normative analysis suggests limited welfare gains from purely technological improvements and
highlights the importance of regulations.

4T Detailed results not reported in this case but they are available upon request.
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7.6 Example of Excess Entry with Three Venues

This section analyzes the possibility of excess entry in a market with three venues. Following the
notation of Section 6.3, | and h denote the slow and fast incumbents, respectively, an@é denotes
the entrant. We use the baseline calibration for equities (withNy = 92) in our simulations. We
report i/t instead of Bb; because it is easier to interpret. We also normaliz& | ($;, $y) = 100 in the
duopoly equilibrium. Welfare is debned relative to the Walrasian outcome, as in TabléV .

With two incumbents, the optimal speeds are$ = 239.13 and $, = 23,7582, as displayed in
Panel Il of Table 11l . The marginal types areb/r = 0.125and bn/+ = 0.417. Probts are" | ($, $n) =
100and " y, (%, %n) = 690.69 and aggregate welfare iV = 90.51 (again, as in Tablelll).

Consider now a slow entrant$. & $. The entrant optimally chooses $. = 127.70 and the
marginal types arebe/r = 0.031, b/ = 0.146, and bBn/r = 0.458 There is a signibcant decrease in
participation in the fast venue, as predicted by Lemmal0. The probts are" ¢ ($e, $,$h) = 7.09,
"1 (e, B, n) =53.71, and " 1, (e, B, ) = 594.50. The probts of the slow incumbent are almost
halved by competition from the entrant. Aggregate welfare decreases t&/ = 89.48 mostly because
welfare generated by the fast venue decreases fro®i.56 to Wy = 77.96.

The outcome is very di erent if the entrant has a high speedb. ' $;. In that case, the entrant
would optimally choose$ = 29,319 The marginal types becomede/r = 0.334, b/ = 0.241( 10 3,
and Br/+ = 0.802( 10 3. The venues generate welfar&V, , 0, W, = 10.63, and W, = 87.75.
Aggregate welfare increases taV = 98.38. We also bPnd (in untabulated results) that welfare
increases when the entrant has an intermediate speefl & $. & $;.

This example shows that allowing for a third venue can lead to signibcant welfare gains. This
case of analysis could capture the welfare consequences of having new venues, such as BATS or
Direct Edge, enter and challenge the incumbents (NYSE and NASDAQ) after Reg NMS. The new
venues entered with, arguably, better technologies than the incumbents hatf

To summarize our numerical results, we bnd that entry can reduce welfare when the entrant has
a low speed relative to that of the incumbent. The reason is that increased participation by low-
types is not enough to compensate for the misallocation of high-types. On the other hand, when
entry takes place at the high end of the speed ladder, we bnd that it improves welfare. We view
these results as a brst step and, as explained earlier, we think that the topic of entry deterrence
should be further explored in future research.

8 Concluding Remarks

We have provided an equilibrium analysis of entry, investment in speed, and competition among
trading venues. Let us brieBy summarize our main conclusions.

“8To be more precise, our calculations capture the welfare € ects before the NYSE and NASDAQ could react by
subsequently investing in new trading platforms.
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Normative Results. On the normative side, our model claribes the circumstances under which
competition, fragmentation, and speed improve or reduce welfare.

Regarding entry, we Pnd that it is optimal to challenge monopolies and that welfare losses are
still signibcant in a duopoly. In addition, we Pnd that entry by a fast venue is likely to increase
welfare, while entry by a slow venue might not. These results are relevant for several regulatory
initiatives around the world, such as MiFID, Reg ATS, and Reg NMS.

Regarding speed, we Pnd that, barring front-running issues, it is not optimal to limit speed.
This does not mean, however, that there is much to expect from purely technological improvements
in trading speeds. Perhaps one of the most striking results of our quantitative analysis is that a
reduction is the cost of speed leads to a vast increase in speed by the fast venue, almost no increase
by the slow venue, and, as a result, very limited welfare gains. On the other hand, we bnd that
it can be optimal to increase both speed and competition by pushing the slow venues to upgrade
their technology. Slow and iné cient markets, such as that for corporate bonds, could benebt from
such a rule. This Pnding is also consistent with the leect that the automation mandate of Reg
NMS had on the NYSE, and the likely € ect of recent regulatory @ orts, such as DoddbFrank and
European Market Infrastructure Regulation/MiFID I, that push for more electronic trading for
OTC derivatives.

Regarding price protection, we bnd it to be & cient when it encourages entry, but this comes at
the cost of (moderate) in€ ciencies ex post. These bndings are relevant for Reg NMS in the U.S.
and the order protection rule in Canada, and informative for similar regulations elsewhere.

Positive Results. On the positive side, our model provides an explanation for the joint evolution
of trading regulations, fragmentation, and speed.

The recent sharp increase in market fragmentation in developed countries has encouraged a new
wave of empirical studies whose results appear to be consistent with the predictions of our model.
Foucault and Menkveld (2009, OOHara and Y&2011), and Degryse, De Jong, and Kerve(2014),
among others, bnd that an increase in trading fragmentation is associated with lower costs and
faster execution speeds in a given asset class. Our result that price protection increases entry and
thus fragmentation helps to rationalize (i) the sharp increase in fragmentation experienced in U.S.
equity markets after 2007 and (ii) the fact that fragmentation levels since Reg NMS are the highest
in the world. One advantage of our model is that we can estimate the welfare consequences of these
evolutions.

It has been argued that moving away from continuous trading toward periodic auctions would
eliminate the speed investment frenzy (e.g.Budish, Cramton, and Shim, 2013. Our results suggest
that these reforms could mitigate but are unlikely to stop this phenomenon. As the cost of speed
decreases, trading speeds increase and become moteedéntiated. This is likely to encourage entry
by fast venues, further increasing the market average speed.

Let us conclude with some caveats and ideas for future work. One limitation of our analysis is
that it misses important sources of dl erentiation among exchanges, such as between lit and dark
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trading venues. One could also consider more sophisticated trading protocols to better describe
particular asset classes. The framework we have developed can, however, be generalized in such
directions. Another interesting extension would be to endogenize the contracts between trading
venues and liquidity providers, such as high-frequency bPrms. By introducing such features, one
could study the performance of incentive schemes for liquidity creation and stability, a key concern

in the debate over designated market makers in todayOs electronic markets.

Another limitation of our analysis is that we do not take into account asymmetric information.
One can argue that the desire to take advantage of information is one reason behind the observed
increase in speed. It should be noted, however, that the joint increase in average speed, efientia-
tion, and fragmentation is not a new phenomenon, that it has been observed in virtually every asset
class, and that even investors who are not interested in any sort of front running still decide to trade
in fast exchanges, such as IEX, or fast venues with RFQ protocols. Current models of front running
in a single venue can explain why some traders have an incentive to beconmividually faster,
but they do not account for the relative participation of investors across trading venues. Nothing
prevents the formation of a relatively slow and cheap venue. If uninformed traders choose to join
fast venues, they must value speed; otherwise, they would all join the slow venue, depriving the
fast venue of liquidity. The idea that speed is provided exclusively to satisfy a fraction of informed
traders seems to be inconsistent with free entry.

Our model, on the other hand, captures afundamental part of the demand for speethat would
be present in any model, with or without front running or other information-based demand for
speed. We argue that speed-sensitive gains from trade are required to explain investment in speed
and we therefore think that information-based models are a complement, rather than a substitute,
to the model that we have presented. Some participants may use speed to take advantage of other
investors and we certainly do not claim that asymmetric information is irrelevant, but we do claim
that the building blocks of our model are required to analyze speed, fragmentation, and welfare,
with or without asymmetric information.
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Supplement to OCompeting on SpeedO: Online Appendices

Emiliano Pagnotta and Thomas Philippon

Imperial College London and NYU Stern School of Business

This supplement comprises an appendix on the security exchange industry, proofs of propositions
and lemmas in the main paper, and two model extensions: Trading fees and investor multivenue
a" liation.

Appendix A Remarks on the Security Exchange Industry and its
Regulation

A.1 Trading Speed in Perspective

Historical perspective. Our model seeks to capture not only recent investments to achieve
ultra-low latencies but, more generally, any increase in transaction frequency enabled by changes in
technology or market organization. A few important historical examples include:

¥ The telegraph. Garbade and Silber (1977 study two important developments in the XIX
century: the telegraph system in the 1840s connecting New York with other American market
centers, and a trans-Atlantic cable connecting New York and London in 1866. These authors
Pnd that these early examples of technological advances in Pnancial markets accelerated the
search for liquidity and signibcantly reduced order execution delays. In the context of our
model, such developments also represent a move towards integration between markets that
were previously working as eectively segmented.

¥ Continuous trading. Early in the 1900s, all European stock markets (except London) con-
ducted periodic trading by auctions, once or many times a day. Progressively, but not si-
multaneously, markets moved to continuous trading, which represents a massive increase in
trading frequencies by comparison to auctions.

¥ Personal computers (1980s). Before the recent wave of trading technologies associated with
high-frequency trading, Roor brokers in traditional exchanges such as the NYSE enjoyed ad-
vantages in trading speed compared tolo-3oor investors. The high cost of participating in the
exchanges Roor was in this regard an instance of a speed-related fee, much ke our model.
The arrival of computers allowed the development of early forms of electronic trading, and
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Figure Al. Trade speed in U.S. equity markets (Source: SEC, October 2013).

information systems such as the brst Bloomberg terminals. Initially, only a very small fraction
of market participants took part in in electronic trading. The crash of 1987 and regulation
reforms accelerated the process by pushing exchanges to adopt automatic execution systems
(like the Small Order Execution System) that did not rely on traditional Roor brokers (Lewis

(2014).

The economic framework in our paper, with speed dierentiation at the center, can be applied to
the historical analysis of such developments.

Communication speed and trade speed. Nowadays all major exchanges work as electronic
platforms that thousands of investors and brokerage Prms can access directly. Tabbkel displays
some (hand-collected) recent examples of the speed investments and speed capabilities of major
exchanges. It is important to make a distinction here between the speed of quote updating, and the
speed of trades, given that we model the latter. FigureA\l, based on a recenSEC study, shows that
over 50% of all fully executed orders in exchanges take place between 5 seconds and 10 minutes. For
partial trades that bgure increases to virtually 60%. The blazing fast speeds advertised by trading
venues ¢ ectively correspond to quote revisions, not trades.

Global perspective. Although our discussion in the main body of the paper focuses on the Eu-
ropean and U.S. experiences, our analysis and results relate to other recent international cases. The
links between entry, competition and speed investments is apparent in regions like Asia, Australia
and Latin America, where traditional trading venues face the threat of alternative trading plat-


http://www.sec.gov/marketstructure/research/highlight-2013-05.html#.U5JCSBb-WUc

Table A1
Selected Speed Investments by World Exchanges (2008-2012)

Exchange Quarter Investment Latency Reduction (as reported) Asset class
NYSE Euronext Q4 2008 Universal Trading Platform 150-400 microseconds from 1.5 ms Bonds
Q1 2009 Universal Trading Platform Cash Equities
NYSE Q2 2009 Super Display Book System Platform 5 ms from 105 ms (350 in 2007) Cash Equities
NYSE Amex Q3 2009 Super Display Book System Platform 5 ms from 105 ms (350 in 2007) Cash Equities
NYSE, NYSE Arca, NYSE Amex Q4 2009 Universal Trading Platform from 5 to 1.5 milliseconds Cash Equities
Tokyo Stock Exchange Q4 2009 Tdex + System to 6 millisecond Options
Q1 2010 Arrowhead Platform 5 millicond from 2 seconds Cash Equities
Q4 2011 Tdex+ System 5 milliseconds Futures
Turquoise (LSEOs) Q4 2009 Millenium Exchange Platform Latency of 126 microsecond Derivatives
NASDAQ OMX (Nordic+Baltic) Q1 2010 INET Platform to 250 microsec Cash equities
Johannesburg Stock Exchange Q1 2011 Millenium Exchange Platform 400 times faster to 126 microsecond Cash equities
London Stock Exchange Q4 2010 Millenium Exchange Platform Cash equities
Singapore Stock Exchange Q3 2011 Reach Platform Cash equities
Hong Kong Stock Exchange Q4 2012 HKEXx Orion Cash equities

forms. Indeed, Table Al also illustrates that the emphasis on speed investment has been global
over recent years. Fragmentation has also increased in other regions of the world. Part of this
increase in fragmentation is due to the fact that several regulating agencies, encouraged by the U.S.
and European experiences, began removing barriers to entry during the last bve to ten years (see
examples in TableA3).

A.2 Fast and Slow Venues: Examples Across Asset Classes

In this section we discuss speed-related choices that help to understand how our model maps into
various parts of the pPnance industry. TableA2 summarizes many of the examples across asset
classes that we discuss below.

Cash Equities.  The simplest interpretation of speed choice in equity markets any has two ex-
changes, such as the NASDAQ vs. the NYSE in the U.S., or ASX vs. Chi-X in Australia, bering
trading services at di erentiated speeds.Boehmer (2005 documents the trade-d between execu-
tion speed and costs in U.S. markets before Reg NMS. He Pnds that, analogously to venue 2 in
our model, the NASDAQ is more expensive than the NYSE, but it is also faster. More recent data
shows that the NASDAQ was still signibcantly faster than the NYSE at the time of Reg NMS
implementation in 2007 (Angel, Harris, and Spatt, 2011).

A second, broader, interpretation has investors sorting themselves between OexchangesO and a
range of Oalternative trading venues.O According to the SEC classibcation, U.S. investors can opt to
direct their orders to registered exchanges, and a range of Alternative trading Systems or ATS, that
include Electronic Communication Networks or ECN, dark pools, or brokerbdealer Internalizers or
Crossing Networks. According to the SEC, these alternative venues jointly represent 33-36% of
U.S. equity volume. Similarly, European regulators make a distinction between Regulated Markets,
Multilateral Trading Facilities (MTFs) and Systematic Internalizers. Although alternative and over-
the-counter venues have also made technical progress, as a group, organized exchanges typicakdy o
investors the fastest communication and trading responses. Summarizing, we can group venues as
follows.



¥ Slow venue: brokerbdealers/crossing networks, 3oor-driven exchanges.
¥ Fast venue: (lit) Electronic exchanges.

Each of these interpretations relates to a dierent market regulation: Reg NMS mandates order
protected prices among organized exchanges (see Secti@rB). Order prices are not protected,
however, between exchanges and many ATS (especially dark venues that, by dePnition, do not
display prices).

Yet another interpretation relates to retail investors more directly, at much lower speeds. Con-
sider a given household that seeks exposure to a market risk factor. The default way of getting such
exposure is through a mutual fund that can generally be accessed through their default commercial
bank. However, mutual funds can only be traded daily. A speed-sensitive investor may instead
consider an ETF or an exchange-traded index future. For the latter, the additional cost of speed
is represented best by the cost of opening and maintaining a specibc brokerage account, the cost
of accessing real-time quotes, as well as acquiring the necessary knowledge on how to use a given
trading platform. Of course, not all of these related costs are captured by the trading venues.

Corporate Bonds. The corporate bond market has traditionally operated in a decentralized
fashion and over the phone Pu" e et al,, 2009. Since the last Pnancial crisis, institutional investors
have begun migrating some of their orders execution away from voice and towards the electronic
request for quote protocol (eRFQ)%° The eRFQ represented an evolutionary step toward ‘& ciency,
not a market structure change. Similar to picking up a phone and calling a handful of dealers, it
allows investors to gather a pool of potential liquidity providers. This mechanism can then be seen
as the electronic version of the status quo. More recently, there has been a proliferation of electronic
trading venues, some of them operating a central limit order book as well (CLOB). We list some of
them below.

¥ Slow venue: Voice trading using traditional dealer banks.

¥ Fast venue: (mainly eRFQ). Bank-sponsored electronic bond trading networks: GSessions
(Goldman Sachs), Bond Pool (Morgan Stanley), Price Improvement Network (UBS), Aladdin
Trading Network (BlackRockOs), BondPoint (Knight). Bond trading platforms: Bloomberg,
MarketAxxes, Tradeweb, Bonds.com.

¥ Faster venues. (mainly CLOB): ICAPOs BrokerTec, GFIl, NYSE Bonds.

Despite the recent innovation in trading systems, slow voice trading is still dominant. The TABB
Group estimates that, as of 2014, approximately 15%-16% of the notional volume for investor-
initiated (otherwise known as dealer-to-client) trading is executed via some electronic medium (ap-
proximately 21% if accounting for retail transactions). The scope for further platforms development
and growth is illustrated by the fact that near four-pfths of the notional volume is still transacted in

4 MarketAxxes introduced the list-based e-RFQ in 2002.
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the Oold fashionedO way. In this market trading protocols are still evolving and it is still challenging
to bnd liquidity in o ! -the-run corporate bond issues (which account for most of the market).

Foreign Exchange (FX) FX is global and trades 24 hours. A large number of Pnancial insti-
tutions, individuals and corporations that are active in this market select to trade in venues with
di! erent speeds. We can group venues in two stylized groups.

¥ Slow Venue: Traditional banks/trading desks acting as voice brokers/dealers, trading at hu-
man speeds.

¥ Fast Venue. Multiple venues operating with di erent technologies. Inter-dealer electronic
brokers platforms (EBS, Reuters, in London); ECNs (such as Currenex), 10-15 single-banks
platforms. Trading speed is sub-second.

Despite the rapid growth of electronic venues in the FX market, by the end of 2012 only 60% of the
global trading volume was electroni¢® (from 51% in 2010).

An important fraction of market centersO speed investment is in the form of locating trading
venues where customers congregate (trading hubs such as Chicago, NY or London). Thus, a large
part of the speed premium that clients pay is in the form of co-location and developing trading
infrastructure in multiple cities. The FX market is traditionally highly unregulated and opaque.

In particular, there is not a trade-through-like rule protecting execution prices, resulting in a high
degree of price fragmentation.

Swaps: IRS, CDS.  Until recently, bnancial institutions and corporations participating in these
markets were used to trading at much lower speeds than equities and paying higher commissions.
The landscape has been transformed by the strong regulation force of the DoddbFrank Act, which
mandates electronic trading of large classes of derivatives B and the subsequent entry of new venues
with modern trading platforms. We can conceptually group venues as follows.

¥ Slow Venue: OTC brokerbdealer (such as UBS, Credit Suisse and Morgan Stanley) trading
over the phone, or traditional RFQ.

¥ Fast Venue: Inter-dealer electronic platforms as ICAP i-Swaps, Tradition and BCG for IRS,
and BloombergOs BSEF for credit default swaps; several electronic Swap Execution Facilities
(SEF).

As of April 2014, there were 24 SEFs registered with the CFTC operating across interest rate, credit,
and foreign exchange asset classes, but only a handful have a market of more than bPve percent.

50Reported in Greenwich AssociatesO Global Foreign Exchange Services Study, 2012.



Table A2
Venue Speed Choices in Asset Markets: Some Examples

Market Slow Venues Fast Venues
Equities (institutional) Crossing networks, Boor exchanges Direct access to lit exchange, co-location
Equities (retail) Retail bank (mutual funds) Premium broker (ETF, index futures,etc.)
Foreign exchange (FX) OTC dealer/bank (voice) Currenex, EBS, Reuters
Corporate Bonds OTC voice trading Aladdin, Tradeweb, Bonds.com

Liquidnet, NYSE Bonds, BrokerTec
Interest rate swaps (IRS) OTC dealer/bank SEFs. ICAP, BCG, Tradition
Credit swaps (CDS) OTC dealer/bank SEFs. Bloomberg, GFI, MarketAxxes

A.3 Venue Competition and Order Price Protection

There are essentially two approaches to investor protection: the trade-through model and the
principles-based model (see Tablé3).

Trade-through Model. Under this approach market centers are connected to one another and
they prevent trading through better prices available elsewhere. Price is thus the primary criterion
for best execution. This requires complex and costly connections as well as strong monitoring
activity from market regulators. In the U.S. this rule is implemented by SECOs Reg NMS and is
subject to the following features’: (i) eligible NMS securities prices are aggregated in the Securities
Information Processor (SIP) and then disseminated to market participants. (ii) Prices are quoted
gross of trading fees. (iii) The SEC sets an access fee cap of $0.003 per share. (iv) Only the top of
the book is protected: When a big trading order arrives at a given marketplace, only the amount
of shares represented by the depth of the book at the National Best Bid and Cer is protected. As
an example, suppose that the NASDAQ and the NYSE are the only market centers and that an
investor submits a market order to buy 100,000 shares of a given stock to the NASDAQ. Currently
the ask price at the NASDAQ is higher than the ask price at the NYSE (where the ask depth is
10,000 shares). Then the NASDAQ can either match the price at the NYSE or the brst execution
occurs at the NYSE for 10,000 shares. The remaining 90,000 shares Owalk upO the book at the
NASDAQ.

In Canada, the Order Protection Rule (OPR) implemented by the Investment Industry Regula-
tory Organization of Canada shares the same spirit but aims to protect orders beyond the top level
of the book.

Principles-based Model. Multiple criteria other than prices can be included in the best
execution policy, such as the type of investor behind the trade. This approach then allows for more
discretion and less transparency in the assessment of the results. In Japan, for example, Article
40-2(1) of the Financial Instruments and Exchange Act debnes best execution policy as a Omethod
for executing orders from customers ... under the best terms and conditions.O Considerations to
be taken into account are the place of listing, price, liquidity, execution probability, and execution

51 For more details See the SECO&eg NMS documentation.
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Table A3
Venue Competition and Investor Protection in Selected Countries

Economic Area Reg. Agency Regulation Year Investor Protection Model

USA SEC Reg.NMS 2005 Trade-through (top of the book)
Europe ESMA MIFID | 2007  Principles-based

Japan FSA, FIEA FIEA 2007  Principles-based

Canada IIROC, CSA OPR 2011  Trade-through (full book)

South Korea FSC FSCMA 2011 Principles-based

Australia ASIC MIR 2011 Principles-based

Source: www.pbdessa.com and regulating agenciesO websites

speed. This system in Japan does not apply to professional investors. In Europe, MiFID deregulated
price competition in European markets in 2007. A OtransparencyO regime was introduced, but no
formal trade-through rule that venues are held responsible for.

Both in Europe and Japan, sell-side best execution policies do not mandate to consider or
monitor every venue. Monitoring of execution quality is generally left to clients, which can be a
problem in countries where investors have inadequate knowledge of Pnancial markets. The claimed
advantages of the principles-based approach lie in a much simpler set of linkages between markets,
and in promoting innovation by not forcing uniformity.

In real markets arbitrageurs and smart routing technologies work to (at least partially) undo
price di! erentials between markets. Does this fact make a trade-through rule redundant? Pre
MiFID | empirical evidence by Foucault and Menkveld (2008 suggests that the answer is no. These
authors study the competition between a London Stock Exchange order book (EuroSETS) and
Euronext Amsterdam for Dutch brms and bnd that, even when there is formal entry barrier to
arbitrageurs, the trade-through rate in their sample equals 73%? In the U.S., the SEC estimated
that, prior to the implementation of Reg NMS, one out of eleven shares traded in NASDAQ listed
stocks was a signibPcant trade-trougt?®

In our model, beyond its € ect on execution prices, order protection hects the nature of com-
petition between venues. This is consistent with the view ofStoll (2006, who argues:

OThe casual observer of the heated debate that has surrounded the order protection
rule may well wonder what the fuss is all about. After all, we are just talking about
pennies. But for the exchanges, it may be a matter of business survival. Pennies matter,
but more important, the rule requires the linkage of markets, which threatens established
markets and benebts new markets. The battle appears to be over pennies, but in fact,
it is over the ability of markets to separate themselves from the pack.O

52pPrior to MIFID | there was a Oconcentration® rule in most European markets. Countries like Spain, Italy or
France forced trading of stocks listed in their countries to trade domestically.
53Regulation NMS Adopting Release, 70 FR at 37502.
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Figure A2. Average small order execution speed for the NYSE, executed at the top of the book (seconds).
Source: SEC Rule 605 reports.

A.4 Regulation of Speed

Minimum Speed. Regulation NMS di! erentiates market centers based on manual or automated
guotations. A manual quotation is one that is considered not immediately and automatically acces-
sible and which does not receive protection against trade-throughs. The SEC debnes OimmediateO
as the fastest response possible without any programmed del&y. Given that only automated
quotes are protected, the NYSE was deeply!aected by Reg NMSOs forced adoption of automation,

a de-facto minimum speed requirement. FigureA2 illustrates this fact: At the time of full imple-
mentation in 2007, the average execution delay sharply declined from human to machine-driven
speeds. A similar increase in the speed of the slow venues is to be expected in non-equity products
due to the DoddbFrank Act and MIFID II/EMIR push for electronic trading of OTC derivatives.

Maximum Speed. Several market interventions have been proposed to reduce trading speed,
chiel3y in equity markets. The motivation is typically to mitigate the front-running of institutional
orders. Although most large Pnancial institutions are now sophisticated enough so as to avoid
simple detection algorithms by OpredatoryO high-frequency traders, continuous-time markets do not
eliminate this possibility entirely (Budish, Cramton, and Shim, 2013. The current regulatory
framework for equities in the U.S. and Europe does not impose explicit speed limits. Despite
more intense scrutiny over algorithmic trading, speed limits are also absent in the current MiFID I
proposals. Non regulatory speed limits, however, are sometime adopted. In foreign exchange market,
for example, inter-dealer brokerage platforms such as Electronic Broking Services and Reuters have
minimum quote life or minimum Pll ratios that act e! ectively as a limit on maximum trading speed.

S4For an exchange like IEX, the response time is not a result of a programmed delay; rather, the response time is
merely a result of the coiled cable inside the Omagic shoeboxO to get to the matching engine where all participants
are a' orded equal access. This is essentially identical to a colocation center equally measuring connectivity cable to
matching engines. In this regard, IEX would qualify as an automated market center under Reg NMS.
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Appendix B Proofs of Propositions

B.1 Proof of Proposition 1

Debnel, » % VW, » (1) $ Vi »(0) as the value of owning the asset for type(!,"). Then, taking
di! erences of equationd.3-16 we get

He !+ §(|1,+$ loa )+ $(p$ 1)
pH+!$ §(|!'+$ i )$ 80+ $p)

rly

I’|!7+

We can then solver (11 + $ 11, )=2! $ (#+ $) (I, + $ 1, ) and obtain the gains from trade for

type ! in venue $:
2!
I!,+ $ I!,! - m
Using the gains from tradel, + $ I, , we can reconstruct the functionsl, -

M+ $p !
r+$ r+#+9%
I = |J+$p+ :
ot r¢$ r+#+$

III -
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and the average values

@ ©= 2 (.50
a =" 2ps1)

where ¥ (0) % YO Vi20) ang g (1) 9p Vi Wt Vi)

Let us now compute the ex ante value functions. Let us Prst consider typels < k. They join
the venue to sell at pricep, and then do not trade again. AQ/eraging)over types' = %1, the ex ante
value function W solvegs the B+ellman equatiorW = ua+$ pa$ W , and thus W = 2**Pa Since
H+ $p=E(r+$)+ $ p$ E we can rewrite

.E+$

~ a
W= r r+$(rp$“)F

From the dePnition of B we also now that -2 (r(p $ p) = s($) ¥, with s($) % 4, therefore
W = B2 + 58k The m?rginal type & (p,$) is debned in 6), is increasing inp and decreasing in$.
The key point is that W does not depend on the typel , but only on the price and speed of the
venue. Of course we also havéV = a¥. (1).

Let us now consider the steady state types! > k. Their average endowment isa. There are

two interpretations. Either they all have a or they have a probability a to have one unit. Since all



agents are risk neutral, the two interpretations are equivalent.
W) =a¥ (1)+(1 $ a8\ (0

Using the expression above, we get

$ $
ap+as (p$ 11, )+(@1 S (h+3$p)
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= T+QE(2p$ lry $Hi)+ 5('!,+$ p)

wa SrpSp, 17 8
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Therefore, we have, when > &k, we have

1 I $k
W(,$)= W+ =s(9) $
2 r
Q.E.D.
B.2  Proof of Proposition 2
Let us introduce some notations to simplify the exposition:
%% 2@
S1
0
k % 5% s (44)
. 1% G(b)
+(b %7.
RN
The monopoly allocation By, is the solution to B, = +(b). Rearranging the brst order conditions,
the segmentation allocation(b7°%, B5°%) is the solution to
& B2 = +(B2)$ kby
. 9(b1) g(b1) . :
b —+k = —+(b1)$ +(b
' g(6) g(62) (81)$ +(b2)

The price protection allocation B, B5™" s the solution to

& Bio = +(b2) $ z(%kby
. 9(b1) o _ 9(B1) e o ok
By N Yz (N9k g(bz)+(b1)$ Yo+ (B2)

where we highlight in red the dil erences to help the comparison. Remember that (%9 is increasing.
Notice brst b, < By, irrespective of whether prices are free or protected.
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Proof of Point 2. We use the following notations to simplify the algebra
X % Bq, Yy % Bo.

The duopoly system with segmented prices (or witha = 1/2) is

G(y)$ G(x)
1% G(y)

(g(x)+ kg(y)) x
g(y) (y + kx)

We can dil erentiate the system with respect tok:

*

g(x) dx + kg (y) dx + x g*(x) dx + g(y) dk + kg*(y) dy+
g*(y) dy (y + kx) + g(y) (dy + d[kx])

g(y)dy $ g(x)dx
$g(y)dy

After some manipulations and simplibcations, we get

dx*29(><)+ xg*(x) + kg (y),+ $xg(y),dk

$a(y)

d [kx]
29(y) + g*(y) (y + kx)

dy

h
e v 300+ yg'W)

29(y) + g*(y) (y + kx)
We can then prove that under4.4, we have:

T y 1 X

— < 0and — < 0.

K na

First note that the second duopoly FOC implies that 1!gg/()y) = y + kx. Therefore, under4.4, we
have

29(y)+ g () (y+ kx) ' 0.

This shows that the denominator in, is strictly positive. LetOs study the numerator and show that
it is also strictly positive. Either g#(y) > 0 and then 3g(y) + yg®(y) > 0. Or g?(y) < 0 but then,
sincekx > 0,

3g(y) + yg'(y) > 29(y) + yg*(y) > 2g(y) + (y + kx) g*(y) > O.
Therefore, > 0. It is then easy to see that
"X

— < 0.
"k

For %, we need to check that . This is true since

%2500+ xg"(x)
a(y),

+k +x'k=0,
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and x> 0, and 2g(x) + xg#(x) > 0 under 4.4). Therefore

y
< 0.
"k
QED.
Uniform Distribution Let us debne di erentiation as
d % 52/ S1.

With a uniform distribution over [0, 1] the system is

_ z (% x
2 R AT
X 1+0(/;z$(0/1() = T$x$Wr$y)
SO
_ z (%9 x
. 2 = '3 gs1
X 2+Z‘z$(0/f Q1SN+ %
SO
Td$ 1)$ z(%x
y , 2d$ 1)
. 1$ % (d$ 1)

2(d$ 1)+ 30w (%

The solution for x is clear: x is decreasing in% Price protection means%goes down, S goes up.
The impact on y is ambiguous since
4 5

_ 1% % r
y= 1$Z(%2(d$1)+%°/(2(% 2

1+ =
andz(%9 =1% 1%& (1% 99. Clearly, if %is small, theny decreases with% But if %and d are
both close to 1, this can be reversed.
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Exponential Distribution. Under exponential distribution, we have G(!) = 1 $ € '/" and
therefore +(B) = + and the system is

o)

B,
1% z(%kT

bl ( Bo# bq Bo# Bq

— €° + % (Y k e s $%

It is convenient to debPned

| o028 0 (45)
+
X % by
+
and , so that we can write the system in(x, ! ):
1+z(WHKx = 1$! (46)
* +
€ $% = € +%(Wk x (47)

Impact of protection on By
The second equation of the system is

o1+ zK)
13 x= e + ok

This leads to a schedulex increa@ing in!y. The issue is how it changes with% We study the
function on the RHS, namely: log $3*2K° = 10q (0§ +log (1 + zk) $ log € + %k . Taking the

e +8&zk

derivative w.r.t. %
4 5
1 kz¥ | YkzZF+ kz 1 1 s 1 1
= + kz

— + - = -
% 1+ zk e!+%(z % %+% 1+kz$%+kz

' e 1 1 o 1 1 &(1+kz) . L
since - > 1 we have ;775 $ e > 0. Slml|%!’|y z % e > 0. S0 ;5,1 IS increasing in

% Therefore the equilibrium condition € $ %= € + %z x implies a schedulex increasing in
I and decreasing in% The brst equilibrium condition (1+ z(%9k)x =1 $ ! gives a schedule
decreasing in! and decreasing ire Straightforward analysis then shows thatx must be decreasing

in % The free price structure corresponds t®= 1, while the protected price structure corresponds
to %= 2a < 1. Therefore, sinceb; = +x, By must be higher under price protection. The slow
venue enjoys higher participation under price protection.

Impact of protection on B,

The analysis ofby, is ambiguous. It is clear that whenk ) 0 we haveb, ) +, which is the monopoly

13



solution. Debney = 22 = x + I | and get the system

1+ kz)y=1+ kz!
€ %
1$y= kzie, T %G

The brst curve isy increasing in! and decreasing in% The second curve can be written gives

y=18$ kz+ ¥ \which showsy decreasing in! . With respect to % however, it is not clear.

In the realistic case Where#[—l is small, we havez (% = %so

1+kWy=1+ k%

_ g€ $%
1$y—k%7€! T K@

We study the case wheréxis close to one. The free price solution is

A+k)pg=1+ Yk

e’$1

and we look for small deviations:%=1$ ", ! = ¥+ 10 y =g+ §. The brst equation is simply

(. )
1+ k)9S kg'= k ©0g ©B"
1+ Kk9p=kO+k p$ o

The second one gives
4 5
. k 17} A 19 ( 17} e!z $ 1( 19 1A )
— ; |O ¥ ! n ! |0 n
1898 9= 5 € $1+Pe+ 28 "$ 5 — e O$xk
( )

( o ( ) )
$ &7 +k 2@: ke 1+KPB+ 28 +k "

*

) +
From the brst schedule we gek'© = (1+ k)$$ k p$ @ ". The second schedule then becomes

&, ) | ( s
$ e+ k +e7(1+k)? ke’ 2+Kk$ S (1+K) p$ ©

* +
The evolution of y therefore depends on the sign of =2+ k$ €° $ (1+ k) ¢$ ¥ . From the

equilibrium condition at %=1, we getg= 17K and the! under free prices solves

* * +

+
B+k e =1+ k 2% 1

In the special casek = 0, we gety=1 and ¥e” =1 implies ¥ = 0.5671then- =1 $ &” + 19 =

14



$0.1961< 0. In this casey increases with": ! 1, is higher under, price Erotection. However, as long
ask is not too small (k > 0.185), we have2+ k$ €° $ (1+ k) w$ 2 > 0and ¥ decreasing with

": 110 is lower, and participation in the fast venue is higher under price protection.

Comparing Probts It is convenient to debne a system that nests price protection and free
competition as special cases. Fist, debne the scaled controls

o
U,

2r

t1 % O,

Next the scaled probts byF; % g—;) i. With these notations, the probt functions are

Fi(ty,t2,9 =t1(1$ %+ %G (b2) $ G (1))
Fo(t,t2, %9 =t2(1$ G(b2))

and we havebi, = k(t2$ z(% t1) and By = t;. r

The general system is the one with protected prices witho< 1andz(%9 =1 $ u% (1% 9.
The segmentation case corresponds t%=1 and z = 1. We can always return to the sfstem in!
usingt, = bk# + zb; andt; = 1. Let us now derive the FOCs. Using%o(/glOt =0 and %gjt =0 we

get

18 %+ %G (b2) $ G(b1) = t1 (%2 (%9 kg (b2) + g(b1))
1$ G(b2) = t2kg(b2)

With exponential distributions we have thatt, does not depend or4 t, = . Note that this
implies ng—i = R SO = f (s2 $ s1). The fees of the fast venue are proportional to the dierence
in e! ective speed. To understand the impact of price protection of probts, take the total dierential

dFy _'Fadi CFadte ' Fy
d% 't;d% 't d% %

Optimality implies 3% =0, and we have just seen that§g = 0. Therefore g = %74 and
] & - ! %
! - - B2 _ _ .
% =t; $1+G (012) + %g (b12) 7|% =t; $1+G (bz) $ %g (bz) Ktz (%

Sincez#(% > 0, we see that"ﬁ/fé < 0: price protection increases the probts of the slow venue. The

economic intuition is simple. The term $1 + G (b2) corresponds to the Osell and leaveO investors
who come to the slow venue under protection. The term withz” corresponds to the softer price
el ect on the marginal type by.

15



With a uniform distribution , we have

. m$ z(%kx
- 2
1$ %
= ——=—m
2+ 39z (%K
o)
F1=>E(1$ %+ %/m $ x/m)
F,= %+ zx (1% y/m)
and
( () 4 5
1 % 2 12+ %k
"1 o Sk 137 18 22+ 39k
4 54 5
I - 1% & 1, z(%k 1% &
27 ko 22+ 3wk 2 2 2+ 3w (%k
So it is easy to see that°§j0:§£ < 0 as well. Q.E.D.
B.3 Proof of Proposition 4.

The interior solution FOC for speed is C#(s) = (1 $ G (bm)) 52—";. Using Assumption 5 we have
C#(s) = %%. Under exponential distribution of types we haveb,, = +and thus(1$ G (bn)) g—fp =

ﬁ. Combining these expressions yields, =1 $ (2rc(# + r)e/+) g¥2. Under uniform distribution

of types, we haveBy, = /2 and (1$ G (bm)) = = &. Thus, s, =1$ (8re(r + #)/T)z. Q.ED.

B.4 Proof of Proposition 5.
Consider the venue20s program
1
max - (b2 (s2 $51)+0151) (1% G(b2) $ C(s2). (48)

It is immediate that this program converges to the monopolistOs whes; ) 0. We then have
lims, e 0S2(S1) = Sm. Thus, to show that s, > sy, it su" ces to show thatsg(sl) > 0.
Di! erentiating the FOC of equation 48 with respect to s1, and re-arranging, yields

& " 1
v 2 v 2 :
S¥(s1) = ,32,) ; C*™(sy) $ ,2%2 . (49)

We now use the uniform distribution to sign the terms in the RHS of equation49. The revenue

16



functions are given by
&

1 . . B
)2(s1,52) = 5 (B2(s2$ s) + Basy) 18 2 (50)
S1,. B2% by
== . 1
)1(s1,82) = 5 b1 (51)
Using equations29 and 30, and
d% 2,
S1
we have s 1 248 1
By =1 ; Bp=1 52
YT ads 1 T T ads 1 (52)
o $ 258
. S2$ S . S2 51
By =T ;b
1 452 $ S]_’ 2= 432 $ St
Replacing B; and B, in the revenue functions by the expressions b2, yields
1 2% s
)1(s182) = o (45,3 S1)28182
! $28 51
)2(s1,52) = 7 (45,8 s )2( 2)
Notice that
S2
=4—=),.
)2 Sl) 1
After some algebra, one can show that
'I2)22 _ $gs’f(s1+5si) <o
3 r (4s2$ s1)
%2 _ A sis(s1+55y)
'St T (45:$ 1)t
These inequalities, together with convexity ofC, yield S%(s;) > 0.
Q.E.D.

B.5 Proof of Proposition 6

Consider the maximum speed Prst. Holding market shares constant, the regulator seeks to maximize

social welfare in each venue. For venue 1, the optimality condition is % blz 1dG (1) = C¥#(sy).

Using equation 52 we can compute2 bb"’ 1dGg(!) = L ?ﬁ?'l)zz) where d % g—i The marginal

cost must equal the venue®s marginal revenue in an interior solutlon which from equatidd is

given by 27(14(;(‘1)?' Straightforward calculations then show that X 3 b.blz 1dG(!) > C#(sy), im

plying under provision of speed at the market equilibrium for venue 1. Similarly, the regulator
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«
optlmallty condition for venue two is % ;'j; 1dG(!) = C¥(sp). Using equation’52 we can compute

er g, dG(!) = :?ﬁ? 1)12) From equation 41 we have that the marginal cost must equal at an
«
market solution 2;";(;";)13 . Straightforward calculations then show that % [; 1dG (1) > C#(syp),

implying under provision of speed at the market equilibrium for venue 2.
Consider now the minimum speed. We start by computing the total derivative of the welfare
function 20 with respect to s; at the market equilibrium.

dw & 1 0 s, & 1 0 r |
— = = 1dG(1)$ CHs1) + —  1dG(1)$ C¥(s2) Sh(sy)
ds; 2r by 2r g,
1 dd "By ' By
$ EE B1S1+— d +02(s29% s1) — 4 (53)

We have shown above that bracketed expressions in the Prst two terms of equati@3 are positive,
and also that S%(s;) > 0, thus the sum of the brst two terms is positive. Consider the third term
of the RHS of equation53. It is immediate from Proposition 2 that %2 and %2 are positive under
Assumption 4.4. Also notice that C(de = %ﬁyd The revenue functions37 and 38 are homogeneous

of degree one, implying that the marginal revenue functions are homogeneous of degree zero. By

EulerOs theorem theml = $ 22/ %(2 and Sf(s;) < d given equation 49, which yields é’d < 0.

U5, Ys1 %g !

We conclude that around the duopolyOs equnlbnurr%1 > 0.

B.6  Proof of Proposition 7.

The relationship betweenjentry costg& and probts,determineg the number of active venues in
equilibrium. Let i % max )P ,)*9 and); %min )P )9 . We analyze below the existence

of Nash equilibrium (NE) in pure strategies of the normal-form game shown in bguré.

9 ltis

¥ Two-venues equilibriums. Suppose& & )1, By Proposition 2, we have that) ; = )7
immediate then that entry is always optimal for the slow venue when& & ) $*9 and that, for
any)%9< && )P, we have) %% &< 0and) P $ &' 0. A duopoly is never sustainable

whenever& > ) ™.

¥ Single-venue equilibriums.Suppose) " < && ) .

b Case 1:) ' ' &> )I'. The only NE has the slow venue out and the fast venue entering,
with payo! ) 7.
b Case 2:)1 & && ) ,. In this case there is a single NE where only the fast venue enters.

b Case 3:)2 < &< ) I'. There are two NE where only one venue enters, either the slow of
fast one.

b Case 4:) , < && min{)2,) "}. When ) > = )2, there is a single Nash equilibria where
only the fast venue enters. Wherb 5 = ), there are two NE where only one venue enters,
either the slow of fast one.

18



¥ No-entry equilibrium. Whenever& > ) ' the only NE has both venues out. Q.E.D.

B.7 Proof of Proposition 8.

The welfare functions under monopoly and duopoly are given in Lemma&. The welfare gain of
moving from a monopoly to a duopoly is therefore

1dG(1)$ C(s2) $ Z—T 1dG (1) + C(sm) $ &
Bm

S 2 S
| Wig p= 2 1dG (1) $ C(sy) + 2{

2r g, By

On the other hand, entry is probtable for the slow venue if and only if) ; > &

S22 (G(62) $ G(B1)) > &+ C(s1).

Excess entry happens if and only if); > & and ! Wig 2 < 0 hold simultaneously. A necessary

condition for excess entry is therefore

1dG(1)+ = 1dG(1)$C -
1)+ 5 (1)$C(2)$ 5

1 B

?: 5 . 1dG (1) + C(sm) < S;ffrjl(G(bzm G(b1))

which we can rewrite as
0+

g dG(1)$ %’“ 1dG(1) <C (s2)$ C (sm)
B2 r Bm

< 0 g, S o]
1 I $ B)dG(1)+ 2
The brst term is strictly positive. We know from Proposition 2 that B, < By, and from Proposition
5that s, ' sy, therefore the second term is also strictly positive. Finally, the term on the right
hand side goes to zero when the costs are small.

Q.E.D.

Appendix C Proofs of Lemmas

C.1 Proof of Lemma 2

To see the steady-state allocations, add?q) and (10) to get 0@,! D ¥ % + (0). This immediately
implies % ; (0) = % + (1). Using (7), we obtain % + (1) = 1+ 2% % (1). We can then solve
for the shares of each type + (1) = %3;72;: and % 4+ (0) = %%. Notice also that the market
clearing condition among asset holders is simpl$e + (1)+ %, (1)=1/2. Q.E.D.
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C.2 Proof of Lemma 3

In a frictionless competitive market we have maximum investor participation. Thus, the marginal

type is given by
G(bw) _ 1

1$ G(bw) st

$ %
and thus by, = G'1(1$ 2a). Using this fact and s, = 1 in 33yieldspy, = + p+ G'1(1$ 2a) .
Moreover, the instantaneous transaction rate becomes

V= S (18 GB)= o

N 3

«
The expressionW,, = % g#l(l! 23) 1dG(!) for welfare is obtained directly as a particular case of

Lemma 8. Q.E.D.
C.3 Proof of Lemma 7
First notice that W (b2,%2,52) $ (o = W (b2, ¥1,51) $ o1 can be written as:

Soak-H
r

S18%1

+%(bz$ k) $ o = +%(bz$!:_l)$ql.

Sinceq% = B8 we get?z!z%bz =qp$ “SEEZ + 2E209151 Using bk, = mkq, we get 25510, =
* + 1+

1l g s2m L1 0 472 i So = H2rt#

RS 5% Zm 5381 wherem A)TH#T Since Zm = 222, we get

o )
b, = il
2 2% s % $ qul
where
1+ 4
Z%1$ 1+L1(1$ 2a) .
#

Note that z is an increasing function ofa that satisbPesz & 1. When a, 0.5, we havez, 1, and
z, 2awhenr/ $is small (the realistic case). The probts of venue 1 are

P = @ (G(B2) $ G(B1) + (1)
In the protected price equilibrium, Prms therefore maximize

max) D= (1% G(b2)
2

ma) £ %ﬂ (1$ 2a+2aG (b7) $ G (61))
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% (Erot
Yen

% (;Z)rot
Yap

The conditions =0 and =0 lead to

& . '
Bo) Bo+ z—2t B
g(z) e

. S1 . .
H)+2 s) B,
9(61) ﬂzsz$slg( 2) b1

1$ G(b2)

1% 2a+2aG (b)) $ G(b1)
which, after using the dePnition ofd, yields the system in Lemma?. Q.E.D.

C.4 Proof of Lemma 8

The welfare formula in equation 20 refRects the joint trading surplus of investors. Transfers from
investors to venue owners do not represent net social gains.
Consider the segmented case brst. The welfare of tydejoining venuei is

Wi (')$ Wout = Si!:'(I:i1$i)

a+ g—irmax(o;! $ E(pi, %)),

where the function ¥ is debned by

r+$+#
E(p,9) %ﬁ(rp$ H) .

+

The net value of participation, W $ Wout,+is composed of two parts. One is the option to sell the
asset on the exchange:sfi = % p$ % g. It is independent of I . It is the value that can be
achieved by all types! < k with the Osell and leaveO strategy. The teraﬁ’—# captures the expected
trading delay . The second part,5 max(0;! $ ), is the value of trading repeatedly and it depends
on the type ! . This part of the value function is supermodular in(s,! ).As explained in Propasition
1, when a Osell and leaveO investor joins vemndreer welfare gainsw (!, B, Si)$ Wo*n are independent
of her type E\nd amount to sja*i/r . The mass of these investors equalsz—la $1 (G(b2)$ G(by))
and % $1 (1% G(by) invenuesl and 2, respectively. Thus, total social gains for this group are

given by & '

11 . . .
3 $a (G(b2)$ G(b1)) sik1+ (1 $ G(b2)) s2k2) (54)
The welfare gains of repeat traders investors are
0p,& ! 0y _ '
ak 1§+ 2 5! o1
S Tl+ Z L odG(l) = %dG(!)$(G(bz)$ G(bl))y >$a (55
.Oblb& ! ODL & '
ak) 1'$ ks I _ Sy! | . Soky 1
S2 ., - $ or dg(!) = o 2 dG(1)$ (1% G(bo) ; > $a (56)

where for short we debned
ki %k (pi, $i) -
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Adding 54, 55 and 56, and subtracting speed investment costs yields total gains from trade:
!dG(!)+E 1dG(1) $ C(si)$ 2&

S
W (2) = 2% |
B2 i=1,2

b1
The single venue expression in equatiofi4 is a particular case.
Consider now the case of price protection. In that case there is only one price so
sik(p, %)
r

a+ imax(O;! $=(p.$)).

Wi (1) $ Wour = or

All the temporary traders join market 1, therefore their utility is
&1 | sik
588 (18G(by) ~—

For the repeat traders, we have as before

0 b2 &H!i—l I'$ B © b2 Sp! Sk 1
S1 — + ag () = —dG(')$ (G(B)S G(BY)—= =%a (57)
By r 2r By 2r r 2
b&al:-z I $ ° 2 s, S &1
el S 1)y = 22 1 35)) 2272 =
Sy N . $ or dGc () o 2 dG(1)$ (1% G(by) ; 5 $a (58)
Adding up, we get
d b2 6 b & ' & . . '
st I Sa! I 1 3 Sok2 o S1%1
o 2 ac (') + o 2 dc (1) $ 2$a 1% G(b2) ; $ ;
So the welfare & ' & '

WPt (2) = W (2) $ %$a (1$ G (b)) SZTLZ$317L1 ,

and since% (rp$ ) = s($) ¥, we can also write
&1 ' (
WPt (2) = W (2) $ é$ a (1$G(b2) p

&
s % g
rr+% r+$

The welfare loss relative to the segmented case comes from the fact that temporary traders liquidate
their holdings more slowly since they only access the market via venue 1.
Q.E.D.

Appendix D Trading Fees

In this section we derive the equilibrium when venues charge a trading fet per unit of trading.
We consider fees paid at execution (initiation/canceling fees yield similar results). The fee is paid
when the trade is executed. A seller keectively receives onlyp $ * while a buyer € ectively pays
p+ *. For ease of exposition, we highlight in red the trading fee.
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Trading fees create a new class of agents, between those who trade repeatedly and those who
sell and drop out. Formally, we have three regions:

1. If I ' ¥ repeat trades

2.1f I # (0,%), sell and drop out if " = $1, but keep if " = +1 . This is the new Owait-to-sellO
strategy

3. If I & L, sell irrespective of". This is the strategy in the case* = 0 that gives Rat value
functions.

D.1 Value Functions
Repeat Traders

Consider the steady state value functions for any typd > k, i.e. for types that trade repeatedly
despite the fees. The value of the marginal typé- is a ected by the trading fee, as explained below.
As before, dePne the value of ownership ds %V, - (1) $ Vi » (0). We have

# * +
E[V!’! (O)$ V!’+ (0)]+ $ ||+$p$*

* +
WS 1+ DML @8 Vi W]+ 8 pS S|

Vi + (0)

Vi (1)

The equations forV, ; (0) and V, + (1) are unchanged since these types do not trade. Therefore

| #*+ T *1 +
rl | “+ $p$' + E I! $ III $ $ I!' + *

+ #* t oy +
rI! H+$p+'$5 I! $|1 $$|| $*

The equilibrium gains from trade for type ! in venue $ become:

rg1l =2 ¥ 59
! !_m' ()

Then we can solve

L M+ S$p . P+

r¢% r+#+3$

v = HES 1+ E
' r+$ r+#+$

The average value (acros$) for types ! ' k is therefore

$* . LT
or I $ p$

$ * +
W=t D psr s (60)

¥ (0) =
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Marginal Type and ex-ante Value for Repeat Trades We debne the marginal type* as the
type who is indi! erent between buying and not buying when" = +1 . The key Bellman equation is
that of V; + (0). The marginal type is then debned byl,f_’ = p+ *, therefore:

$
r+$

(rp$W)=sES(r+#)*)

Let us now compute the ex ante value functions. For the marginal type, we have the ex-ante
value function W that solves:

W=a¥ (1)+(1 $ a) ¢ (0) (61)
which, since¥. (0) =0, leads to

W)= e Bes emn).

For all types! > &, we obtain, taking the probabilistic allocation interpretation:
W(e,$*)=a¥ (1)+(1 $ a)¥ (0)

Using the Bellman equations, we get

X Ha * ! +F iy o
W (!,$, )=T+m5 2p$ 1 $ 1, +§I!$p$ '

&
ua+ﬂ§rp$u+ $ u$rp+ I+ $

r rr+$  2r r+$ r+#+$
ua @

e GO IEE D= XIO)

*

Notice that the value depends on the fee vieb %rigf#*, which is the NPV of the fees paid by the

repeat traders. A convenient way to express the value function is
. s
W(,$*)= W)+ E(! $ E(*)) forall! ' k.

Infra-marginal types

Let us now consider types! < k. As before, they join the venue to sell but the key di erence is
that they do not necessarily sell all the time. In fact, some sell only whert = $1 and keep the
asset when" = +1 . That did not happen without trading fees, since in that casel,, = p implied
Vies1$ Vs o= psotype (¥,+) was indil erent to buying starting from a = 0 and to selling
starting from a = 1. With trading fees, we havel; = p+ *, so type type (+,+) is indi! erent to
buying, but strictly prefers to keep the asset instead of selling it at pricep$ *. This is the key point
of trading fees: there is now a dierence betweerkeepingthe asset andbuying the asset. Since the
types! < k never want to buy, we haveV (0) =0.

One complication that arises here is that we cannot guarantee market clearing with a constant
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price without introducing a market maker. More precisely, if n investors join the exchange at
time 0, the gross demand for the asset is stilh&z(*) but the gross supply isn(a$ %) where

% is the number of traders witha; = 1, "t =1 and ! # (0,%). We know that initially % =

02 (G(¥)$ G(D)). But over time they sell and eventually % ) 0. The long run market clearing is
&Z(L) = @ but during the transition there is excess demand. Studying price dynamics in that case
is clearly beyond the scope of this paper, so we simply assume the presence of competitive market
makers who undo the temporary imbalance. Note that this is risk-less since the evolution of the
market imbalance is perfectly predictable.

Traders who sell irrespective of The value functions in this case are

Vip (1) = ps$!+ #E(V!’+ $Vi )+ $(pPS*sViy)
Vie(1) = p+ls g(v!,+ $Vii)+ $(PS* S VL)
o)
VisMSWVi, ()= — 2
1 ( L =TT ET S
and + $(pS ) |
_ M ps$ * '
e = g Y v s
and + $(p$ ) |
_H ps$* :
Vi W= "5 r+#+$
Debne the marginal typell who is indi! erent to selling when" = +1 . It solves V, + (1) = p$ * so
& ]
b()= 1+ (r(p$ *)$ 1)

r+$

So thatOs a curve in th¢! , p) space that is parallel to the& curve, but higher by *.
Types belowl sell irrespective of their types. On average this yields

Vie M+ Vig (1) _ pt+3$(p$*)

2 r+$
so sinceV (0) = 0, we have for! & D
W ()= @@ (1) = m“(+ Sibd *))
=m$+m“;$$ ps * $ %
=@E+msu(*).

r r

Note that this is a Rat value function. It does not depend on! .
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Wait-to-sell The types! # (I, %), sell if " = $1, but keep if " = +1 . This is the new Owait to
sellO strategy. The Bellman equations are

( ) ( )

I’\?l'!’! (1) u$|+#§ \7]’+$\7.'!,! +$ p$*$v!,!

. % . )
rvi + (1) Bt ! $§ Vi+$Vi,; +3$(0)
Let us debne the value functions relative to the previous ones

Vie= Voot

Then we have

+§(X+$X!)$ $x,

$§(X+$x! )+ $(Vis $ p+*)

X\

rX +

> Sk +S(Vik $pr )

X4 = 5
r+3

and & '
rrge b T = #$MVi+Sp+7)
2r+3 T2 r+d

or
S8+ S p+¥),

Trr+#+ S+ 32

SO

X1 + X+ :$SVg,+$p+*$X!)

S5(Via$pt ),
rr+#+%+ $2$;r

5

$ Vis$p+*$

Xr +X+e _ 8 r+#+$ .
2 areRegrgr P

Therefore

W (,$*)=@EV - (1)
R $ r+#+ % N
'W+ﬂ§r+#+$+$%(v!’+$p+ )
$ r+#+ $

— Vi
2rr+#+$+$25ir( ot

=W +a $p+*)

Recall the depnitionsti (*) = 2% (r (p$ *)$ p) and Vi , = AR 4 L Thus we have
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| L HSTr(p$*) _ s u()

Vie $p+ T HE+S r+$  r+#+9$

And this leads to: a ! $ ()
WS = WO g se &

We can also summarize the dependence dnas

a$ r+#
rrt Ht &4 OF
2rr+ #+ $+ 37

Summary
The model with execution fee is characterized by:
1. Low types! & i have average value
W= s B

where the marginal selling type is debned by}, + (1) = p$ * as
& #
Ulp.")= 1+ 5 (S us )

2. Wait to sell types ! # [b, k] have value

W (D)= W)+

g (1S D)

3. Repeat traders! 'k where the marginal buying type is debned byl = p+ * as
&

- *) — # *
E(PF)E 1+ e (RS W +(r+#
with
a a
WPz T TS ()= T TS )
have value

W (LB = W+ o (8 E()

So the overall value function is

2 3
a N
(S ) I+ §w$U$a+mq+§ﬂ$&)h

ww‘kw—ww)m
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and note that the marginal types are both pinned down by the surplus pricep $ rﬂ so they are
related by:

& 1
D=+$(r+#H)*$r 1+rf$ *
s %1
D=+8 2 —+ =
. $ rr+$ s 2r

As expected the gap between the marginal-repeat-trader typ& and the marginal-wait-to-sell type
0l increases with the trading fee*. Without trading fees, we recover our benchmark case where
there is only one marginal trading type sinceli = + when* =0.

D.2 VenueOs Program

Suppose there is only one venue. The sequence of events and the structure of the equilibrium are
as follows:

1. The venue sets(q,*) and traders decide to join, or not. Traders above some cuto b enter.
So the mass of traders i1 $ G (b).

2. Trading takes place. The assets migrate towards the high types, while the low! one drop
out. There is a marginal trading type ¥ which must satisfy the market clearing condition

1$ G(5)=2a(1$ G(b)).

This implies that, in equilibrium, k is determined by B. The price p adjusts to ensure that
is indeed the marginal trading type:
& 1
k= +
1 r+$

(rp$ W +(r+#~
3. Given the price, we can solve for all the value functions. The free entry condition is then
W (bl$l*) = WOUt + q

Probts Investors above some cutb b decide to participate. They split between ( temporary
traders and 1$ G (*) repeat traders with
& 1 ‘
= —%$1 (1 E
(= 5581 (1$G(H)

Total probts of the exchange are

)T = q(1s G(B)+)’

28



b(P)

Always sell

(P)

Wait-to-sell

Repeat trader

A

Net participation
value
(W $ Wout $ C])

A

W$W0ut$q

L !
Stay out Join and trade

Figure D3. Trading strategies and value functions with trading fees.
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where)) denote the value of trading fees. These fees come from temporary and permanent traders.
There are ( investors who only trade when their type is low. Let) " be the value for the exchange
of trading fees paid by type". We have

ry*

#* s T

Z)s)

| #*+ |+ * |+
N'=3)78) +8+s)

Therefore

* '+ * '+
r)TH) =8 s

+ _ #ox | | * $++|_* $+* + 1 #) r+$
and)* =Z(*$) )$) ,sor+#+ 1+5 $) = 1+ 5 $, and) +)"TW§$-
The NPV is )} = (a %" therefore

*

)y _ £$ r+ #
)*_(Zr

Fr Ha G4 F
r+#+$+?

which corresponds to the va%f%%#:* paid by these wait-to-sell traders. Similarly, for the
2r
r+$ %

r+sr7 - 1herefore

permanent investors, we can see the value of the fees from the value functioéf:
the NPV of trading fees is

$ r+ # )

) A8 CM) o gy )

and from the depnition of (, we have

&
r+ # 1 r+ #

$
): - e — —
) (1$G(H)2r r+#+$+ 2$a r+#+§]§+f$2#r

*

Total probts are then

4 4 1 g 55
ror _ by 4.8 - 2> 2
) 1$G) & 2r(r+#) r+#+$+r+#+$+¥
&q . & &1 ' S "
TOT _ E) o - %5
) 19$G®H) s 2r(r+#) S+ 2$ﬂ I+ 5

The indi! erence/participation condition for the marginal type b, assuming thatb # [0, ¥] is

W (D) + @5 (B 1) = Wou + g
which implies
a= HTSDHer f#s(! S
Program  The venue solves the following program:
& & &,
r2§x)TOT %(1$ G(H)) g " E(r+ #) s+ é$ a s
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subject to

18 G(+)=2a(1$ G(v)

N $ 1 #
b=+$2 S+
$ Irr+$ s 2r
as as 1
= —Db+ ——(B$ D
d r 2r1+2—f($)

Let us brst understand the traded betweenqg and *. Note that we can rewrite the last two
constraints as

and &,  gs'

and combine them to get

* +
q_ sb+ 1+§!:—$(1+#s $
a r 2+ T r+$
This then implies that
4 * + 4 4 5 g ' 55
)TOT_1$G(!:_) §b+ 1+§ !:_+S* (l+ﬁ) 1+ %$a $ }.{.ﬁ $
-2 ro 2+ % r 1+ 5 s r r+$
4 X gt S)
13 G(t) sb+ 1+ !:_+s*(l+#) l$a
T2 r 2+ ro1+3

This shows that, holding ¥ and B constant, probts increase whert increases relative tog. In
other words, if we consider an iso-participation change in the composition of fees. Formally, keep
b constant. From the Prst constraint, this means holding% constant. Then consider how* and q
must change.

and

I}
A
]
—~
[EEN
+
|

Then probts actually increase if* goes up whileq goes down. The intuition is that * allows for
better price discrimination. The repeat traders pay the fee repeatedly, while the temporary traders
pay the fee only once. Since the repeat traders value participation more, the trading fee is better
able to extract the surplus from the traders than the participation fee.
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However, notice two important points:
¥ This would not change our result that price protection increases the probts of the slow venue.

¥ The di! erences betweerf and g vanishes whena is close to 1/2. Therefore our analysis of
endogenous speed is unchanged.

Appendix E  Multivenue Traders

Let us now discuss the possibility that some traders might choose to pay both membership fees
and trade in both venues. To analyze this case, we need brst to characterize the optimal trading
strategies in case a trader actually can trade in two venues. Let venue 1 be the slow venue, with the
low price p; < p2, let us call the types that trade in both venues the multivenue traders (MVTSs).
We consider the casaa = 1/ 2 for simplicity.

Bellman equations.

Suppose MVTs always send orders to both venues, and always trade when they get the chance. This
happens if and only if MY >p, and p1 >1 MY . In this case, the value functions are

rV! '\,/I+V (O)

#$ % * + * +
2 VIV 0 s v ) + % 1M $pr +% 1M $p

% _* *
rvMY (1) = p$!+ §$V!MV @®s v @ Y% p S | MY Ty $ p$ 1M *

and

%
v = PR s v @

$ %
VMY @) = e VMY s W @)

The key issue is whether MVTs send both buy and sell orders in both venues. This happens if
and only if IMY >p, andp; >1 MV, where the values of ownership are dePned as before, and the
Bellman equations for MVT are equivalent to one venue with an average pricp’ = % and

a total speed$' = $; + $,. In particular the gains from trade are given by

IMV$|MV: 2!
TR T e s+ $

There are two important points to understand. First, when MVTs always trade in both venues, the
equilibrium is the same as without MVTs because the MVTs submit the same numbers of buys and
sells in both venues. Asset allocations across venues do not change,and p; remain the same.
The second key point is that we must check that MVTs actually want to buy at the high price
and sell at the low price, rather than wait for a better deal. In other words, we must check that

IMY >pzandpy >1 M. These conditions are equivalent tol > ! MV and! > | {, where we
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debne two marginal types

by e M Sip+ Sop
r+ #+ % +% P2 r+$+$%
and "
! sell _ Ht $ip + $2p2 $ py
r+#+ %+ % r+$+%

Note in particular that we immediately obtain an upper bound for price dispersion:

2!MV
r+#+$+ 9%

p2$ pr <l IN,|-|\-/ $ I!N’|!V =

This implies the following Lemma.
Lemma 11. The price di! erence cannot be higher than the gains from trade of the lowest MVTs.

Finally, we can solve for the marginal MVT, i.e. the type who is just indi! erent between trading
only in venue 2 and trading in both venues. For this type, we must have

Wy (bvmv ) $ Wo (Buv ) = o

which, using the equilibrium conditions, we can write as

#1

. r+#;
buv % Fag $ % (rpl $ U)
r+$+#.+# r+$+#

By dePnition, all types abovebyy would like to become MVTs.

The possibility of MVTs is clearly interesting, especially for its implications on asset prices. For
the purpose of our model, however, they do not play a quantitatively important role. Using our
benchmagk calibration, either for uniform or exponential distribution of types, we verify that, for
any ! *# Buv,!py.! & . wehavel$ G(!%, 0. Therefore, in our model, the equilibrium does
not change if we allow for MV trading.

Appendix F Details on the Calibration

We describe in this section the methodology to compute the values af and ¢ in the duopoly
case. Under a uniform distribution of types, and scaling the number of transactions by the number
of investors Ny, the duopoly volume formula becomes

! & A » ! & ) m
e Sk Bok $ Bk . %ok 13 B2 k

Vi =N
K K ( 4 #H+ B r He + B I

(62)

33



Moreover, the results in Section4 imply that B; = 2L B, = 7291, Inserting these expressions
in equation 62 yields

! n
S2.k/ 1 $1k N 2%k

dsokls1 $ 1 #He+ S H+ Pk

#
Vi = Ny ( Zk(

At this point we need to reintroduce the contact rates in order to back out#. Let & denote the

stylized valuesfor speed of venue$ = 1, 2 in market k. We can then write
' n

ﬂ( Sk $ri + # + 1) Sk, 2%
4° Ak Bkt H NS S (Sox+Hc+ ) Hc+ B o+ ok

V (%) = N ( (63)
Equation 63 makes it clear that, given a set of values fofr, N, $1 x, $2k}, there is a mapping from
#¢ to trading volume V. Given an empirical volume observationVy, the value of # is found by
solving V (#) = V.

The next question, of course, is whether the model can predict the correct values & and
$, k. To calibrate ¢, we simply use the prst order conditions for speed. In the monopoly case there
is only one condition. In the duopoly case we use the fast venue FOC because it is by far the most
important in terms of welfare. It is also likely to be more precisely measured in the data. We can
then compare the predicted$ with the stylized $. This is what we do in Table Ill . Notice that $,
and $, are quite similar.

Appendix G Analysis of a Constrained Planner

We have seen in Sectior8 the solution to the unconstrained planner problem. A more interesting
case is when external subsidies are ruled out. The planner can still decide entry, speed, and pricing
but we require that trading venues break even.

Let us pbrst perform the analysis for a given value o§;. The program is

max W,
S2,01,02

subject to the break-even constraint
k(1% G(b2) ' C(s2).

Interestingly, we Pnd that the planner still chooses a single venue.

Lemma 12. The Planner subject to break-even constraints chooses one venue with higher partici-
pation than under monopoly>®

SSWhen the break-even constraint binds, it is possible for the planner to choose a lower trading speed than the
unconstrained monopolist. We provide an example in the Appendix. Intuitively, when the distribution of permanent
types has a fat right tail, the monopolist might choose to target investors with high private gains from trade, o " ering
a high-speedbhigh-price package. The planner may prefer to include the Omiddle classO of investors even if that means
a lower speed because of the break-even constraint. Note that in this case the planner trades ¢ speed against
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With Pnancing constraints one might expect the planner to create two trading venues. It could
potentially relax the break-even constraints by charging a high price for the fast venue while main-
taining participation in the slower, but cheaper, venue. Surprisingly, however, we bnd that the
planner chooses not to do so. To understand the intuition, it is better to think of B; and b, as
control variables instead ofg; and gp. We show in the appendix that the Lagrangian of the plannerOs
problem is

0+ 0+
L(s)= st 'dG(1)+(s$s) 'dG(1)$ 2rC (s)

Dl b2

+ . {((s$s1)b2+s1!1)(1$ G(b2)$ 2rC (s)}

where . is the multiplier of the budget constraint of the fast venue, and we have replacedp =
(s$ s1) bo+s1B1. The welfare cost of raisingd; is s16:9 (1), and the Pnancing gainis s1 (1$ G (62)).
It is simple to show that the ratio of gains to costs is always higher foity; than for B1,. This implies
that the planner chooses to increas®; until it reaches b,. In other words, the slow venue is always
inactive. Note that the planner chooses a single venue for investors, even when there are no concerns
of cost duplication (the result holds for &= 0).

Obviously the result is the same if the planner also chooses, and it extends to the case where
prices in the venues can be consolidated.

Proof. In general, the objective function of the planner is
0 g, 0

S1 ! N+ 2 !
s%‘l",’ézzr 5 1dG () > bz.dG(.)$ C(s2)

and the marginal types are given by24 and 26, so we have

b1
1El
k=(s2% 51)9'* .
2r

®=s

The break-even constraint isqp (1$ G (b2)) ' C(s2), so the Lagrangian (scaled by2r) is

6, 6,
L=s; 1dG(1)+(s$s) 'dG(1)$2rC (s)+. {((s$s1)!2+s1'1)(L$ G(!2)$ 2rC ()}

Y 2

and the FOCs of the planner problem are

119('y) = . (1$8<;(!;)),

159(15) = o1

s$ s

T 18G()8 (2!

participation. For a given participation, the planner always favors higher speed.
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Optimal speed satisbes
0

1dG (1) +
1+. 1 A+ 1+

2rc#(s’) = (1$ G(1,) !5,

and the break-even constraint is simply2rC (s')=(1 $ G('2))((s$ s1)!, + s1! ;). From the prst
two FOCs it is immediate that ! ;g(!;) > !,9(!,). From the second-order conditions we know
that ! g(!) is increasing in! (at the optimum values). Therefore!; > !, which is inconsistent
with our assumption that venue 1 is active. We conclude that there must be a single venue. [

This result can be extended to the case where the planner operates the two venues with one
budget constraint. In this case, the constraint is(G (62) $ G(b1)) w+(1 $ G (b2)) o > C (s2) and
the Lagrangian is
0 0~
L=s; | FdG(1)+(s$ s1) | TdG(N)$2C (s)+. (LS G(11)s1!1+(XA3G(12)(sSs1)!2% 2rC (9)
L -2

and the FOCs for d' liations are

1+. .
'

1$G(y)=9(7)

1$G(15)=g(!y)

1+

P

Optimal speed satisbes the same equation as before. In this case, we see that ! ,, venue 1 is
still inactive.
With one venue, the Lagrangian of the planner is
0
L=s 1dG(1)$ 2rC(s)+ . (SB(L$ G(B) $ 2rC (3))
b

From the previous section, it is immediate that

. I S
1$G( )=g9g( ) '
Since the monopoly solution isl!gﬁ(ri;‘) = Iy, it is clear that !, > ! ". Regarding speed, the
planner chooses &
r
2rc¥(s’) = ! N+ — (1 L'yt
i) = oo 1de(M)F as e
while the monopoly choose2r %€ (s;,) = (1 $ G(I m)) !'m. If . =0, itis clear that s" > s, as

expected. However, when the break-even constraint binds, the comparison is ambiguous, as shown
in the following example.

Example 1. Case wheres,, > s’

We provide a simple example to show that it is indeed possible for the monopoly to choose a
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higher speed that the planner. Consider a binary distribution. High! ! = & with population share
n. Low sigma!' = % with %< 1 and population share1$ n. Cost function 2rC = $s?. The
marginal price isq = $!'. The monopoly has two choices:

¥ Set price to $%9, get everyone to participate, then) = $% $ c(s).
¥ Set high price $1, only high types patrticipate, then) = $nb $ c(s).

The monopoly chooses high speed low participation if and only ih > % The speed choice is
max (n, %9 bl/c.

The Planner has two main choices. If all participateW = $5((1 $ n) %+ n) $ c(s). Then it
depends on whether the break-even constraint binds. If it does not, then the planner chooses a
higher speed than any monopoly:s’ = w. The break-even constraint binds ifs % <
c(s'), which is equivalent tocs > 2%z - (1$ n)%+ n > 2%- %<n (1$ %. The planner
can still choose full participation, but at limit price c(s) = s%s - s = &Cb. Then welfare is
W =sbn(1$ %= 2(B)*n%(1$ %.

The other choice for the planner is that only high type participate. This is same program
as monopoly. Speed choice isb/c. Welfare is zic(nb)z. The Planner chooses low speed high
participation if and only if %(b)zn%(1$ % > % (nB)? or 4%(1$ % >n.

To summarize, for the planner to choose lower speed than monopoly, we need: () > %
so monopoly goes for high speed low participation; (ii4%(1$ % > n so planner chooses high
participation; (i) % < n (1$ %9 so break-even violated; and (iv)nbk/c > 2&?'” - n> 2%so
monopoly speed indeed higher. It is easy to see that (i) is not binding. So we have the three
following conditions

1. 49%(1% 9% >n
2. %<

3.n> 2%

Take n = 1/ 4 then we need%< 1/ 8 for third, second is not binding, and it is easy to bnd a solution
for the prst. Q.E.D.
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