?======================================================================= ? ? Analysis of Panel Probit data, panelprobit.lpj ? ?======================================================================= ? ? 1. Cluster Covariance matrix ? Sample ; All $ Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ Probit ; Lhs = IP ; Rhs = X ; mar $ Matrix ; Var0 = Varb $ (Uncorrected covariance matrix) Probit ; Lhs = IP ; Rhs = X ; Cluster = 5 $ Matrix ; VarPanel = Varb $ (Corrected covariance matrix) ? PCTDIFF is the percentage difference between the estimated standard errors $ Matrix ; SD0 = Diag(Var0) ; Diff = Vecd(VarPanel) - Vecd(Var0) ; List ; PctDiff = 100**Diff$ ? ? 2. Robust Covariance matrix only corrects for heteroscedasticity ? Probit ; Lhs = IP ; Rhs = X $ Matrix ; Var0 = Varb $ (Uncorrected covariance matrix) Probit ; Lhs = IP ; Rhs = X ; RobustVC $ Matrix ; VarHet = Varb $ Matrix ; SD0 = Diag(Var0) ; Diff = Vecd(VarHet) - Vecd(Var0) ; List ; PctDiff = 100**Diff$ - Init(5,1,100) $ ? ? 3. Marginal Effects for a quadratic Create ; LogS2 = LogSales^2 $ Namelist ; X2 = One,IMUM,FDIUM,SP,LogSALES,LogS2 $ Probit ; Lhs = IP ; Rhs = X2 ; Mar $ Wald ; Start = b ; Var = Varb ; Labels = beta0,beta1,beta2,beta3,a0,a1 ; Fn1 = n01(beta0'X2)*(a0+2*a1*Logsales) ; Fn2 = n01(beta0'X2)*beta2 ; Average $ ? Easy way Namelist ; X = One,IMUM,FDIUM,SP $ probit ; Lhs = ip ; rhs = x,logsales,logsales^2 $ partial ; effects: logsales / fdium $ Partial ; effects: logsales & fdium = .05(.05)1 ; plot(ci) $ ? ? 4. Heteroscedasticity in a logit model ? Namelist ; X = one,imum,fdium,sp,logsales $ Logit ; Lhs = IP ; Rhs = X ; Het ; Hfn = RAWMTL; Marginal Effects $ Partial ; Function = lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES)/exp(c1*rawmtl)) ; Labels = b1,b2,b3,b4,b5,c1 ; parameters = b ; covariance = varb ; effects: rawmtl / logsales$ Logit ; Lhs = IP ; Rhs = X ; Het ; Hfn = LogSales; Marginal Effects $ Partial ; Function = lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES)/exp(c1*LogSales)) ; Labels = b1,b2,b3,b4,b5,c1 ; parameters = b ; covariance = varb ; effects: logsales ; means$ ? ? 5. Nonparametric and Semiparametric Estimators ? Namelist ; X0 = IMUM,FDIUM,SP,LogSALES $ Namelist ; X = One,X0 $ Reject ; T > 1 $ (Use only first year of data) ? Fully Parametric Probit ; Lhs = IP ; Rhs = X $ ? Semiparametric: Maximum Score Reject ; T > 1 $ Mscore ; Lhs = IP ; Rhs = X $ Semiparametric ; LHS = IP ; Rhs = X0 $ (Klein and Spady.) ? Nonparametric, Kernel density regression estimator ? Note, the nonparametric estimator can only have one RHS variable NPREG ; LHS = IP ; Rhs = LogSales $ ? ? 6. Plot of Probabilities ? Reject ; New ; T > 1 $ Probit ; Lhs = IP ; Rhs = one,IMUM,FDIUM,SP,logsales $ Calc ; Low = .5*Min(LogSales) ; High = 1.5*Max(LogSales) ; inc = .05*(high-low) $$ partials ; simulate ; effects: logsales & logsales = Low(inc)high ;plot(ci) ;title=Simulation of Innovation Probabilities vs. Log Sales$ ? ? 7. Testing for Structural Change ? Sample ; All $ Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ Probit ; Lhs = IP ; Rhs = X ; quietly $ (We suppress the model results) Calc ; Logl0 = Logl ; Logl1 = 0 ; i = 0 $ Procedure Include ; New ; T = i $ Probit ; Lhs = IP ; Rhs = X $ Calc ; Logl1 = Logl1 + Logl $ EndProc $ Execute ; i = 1,5 ; Silent $ (This suppresses the individual year results.) Calc ; List ; Chisq = 2*(Logl1 - Logl0) ; Df = 4*Col(X) ; Ctb(.95,df) $ ? ? 9. Hypothesis Tests ? Reject ; New ; T < 5 $ Namelist ; X = One,IMUM,FDIUM,LogSales $ Namelist ; Sectors = RawMtl,InvGood$ Probit ; Lhs = IP ; Rhs = X $ Calc ; Logl0 = LogL $ Probit ; Lhs = IP ; Rhs = X ; Het ; Hfn = Sectors ; Start = b,0,0 ; Maxit = 0 $ Probit ; Lhs = IP ; Rhs = X,Sectors ; Parameters ; test: sectors = 0$ Calc ; KX = Col(X) ; K1 = KX + 1 ; Kc = Col(Sectors); K = KX + KC$ Matrix ; c = B(K1:K) ; vc = Varb(K1:K , K1:K) $ Matrix ; List ; Wald = c'c $ Calc ; List ; Ctb(.95,2) $ Wald ; start = b ; Var = Varb ; labels=KX_d,Kc_c ; fn1 = c1 - 0 ; Fn2 = c2 - 0 $ ? ? 10. Binary Choice Model Simulation ? Probit ; Lhs = IP ; Rhs=one,logsales,imum,fdium $ BinaryChoice ; Lhs = IP ; Rhs = one,logsales,imum,fdium ; model=probit ; start=b ; scenario: fdium * = 1.5 ;plot:fdium $