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This exercise will involve estimating and analyzing binary choice models.  We will analyze the 
panel probit, manufacturing innovation data.  The data set is PanelProbit.lpj.  To begin, load 
these data.  To save you some typing, most of the commands for this exercise are contained in the 
file LabAssignment-2.lim. 
 
1.  Cluster Estimator.  This is a panel data set.  Do the standard errors of the probit estimator 
need ‘correction?’  This exercise computes the standard covariance matrix and the ‘cluster 
corrected’ covariance matrix and compares them.  Describe your findings. 
 
Sample ; All $ 
Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ 
Probit ; Lhs = IP ; Rhs = X $ 
Matrix ; Var0 = Varb $  (Uncorrected covariance matrix) 
Probit ; Lhs = IP ; Rhs = X ; Cluster = 5 $ 
Matrix ; VarPanel = Varb $ (Corrected covariance matrix) 
? PCTDIFF is the percentage difference between the standard errors 
Matrix ; SD0 = Diag(Var0)  ; Diff = Vecd(VarPanel) - Vecd(Var0)  
       ; List ; PctDiff = 100*<SD0>*Diff$ 
 
2.  Robust Covariance Matrix.  You can also compute a ‘robust,’ sandwich style asymptotic 
covariance matrix.  This estimator would only be robust to heteroscedasticity – though we are 
unsure what that would mean in the probit setting. 
 
Probit ; Lhs = IP ; Rhs = X $ 
Matrix ; Var0 = Varb $  (Uncorrected covariance matrix) 
Probit  ; Lhs = IP  ; Rhs = X ;  RobustVC $ 
Matrix  ; VarHet = Varb $ 
Matrix ; SD0 = Diag(Var0)  ; Diff = Vecd(VarHet) - Vecd(Var0)  
       ; List ; PctDiff = 100*<SD0>*Diff$ - Init(5,1,100) $ 
 
3. Marginal Effect for a Quadratic. Marginal effects in the binary choice models are 
complicated functions of the parameters and the data.  They are more so when the index function 
contains complex functions of the data.  Suppose, for example, 
 
 P  =  Φ(β′x + α0logSales + α1logSales2). 
 
The marginal effect of logSales, which is the effect on the probability of a one percent change in 
sales is 
 
 ∂P/∂logSales = φ(β′x + α0logSales + α1logSales2) × (α0 + 2α1logSales) 
 
It is possible to program this computation into the WALD command.  But, it is easier to use the 
built in function to obtain the result. 
 
 



Create   ; LogS2  = LogSales^2 $ 
Namelist ; X2     = One,IMUM,FDIUM,SP,LogSALES,LogS2 $ 
Probit   ; Lhs    = IP ; Rhs = X2 ; Mar $ 
Wald     ; Start  = b ; Var = Varb 
         ; Labels = beta0,beta1,beta2,beta3,a0,a1 
         ; Fn1    = n01(beta0'X2)*(a0+2*a1*Logsales) ? partial wrt logsales 
         ; Fn2    = n01(beta0'X2)* beta2  ? partial wrt fdium 
         ; Average (computes average partial effects) $ 
? Easier way 
probit   ; Lhs = ip ; rhs = One,IMUM,FDIUM,SP,logsales,logsales^2$ 
partial  ; effects: logsales / fdium $ 
? Extension to look more closely at partial effects 
Partial  ; effects: logsales & fdium = .05(.05)1 ; plot(ci) $ 
 
4.  Heteroscedasticity.  The following suggests how to incorporate heteroscedasticity in the 
binary logit (or probit – by changing the command) model: 
 

Logit ; Lhs = IP ; Rhs = X ; Het ; Hfn = RAWMTL; Marginal Effects $ 
           

(1)  Note the effect on the coefficients and how the marginal effects are decomposed. 
(2)  Repeat the computation with ;Hfn = LogSales. Note the effect on the estimates and 
significance levels.  The difference between the reported marginal effects and the results from the 
PARTIALS command is that the former is computed at the means of the data while the second is 
averaged over all observations.  To reproduce the results at the means, we add ;Means to the 
PARTIALS command. 
 
Namelist ; X = one,imum,fdium,sp,logsales $ 
Logit   ; Lhs = IP ; Rhs = X ; Het  
        ; Hfn = RAWMTL; Marginal Effects $ 
Partial ; Function= lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES)/exp(c1*rawmtl)) 
        ; Labels  = b1,b2,b3,b4,b5,c1 
        ; parameters = b 
        ; covariance = varb 
        ; effects: rawmtl / logsales $ 
Logit   ; Lhs = IP ; Rhs = X ; Het  
        ; Hfn = LogSales; Marginal Effects $ 
Partial ; Function=lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES) 
                       /exp(c1*LogSales)) 
        ; Labels   = b1,b2,b3,b4,b5,c1 
        ; parameters = b 
        ; covariance = varb 
        ; effects: logsales ; means$ 
 
5. Nonparametric and Semiparametric Estimation.  There are numerous alternative estimators 
you can use for analyzing binary choices.  Interpretation of the results of these models requires 
some careful thought – but estimation is very straightforward.  Estimation of these is generally 
very computer intensive, so we use only a subset of the sample – one year of the data.  Compare 
the table of correct and incorrect predictions produced by PROBIT and MSCORE.  (The other 
estimators do not produce enough information to generate predictions for individual 
observations.) 
 
Namelist ; X0 = IMUM,FDIUM,SP,LogSALES $ 
Namelist ; X = One,X0 $ 
Reject ; New ; T > 1 $ (Use only first year of data) 
?  Fully Parametric 
PROBIT ; Lhs = IP ; Rhs = X $  
?  Semiparametric:  Maximum Score 
MSCORE ; Lhs = IP ; Rhs = X $ 



Semiparametric ; LHS = IP ; Rhs = X0 $ (Klein and Spady.) 
?  Nonparametric, Kernel density regression estimator 
?  Note, the nonparametric estimator can only have one RHS variable 
NPREG ; LHS = IP ; Rhs = LogSales $ 
 
6.  Creating a Plot of Probabilities.  The following will demonstrate how to use NLOGIT to 
produce the plot shown in the class discussion. 
 
Reject     ; New ; T > 1 $ 
Probit     ; Lhs = IP ; Rhs = one,IMUM,FDIUM,SP,logsales $ 
Calc       ; Low = .5*Min(LogSales) ; High = 1.5*Max(LogSales)   
           ; inc = .05*(high-low) $$ 
partials ; simulate ; effects: logsales & logsales = Low(inc)high 
     ;plot(ci)  ;title=Simulation of Innovation Probabilities vs. Log Sales$ 
 
7.  Testing for Structural Change.  It might be interesting to test whether underlying structural 
of the model has changed over the five year period of the data.  Consider the structure 
 
  Pit  =  F(βt′xit), i = 1,…,1270, t = 1,…,5 (1993 to 1997) 
 
which allows for different coefficient vectors in each year.  We are interested in testing the 
hypothesis 
  H0 : β1 = β2 = β3 = β4 = β5 
  H1:  not H0. 
 
In a linear regression context, this would be a ‘Chow’ test and would be tested with an F test.  
Since this is not a linear regression model, we can’t use the F test here.  The easiest way to do this 
test is with a likelihood ratio test.  The strategy is to fit the restricted model (pool the 5 years of 
data) and the unrestricted model (estimate the model separately for each year), and compare the 
log likelihoods.  The log likelihood for the unrestricted model is the sum of the five years.  Here 
is how you can automate this computation. The last part of the last CALC displays the 95% 
critical value from the chi-squared table. 
 
Sample ; All $ 
Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ 
Probit ; Lhs = IP ; Rhs = X ; quietly $  (We suppress the model results) 
Calc ; Logl0 = Logl ; Logl1 = 0 ; i = 0 $ 
Procedure 
Include ; New ; T = i $ 
Probit ; Lhs = IP ; Rhs = X $ 
Calc ; Logl1 = Logl1 + Logl $ 
EndProc $ 
Execute ; i = 1,5 ; Silent $ (This suppresses the individual year results.) 
Calc ; List ; Chisq = 2*(Logl1 - Logl0) ; Df = 4*Col(X) ; Ctb(.95,df) $ 
 
Carry out the test.  What do you conclude?  Should the null hypothesis be rejected?  Repeat the 
test using a logit model instead of a probit model.  Does the conclusion change?  Try the exercise 
again while adding the sector dummy variables to the model.  To do these, it is only necessary to 
change the model name from PROBIT to LOGIT, or the NAMELIST command by adding 
variables to it. 
 



8.  Hypothesis Tests:  This exercise will illustrate the three methods of carrying out hypothesis 
tests. 
 
Reject   ; New ; T < 5 $ 
Namelist ; X = One,IMUM,FDIUM,LogSales $ 
Namelist ; Sectors = RawMtl,InvGood$ 
Probit   ; Lhs = IP ; Rhs = X $ 
Calc     ; Logl0 = LogL $ 
Probit   ; Lhs = IP ; Rhs = X ; Het ; Hfn = Sectors 
         ; Start = b,0,0 ; Maxit = 0 $ 
Probit   ; Lhs = IP ; Rhs = X,Sectors ; Parameters ; test: sectors = 0$ 
Calc     ; KX = Col(X) ; K1 = KX + 1 ; Kc = Col(Sectors); K = KX + KC$ 
Matrix   ; c = B(K1:K) ; vc = Varb(K1:K , K1:K) $ 
Matrix   ; List ; Wald = c'<vc>c  $ 
Calc     ; List ; Ctb(.95,2) $ 
Wald     ; start = b ; Var = Varb ; labels=KX_d,Kc_c   
              ; fn1 = c1 - 0 ; Fn2 = c2 - 0 $ 

     
The model is   yi* = β′xi + εi 

  ε  ~  N[0,σi
2],  σi  =  exp(γ′zi). 

  yi  =  1(yi*  >  0] 
 
The various testing procedures shown estimate γ and test whether γ = 0, in which case σi

2 = 1.  
Carry out the tests, and determine whether the null hypothesis, H0:γ = 0, should be rejected. 
 
10.  Simulation: Using the binary choice model simulator, examine how an increase in FDIUM 
of 50% would affect the probability of innovation. 
 
Probit        ; Lhs = IP ; Rhs=one,logsales,imum,fdium $ 
BinaryChoice  ; Lhs = IP ; Rhs = one,logsales,imum,fdium  
                          ; model=probit  ; start=b  
                          ; scenario: fdium * = 1.5 ;plot:fdium $ 

 


