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ESTIMATION FRAMEWORKS
IN ECONOMETRICS

Q

12.1 INTRODUCTION

This chapter begins our treatment of methods of estimation. Contemporary economet-
rics offers the practitioner a remarkable variety of estimation methods, ranging from
tightly parameterized likelihood-based techniques at one end to thinly stated nonpara-
metric methods that assume little more than mere association between variables at
the other, and a rich variety in between. Even the experienced researcher could be
forgiven for wondering how they should choose from this long menu. It is certainly
beyond our scope to answer this question here, but a few principles can be suggested.
Recent research has leaned when possible toward methods that require few (or fewer)
possibly unwarranted or improper assumptions. This explains the ascendance of the
GMM estimator in situations where strong likelihood-based parameterizations can be
avoided and robust estimation can be done in the presence of heteroscedasticity and
serial correlation. (It is intriguing to observe that this is occurring at a time when ad-
vances in computation have helped bring about increased acceptance of very heavily
parameterized Bayesian methods.)

As a general proposition, the progression from full to semi- to non-parametric
estimation relaxes strong assumptions, but at the cost of weakening the conclusions
that can be drawn from the data. As much as anywhere else, this is clear in the anal-
ysis of discrete choice models, which provide one of the most active literatures in the
field. (A sampler appears in Chapter 17.) A formal probit or logit model allows estima-
tion of probabilities, marginal effects, and a host of ancillary results, but at the cost of
imposing the normal or logistic distribution on the data. Semiparametric and nonpara-
metric estimators allow one to relax the restriction but often provide, in return, only
ranges of probabilities, if that, and in many cases, preclude estimation of probabilities
or useful marginal effects. One does have the virtue of robustness in the conclusions,
however. [See, e.g., the symposium in Angrist (2001) for a spirited discussion on these
points.]

Estimation properties is another arena in which the different approaches can be
compared. Within a class of estimators, one can define “the best” (most efficient) means
of using the data. (See Example 12.2 for an application.) Sometimes comparisons
can be made across classes as well. For example, when they are estimating the same
parameters—this remains to be established—the best parametric estimator will gener-
ally outperform the best semiparametric estimator. That is the value of the information,
of course. The other side of the comparison, however, is that the semiparametric esti-
mator will carry the day if the parametric model is misspecified in a fashion to which
the semiparametric estimator is robust (and the parametric model is not).

432
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Schools of thought have entered this conversation for a long time. Proponents of
Bayesian estimation often took an almost theological viewpoint in their criticism of their
classical colleagues. [See, for example, Poirier (1995).] Contemporary practitioners are
usually more pragmatic than this. Bayesian estimation has gained currency as a set of
techniques that can, in very many cases, provide both elegant and tractable solutions
to problems that have heretofore been out of reach. Thus, for example, the simulation-
based estimation advocated in the many papers of Chib and Greenberg (e.g., 1996) have
provided solutions to a variety of computationally challenging problems.1 Arguments
as to the methodological virtue of one approach or the other have received much less
attention than before.

Chapters 2 through 7 of this book have focused on the classical regression model
and a particular estimator, least squares (linear and nonlinear). In this and the next
four chapters, we will examine several general estimation strategies that are used in a
wide variety of situations. This chapter will survey a few methods in the three broad
areas we have listed. Chapter 13 discusses the generalized method of moments, which
has emerged as the centerpiece of semiparametric estimation. Chapter 14 presents the
method of maximum likelihood, the broad platform for parametric, classical estimation
in econometrics. Chapter 15 discusses simulation-based estimation and bootstrapping.
This is a recently developed body of techniques that have been made feasible by ad-
vances in estimation technology and which has made quite straightforward many es-
timators that were previously only scarcely used because of the sheer difficulty of the
computations. Finally, Chapter 16 introduces the methods of Bayesian econometrics.

The list of techniques presented here is far from complete. We have chosen a set
that constitutes the mainstream of econometrics. Certainly there are others that might
be considered. [See, for example, Mittelhammer, Judge, and Miller (2000) for a lengthy
catalog.] Virtually all of them are the subject of excellent monographs on the subject.
In this chapter we will present several applications, some from the literature, some
home grown, to demonstrate the range of techniques that are current in econometric
practice. We begin in Section 12.2 with parametric approaches, primarily maximum
likelihood. Because this is the subject of much of the remainder of this book, this
section is brief. Section 12.2 also introduces Bayesian estimation, which in its traditional
form, is as heavily parameterized as maximum likelihood estimation. Section 12.3 is on
semiparametric estimation. GMM estimation is the subject of all of Chapter 13, so it is
only introduced here. The technique of least absolute deviations is presented here as
well. A range of applications from the recent literature is also surveyed. Section 12.4
describes nonparametric estimation. The fundamental tool, the kernel density estimator
is developed, then applied to a problem in regression analysis. Two applications are
presented here as well. Being focused on application, this chapter will say very little
about the statistical theory for these techniques—such as their asymptotic properties.

1The penetration of Bayesian econometrics could be overstated. It is fairly well represented in current journals
such as the Journal of Econometrics, Journal of Applied Econometrics, Journal of Business and Economic
Statistics, and so on. On the other hand, in the six major general treatments of econometrics published in 2000,
four (Hayashi, Ruud, Patterson, Davidson) do not mention Bayesian methods at all, a buffet of 32 essays
(Baltagi) devotes only one to the subject, and the one that displays any preference (Mittelhammer et al.)
devotes nearly 10 percent (70) of its pages to Bayesian estimation, but all to the broad metatheory of the
linear regression model and none to the more elaborate applications that form the received applications in
the many journals in the field.
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(The results are developed at length in the literature, of course.) We will turn to the
subject of the properties of estimators briefly at the end of the chapter, in Section 12.5,
then in greater detail in Chapters 13 through 16.

12.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs from a full statement of the density or probability model
that provides the data generating mechanism for a random variable of interest. For the
sorts of applications we have considered thus far, we might say that the joint density of
a scalar random variable, “y” and a random vector, “x” of interest can be specified by

f (y, x) = g(y | x, β) × h(x | θ), (12-1)

with unknown parameters β and θ . To continue the application that has occupied us
since Chapter 2, consider the linear regression model with normally distributed distur-
bances. The assumption produces a full statement of the conditional density that is the
population from which an observation is drawn;

yi | xi ∼ N[x′
iβ, σ 2].

All that remains for a full definition of the population is knowledge of the specific
values taken by the unknown, but fixed parameters. With those in hand, the conditional
probability distribution for yi is completely defined—mean, variance, probabilities of
certain events, and so on. (The marginal density for the conditioning variables is usually
not of particular interest.) Thus, the signature features of this modeling platform are
specifications of both the density and the features (parameters) of that density.

The parameter space for the parametric model is the set of allowable values of
the parameters that satisfy some prior specification of the model. For example, in the
regression model specified previously, the K regression slopes may take any real value,
but the variance must be a positive number. Therefore, the parameter space for that
model is [β, σ 2] ∈ R

K×R+. “Estimation” in this context consists of specifying a criterion
for ranking the points in the parameter space, then choosing that point (a point estimate)
or a set of points (an interval estimate) that optimizes that criterion, that is, has the best
ranking. Thus, for example, we chose linear least squares as one estimation criterion
for the linear model. “Inference” in this setting is a process by which some regions
of the (already specified) parameter space are deemed not to contain the unknown
parameters, though, in more practical terms, we typically define a criterion and then,
state that, by that criterion, certain regions are unlikely to contain the true parameters.

12.2.1 CLASSICAL LIKELIHOOD-BASED ESTIMATION

The most common (by far) class of parametric estimators used in econometrics is the
maximum likelihood estimators. The underlying philosophy of this class of estimators
is the idea of “sample information.” When the density of a sample of observations is
completely specified, apart from the unknown parameters, then the joint density of
those observations (assuming they are independent), is the likelihood function

f (y1, y2, . . . , x1, x2, . . .) =
n∏

i=1

f (yi , xi | β, θ). (12-2)
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This function contains all the information available in the sample about the population
from which those observations were drawn. The strategy by which that information is
used in estimation constitutes the estimator.

The maximum likelihood estimator [Fisher (1925)] is the function of the data that
(as its name implies) maximizes the likelihood function (or, because it is usually more
convenient, the log of the likelihood function). The motivation for this approach is
most easily visualized in the setting of a discrete random variable. In this case, the
likelihood function gives the joint probability for the observed sample observations,
and the maximum likelihood estimator is the function of the sample information that
makes the observed data most probable (at least by that criterion). Though the analogy
is most intuitively appealing for a discrete variable, it carries over to continuous variables
as well. Since this estimator is the subject of Chapter 14, which is quite lengthy, we will
defer any formal discussion until then and consider instead two applications to illustrate
the techniques and underpinnings.

Example 12.1 The Linear Regression Model
Least squares weighs negative and positive deviations equally and gives disproportionate
weight to large deviations in the calculation. This property can be an advantage or a disad-
vantage, depending on the data generating process. For normally distributed disturbances,
this method is precisely the one needed to use the data most efficiently. If the data are
generated by a normal distribution, then the log of the likelihood function is

ln L = −n
2

ln 2π − n
2

ln σ 2 − 1
2σ 2

(y − Xβ) ′(y − Xβ) .

You can easily show that least squares is the estimator of choice for this model. Maximizing
the function means minimizing the exponent, which is done by least squares for β, then e′e/n
follows as the estimator for σ 2.

If the appropriate distribution is deemed to be something other than normal—perhaps on
the basis of an observation that the tails of the disturbance distribution are too thick—see
Example 4.7 and Section 14.9.5.a—then there are three ways one might proceed. First, as we
have observed, the consistency of least squares is robust to this failure of the specification, so
long as the conditional mean of the disturbances is still zero. Some correction to the standard
errors is necessary for proper inferences. Second, one might want to proceed to an estimator
with better finite sample properties. The least absolute deviations estimator discussed in
Section 12.3.2 is a candidate. Finally, one might consider some other distribution which
accommodates the observed discrepancy. For example, Ruud (2000) examines in some
detail a linear regression model with disturbances distributed according to the t distribution
with v degrees of freedom. As long as v is finite, this random variable will have a larger
variance than the normal. Which way should one proceed? The third approach is the least
appealing. Surely if the normal distribution is inappropriate, then it would be difficult to come
up with a plausible mechanism whereby the t distribution would not be. The LAD estimator
might well be preferable if the sample were small. If not, then least squares would probably
remain the estimator of choice, with some allowance for the fact that standard inference tools
would probably be misleading. Current practice is generally to adopt the first strategy.

Example 12.2 The Stochastic Frontier Model
The stochastic frontier model, discussed in detail in Chapter 19, is a regression-like model
with a disturbance distribution that is asymmetric and distinctly nonnormal. The conditional
density for the dependent variable in this model is

f ( y | x, β, σ, λ) =
√

2
σ
√

π
exp

[−( y − α − x′β) 2

2σ 2

]
�

(−λ( y − α − x′β)
σ

)
.
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This produces a log-likelihood function for the model,

ln L = −n ln σ − n
2

ln
2
π

− 1
2

n∑
i =1

(
εi

σ

)2

+
n∑

i =1

ln �

(−λεi

σ

)
.

There are at least two fully parametric estimators for this model. The maximum likelihood
estimator is discussed in Section 19.2.4. Greene (2007) presents the following method of
moments estimator: For the regression slopes, excluding the constant term, use least
squares. For the parameters α, σ , and λ, based on the second and third moments of the
least squares residuals and the least squares constant, solve

m2 = σ 2
v + [1 − 2/π ]σ 2

u ,

m3 = (2/π ) 1/2[1 − 4/π ]σ 3
u ,

a = α + (2/π ) 2σu,

where λ = σu/σv and σ 2 = σ 2
u + σ 2

v .
Both estimators are fully parametric. The maximum likelihood estimator is for the reasons

discussed earlier. The method of moments estimators (see Section 13.2) are appropriate only
for this distribution. Which is preferable? As we will see in Chapter 19, both estimators are
consistent and asymptotically normally distributed. By virtue of the Cramér–Rao theorem,
the maximum likelihood estimator has a smaller asymptotic variance. Neither has any small
sample optimality properties. Thus, the only virtue of the method of moments estimator is
that one can compute it with any standard regression/statistics computer package and a
hand calculator whereas the maximum likelihood estimator requires specialized software
(only somewhat—it is reasonably common).

12.2.2 MODELING JOINT DISTRIBUTIONS WITH
COPULA FUNCTIONS

Specifying the likelihood function commits the analyst to a possibly strong assump-
tion about the distribution of the random variable of interest. The payoff, of course, is
the stronger inferences that this permits. However, when there is more than one ran-
dom variable of interest, such as in a joint household decision on health care usage in
the example to follow, formulating the full likelihood involves specifying the marginal
distributions, which might be comfortable, and a full specification of the joint distri-
bution, which is likely to be less so. In the typical situation, the model might involve
two similar random variables and an ill-formed specification of correlation between
them. Implicitly, this case involves specification of the marginal distributions. The joint
distribution is an empirical necessity to allow the correlation to be nonzero. The copula
function approach provides a mechanism that the researcher can use to steer around
this situation.

Trivedi and Zimmer (2007) suggest a variety of applications that fit this description:

• Financial institutions are often concerned with the prices of different, related
(dependent) assets. The typical multivariate normality assumption is problematic
because of GARCH effects (see Section 20.13) and thick tails in the distributions.
While specifying appropriate marginal distributions may be reasonably straight-
forward, specifying the joint distribution is anything but that. Klugman and Parsa
(2000) is an application.

• There are many microeconometric applications in which straightforward marginal
distributions cannot be readily combined into a natural joint distribution. The
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bivariate event count model analyzed in Munkin and Trivedi (1999) and in the
next example is an application.

• In the linear self-selection model of Chapter 19, the necessary joint distribution is
part of a larger model. The likelihood function for the observed outcome involves
the joint distribution of a variable of interest, hours, wages, income, and so on, and
the probability of observation. The typical application is based on a joint normal
distribution. Smith (2003, 2005) suggests some applications in which a flexible cop-
ula representation is more appropriate. [In an intriguing early application of copula
modeling that was not labeled as such, since it greatly predates the econometric lit-
erature, Lee (1983) modeled the outcome variable in a selectivity model as normal,
the observation probability as logistic, and the connection between them using what
amounted to the “Gaussian” copula function shown next.]

Although the antecedents in the statistics literature date to Sklar’s (1973) derivations,
the applications in econometrics and finance are quite recent, with most applications
appearing since 2000. [See the excellent survey by Trivedi and Zimmer (2007) for an
extensive description.]

Consider a modeling problem in which the marginal cdfs of two random variables
can be fully specified as F1(y1 | •) and F2(y2 | •), where we condition on sample infor-
mation (data) and parameters denoted “•.” For the moment, assume these are con-
tinuous random variables that obey all the axioms of probability. The bivariate cdf is
F12(y1, y2 | •). A (bivariate) copula function (the results also extend to multivariate func-
tions) is a function C(u1, u2) defined over the unit square [(0 ≤ u1 ≤ 1) × (0 ≤ u2 ≤ 1)]
that satisfies

(1) C(1, u2) = u2 and C(u1, 1) = u1,

(2) C(0, u2) = C(u1, 0) = 0,

(3) ∂C(u1, u2)/∂u1 ≥ 0 and ∂C(u1, u2)/∂u2 ≥ 0.

These are properties of bivariate cdfs for random variables u1 and u2 that are bounded
in the unit square. It follows that the copula function is a two-dimensional cdf defined
over the unit square that has one-dimensional marginal distributions that are standard
uniform in the unit interval [that is, property (1)]. To make profitable use of this re-
lationship, we note that the cdf of a random variable, F1(y1 | •), is, itself, a uniformly
distributed random variable. This is the fundamental probability transform that we
use for generating random numbers. (See Section 15.2.) In Sklar’s (1973) theorem, the
marginal cdfs play the roles of u1 and u2. The theorem states that there exists a copula
function, C(. , .) such that

F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •)].

If F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •)] is continuous and if the marginal cdfs have
quantile (inverse) functions F−1

j (u j ) where 0 ≤ u j ≤ 1, then the copula function can
be expressed as

F12(y1, y2 | •) = F12
[
F−1

1 (u1 | •), F−1
2 (u2 | •)

]
= Prob[U1 ≤ u1, U2 ≤ u2]

= C(u1, u2).
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In words, the theorem implies that the joint density can be written as the copula function
evaluated at the two cumulative probability functions.

Copula functions allow the analyst to assemble joint distributions when only the
marginal distributions can be specified. To fill in the desired element of correlation
between the random variables, the copula function is written

F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •), θ ],

where θ is a “dependence parameter.” For continuous random variables, the joint pdf
is then the mixed partial derivative,

f12(y1, y2 | •) = c12[F1(y1 | •), F2(y2 | •), θ ]

= ∂2C[F1(y1 | •), F2(y2 | •), θ ]/∂y1∂y2 (12-3)

= [∂2C(., ., θ)/∂ F1∂ F2] f1(y1 | •) f2(y2 | •).

A log-likelihood function can now be constructed using the logs of the right-hand sides of
(12-3). Taking logs of (12-3) reveals the utility of the copula approach. The contribution
of the joint observation to the log likelihood is

ln f12(y1, y2 | •) = ln[∂2C(., ., θ)/∂ F1∂ F2] + ln f1(y1 | •) + ln f2(y2 | •).

Some of the common copula functions that have been used in applications are as follows:

Product: C[u1, u2, θ ] = u1 × u2,

FGM: C[u1, u2, θ ] = u1u2[1 + θ(1 − u1)(1 − u2)],

Gaussian: C[u1, u2, θ ] = �2[�−1(u1), �
−1(u2), θ ],

Clayton: C[u1, u2, θ ] = [
u−θ

1 + u−θ
2 − 1

]−1/θ
,

Frank: C[u1, u2, θ ] = 1
θ

ln
[

1 + exp(θu1 − 1)exp(θu2 − 1)

exp(θ) − 1

]
.

The product copula implies that the random variables are independent, because it im-
plies that the joint cdf is the product of the marginals. In the FGM (Fairlie, Gumbel,
Morgenstern) copula, it can be seen that θ = 0 implies the product copula, or indepen-
dence. The same result can be shown for the Clayton copula. In the Gaussian function,
the copula is the bivariate normal cdf if the marginals happen to be normal to begin
with. The essential point is that the marginals need not be normal to construct the copula
function, so long as the marginal cdfs can be specified. (The dependence parameter is
not the correlation between the variables. Trivedi and Zimmer provide transformations
of θ that are closely related to correlations for each copula function listed.)

The essence of the copula technique is that the researcher can specify and analyze
the marginals and the copula functions separately. The likelihood function is obtained
by formulating the cdfs [or the densities, because the differentiation in (12-3) will reduce
the joint density to a convenient function of the marginal densities] and the copula.

Example 12.3 Joint Modeling of a Pair of Event Counts
The standard regression modeling approach for a random variable, y, that is a count of events
is the Poisson regression model,

Prob[Y = y | x] = exp(−λ)λy/y!, where λ = exp(x′β) , y = 0, 1, . . . .
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More intricate specifications use the negative binomial model (version 2, NB2),

Prob[Y = y | x] = 
( y + α)

(α)
( y + 1)

(
α

λ + α

)α
(

λ

λ + α

)y

, y = 0, 1, . . . ,

where α is an overdispersion parameter. (See Section 18.4.) A satisfactory, appropriate speci-
fication for bivariate outcomes has been an ongoing topic of research. Early suggestions were
based on a latent mixture model,

y1 = z + w1,

y2 = z + w2,

where w1 and w2 have the Poisson or NB2 distributions specified earlier with conditional
means λ1 and λ2 and z is taken to be an unobserved Poisson or NB variable. This formulation
induces correlation between the variables but is unsatisfactory because that correlation must
be positive. In a natural application, y1 is doctor visits and y2 is hospital visits. These could
be negatively correlated. Munkin and Trivedi (1999) specified the jointness in the conditional
mean functions, in the form of latent, common heterogeneity;

λ j = exp(x′
j β j + ε)

where ε is common to the two functions. Cameron et al. (2004) used a bivariate copula
approach to analyze Australian data on self-reported and actual physician visits (the lat-
ter maintained by the Health Insurance Commission). They made two adjustments to the
preceding model we developed above. First, they adapted the basic copula formulation to
these discrete random variables. Second, the variable of interest to them was not the actual
or self-reported count, but the difference. Both of these are straightforward modifications of
the basic copula model.

12.3 SEMIPARAMETRIC ESTIMATION

Semiparametric estimation is based on fewer assumptions than parametric estimation.
In general, the distributional assumption is removed, and an estimator is devised from
certain more general characteristics of the population. Intuition suggests two (correct)
conclusions. First, the semiparametric estimator will be more robust than the parametric
estimator—it will retain its properties, notably consistency across a greater range of
specifications. Consider our most familiar example. The least squares slope estimator is
consistent whenever the data are well behaved and the disturbances and the regressors
are uncorrelated. This is even true for the frontier function in Example 12.2, which has
an asymmetric, nonnormal disturbance. But, second, this robustness comes at a cost.
The distributional assumption usually makes the preferred estimator more efficient
than a robust one. The best robust estimator in its class will usually be inferior to the
parametric estimator when the assumption of the distribution is correct. Once again,
in the frontier function setting, least squares may be robust for the slopes, and it is
the most efficient estimator that uses only the orthogonality of the disturbances and
the regressors, but it will be inferior to the maximum likelihood estimator when the
two-part normal distribution is the correct assumption.

12.3.1 GMM ESTIMATION IN ECONOMETRICS

Recent applications in economics include many that base estimation on the method
of moments. The generalized method of moments departs from a set of model based
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moment equations, E [m(yi , xi , β)] = 0, where the set of equations specifies a relation-
ship known to hold in the population. We used one of these in the preceding paragraph.
The least squares estimator can be motivated by noting that the essential assumption is
that E [xi (yi − x′

iβ)] = 0. The estimator is obtained by seeking a parameter estimator,
b, which mimics the population result; (1/n)�i [xi (yi − x′

i b)] = 0. These are, of course,
the normal equations for least squares. Note that the estimator is specified without ben-
efit of any distributional assumption. Method of moments estimation is the subject of
Chapter 13, so we will defer further analysis until then.

12.3.2 MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

Empirical likelihood methods are suggested as a semiparametric alternative to maxi-
mum likelihood. As we shall see shortly, the estimator is closely related to the GMM
estimator. Let πi denote generically the probability that yi |xi takes the realized value in
the sample. Intuition suggests (correctly) that with no further information, πi will equal
1/n. The empirical likelihood function is

EL =
∏n

i=1
π

1/n
i .

The maximum empirical likelihood estimator maximizes EL. Equivalently, we maximize
the log of the empirical likelihood,

ELL = 1
n

n∑
i=1

ln πi .

As a maximization problem, this program lacks sufficient structure to admit a solution—
the solutions for πi are unbounded. If we impose the restrictions that πi are probabilities
that sum to one, we can use a Langragean formulation to solve the optimization problem,

ELL =
[

1
n

n∑
i=1

ln πi

]
+ λ

[
1 −

n∑
i=1

πi

]
.

This slightly restricts the problem since with 0 < πi < 1 and �iπi = 1, the solution
suggested earlier becomes obvious. (There is nothing in the problem that differentiates
the πi ’s, so they must all be equal to each other.) Inserting this result in the derivative
with respect to any specific πi produces the remaining result, λ = 1.

The maximization problem becomes meaningful when we impose a structure on the
data. To develop an example, we’ll recall Example 7.6, a nonlinear regression equation
for Income for the German Socioeconomic Panel data, where we specified

E[Income|Age, Sex, Education] = exp(x′β) = h(x, β).

For purpose of an example, assume that Education may be endogenous in this equation,
but we have available a set of instruments, z, say (Age, Health, Sex, MarketCondition).
We have assumed that there are more instruments (4) than included variables (3), so that
the parameters will be overidentified (and the example will be complicated enough to
be interesting). (See Sections 8.3.4 and 8.6.) The orthogonality conditions for nonlinear
instrumental variable estimation are that the disturbances be uncorrelated with the
instrumental variables, so

E{zi [Incomei − h(xi , β)]} = E[mi (β)] = 0.
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The nonlinear least squares solution to this problem was developed in Section 8.6. A
GMM estimator will minimize with respect to β the criterion function

q = m̄′(β)Am̄(β)

where A is the chosen weighting matrix. Note that for our example, including the con-
stant term, there are four elements in β and five moment equations, so the parameters
are overidentified.

If we impose the restrictions implied by our moment equations on the empirical
likelihood function, instead, we obtain the population moment condition[

n∑
i=1

πi zi (Incomei − h(xi , β))

]
= 0.

(The probabilities are population quantities, so this is the expected value.) This produces
the constrained empirical log likelihood

ELL =
[

1
n

n∑
i=1

ln πi

]
+ λ

[
1 −

n∑
i=1

πi

]
+ γ ′

[
n∑

i=1

πi zi (Incomei − h(xi , β))

]
.

The function is now maximized with respect to πi , λ, β (K elements) and γ (L ele-
ments, the number of instrumental variables). At the solution, the values of πi provide,
essentially, a set of weights. Cameron and Trivedi (2005, p. 205) provide a solution for
π̂i in terms of (β, γ ) and show, once again, that λ = 1. The concentrated ELL function
with these inserted provides a function of γ and β that remains to be maximized.

The empirical likelihood estimator has the same asymptotic properties as the
GMM estimator. (This makes sense, given the resemblance of the estimation criteria—
ultimately, both are focused on the moment equations.) There is evidence that at least in
some cases, the finite sample properties of the empirical likelihood estimator might be
better than GMM. A survey appears in Imbens (2002). One suggested modification of
the procedure is to replace the core function in (1/n)�i ln πi with the entropy measure,

Entropy = (1/n)�iπi ln πi .

The maximum entropy estimator is developed in Golan, Judge, and Miller (1996) and
Golan (2009).

12.3.3 LEAST ABSOLUTE DEVIATIONS ESTIMATION
AND QUANTILE REGRESSION

Least squares can be severely distorted by outlying observations in a small sample.
Recent applications in microeconomics and financial economics involving thick-tailed
disturbance distributions, for example, are particularly likely to be affected by precisely
these sorts of observations. (Of course, in those applications in finance involving hun-
dreds of thousands of observations, which are becoming commonplace, this discussion
is moot.) These applications have led to the proposal of “robust” estimators that are
unaffected by outlying observations. One of these, the least absolute deviations, or LAD
estimator discussed in Section 7.3.1, is also useful in its own right as an estimator of the
conditional median function in the modified model

Med[y|x] = x′β .50.
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That is, rather than providing a robust alternative to least squares as an estimator of
the slopes of E[y|x], LAD is an estimator of a different feature of the population. This
is essentially a semiparametric specification in that it specifies only a particular feature
of the distribution, its median, but not the distribution itself. It also specifies that the
conditional median be a linear function of x.

The median, in turn, is only one possible quantile of interest. If the model is extended
to other quantiles of the conditional distribution, we obtain

Q[y|x, q] = x′βq such that Prob[y < x′βq|x] = q, 0 < q < 1.

This is essentially a nonparametric specification. No assumption is made about the dis-
tribution of y|x or about its conditional variance. The fact that q can vary continuously
(strictly) between zero and one means that there is an infinite number of possible “pa-
rameter vectors.” It seems reasonable to view the coefficients, which we might write
β(q) less as fixed “parameters,” as we do in the linear regression model, than loosely
as features of the distribution of y|x. For example, it is not likely to be meaningful
to view β(.49) to be discretely different from β(.50) or to compute precisely a partic-
ular difference such as β(.5) − β(.3). On the other hand, the qualitative difference,
or possibly the lack of a difference, between β(.3) and β(.5) may well be an inter-
esting characteristic of the population. The quantile regression model is examined in
Section 7.3.2.

12.3.4 KERNEL DENSITY METHODS

The kernel density estimator is an inherently nonparametric tool, so it fits more ap-
propriately into the next section. But some models that use kernel methods are not
completely nonparametric. The partially linear model in Section 7.4 is a case in point.
Many models retain an index function formulation, that is, build the specification around
a linear function, x′β, which makes them at least semiparametric, but nonetheless still
avoid distributional assumptions by using kernel methods. Lewbel’s (2000) estimator
for the binary choice model is another example.

Example 12.4 Semiparametric Estimator for Binary Choice Models
The core binary choice model analyzed in Section 17.3, the probit model, is a fully parametric
specification. Under the assumptions of the model, maximum likelihood is the efficient (and
appropriate) estimator. However, as documented in a voluminous literature, the estimator of
β is fragile with respect to failures of the distributional assumption. We will examine a few
semiparametric and nonparametric estimators in Section 17.4.7. To illustrate the nature of
the modeling process, we consider an estimator suggested by Lewbel (2000). The probit
model is based on the normal distribution, with Prob[ yi = 1 | xi ] = Prob[x′

i β + εi > 0] where
εi ∼ N[0, 1]. The estimator of β under this specification will be inconsistent if the distribution
is not normal or if εi is heteroscedastic. Lewbel suggests the following: If (a) it can be as-
sumed that xi contains a “special” variable, vi , whose coefficient has a known sign–a method
is developed for determining the sign and (b) the density of εi is independent of this vari-
able, then a consistent estimator of β can be obtained by regression of [yi − s(vi ) ]/ f (vi | xi )
on xi where s(vi ) = 1 if vi > 0 and 0 otherwise and f (vi | xi ) is a kernel density estimator
of the density of vi | xi . Lewbel’s estimator is robust to heteroscedasticity and distribution.
A method is also suggested for estimating the distribution of εi . Note that Lewbel’s estimator
is semiparametric. His underlying model is a function of the parameters β, but the distribution
is unspecified.
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12.3.5 COMPARING PARAMETRIC AND SEMIPARAMETRIC
ANALYSES

It is often of interest to compare the outcomes of parametric and semiparametric mod-
els. As we have noted earlier, the strong assumptions of the fully parametric model come
at a cost; the inferences from the model are only as robust as the underlying assump-
tions. Of course, the other side of that equation is that when the assumptions are met,
parametric models represent efficient strategies for analyzing the data. The alternative,
semiparametric approaches relax assumptions such as normality and homoscedasticity.
It is important to note that the model extensions to which semiparametric estimators
are typically robust render the more heavily parameterized estimators inconsistent. The
comparison is not just one of efficiency. As a consequence, comparison of parameter
estimates can be misleading—the parametric and semiparametric estimators are often
estimating very different quantities.

Example 12.5 A Model of Vacation Expenditures
Melenberg and van Soest (1996) analyzed the 1981 vacation expenditures of a sample of
1,143 Dutch families. The important feature of the data that complicated the analysis was that
37 percent (423) of the families reported zero expenditures. A linear regression that ignores
this feature of the data would be heavily skewed toward underestimating the response of
expenditures to the covariates such as total family expenditures (budget), family size, age,
or education. (See Section 19.3.) The standard parametric approach to analyzing data of this
sort is the “Tobit,” or censored, regression model:

y∗
i = x′

i β + εi , εi ∼ N[0, σ 2],

yi = max(0, y∗
i ) .

(Maximum likelihood estimation of this model is examined in detail in Section 19.3.) The model
rests on two strong assumptions, normality and homoscedasticity. Both assumptions can be
relaxed in a more elaborate parametric framework, but the authors found that test statistics
persistently rejected one or both of the assumptions even with the extended specifications.
An alternative approach that is robust to both is Powell’s (1984, 1986a, b) censored least
absolute deviations estimator, which is a more technically demanding computation based
on the LAD estimator in Section 7.3.1. Not surprisingly, the parameter estimates produced
by the two approaches vary widely. The authors computed a variety of estimators of β. A
useful exercise that they did not undertake would be to compare the partial effects from the
different models. This is a benchmark on which the differences between the different esti-
mators can sometimes be reconciled. In the Tobit model, ∂E [ yi | xi ] /∂xi = �(x′

i β/σ )β (see
Section 19.3). It is unclear how to compute the counterpart in the semiparametric model,
since the underlying specification holds only that Med[εi | xi ] = 0. (The authors report on
the Journal of Applied Econometrics data archive site that these data are proprietary. As
such, we were unable to extend the analysis to obtain estimates of partial effects.) This high-
lights a significant difficulty with the semiparametric approach to estimation. In a nonlinear
model such as this one, it is often the partial effects that are of interest, not the coefficients.
But, one of the byproducts of the more “robust” specification is that the partial effects are
undefined.

In a second stage of the analysis, the authors decomposed their expenditure equation into
a “participation” equation that modeled probabilities for the binary outcome “expenditure =
0 or > 0” and a conditional expenditure equation for those with positive expenditure. [In
Section 18.4.8, we will label this a “hurdle” model. See Mullahy (1986).] For this step, the
authors once again used a parametric model based on the normal distribution (the probit
model—see Section 17.3) and a semiparametric model that is robust to distribution and
heteroscedasticity developed by Klein and Spady (1993). As before, the coefficient estimates
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FIGURE 12.1 Predicted Probabilities of Positive Expenditure.

differ substantially. However, in this instance, the specification tests are considerably more
sympathetic to the parametric model. Figure 12.1, which reproduces their Figure 2, compares
the predicted probabilities from the two models. The dashed curve is the probit model. Within
the range of most of the data, the models give quite similar predictions. Once again, however,
it is not possible to compare partial effects. The interesting outcome from this part of the
analysis seems to be that the failure of the parametric specification resides more in the
modeling of the continuous expenditure variable than with the model that separates the two
subsamples based on zero or positive expenditures.

12.4 NONPARAMETRIC ESTIMATION

Researchers have long held reservations about the strong assumptions made in para-
metric models fit by maximum likelihood. The linear regression model with normal
disturbances is a leading example. Splines, translog models, and polynomials all repre-
sent attempts to generalize the functional form. Nonetheless, questions remain about
how much generality can be obtained with such approximations. The techniques of non-
parametric estimation discard essentially all fixed assumptions about functional form
and distribution. Given their very limited structure, it follows that nonparametric spec-
ifications rarely provide very precise inferences. The benefit is that what information
is provided is extremely robust. The centerpiece of this set of techniques is the kernel
density estimator that we have used in the preceding examples. We will examine some
examples, then examine an application to a bivariate regression.2

2The set of literature in this area of econometrics is large and rapidly growing. Major references which
provide an applied and theoretical foundation are Härdle (1990), Pagan and Ullah (1999), and Li and Racine
(2007).
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12.4.1 KERNEL DENSITY ESTIMATION

Sample statistics such as a mean, variance, and range give summary information about
the values that a random variable may take. But, they do not suffice to show the distribu-
tion of values that the random variable takes, and these may be of interest as well. The
density of the variable is used for this purpose. A fully parametric approach to density
estimation begins with an assumption about the form of a distribution. Estimation of
the density is accomplished by estimation of the parameters of the distribution. To take
the canonical example, if we decide that a variable is generated by a normal distribution
with mean μ and variance σ 2, then the density is fully characterized by these parameters.
It follows that

f̂ (x) = f (x | μ̂, σ̂ 2) = 1
σ̂

1√
2π

exp

[
−1

2

(
x − μ̂

σ̂

)2
]

.

One may be unwilling to make a narrow distributional assumption about the density.
The usual approach in this case is to begin with a histogram as a descriptive device.
Consider an example. In Examples 15.17 and in Greene (2004a), we estimate a model
that produces a conditional estimator of a slope vector for each of the 1,270 firms in
our sample. We might be interested in the distribution of these estimators across firms.
In particular, the conditional estimates of the estimated slope on ln sales for the 1,270
firms have a sample mean of 0.3428, a standard deviation of 0.08919, a minimum of
0.2361, and a maximum of 0.5664. This tells us little about the distribution of values,
though the fact that the mean is well below the midrange of 0.4013 might suggest some
skewness. The histogram in Figure 12.2 is much more revealing. Based on what we see

FIGURE 12.2 Histogram for Estimated bsales Coefficients.
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thus far, an assumption of normality might not be appropriate. The distribution seems
to be bimodal, but certainly no particular functional form seems natural.

The histogram is a crude density estimator. The rectangles in the figure are called
bins. By construction, they are of equal width. (The parameters of the histogram are
the number of bins, the bin width, and the leftmost starting point. Each is important
in the shape of the end result.) Because the frequency count in the bins sums to the
sample size, by dividing each by n, we have a density estimator that satisfies an obvious
requirement for a density; it sums (integrates) to one. We can formalize this by laying
out the method by which the frequencies are obtained. Let xk be the midpoint of the
kth bin and let h be the width of the bin—we will shortly rename h to be the bandwidth
for the density estimator. The distances to the left and right boundaries of the bins are
h/2. The frequency count in each bin is the number of observations in the sample which
fall in the range xk ± h/2. Collecting terms, we have our “estimator”

f̂ (x) = 1
n

frequency in binx

width of binx
= 1

n

n∑
i=1

1
h

1
(

x − h
2

< xi < x + h
2

)
,

where 1(statement) denotes an indicator function that equals 1 if the statement is true
and 0 if it is false and binx denotes the bin which has x as its midpoint. We see, then, that
the histogram is an estimator, at least in some respects, like other estimators we have
encountered. The event in the indicator can be rearranged to produce an equivalent
form

f̂ (x) = 1
n

n∑
i=1

1
h

1
(

−1
2

<
xi − x

h
<

1
2

)
.

This form of the estimator simply counts the number of points that are within one
half-bin width of xk.

Albeit rather crude, this “naive” (its formal name in the literature) estimator is in
the form of kernel density estimators that we have met at various points;

f̂ (x) = 1
n

n∑
i=1

1
h

K
[

xi − x
h

]
, where K[z] = 1[−1/2 < z < 1/2].

The naive estimator has several shortcomings. It is neither smooth nor continuous.
Its shape is partly determined by where the leftmost and rightmost terminals of the
histogram are set. (In constructing a histogram, one often chooses the bin width to be
a specified fraction of the sample range. If so, then the terminals of the lowest and
highest bins will equal the minimum and maximum values in the sample, and this will
partly determine the shape of the histogram. If, instead, the bin width is set irrespective
of the sample values, then this problem is resolved.) More importantly, the shape of
the histogram will be crucially dependent on the bandwidth itself. (Unfortunately, this
problem remains even with more sophisticated specifications.)

The crudeness of the weighting function in the estimator is easy to remedy. Rosen-
blatt’s (1956) suggestion was to substitute for the naive estimator some other weighting
function which is continuous and which also integrates to one. A number of candidates
have been suggested, including the (long) list in Table 12.1. Each of these is smooth,
continuous, symmetric, and equally attractive. The logit and normal kernels are defined
so that the weight only asymptotically falls to zero whereas the others fall to zero at
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TABLE 12.1 Kernels for Density Estimation

Kernel Formula K[z]

Epanechnikov 0.75(1 − 0.2z2)/2.236 if |z| ≤ 5, 0 else
Normal φ(z) (normal density),
Logit 
(z)[1 − 
(z)] (logistic density)
Uniform 0.5 if |z| ≤ 1, 0 else
Beta 0.75(1 − z)(1 + z) if |z| ≤ 1, 0 else
Cosine 1 + cos(2πz) if |z| ≤ 0.5, 0 else
Triangle 1 − |z|, if |z| ≤ 1, 0 else
Parzen 4/3 − 8z2 + 8 |z|3 if |z| ≤ 0.5, 8(1 − |z|)3/3 if 0.5 < |z| ≤ 1, 0 else.

specific points. It has been observed that in constructing a density estimator, the choice
of kernel function is rarely crucial, and is usually minor in importance compared to
the more difficult problem of choosing the bandwidth. (The logit and normal kernels
appear to be the default choice in many applications.)

The kernel density function is an estimator. For any specific x, f̂ (x) is a sample
statistic,

f̂ (z) = 1
n

n∑
i=1

g(xi | z, h).

Because g(xi | z, h) is nonlinear, we should expect a bias in a finite sample. It is tempting
to apply our usual results for sample moments, but the analysis is more complicated
because the bandwidth is a function of n. Pagan and Ullah (1999) have examined the
properties of kernel estimators in detail and found that under certain assumptions,
the estimator is consistent and asymptotically normally distributed but biased in finite
samples. The bias is a function of the bandwidth, but for an appropriate choice of h, the
bias does vanish asymptotically. As intuition might suggest, the larger is the bandwidth,
the greater is the bias, but at the same time, the smaller is the variance. This might suggest
a search for an optimal bandwidth. After a lengthy analysis of the subject, however, the
authors’ conclusion provides little guidance for finding one. One consideration does
seem useful. For the proportion of observations captured in the bin to converge to the
corresponding area under the density, the width itself must shrink more slowly than 1/n.
Common applications typically use a bandwidth equal to some multiple of n−1/5 for this
reason. Thus, the one we used earlier is h = 0.9 × s/n1/5. To conclude the illustration
begun earlier, Figure 12.3 is a logit-based kernel density estimator for the distribution
of slope estimates for the model estimated earlier. The resemblance to the histogram
in Figure 12.2 is to be expected.

12.5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with methods of estimation. We have surveyed a
variety of techniques that have appeared in the applied literature. We have not yet
examined the statistical properties of these estimators. Although, as noted earlier, we
will leave extensive analysis of the asymptotic theory for more advanced treatments, it
is appropriate to spend at least some time on the fundamental theoretical platform that
underlies these techniques.
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FIGURE 12.3 Kernel Density for bsales Coefficients.

12.5.1 STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

• Unbiasedness: This is a finite sample property that can be established in only a
very small number of cases. Strict unbiasedness is rarely of central importance
outside the linear regression model. However, “asymptotic unbiasedness” (whereby
the expectation of an estimator converges to the true parameter as the sample size
grows), might be of interest. [See, e.g., Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density estimator).] In most cases, however, discussions of
asymptotic unbiasedness are actually directed toward consistency, which is a more
desirable property.

• Consistency: This is a much more important property. Econometricians are rarely
willing to place much credence in an estimator for which consistency cannot be
established.

• Asymptotic normality: This property forms the platform for most of the statistical
inference that is done with common estimators. When asymptotic normality can-
not be established, it sometimes becomes difficult to find a method of progressing
beyond simple presentation of the numerical values of estimates (with caveats).
However, most of the contemporary literature in macroeconomics and time-series
analysis is strongly focused on estimators that are decidedly not asymptotically nor-
mally distributed. The implication is that this property takes its importance only in
context, not as an absolute virtue.

• Asymptotic efficiency: Efficiency can rarely be established in absolute terms.
Efficiency within a class often can, however. Thus, for example, a great deal can
be said about the relative efficiency of maximum likelihood and GMM estimators
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in the class of consistent and asymptotically normally distributed (CAN) estima-
tors. There are two important practical considerations in this setting. First, the
researcher will want to know that he or she has not made demonstrably suboptimal
use of the data. (The literature contains discussions of GMM estimation of fully
specified parametric probit models—GMM estimation in this context is unambigu-
ously inferior to maximum likelihood.) Thus, when possible, one would want to
avoid obviously inefficient estimators. On the other hand, it will usually be the case
that the researcher is not choosing from a list of available estimators; he or she has
one at hand, and questions of relative efficiency are moot.

12.5.2 EXTREMUM ESTIMATORS

An extremum estimator is one that is obtained as the optimizer of a criterion function
q(θ | data). Three that have occupied much of our effort thus far are

• Least squares: θ̂ LS = Argmax
[−(1/n)

∑n
i=1(yi − h(xi , θLS))

2
]
,

• Maximum likelihood: θ̂ML = Argmax
[
(1/n)

∑n
i=1 ln f (yi | xi , θML)

]
, and

• GMM: θ̂GMM = Argmax[−m̄(data, θGMM)′Wm̄(data, θGMM)].

(We have changed the signs of the first and third only for convenience so that all three
may be cast as the same type of optimization problem.) The least squares and max-
imum likelihood estimators are examples of M estimators, which are defined by op-
timizing over a sum of terms. Most of the familiar theoretical results developed here
and in other treatises concern the behavior of extremum estimators. Several of the es-
timators considered in this chapter are extremum estimators, but a few—including the
Bayesian estimators, some of the semiparametric estimators, and all of the nonparamet-
ric estimators—are not. Nonetheless. we are interested in establishing the properties of
estimators in all these cases, whenever possible. The end result for the practitioner will
be the set of statistical properties that will allow him or her to draw with confidence
conclusions about the data generating process(es) that have motivated the analysis in
the first place.

Derivations of the behavior of extremum estimators are pursued at various levels
in the literature. (See, for example, any of the sources mentioned in Footnote 1 of this
chapter.) Amemiya (1985) and Davidson and MacKinnon (2004) are very accessible
treatments. Newey and McFadden (1994) is a rigorous analysis that provides a current,
standard source. Our discussion at this point will only suggest the elements of the anal-
ysis. The reader is referred to one of these sources for detailed proofs and derivations.

12.5.3 ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES
OF EXTREMUM ESTIMATORS

Some broad results are needed in order to establish the asymptotic properties of the
classical (not Bayesian) conventional extremum estimators noted above.

1. The parameter space (see Section 12.2) must be convex and the parameter vector
that is the object of estimation must be a point in its interior. The first requirement
rules out ill-defined estimation problems such as estimating a parameter which
can only take one of a finite discrete set of values. Thus, searching for the date of
a structural break in a time-series model as if it were a conventional parameter
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leads to a nonconvexity. Some proofs in this context are simplified by assuming
that the parameter space is compact. (A compact set is closed and bounded.)
However, assuming compactness is usually restrictive, so we will opt for the weaker
requirement.

2. The criterion function must be concave in the parameters. (See Section A.8.2.)
This assumption implies that with a given data set, the objective function has an
interior optimum and that we can locate it. Criterion functions need not be “glob-
ally concave”; they may have multiple optima. But, if they are not at least “locally
concave,” then we cannot speak meaningfully about optimization. One would nor-
mally only encounter this problem in a badly structured model, but it is possible to
formulate a model in which the estimation criterion is monotonically increasing or
decreasing in a parameter. Such a model would produce a nonconcave criterion
function.3 The distinction between compactness and concavity in the preceding
condition is relevant at this point. If the criterion function is strictly continuous in
a compact parameter space, then it has a maximum in that set and assuming con-
cavity is not necessary. The problem for estimation, however, is that this does not
rule out having that maximum occur on the (assumed) boundary of the parameter
space. This case interferes with proofs of consistency and asymptotic normality.
The overall problem is solved by assuming that the criterion function is concave
in the neighborhood of the true parameter vector.

3. Identifiability of the parameters. Any statement that begins with “the true param-
eters of the model, θ0 are identified if . . .” is problematic because if the parameters
are “not identified,” then arguably, they are not the parameters of the (any) model.
(For example, there is no “true” parameter vector in the unidentified model of Ex-
ample 2.5.) A useful way to approach this question that avoids the ambiguity of
trying to define the true parameter vector first and then asking if it is identified
(estimable) is as follows, where we borrow from Davidson and MacKinnon (1993,
p. 591): Consider the parameterized model, M, and the set of allowable data gener-
ating processes for the model, μ. Under a particular parameterization μ, let there
be an assumed “true” parameter vector, θ(μ). Consider any parameter vector θ

in the parameter space, �. Define

qμ(μ, θ) = plimμqn(θ | data).

This function is the probability limit of the objective function under the assumed
parameterization μ. If this probability limit exists (is a finite constant) and more-
over, if

qμ[μ, θ(μ)] > qμ(μ, θ) if θ �= θ(μ),

then, if the parameter space is compact, the parameter vector is identified by the
criterion function. We have not assumed compactness. For a convex parameter

3In their Exercise 23.6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggest a
probit model for statewide voting outcomes that includes dummy variables for region: Northeast, Southeast,
West, and Mountain. One would normally include three of the four dummy variables in the model, but
Griffiths et al. carefully dropped two of them because in addition to the dummy variable trap, the Southeast
variable is always zero when the dependent variable is zero. Inclusion of this variable produces a nonconcave
likelihood function—the parameter on this variable diverges. Analysis of a closely related case appears as a
caveat on page 272 of Amemiya (1985).
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space, we would require the additional condition that there exist no sequences
without limit points θm such that q(μ, θm) converges to q[μ, θ(μ)].

The approach taken here is to assume first that the model has some set of
parameters. The identifiability criterion states that assuming this is the case, the
probability limit of the criterion is maximized at these parameters. This result rests
on convergence of the criterion function to a finite value at any point in the interior
of the parameter space. Because the criterion function is a function of the data, this
convergence requires a statement of the properties of the data—for example, well
behaved in some sense. Leaving that aside for the moment, interestingly, the results
to this point already establish the consistency of the M estimator. In what might
seem to be an extremely terse fashion, Amemiya (1985) defined identifiability
simply as “existence of a consistent estimator.” We see that identification and the
conditions for consistency of the M estimator are substantively the same.

This form of identification is necessary, in theory, to establish the consistency
arguments. In any but the simplest cases, however, it will be extremely difficult to
verify in practice. Fortunately, there are simpler ways to secure identification that
will appeal more to the intuition:
• For the least squares estimator, a sufficient condition for identification is that

any two different parameter vectors, θ and θ0, must be able to produce dif-
ferent values of the conditional mean function. This means that for any two
different parameter vectors, there must be an xi that produces different val-
ues of the conditional mean function. You should verify that for the linear
model, this is the full rank assumption A.2. For the model in Example 2.5, we
have a regression in which x2 = x3 + x4. In this case, any parameter vec-
tor of the form (β1, β2 − a, β3 + a, β4 + a) produces the same conditional
mean as (β1, β2, β3, β4) regardless of xi , so this model is not identified. The
full rank assumption is needed to preclude this problem. For nonlinear regres-
sions, the problem is much more complicated, and there is no simple generality.
Example 7.2 shows a nonlinear regression model that is not identified and how
the lack of identification is remedied.

• For the maximum likelihood estimator, a condition similar to that for the re-
gression model is needed. For any two parameter vectors, θ �= θ0, it must be pos-
sible to produce different values of the density f (yi | xi , θ) for some data vector
(yi , xi ). Many econometric models that are fit by maximum likelihood are “in-
dex function” models that involve densities of the form f (yi | xi , θ) = f (yi | x′

iθ).
When this is the case, the same full rank assumption that applies to the regres-
sion model may be sufficient. (If there are no other parameters in the model,
then it will be sufficient.)

• For the GMM estimator, not much simplicity can be gained. A sufficient con-
dition for identification is that E[m̄(data, θ)] �= 0 if θ �= θ0.

4. Behavior of the data has been discussed at various points in the preceding text.
The estimators are based on means of functions of observations. (You can see
this in all three of the preceding definitions. Derivatives of these criterion func-
tions will likewise be means of functions of observations.) Analysis of their large
sample behaviors will turn on determining conditions under which certain sample
means of functions of observations will be subject to laws of large numbers such as
the Khinchine (D.5) or Chebychev (D.6) theorems, and what must be assumed in
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order to assert that “root-n” times sample means of functions will obey central
limit theorems such as the Lindeberg–Feller (D.19) or Lyapounov (D.20) theo-
rems for cross sections or the Martingale Difference Central Limit theorem for
dependent observations (Theorem 20.3). Ultimately, this is the issue in establish-
ing the statistical properties. The convergence property claimed above must occur
in the context of the data. These conditions have been discussed in Sections 4.4.1
and 4.4.2 under the heading of “well-behaved data.” At this point, we will assume
that the data are well behaved.

12.5.4 ASYMPTOTIC PROPERTIES OF ESTIMATORS

With all this apparatus in place, the following are the standard results on asymptotic
properties of M estimators:

THEOREM 12.1 Consistency of M Estimators
If (a) the parameter space is convex and the true parameter vector is a point in
its interior, (b) the criterion function is concave, (c) the parameters are identified
by the criterion function, and (d) the data are well behaved, then the M estimator
converges in probability to the true parameter vector.

Proofs of consistency of M estimators rely on a fundamental convergence result
that, itself, rests on assumptions (a) through (d) in Theorem 12.1. We have assumed
identification. The fundamental device is the following: Because of its dependence on
the data, q(θ | data) is a random variable. We assumed in (c) that plim q(θ | data) = q0(θ)

for any point in the parameter space. Assumption (c) states that the maximum of q0(θ)

occurs at q0(θ0), so θ0 is the maximizer of the probability limit. By its definition, the
estimator θ̂ , is the maximizer of q(θ | data). Therefore, consistency requires the limit of
the maximizer, θ̂ be equal to the maximizer of the limit, θ0. Our identification condition
establishes this. We will use this approach in somewhat greater detail in Section 14.4.5.a
where we establish consistency of the maximum likelihood estimator.

THEOREM 12.2 Asymptotic Normality of M Estimators
If

(i) θ̂ is a consistent estimator of θ0 where θ0 is a point in the interior of the
parameter space;

(ii) q(θ | data) is concave and twice continuously differentiable in θ in a neigh-
borhood of θ0;

(iii)
√

n[∂q(θ0 | data)/∂θ0]
d−→N[0, �];

(iv) for any θ in �, lim
n→∞ Pr[|(∂2q(θ | data)/∂θk∂θm) − hkm(θ)| > ε] = 0 ∀ ε > 0

where hkm(θ) is a continuous finite valued function of θ ;
(v) the matrix of elements H(θ) is nonsingular at θ0, then√

n(θ̂ − θ0)
d−→N

{
0, [H−1(θ0)�H−1(θ0)]

}
.
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The proof of asymptotic normality is based on the mean value theorem from calculus
and a Taylor series expansion of the derivatives of the maximized criterion function
around the true parameter vector;

√
n
∂q(θ̂ | data)

∂ θ̂
= 0 = √

n
∂q(θ0 | data)

∂θ0
+ ∂2q(θ̄ | data)

∂ θ̄∂ θ̄
′

√
n(θ̂ − θ0).

The second derivative is evaluated at a point θ̄ that is between θ̂ and θ0, that is, θ̄ =
wθ̂ + (1 − w)θ0 for some 0 < w < 1. Because we have assumed plim θ̂ = θ0, we see that
the matrix in the second term on the right must be converging to H(θ0). The assumptions
in the theorem can be combined to produce the claimed normal distribution. Formal
proof of this set of results appears in Newey and McFadden (1994). A somewhat more
detailed analysis based on this theorem appears in Section 14.4.5.b, where we establish
the asymptotic normality of the maximum likelihood estimator.

The preceding was restricted to M estimators, so it remains to establish counterparts
for the important GMM estimator. Consistency follows along the same lines used earlier,
but asymptotic normality is a bit more difficult to establish. We will return to this issue
in Chapter 13, where, once again, we will sketch the formal results and refer the reader
to a source such as Newey and McFadden (1994) for rigorous derivation.

The preceding results are not straightforward in all estimation problems. For exam-
ple, the least absolute deviations (LAD) is not among the estimators noted earlier,
but it is an M estimator and it shares the results given here. The analysis is com-
plicated because the criterion function is not continuously differentiable. Nonethe-
less, consistency and asymptotic normality have been established. [See Koenker and
Bassett (1982) and Amemiya (1985, pp. 152–154).] Some of the semiparametric and
all of the nonparametric estimators noted require somewhat more intricate treatments.
For example, Pagan and Ullah (Sections 2.5 and 2.6) are able to establish the familiar
desirable properties for the kernel density estimator f̂ (x∗), but it requires a somewhat
more involved analysis of the function and the data than is necessary, say, for the lin-
ear regression or binomial logit model. The interested reader can find many lengthy
and detailed analyses of asymptotic properties of estimators in, for example, Amemiya
(1985), Newey and McFadden (1994), Davidson and MacKinnon (2004), and Hayashi
(2000). In practical terms, it is rarely possible to verify the conditions for an estima-
tion problem at hand, and they are usually simply assumed. However, finding viola-
tions of the conditions is sometimes more straightforward, and this is worth pursuing.
For example, lack of parametric identification can often be detected by analyzing the
model itself.

12.5.5 TESTING HYPOTHESES

The preceding describes a set of results that (more or less) unifies the theoretical un-
derpinnings of three of the major classes of estimators in econometrics, least squares,
maximum likelihood, and GMM. A similar body of theory has been produced for the
familiar test statistics, Wald, likelihood ratio (LR), and Lagrange multiplier (LM). [See
Newey and McFadden (1994).] All of these have been laid out in practical terms else-
where in this text, so in the interest of brevity, we will refer the interested reader to the
background sources listed for the technical details.
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12.6 SUMMARY AND CONCLUSIONS

This chapter has presented a short overview of estimation in econometrics. There are
various ways to approach such a survey. The current literature can be broadly grouped
by three major types of estimators—parametric, semiparametric, and nonparametric.
It has been suggested that the overall drift in the literature is from the first toward the
third of these, but on a closer look, we see that this is probably not the case. Maximum
likelihood is still the estimator of choice in many settings. New applications have been
found for the GMM estimator, but at the same time, new Bayesian and simulation
estimators, all fully parametric, are emerging at a rapid pace. Certainly, the range of
tools that can be applied in any setting is growing steadily.

Key Terms and Concepts

• Bandwidth
• Bayesian estimation
• Bootstrap
• Conditional density
• Copula function
• Criterion function
• Data generating

mechanism
• Density
• Empirical likelihood

function
• Entropy
• Estimation criterion
• Extremum estimator

• Fundamental probability
transform

• Generalized method of
moments

• Histogram
• Identifiability
• Kernel density estimator
• Least absolute deviations

(LAD)
• Likelihood function
• M estimator
• Maximum empirical

likelihood estimator
• Maximum entropy

• Maximum likelihood
estimator

• Method of moments
• Nearest neighbor
• Nonparametric estimators
• Parameter space
• Parametric estimation
• Partially linear model
• Quantile regression
• Semiparametric estimation
• Simulation-based estimation
• Sklar’s theorem
• Smoothing function
• Stochastic frontier model

Exercise and Question

1. Compare the fully parametric and semiparametric approaches to estimation of a
discrete choice model such as the multinomial logit model discussed in Chapter 17.
What are the benefits and costs of the semiparametric approach?


