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MAXIMUM LIKELITHOOD
ESTIMATION
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1 INTRODUCTION

The generalized method of moments discussed in Chapter 13 and the semiparametric,
nonparametric, and Bayesian estimators discussed in Chapters 12 and 16 are becoming
widely used by model builders. Nonetheless, the maximum likelihood estimator dis-
cussed in this chapter remains the preferred estimator in many more settings than the
others listed. As such, we focus our discussion of generally applied estimation methods
on this technique. Sections 14.2 through 14.6 present basic statistical results for estima-
tion and hypothesis testing based on the maximum likelihood principle. Sections 14.7
and 14.8 present two extensions of the method, two-step estimation and pseudo max-
imum likelihood estimation. After establishing the general results for this method of
estimation, we will then apply them to the more familiar setting of econometric models.
The applications presented in Section 14.9 apply the maximum likelihood method to
most of the models in the preceding chapters and several others that illustrate different
uses of the technique.

2 THE LIKELIHOOD FUNCTION AND
IDENTIFICATION OF THE PARAMETERS

The probability density function, or pdf, for a random variable, y, conditioned on a
set of parameters, 6, is denoted f(y|#).! This function identifies the data-generating
process that underlies an observed sample of data and, at the same time, provides a
mathematical description of the data that the process will produce. The joint density
of n independent and identically distributed (i.i.d.) observations from this process is the
product of the individual densities;
n
FOr oyl =T FGil6) = L@ |y). (14-1)
i=1
This joint density is the likelihood function, defined as a function of the unknown
parameter vector, 6, where y is used to indicate the collection of sample data. Note
that we write the joint density as a function of the data conditioned on the parameters
whereas when we form the likelihood function, we will write this function in reverse,
as a function of the parameters, conditioned on the data. Though the two functions are
the same, it is to be emphasized that the likelihood function is written in this fashion

ILater we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that
would complicate the notation without adding anything of substance to the discussion.
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to highlight our interest in the parameters and the information about them that is
contained in the observed data. However, it is understood that the likelihood function
is not meant to represent a probability density for the parameters as it is in Chapter 17.
In this classical estimation framework, the parameters are assumed to be fixed constants
that we hope to learn about from the data.

It is usually simpler to work with the log of the likelihood function:

n
In L |y) =) Inf(y|0). (14-2)
i=1
Again, to emphasize our interest in the parameters, given the observed data, we denote
this function L(6 |data) = L(@ |y). The likelihood function and its logarithm, evalu-
ated at 6, are sometimes denoted simply L(#) and In L(6), respectively, or, where no
ambiguity can arise, just L or In L.

It will usually be necessary to generalize the concept of the likelihood function to
allow the density to depend on other conditioning variables. To jump immediately to
one of our central applications, suppose the disturbance in the classical linear regres-
sion model is normally distributed. Then, conditioned on its specific x;, y; is normally
distributed with mean p; =x!8 and variance 2. That means that the observed random
variables are not i.i.d.; they have different means. Nonetheless, the observations are
independent, and as we will examine in closer detail,

n n
In L@y, X) = In f(yi|x;.0) = —% > [Ino® +In@m) + (yi — x;p)*/0’], (14-3)
i=1 i=1
where X is the n x K matrix of data with ith row equal to x.

The rest of this chapter will be concerned with obtaining estimates of the parameters,
0, and in testing hypotheses about them and about the data-generating process. Before
we begin that study, we consider the question of whether estimation of the parameters
is possible at all—the question of identification. Identification is an issue related to the
formulation of the model. The issue of identification must be resolved before estimation
can even be considered. The question posed is essentially this: Suppose we had an
infinitely large sample —that is, for current purposes, all the information there is to be
had about the parameters. Could we uniquely determine the values of # from such a
sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 14.1 Identification
The parameter vector 0 is identified (estimable) if for any other parameter vector,
0% £ 0, for some data 'y, L(0" |y) # L(0 |y).

This result will be crucial at several points in what follows. We consider two examples,
the first of which will be very familiar to you by now.

Example 14.1 Identification of Parameters
For the regression model specified in (14-3), suppose that there is a nonzero vector a such
that x'a = O for every x;. Then there is another “parameter” vector, y = 8 + a # g such that
x/ B = x(y for every x;. You can see in (14-3) that if this is the case, then the log-likelihood
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is the same whether it is evaluated at g or at y. As such, it is not possible to consider
estimation of B in this model because B cannot be distinguished from y. This is the case of
perfect collinearity in the regression model, which we ruled out when we first proposed the
linear regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider
amodel in which identification is secured by the specification of the parameters in the model.
(We will study this model in detail in Chapter 17.) Consider a simple form of the regression
model considered earlier, y; = B1 + B2X; + €, Where ¢ | x; has a normal distribution with zero
mean and variance o2. To put the model in a context, consider a consumer’s purchases of
a large commodity such as a car where x; is the consumer’s income and y; is the difference
between what the consumer is willing to pay for the car, p;, and the price tag on the car, p;.
Suppose rather than observing p; or p;, we observe only whether the consumer actually
purchases the car, which, we assume, occurs when y; = p; — p; is positive. Collecting this
information, our model states that they will purchase the car if y; > 0 and not purchase it if
y; < 0. Let us form the likelihood function for the observed data, which are purchase (or not)
and income. The random variable in this model is “purchase” or “not purchase”—there are
only two outcomes. The probability of a purchase is

Prob(purchase | 81, B2, 0, X;) = Prob(y; > 0] B1, B2, 0, X;)
= Prob(B1 + Baxi + & > 0| p1, P, 0, X;)
= Proble; > —(B1 + B2Xi) | B1, B2, 0, Xi]
= Prob[e; /o > —(B1 + Boxi) /o | B1, B2, 0, Xi]
= Prob[z; > —(B1 + Baxi) /o | B1, Ba, 0, Xi]

where z; has a standard normal distribution. The probability of not purchase is just one minus
this probability. The likelihood function is

H [Prob(purchase | 1, B2, 0, X;)] H [1 — Prob(purchase | 81, B2, 0, X;)].

i =purchased i =not purchased

We need go no further to see that the parameters of this model are not identified. If 84, 82, and
o are all multiplied by the same nonzero constant, regardless of what it is, then Prob(purchase)
is unchanged, 1 — Prob(purchase) is also, and the likelihood function does not change. This
model requires a normalization. The one usually used is ¢ =1, but some authors [e.g.,
Horowitz (1993)] have used gy =1 instead.

14.3 EFFICIENT ESTIMATION: THE PRINCIPLE

OF MAXIMUM LIKELIHOOD

The principle of maximum likelihood provides a means of choosing an asymptotically
efficient estimator for a parameter or a set of parameters. The logic of the technique is
easily illustrated in the setting of a discrete distribution. Consider a random sample of
the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1.
The density for each observation is

e 09
filo) = W

T-
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FIGURE 14.1 Likelihood and Log-Likelihood Functions for a Poisson
Distribution.

Because the observations are independent, their joint density, which is the likelihood
for this sample, is

e~ 1009%0 i e—10020

[1° vt~ 207.360°

10
Fouya oyl 0 =[] Foil6) =
i=1

The last result gives the probability of observing this particular sample, assuming that a
Poisson distribution with as yet unknown parameter 6 generated the data. What value
of 6 would make this sample most probable? Figure 14.1 plots this function for various
values of 6. It has a single mode at 6 =2, which would be the maximum likelihood
estimate, or MLE, of 6.

Consider maximizing L(0 | y) with respect to 6. Because the log function is mono-
tonically increasing and easier to work with, we usually maximize In L(6 | y) instead; in
sampling from a Poisson population,

In L@ |y) = —nb +1n6 Zyi — Zln(yi!),
i=1 i=1

L@y

1< N _
59 _n+§ZYi=0:>9ML:yn-

i=1
For the assumed sample of observations,

In L@ |y) = —100 +201n6 — 12.242,

dln L@© |y) 20 R
AP0y _ 0+ —0md=2,
a0 Tty ==
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and

d21nL(9|y)_;m

102 7 < 0 = this is a maximum.

The solution is the same as before. Figure 14.1 also plots the log of L(6 |y) to illustrate
the result.

The reference to the probability of observing the given sample is not exact in a
continuous distribution, because a particular sample has probability zero. Nonetheless,
the principle is the same. The values of the parameters that maximize L(@ | data) or its
log are the maximum likelihood estimates, denoted @. The logarithm is a monotonic
function, so the values that maximize L(# | data) are the same as those that maximize
In L(6 | data). The necessary condition for maximizing In L(6 | data) is

0ln L(6 | data) _

5 (14-4)

This is called the likelihood equation. The general result then is that the MLE is a root
of the likelihood equation. The application to the parameters of the dgp for a discrete
random variable are suggestive that maximum likelihood is a “good” use of the data. It
remains to establish this as a general principle. We turn to that issue in the next section.

Example 14.2 Log-Likelihood Function and Likelihood Equations
for the Normal Distribution
In sampling from a normal distribution with mean . and variance o2, the log-likelihood func-
tion and the likelihood equations for 1 and o2 are

InL(p,0?) = —g In(27) — 2 Ina 2 Z [ } (14-5)
alnL 1 <
" i=1
dlnL n 1 < )
ke L R — )2 =0. 14-7
002 202 + 204 Z(y' W"=0 ( )

i=1

To solve the likelihood equations, multiply (14-6) by o2 and solve for /1, then insert this solution
in (14-7) and solve for 2. The solutions are

. 1e _ o 1 -
MML:EZM:yn and Gf =) (= ¥n)* (14-8)

14.4 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their large-
sample or asymptotic properties.
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DEFINITION 14.2 Asymptotic Efficiency

An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed (CAN), and has an asymptotic covariance matrix that is not larger than
the asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.”

If certain regularity conditions are met, the MLE will have these properties. The finite
sample properties are sometimes less than optimal. For example, the MLE may be bi-
ased; the MLE of o in Example 14.2 is biased downward. The occasional statement that
the properties of the MLE are only optimal in large samples is not true, however. It can
be shown that when sampling is from an exponential family of distributions (see Defini-
tion 13.1), there will exist sufficient statistics. If so, MLEs will be functions of them, which
means that when minimum variance unbiased estimators exist, they will be MLEs. [See
Stuart and Ord (1989).] Most applications in econometrics do not involve exponential
families, so the appeal of the MLE remains primarily its asymptotic properties.

We use the following notation:  is the maximum likelihood estimator; 8, denotes
the true value of the parameter vector; # denotes another possible value of the param-
eter vector, not the MLE and not necessarily the true values. Expectation based on the
true values of the parameters is denoted Ey[.]. If we assume that the regularity condi-
tions discussed momentarily are met by f(x, ), then we have the following theorem.

THEOREM 14.1 Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following
asymptotic properties:

MI. Consistency: plimf = 6.
M2. Asymptotic normality: § ~ N[0, {1(80)}~'], where

1(00) = — Eo[0° In L/36036})].

M3. Asymptotic efficiency: 0 is asymptotically efficient and achieves the Cramér—
Rao lower bound for consistent estimators, given in M2 and Theorem C.2.

MA4. Invariance: The maximum likelihood estimator of y, = ¢(0y) is ¢ if
¢(0y) is a continuous and continuously differentiable function.

14.4.1 REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability
density functions. We assume that (yi, ..., y,) is a random sample from the population
with density function f(y; |60y) and that the following regularity conditions hold. [Our

2Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that
of the efficient estimator plus a nonnegative definite matrix.
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statement of these is informal. A more rigorous treatment may be found in Stuart and
Ord (1989) or Davidson and MacKinnon (2004).]

DEFINITION 14.3 Regularity Conditions

R1. Thefirstthree derivatives of In f(y; | @) with respect to 0 are continuous and
finite for almost all y; and for all 0. This condition ensures the existence of a
certain Taylor series approximation and the finite variance of the derivatives
of In L.

R2. The conditions necessary to obtain the expectations of the first and second
derivatives of In f(y; | 0) are met.

R3. For all values of 8, 13> In f(y; 10)/00,;00,06,| is less than a function that
has a finite expectation. This condition will allow us to truncate the Taylor
series.

With these regularity conditions, we will obtain the following fundamental char-
acteristics of f(y;|#): D1 is simply a consequence of the definition of the likelihood
function. D2 leads to the moment condition which defines the maximum likelihood
estimator. On the one hand, the MLE is found as the maximizer of a function, which
mandates finding the vector that equates the gradient to zero. On the other, D2 is a
more fundamental relationship that places the MLE in the class of generalized method
of moments estimators. D3 produces what is known as the information matrix equality.
This relationship shows how to obtain the asymptotic covariance matrix of the MLE.

14.4.2 PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition 14.3 have three properties that are used in
establishing the properties of maximum likelihood estimators:

THEOREM 14.2 Moments of the Derivatives of the Log-Likelihood

D1. Inf(y;16), g = dln f(y;10)/00, and H; = 3*In f(y;|0)/3036', i =
1, ..., n, are all random samples of random variables. This statement fol-
lows from our assumption of random sampling. The notation g;(0,) and
H; () indicates the derivative evaluated at 0.

D2.  Folgi(60)] =0.

D3. Var[gi (00)] = —E[HL(OQ)]

Condition D1 is simply a consequence of the definition of the density.

For the moment, we allow the range of y; to depend on the parameters; A(fy) <
vi < B(8y). (Consider, for example, finding the maximum likelihood estimator of 6, for a
continuous uniform distribution with range [0, 6y].) (In the following, the single integral
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[ ...dy;, would be used to indicate the multiple integration over all the elements of a
multivariate of y; if that were necessary.) By definition,

B(6o)
/ f(il8o) dy; = 1.

A0o)

Now, differentiate this expression with respect to 6. Leibnitz’s theorem gives

B(6o)
0 F(yi160) dy; B®0) 3f(y: |6 B0
e - = [ RO e 10025
A(0o)
dA(0
— F(A®) |60) 200
20

=0.

If the second and third terms go to zero, then we may interchange the operations of
differentiation and integration. The necessary condition is that limy,_, 44, f(yi 100) =
limy, . g,y f(yi |60) = 0. (Note that the uniform distribution suggested earlier violates
this condition.) Sufficient conditions are that the range of the observed random variable,
vi, does not depend on the parameters, which means that 9 A(@()/960y = 3 B(0)/300 = 0
or that the density is zero at the terminal points. This condition, then, is regularity
condition R2. The latter is usually assumed, and we will assume it in what follows. So,

OffGilbo)dy: [ 3f(yilbo) ,  [dInf(yil6o) , ‘
_ [ fOil60)]
- E [7390 ]_ 0.

This proves D2.
Because we may interchange the operations of integration and differentiation, we
differentiate under the integral once again to obtain

9*In £ (i |60) d1n f(yi160) 0f(yi [60) _
Sy o100+ SO ay <
But
af(yil6o) . dln f(yi[60)
a%oz)—fmlé’o)ia% :

and the integral of a sum is the sum of integrals. Therefore,

9*1In f(yi |00) [ [31n f(y:16) d1n f(yi |60)
_/ [W] f(yi100) dy; —/{ 30, 20! }f(y,-lé’o)dy,».

The left-hand side of the equation is the negative of the expected second derivatives
matrix. The right-hand side is the expected square (outer product) of the first derivative
vector. But, because this vector has expected value 0 (we just showed this), the right-
hand side is the variance of the first derivative vector, which proves D3:

Var [3111f(yl'|00)] _ EO[(alnf()’i|00))<alnf(Yi |00)>} __E{azlnf(YiWo)]
0 30, B 390 20}, - 30000, |
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14.4.3 THE LIKELIHOOD EQUATION

The log-likelihood function is

InL@|y) =Y In f(y0).
i=1
The first derivative vector, or score vector, is
AnL@ly) —dlnf(ile) <
=" = —_— = i 14-9
o0 ; 50 ; g (14-9)
Because we are just adding terms, it follows from D1 and D2 that at 6,
In L
E, d1n L0 |y)
90,

which is the likelihood equation mentioned earlier.

} = Eolg] = 0. (14-10)

14.4.4 THE INFORMATION MATRIX EQUALITY
The Hessian of the log-likelihood is

82In L0 |y) 3*In f(yi |6)
T 00000 Z 3600’ ZH

Evaluating once again at 6, by taking

Eolgogo] = Eo [ > guih; |

i=1 j=1

and, because of D1, dropping terms with unequal subscripts we obtain

Eo[gogy] = Eo Zgwg’o,- = Ep Z(—Hw) = — Eo[Ho],
i=1 i=1
so that
Var dln L0 |y) _E, dln L0 |y) 0ln L(?O ly)
20, 20, 20,
(14-11)
_ 3%1In L(8y | y)
B 30000, |’

This very useful result is known as the information matrix equality.

14.4.5 ASYMPTOTIC PROPERTIES OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs
of these results require some fairly intricate mathematics. Two widely cited derivations
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise,
we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and
indicate where it will be necessary to extend the derivation if it were to be fully general.
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14.4.5.a Consistency

We assume that f(y; | 6y) is a possibly multivariate density that at this point does not
depend on covariates, x;. Thus, this is the i.i.d., random sampling case. Because 8 is the
MLE, in any finite sample, for any 8 #  (including the true ;) it must be true that

In L(6) > In L(9). (14-12)

Consider, then, the random variable L(0)/L(6y). Because the log function is strictly
concave, from Jensen’s Inequality (Theorem D.13.), we have

L(6) L(0)
Eyll In E . 14-13
O{HL(oo)} - O{L(%)] 41
The expectation on the right-hand side is exactly equal to one, as
L(9) L(9)
E = —— | L(6p)dy =1 14-14
' [L(o())] / <L(00)> oo (1

is simply the integral of a joint density. Now; take togsombothsides-of- (413 )-insert
] fof-CH-t4)— Frvided ]

Eo[1/nn L(6)] — Eo[1/n1n L(8y)] < 0.

This produces a central result:

THEOREM 14.3 Likelihood Inequality
Eo[(1/n)In L(6p)] > Eo[(1/n)In L(O)] for any @ # 6, (including 0).

In words, the expected value of the log-likelihood is maximized at the true value of the
parameters.
For any 6, including 6,

n
[(1/m)In L©®)] = (1/n) > " In f(yi |6)
i=1

is the sample mean of » i.i.d. random variables, with expectation Ey[(1/n)In L(6)].
Because the sampling is i.i.d. by the regularity conditions, we can invoke the
Khinchine theorem, D.5; the sample mean converges in probability to the popu-
lation mean. Using § = 6, it follows from Theorem 14.3 that as n — oo,
lim Prob{[(1/n) In L(@)] < [(1/n)In L@y)]} =1 if § + 6,. But, @ is the MLE, so for every
n, (1/n)In L(é) >(1/n)In L(6y). The only way these can both be true is if (1/x) times
the sample log-likelihood evaluated at the MLE converges to the population expecta-
tion of (1/n) times the log-likelihood evaluated at the true parameters. There remains
one final step. Does (1/n) In L@) — (1/n)1n L(8) imply that 6 — 0,2 If there is a
single parameter and the likelihood function is one to one, then clearly so. For more
general cases, this requires a further characterization of the likelihood function. If the
likelihood is strictly continuous and twice differentiable, which we assumed in the reg-
ularity conditions, and if the parameters of the model are identified which we assumed
at the beginning of this discussion, then yes, it does, so we have the result.
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This is a heuristic proof. As noted, formal presentations appear in more advanced
treatises than this one. We should also note, we have assumed at several points that
sample means converged to the population expectations. This is likely to be true for
the sorts of applications usually encountered in econometrics, but a fully general set
of results would look more closely at this condition. Second, we have assumed i.i.d.
sampling in the preceding—that is, the density for y; does not depend on any other
variables, x;. This will almost never be true in practice. Assumptions about the behavior
of these variables will enter the proofs as well. For example, in assessing the large sample
behavior of the least squares estimator, we have invoked an assumption that the data
are “well behaved.” The same sort of consideration will apply here as well. We will
return to this issue shortly. With all this in place, we have property M1, plim § = 6.

14.4.5.b Asymptotic Normality
At the maximum likelihood estimator, the gradient of the log-likelihood equals zero
(by definition), so

g6 =0.

(This is the sample statistic, not the expectation.) Expand this set of equations in a
Taylor series around the true parameters 6,. We will use the mean value theorem to
truncate the Taylor series at the second term,

g(6) =g6,) +H®B)(@ —0) = 0.

The Hessian is evaluated at a point @ that is between 6 and 0, [0 = wh + (1 — w)b,
for some 0 < w < 1]. We then rearrange this function and multiply the result by 4/n to
obtain

Vn@ —00) = [-H®6)] ' [Vng00)].

Because plim(@ —6p) =0, plim(é —6) = 0 as well. The second derivatives are continuous
functions. Therefore, if the limiting distribution exists, then

Jn(d —00) 5 [~H@)] " [Vng®o)].
By dividing H(#,) and g(6) by n, we obtain
Vi@ —00) -5 [~1HO00)] ' [VnEg®0)]. (14-15)

We may apply the Lindeberg-Levy central limit theorem (D.18) to [/ng(#)], because
it is «/n times the mean of a random sample; we have invoked D1 again. The limiting
variance of [/ng(#¢)]is — Eo[(1/n)H(8)], so

Jng(0) > N{0.— Eo[LH(®0)] }.

By virtue of Theorem D.2, plim[—(1/n)H(0¢)]= — Eo[(1/n)H(8¢)]. This result is a
constant matrix, so we can combine results to obtain

[—1H®00)] " Vg0 —5 N[0, {—Eo[1H®O0)]} " {— Eo[LH60)] }{— Eo[LH®)]} ],
or

i = 80) 5 N[0, {—Eo[LH©0)]} ],
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which gives the asymptotic distribution of the MLE:
6 ~ Nlbo. (100))'].
This last step completes M2.

Example 14.3 Information Matrix for the Normal Distribution
For the likelihood function in Example 14.2, the second derivatives are

32InL  —-n
o o2’

n

8%InL n 1 5
307 = 208 8 2001
i=1

2L -1«
= (yi — ).

oudo? o4 —
1=

For the asymptotic variance of the maximum likelihood estimator, we need the expectations
of these derivatives. The first is nonstochastic, and the third has expectation 0, as E [y;] = u.
That leaves the second, which you can verify has expectation —n/(204) because each of the
nterms (y; — )2 has expected value . Collecting these in the information matrix, reversing
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum

likelihood estimators:
g [#2inL - [e%/n O
°| 90, 00, "l o0 20%n|’

14.4.5.c Asymptotic Efficiency

Theorem C.2 provides the lower bound for the variance of an unbiased estimator.
Because the asymptotic variance of the MLE achieves this bound, it seems natural to
extend the result directly. There is, however, a loose end in that the MLE is almost never
unbiased. As such, we need an asymptotic version of the bound, which was provided
by Cramér (1948) and Rao (1945) (hence the name):

THEOREM 14.4 Cramér-Rao Lower Bound

Assuming that the density of y; satisfies the regularity conditions RI-R3, the
asymptotic variance of a consistent and asymptotically normally distributed esti-
mator of the parameter vector 0o will always be at least as large as

~ 32In L)1\ aln LOo)\ /dIn LB\ 1\ !
1 _ [ _ _
oo = (& "] ) = (8] (M) (M) ])

The asymptotic variance of the MLE is, in fact, equal to the Cramér—Rao Lower Bound
for the variance of a consistent, asymptotically normally distributed estimator, so this
completes the argument.?

3 A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that, in principle,
there do exist CAN functions of the data with smaller variances than the MLE. But, the finding is a narrow
result with no practical implications. For practical purposes, the statement may be taken as given.
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14.4.5.d Invariance

Last, the invariance property, M4, is a mathematical result of the method of computing
MLEs; it is not a statistical result as such. More formally, the MLE is invariant to one-to-
one transformations of #. Any transformation that is not one to one either renders the
model inestimable if it is one to many or imposes restrictions if it is many to one. Some
theoretical aspects of this feature are discussed in Davidson and MacKinnon (2004,
pp- 446, 539-540). For the practitioner, the result can be extremely useful. For example,
when a parameter appears in a likelihood function in the form 1/6;, it is usually worth-
while to reparameterize the model in terms of y; = 1/6;. In an important application,
Olsen (1978) used this result to great advantage. (See Section 18.3.3.) Suppose that
the normal log-likelihood in Example 14.2 is parameterized in terms of the precision
parameter, 6> = 1/02. The log-likelihood becomes

2 n
In L(w, 6%) = —(n/2) InQ2n) + (n/2) In6? — %Z(y,- — 2.
i=1

The MLE for u is clearly still X. But the likelihood equation for 6% is now

1 n
2 2 _ 2 L 21
d1n L. 6%)/06% = 3 ln/e - 21 i — 2| =0,

which has solution 82 =n/ 3" (y; — 1)*> =1/62, as expected. There is a second impli-
cation. If it is desired to analyze a function of an MLE, then the function of 8 will, itself,
be the MLE.

14.4.5.e Conclusion

These four properties explain the prevalence of the maximum likelihood technique in
econometrics. The second greatly facilitates hypothesis testing and the construction of
interval estimates. The third is a particularly powerful result. The MLE has the minimum
variance achievable by a consistent and asymptotically normally distributed estimator.

14.4.6 ESTIMATING THE ASYMPTOTIC VARIANCE
OF THE MAXIMUM LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix of
parameters that must be estimated (i.e., it is a function of the 6 that is being estimated).
If the form of the expected values of the second derivatives of the log-likelihood is
known, then

2 -1
3 1nL(00)” (1416)

-1_ )
[1(60)] —{ Eo{ 98, 00

can be evaluated at @ to estimate the covariance matrix for the MLE. This estimator
will rarely be available. The second derivatives of the log-likelihood will almost always
be complicated nonlinear functions of the data whose exact expected values will be
unknown. There are, however, two alternatives. A second estimator is

. 3%1n L(@))l
o' =(-—5—5—) .
O

This estimator is computed simply by evaluating the actual (not expected) second deriva-
tives matrix of the log-likelihood function at the maximum likelihood estimates. It is

(14-17)
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straightforward to show that this amounts to estimating the expected second derivatives
of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can
be used to justify the computation. The only shortcoming of this estimator is that the
second derivatives can be complicated to derive and program for a computer. A third
estimator based on result D3 in Theorem 14.2, that the expected second derivatives
matrix is the covariance matrix of the first derivatives vector, is

n ~1
OIS [Z 21-22] =[G'G] ™, (14-18)
i=1
where
. 0In f(xi, 0) Feyrety
g = ~ s
06
and

G=[8.8. ....8].

G is an n x K matrix with ith row equal to the transpose of the ith vector of derivatives
in the terms of the log-likelihood function. For a single parameter, this estimator is just
the reciprocal of the sum of squares of the first derivatives. This estimator is extremely
convenient, in most cases, because it does not require any computations beyond those
required to solve the likelihood equation. It has the added virtue that it is always non-
negative definite. For some extremely complicated log-likelihood functions, sometimes
because of rounding error, the observed Hessian can be indefinite, even at the maxi-
mum of the function. The estimator in (14-18) is known as the BHHH estimator* and
the outer product of gradients, or OPG, estimator.

None of the three estimators given here is preferable to the others on statistical
grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will be
the easiest to compute. One caution is in order. As the following example illustrates,
these estimators can give different results in a finite sample. This is an unavoidable finite
sample problem that can, in some cases, lead to different statistical conclusions. The
example is a case in point. Using the usual procedures, we would reject the hypothesis
that 8 = 0 if either of the first two variance estimators were used, but not if the third
were used. The estimator in (14-16) is usually unavailable, as the exact expectation of
the Hessian is rarely known. Available evidence suggests that in small or moderate-sized
samples, (14-17) (the Hessian) is preferable.

Example 14.4 Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

1 i
f(yi, xi, B) = me—yl/(ﬂw,),
1

where y =income and x =education. To find the maximum likelihood estimate of 8, we
maximize

n

Yi
L B+ X
i=1

InL(B) == In(B+x) -
i=1

“It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).
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The likelihood equation is
aInL(B) "1 oy
—_— + =0, (14-19)
ap ;ﬁﬂo ;(ﬂ+x,-)2

which has the solution 8 = 15.602727. To compute the asymptotic variance of the MLE, we
require

RZINL(A) < 1 Ny
02 ;(ﬂ )2 2;(;3 ) (14-20)
Because the function E(y;) = B+ x; is known, the exact form of the expected value in (14-20)
is known. Inserting B + x; for y; in (14-20) and taking the negative of the reciprocal yields the
first variance estimate, 44.2546. Simply inserting # = 15.602727 in (14-20) and taking the
negative of the reciprocal gives the second estimate, 46.16337. Finally, by computing the
reciprocal of the sum of squares of first derivatives of the densities evaluated at j,

P 1
| 1= — - ,
ad S =1/(B+X) +yi /(B +x)?P

we obtain the BHHH estimate, 100.5116.

14.5 CONDITIONAL LIKELIHOODS, ECONOMETRIC

MODELS, AND THE GMM ESTIMATOR

All of the preceding results form the statistical underpinnings of the technique of maxi-
mum likelihood estimation. But, for our purposes, a crucial element is missing. We have
done the analysis in terms of the density of an observed random variable and a vector
of parameters, f(y;|a). But econometric models will involve exogenous or predeter-
mined variables, x;, so the results must be extended. A workable approach is to treat
this modeling framework the same as the one in Chapter 4, where we considered the
large sample properties of the linear regression model. Thus, we will allow x; to denote
a mix of random variables and constants that enter the conditional density of y;. By
partitioning the joint density of y; and x; into the product of the conditional and the
marginal, the log-likelihood function may be written

n n n
In L(e |data) = In f(y. xi @)=Y Inf(y|x.a)+ ) Ingx|a),
i=1 i=1 i=1
where any nonstochastic elements in x; such as a time trend or dummy variable are
being carried as constants. To proceed, we will assume as we did before that the process
generating x; takes place outside the model of interest. For present purposes, that
means that the parameters that appear in g(x; | @) do not overlap with those that appear
in f(y; | x;, &). Thus, we partition « into [6, §] so that the log-likelihood function may
be written

n n n
In L(0, § | data) = Zln fOinxila) = Zln filxi, 0)+ Zlng(xi [8).
i=1 i=1 i=1
Aslong as 6 and § have no elements in common and no restrictions connect them (such
as 6 + § = 1), then the two parts of the log likelihood may be analyzed separately. In
most cases, the marginal distribution of x; will be of secondary (or no) interest.
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14.

Asymptotic results for the maximum conditional likelihood estimator must now
account for the presence of x; in the functions and derivatives of In f(y; | x;, #). We will
proceed under the assumption of well-behaved data so that sample averages such as

1 n
(A/mIn LO |y, X) = — > In f(3i 1%, 0)
i=1

and its gradient with respect to @ will converge in probability to their population expec-
tations. We will also need to invoke central limit theorems to establish the asymptotic
normality of the gradient of the log likelihood, so as to be able to characterize the
MLE itself. We will leave it to more advanced treatises such as Amemiya (1985) and
Newey and McFadden (1994) to establish specific conditions and fine points that must
be assumed to claim the “usual” properties for maximum likelihood estimators. For
present purposes (and the vast bulk of empirical applications), the following minimal
assumptions should suffice:

e Parameter space. Parameter spaces that have gaps and nonconvexities in them
will generally disable these procedures. An estimation problem that produces this
failure is that of “estimating” a parameter that can take only one among a discrete
set of values. For example, this set of procedures does not include “estimating”
the timing of a structural change in a model. The likelihood function must be a
continuous function of a convex parameter space. We allow unbounded parameter
spaces, such as o > 0 in the regression model, for example.

e Identifiability. Estimation must be feasible. This is the subject of Definition 16.1
concerning identification and the surrounding discussion.

e  Well-behaved data. Laws of large numbers apply to sample means involving the data
and some form of central limit theorem (generally Lyapounov) can be applied to
the gradient. Ergodic stationarity is broad enough to encompass any situation that is
likely to arise in practice, though it is probably more general than we need for most
applications, because we will not encounter dependent observations specifically
until later in the book. The definitions in Chapter 4 are assumed to hold generally.

With these in place, analysis is essentially the same in character as that we used in the
linear regression model in Chapter 4 and follows precisely along the lines of Section 12.5.

6 HYPOTHESIS AND SPECIFICATION TESTS
AND FIT MEASURES

The next several sections will discuss the most commonly used test procedures: the
likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of these
procedures is given in Godfrey (1988).] We consider maximum likelihood estimation
of a parameter 6 and a test of the hypothesis Hy: c(6) = 0. The logic of the tests can be
seen in Figure 14.2.5 The figure plots the log-likelihood function In L(6), its derivative
with respect to 0, dIn L(0)/df, and the constraint c(6). There are three approaches to

5See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points
of intersection have no significance.
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In L(6)
d1n L(6)|d6
c(0)

\
\~— dIn L(6)|d6
\

InLR§-——-—-—-- T ==
Likelihood
ratio \
InLgP---——-- L

" In L(6)

Lagrange
multiplier

FIGURE 14.2 Three Bases for Hypothesis Tests.

testing the hypothesis suggested in the figure:

Likelihood ratio test. If the restriction c(9) = 0 is valid, then imposing it should not
lead to a large reduction in the log-likelihood function. Therefore, we base the test
on the difference, In Ly — In Lg, where Ly is the value of the likelihood function at
the unconstrained value of § and L, is the value of the likelihood function at the
restricted estimate.

Wald test. If the restriction is valid, then ¢ (dmLg) should be close to zero because the
MLE is consistent. Therefore, the test is based on c(Oyig). We reject the hypothesis
if this value is significantly different from zero.
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e Lagrange multiplier test. If the restriction is valid, then the restricted estimator
should be near the point that maximizes the log-likelihood. Therefore, the slope
of the log-likelihood function should be near zero at the restricted estimator. The
test is based on the slope of the log-likelihood at the point where the function is
maximized subject to the restriction.

These three tests are asymptotically equivalent under the null hypothesis, but they can
behave rather differently in a small sample. Unfortunately, their small-sample proper-
ties are unknown, except in a few special cases. As a consequence, the choice among
them is typically made on the basis of ease of computation. The likelihood ratio test
requires calculation of both restricted and unrestricted estimators. If both are simple
to compute, then this way to proceed is convenient. The Wald test requires only the
unrestricted estimator, and the Lagrange multiplier test requires only the restricted
estimator. In some problems, one of these estimators may be much easier to compute
than the other. For example, a linear model is simple to estimate but becomes nonlinear
and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic
might be preferable. Alternatively, restrictions sometimes amount to the removal of
nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

14.6.1 THE LIKELIHOOD RATIO TEST

Let @ be a vector of parameters to be estimated, and let Hy specify some sort of restriction
on these parameters. Let §;; be the maximum likelihood estimator of @ obtained without
regard to the constraints, and let 0  be the constrained maximum likelihood estimator.
If Ly and [y are the likelihood functions evaluated at these two estimates, then the
likelihood ratio is

~

L
pY—
Ly

(14-21)

This function must be between zero and one. Both likelihoods are positive, and Ir
cannot be larger than Ly. (A restricted optimum is never superior to an unrestricted
one.) If A is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from
a sample of 10 from a Poisson distribution at the beginning of Section 14.3, we found the
MLE of the parameter 6 to be 2. At this value, the likelihood, which is the probability of
observing the sample we did, is 0.104 x 10~7. Are these data consistent with Hy:6 =1.8?
Lg = 0.936 x 1078, which is, as expected, smaller. This particular sample is somewhat
less probable under the hypothesis.

The formal test procedure is based on the following result.

THEOREM 14.5 Limiting Distribution of the Likelihood Ratio

Test Statistic
Under regularity and under Hy, the large sample distribution of —21In A is chi-
squared, with degrees of freedom equal to the number of restrictions imposed.
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The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,

0.0936
0.104

This chi-squared statistic with one degree of freedom is not significant at any conven-
tional level, so we would not reject the hypothesis that = 1.8 on the basis of this test.5

It is tempting to use the likelihood ratio test to test a simple null hypothesis against
a simple alternative. For example, we might be interested in the Poisson setting in
testing Hp: 6 = 1.8 against H;:6 = 2.2. But the test cannot be used in this fashion. The
degrees of freedom of the chi-squared statistic for the likelihood ratio test equals the
reduction in the number of dimensions in the parameter space that results from imposing
the restrictions. In testing a simple null hypothesis against a simple alternative, this
value is zero.” Second, one sometimes encounters an attempt to test one distributional
assumption against another with a likelihood ratio test; for example, a certain model
will be estimated assuming a normal distribution and then assuming a ¢ distribution.
The ratio of the two likelihoods is then compared to determine which distribution is
preferred. This comparison is also inappropriate. The parameter spaces, and hence the
likelihood functions of the two cases, are unrelated.

—2Inx =-21In ( ) = 0.21072.

14.6.2 THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation
of both the restricted and unrestricted parameter vectors. In complex models, one or
the other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that
circumvent this problem. Both tests are based on an estimator that is asymptotically
normally distributed.

These two tests are based on the distribution of the full rank quadratic form con-
sidered in Section B.11.6. Specifically,

If x ~ Ny[p, 2], then (x — u)’ £~ (x — ) ~ chi-squared[J]. (14-22)

In the setting of a hypothesis test, under the hypothesis that E(x) = u, the quadratic
form has the chi-squared distribution. If the hypothesis that E(x) = u is false, however,
then the quadratic form just given will, on average, be larger than it would be if the
hypothesis were true.® This condition forms the basis for the test statistics discussed in
this and the next section.

Let @ be the vector of parameter estimates obtained without restrictions. We hypo-
thesize a set of restrictions

Hy:¢c(0) =q.

50f course, our use of the large-sample result in a sample of 10 might be questionable.

"Note that because both likelihoods are restricted in this instance, there is nothing to prevent —2In A from
being negative.

8If the mean is not g, then the statistic in (14-22) will have a noncentral chi-squared distribution. This
distribution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom,

but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be
larger than a random observation from the central distribution.
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If the restrictions are valid, then at least approximately # should satisfy them. If the
hypothesis is erroneous, however, then cd) — q should be farther from 0 than would be
explained by sampling variability alone. The device we use to formalize this idea is the
Wald test.

THEOREM 14.6 Limiting Distribution of the Wald Test Statistic
The Wald statistic is

W = [c6) — q]’(Asy.Var[c(@) — q])_1 [c(d) — q].
Under H,, trrtarge-samples, W has a chi-squared distribution with degrees of
freedom equal to the number of restrictions [i.e., the number of equations in

¢(0) —q = 0/. A derivation of the limiting distribution of the Wald statistic appears
in Theorem 5.1.

This test is analogous to the chi-squared statistic in (14-22) if ¢(d) — q is normally
distributed with the hypothesized mean of 0. A large value of W leads to rejection of the
hypothesis. Note, finally, that W only requires computation of the unrestricted model.
One must still compute the covariance matrix appearing in the preceding quadratic form.
This result is the variance of a possibly nonlinear function, which we treated earlier.

Est. Asy. Var[c(d) — q] = C Est. Asy. Var[0]C’,
& {ac(é)] (14-23)

9’
That is, Cis the J x K matrix whose jth row is the derivatives of the jth constraint with
respect to the K elements of #. A common application occurs in testing a set of linear
restrictions.
For testing a set of linear restrictions R = q, the Wald test would be based on
Hy:c(0) —q=RO —q=0,
. [0c@
¢= { <@
a0
Est. Asy. Var[c() — q] = R Est. Asy. Var[]R’,

} —R, (14-24)

and
W = [RO — q]'[R Est. Asy. Var(0)R'] "[RO — q].

The degrees of freedom is the number of rows in R.
If ¢(#) = q is a single restriction, then the Wald test will be the same as the test
based on the confidence interval developed previously. If the test is

Hy:0 =6y versus Hp:0 # 6y,
then the earlier test is based on

16 — 6ol
Z=———

14-2
s ° (14-25)
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where s () is the estimated asymptotic standard error. The test statistic is compared to
the appropriate value from the standard normal table. The Wald test will be based on

© — 60)*

W = [(6 —60) — 0] (Asy. Var[(9 — 6p) —0]) "' [(6 —6p) — 0] =
Here W has a chi-squared distribution with one degree of freedom, which is the distri-
bution of the square of the standard normal test statistic in (14-25).

To summarize, the Wald test is based on measuring the extent to which the un-
restricted estimates fail to satisfy the hypothesized restrictions. There are two short-
comings of the Wald test. First, it is a pure significance test against the null hypothesis,
not necessarily for a specific alternative hypothesis. As such, its power may be limited
in some settings. In fact, the test statistic tends to be rather large in applications. The
second shortcoming is not shared by either of the other test statistics discussed here.
The Wald statistic is not invariant to the formulation of the restrictions. For example,
for a test of the hypothesis that a function 6 = /(1 — y) equals a specific value g there
are two approaches one might choose. A Wald test based directly on 8 — g = 0 would
use a statistic based on the variance of this nonlinear function. An alternative approach
would be to analyze the linear restriction 8 — q(1 — y) = 0, which is an equivalent,
but linear, restriction. The Wald statistics for these two tests could be different and
might lead to different inferences. These two shortcomings have been widely viewed as
compelling arguments against use of the Wald test. But, in its favor, the Wald test does
not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange
multiplier tests. The recent econometrics literature is replete with applications that are
based on distribution free estimation procedures, such as the GMM method. As such,
in recent years, the Wald test has enjoyed a redemption of sorts.

14.6.3 THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score)
test. It is based on the restricted model instead of the unrestricted model. Suppose that
we maximize the log-likelihood subject to the set of constraints ¢(@) — q = 0. Let A be
a vector of Lagrange multipliers and define the Lagrangean function

In L*(6) = In L(6) + A" (c(§) — q).
The solution to the constrained maximization problem is the root of

oln L* oln L(9)
_l’_

= C,A. = 0,
99 9 (14-27)
dlnL* c®) —0
o q=0,

where C’ is the transpose of the derivatives matrix in the second line of (14-23). If the
restrictions are valid, then imposing them will not lead to a significant difference in the
maximized value of the likelihood function. In the first-order conditions, the meaning is
that the second term in the derivative vector will be small. In particular, A will be small.
We could test this directly, that is, test Hy: L = 0, which leads to the Lagrange multiplier
test. There is an equivalent simpler formulation, however. At the restricted maximum,
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the derivatives of the log-likelihood function are

dln L(6 .
I LOR _ ¢ = g (14-28)
20 1

If the restrictions are valid, at least within the range of sampling variability, then gz = 0.
Thatis, the derivatives of the log-likelihood evaluated at the restricted parameter vector
will be approximately zero. The vector of first derivatives of the log-likelihood is the
vector of efficient scores. Because the test is based on this vector, it is called the score
test as well as the Lagrange multiplier test. The variance of the first derivative vector
is the information matrix, which we have used to compute the asymptotic covariance
matrix of the MLE. The test statistic is based on reasoning analogous to that underlying
the Wald test statistic.

THEOREM 14.7 Limiting Distribution of the Lagrange
Multiplier Statistic
The Lagrange multiplier test statistic is

dln L@ g) ) /[I(éR)]“ (a In L(éR)>

LM:(
20 r

R

Under the null hypothesis, LM has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions. All terms are computed at the
restricted estimator.

The LM statistic has a useful form. Let g; gz denote the ith term in the gradient of
the log-likelihood function. Then,

n
gr= ng = G/ji,
i=1
where G is the n x K matrix with ith row equal to §  and i is a column of 1s. If we use
the BHHH (outer product of gradients) estimator in (14-18) to estimate the Hessian,
then
[{(®)] " = [GRGr] ™
and
LM = i'Gg[G1G r] " GKi.

Now, because i'i equals 7, LM = n(i Gg[G’yGr] ' Gzi/n) = nR?, which is n times the
uncentered squared multiple correlation coefficient in a linear regression of a column of
1s on the derivatives of the log-likelihood function computed at the restricted estimator.
We will encounter this result in various forms at several points in the book.
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14.6.4 AN APPLICATION OF THE LIKELIHOOD-BASED
TEST PROCEDURES

Consider, again, the data in Example C.1. In Example 14.4, the parameter § in the
model
1
B+ xi
was estimated by maximum likelihood. For convenience, let 8; =1/(8 + x;). This expo-
nential density is a restricted form of a more general gamma distribution,

P
filxi, B, p) = % yr e b, (14-30)

The restriction is p = 1. We consider testing the hypothesis

fOilxi, B) = e~/ (Bt (14-29)

Hy:p=1 versus Hi:p#1

using the various procedures described previously. The log-likelihood and its derivatives
are

InLB,p)=pY Ipi—ninT(p)+(p—1Y Iny -y,
i=1

i=1 i=1

dln L - - 2 dnL < -

= — i P, _— = 1 i \Il l 13 14'31
7 p;ﬂ+;yﬂ, > ;nﬂ n<p>+;ny (14-31)
3’In L “ - *InL ?InL a
_ = s _2 i37 = —nV¥’ 5 = - i
v p;ﬁl ;yﬂz 57 (o). e ;ﬁ

[Recall that W(p) = dInT'(p)/dp and W' (p) = d*> InT'(p)/dp>.] Unrestricted maximum
likelihood estimates of 8 and p are obtained by equating the two first derivatives to zero.
The restricted maximum likelihood estimate of g is obtained by equating d In /98 to
zero while fixing p at one. The results are shown in Table 14.1. Three estimators are
available for the asymptotic covariance matrix of the estimators of § = (8, p)’. Using
the actual Hessian as in (14-17), we compute V = [—X;3% In f(y; | x;, B, p)/0000’]"" at
the maximum likelihood }(estimates. For this model, it is easy to show that E[y; | x;] =
p(B + x;) (either by direct integration or, more simply, by using the result that
E[01In L/0B] = 0 to deduce it). Therefore, we can also use the expected Hessian as
in (14-16) to compute Vp = {—%; E[8*In f(y; | x;, B, p)/3036']}~". Finally, by using the
sums of squares and cross products of the first derivatives, we obtain the BHHH esti-
mator in (14-18), Vg = [Z;(@In f(y; | x;, B, 0)/30)(31n f(y; | x;, B, p)/00")]~". Results
in Table 14.1 are based on V.

The three estimators of the asymptotic covariance matrix produce notably different
results:

[ 5499 —1.653 [ 4900 —1.473 1337 4322
= |=1.653 0.6309]° E= 11473 05768|" B= 1432 1537]"

9The gamma function I'(p) and the gamma distribution are described in Sections B.4.5 and E2.3.
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TABLE 14.1 Maximum Likelihood Estimates

Quantity Unrestricted Estimate® Restricted Estimate
B —4.7185 (2.345) 15.6027 (6.794)

o 3.1509 (0.794) 1.0000 (0.000)
InL —82.91605 —88.43626

dln L/ap 0.0000 0.0000

dln L/dp 0.0000 7.9145

821n L/3p? —0.85570 —0.02166

021n L/3p? —7.4592 —32.8987

821In L/3pBdp —2.2420 —0.66891

4Estimated asymptotic standard errors based on V are given in parentheses.

Given the small sample size, the differences are to be expected. Nonetheless, the striking
difference of the BHHH estimator is typical of its erratic performance in small samples.

Confidence interval test: A 95 percent confidence interval for p based on the
unrestricted estimates is 3.1509 + 1.964/0.6309 = [1.5941, 4.7076]. This interval
does not contain p = 1, so the hypothesis is rejected.

Likelihood ratio test: The LR statistic is . = —2[—88.43771 — (—82.91444)] =
11.0404. The table value for the test, with one degree of freedom, is 3.842. The
computed value is larger than this critical value, so the hypothesis is again
rejected.

Wald test: The Wald test is based on the unrestricted estimates. For this restric-
tion, c(@) —q = p — 1,dc(p)/dp = 1, Est. Asy. Var[c(p) — q] = Est. Asy. Var[p] =
0.6309, so W = (3.1517 — 1)?/[0.6309] = 7.3384. The critical value is the same as
the previous one. Hence, H) is once again rejected. Note that the Wald statistic is
the square of the corresponding test statistic that would be used in the confidence
interval test, [3.1509 — 1|/+/0.6309 = 2.73335.

Lagrange multiplier test: The Lagrange multiplier test is based on the restricted
estimators. The estimated asymptotic covariance matrix of the derivatives used to
compute the statistic can be any of the three estimators discussed earlier. The
BHHH estimator, Vp, is the empirical estimator of the variance of the gradient
and is the one usually used in practice. This computation produces

LM = [0.0000 7.9145]

0.00995  0.26776] " [0.0000
0.26776 11.199 7.9145

} = 15.687.

The conclusion is the same as before. Note that the same computation done
using V rather than Vg produces a value of 5.1162. As before, we observe
substantial small sample variation produced by the different estimators.

The latter three test statistics have substantially different values. It is possible to

reach different conclusions, depending on which one is used. For example, if the test
had been carried out at the 1 percent level of significance instead of 5 percent and
LM had been computed using V, then the critical value from the chi-squared statistic
would have been 6.635 and the hypothesis would not have been rejected by the LM test.
Asymptotically, all three tests are equivalent. But, in a finite sample such as this one,
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differences are to be expected.!’ Unfortunately, there is no clear rule for how to proceed
in such a case, which highlights the problem of relying on a particular significance level
and drawing a firm reject or accept conclusion based on sample evidence.

14.6.5 COMPARING MODELS AND COMPUTING MODEL FIT

The test statistics described in Sections 14.6.1-14.6.3 are available for assessing the
validity of restrictions on the parameters in a model. When the models are nested,
any of the three mentioned testing procedures can be used. For nonnested models, the
computation is a comparison of one model to another based on an estimation criterion
to discern which is to be preferred. Two common measures that are based on the same
logic as the adjusted R-squared for the linear model are

Akaike information criterion (AIC) =—-2InL+2K,
Bayes (Schwarz) information criterion (BIC) = —2In L+ Klnn,

where K is the number of parameters in the model. Choosing a model based on the
lowest AIC is logically the same as using R? in the linear model; nonstatistical, albeit
widely accepted.

The AIC and BIC are information criteria, not fit measures as such. This does leave
open the question of how to assess the “fit” of the model. Only the case of a linear least
squares regression in a model with a constant term produces an R?, which measures
the proportion of variation explained by the regression. The ambiguity in R? as a fit
measure arose immediately when we moved from the linear regression model to the
generalized regression model in Chapter 9. The problem is yet more acute in the context
of the models we consider in this chapter. For example, the estimators of the models for
count data in Example 14.10 make no use of the “variation” in the dependent variable
and there is no obvious measure of “explained variation.”

A measure of “fit” that was originally proposed for discrete choice models in Mc-
Fadden (1974), but surprisingly has gained wide currency throughout the empirical
literature is the likelihood ratio index, which has come to be known as the Pseudo RZ.
It is computed as

PseudoR?>=1— (In L) /(n L)

where In Lis the log-likelihood for the model estimated and In Ly is the log-likelihood
for the same model with only a constant term. The statistic does resemble the R? in a
linear regression. The choice of name is for this statistic is unfortunate, however, because
even in the discrete choice context for which it was proposed, it has no connection to
the fit of the model to the data. In discrete choice settings in which log-likelihoods must
be negative, the pseudo R> must be between zero and one and rises as variables are
added to the model. It can obviously be zero, but is usually bounded below one. In the
linear model with normally distributed disturbances, the maximized log-likelihood is

In L= (—n/2)[1 +In27 + In(e’e/n)].

10For further discussion of this problem, see Berndt and Savin (1977).
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With a small amount of manipulation, we find that the pseudo R for the linear regression
model is

—In(l — R?)
PseudoR? = _—
seudo 1+In27 —i—lnsg

while the “true” R?is 1—e’e/e}eo. Because s§ canvary independently of R> —multiplying

ybyanyscalar, A, leaves R? unchanged but multiplies sf by A> —although the upper limit
isone, there is no lower limit on this measure. This same problem arises in any model that
uses information on the scale of a dependent variable, such as the tobit model (Chap-
ter 18). The computation makes even less sense as a fit measure in multinomial models
such as the ordered probit model (Chapter 17) or the multinomial logit model. For dis-
crete choice models, there are a variety of such measures discussed in Chapter 17. For
limited dependent variable and many loglinear models, some other measure that is re-
lated to a correlation between a prediction and the actual value would be more useable.
Nonetheless, the measure seems to have gained currency in the contemporary literature.
[The popular software package, Stata, reports the pseudo R? with every model fit by
MLE, but at the same time, admonishes its users not to interpret it as anything meaning-
ful. See, for example, http://www.stata.com/support/fags/stat/pseudor2.html. Cameron
and Trivedi (2005) document the pseudo R? at length and then give similar cautions
about it and urge their readers to seek a more meaningful measure of the correlation
between model predictions and the outcome variable of interest. Wooldridge (2002a)
dismisses it summarily, and argues that coefficients are more interesting. ]

14.6.6 VUONG’S TEST AND THE KULLBACK-LEIBLER
INFORMATION CRITERION

Vuong’s (1989) approach to testing nonnested models is also based on the likelihood
ratio statistic. The logic of the test is similar to that which motivates the likelihood ratio
test in general. Suppose that f(y; | Z;, 0) and g(y; | Z;, y) are two competing models for
the density of the random variable y;, with f being the null model, Hy, and g being
the alternative, H,;. For instance, in Example 5.7, both densities are (by assumption
now) normal, y; is consumption, C;, Z; is [1, Y, Y,_1, C;_1], 0 is (B1, B2, B3, 0, 02), y is
(1. 2, 0, y3, ®?), and 0> and w? are the respective conditional variances of the distur-
bances, ¢y, and ¢1,. The crucial element of Vuong’s analysis is that it need not be the
case that either competing model is “true”; they may both be incorrect. What we want
to do is attempt to use the data to determine which competitor is closer to the truth,
that is, closer to the correct (unknown) model.

We assume that observations in the sample (disturbances) are conditionally inde-
pendent. Let L; o denote the ith contribution to the likelihood function under the null
hypothesis. Thus, the log likelihood function under the null hypothesis is %; In Z; o. De-
fine L; ; likewise for the alternative model. Now, let m; equal In L; 1 —In L; o. If we were
using the familiar likelihood ratio test, then, the likelihood ratio statistic would be simply
LR =2%;m; =2nmwhen L; o and L; ; are computed at the respective maximum likeli-
hood estimators. When the competing models are nested — Hy is a restriction on H; —we
know that ¥;m; > 0. The restrictions of the null hypothesis will never increase the like-
lihood function. (In the linear regression model with normally distributed disturbances
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that we have examined so far, the log likelihood and these results are all based on the
sum of squared residuals, and as we have seen, imposing restrictions never reduces the
sum of squares.) The limiting distribution of the LR statistic under the assumption of
the null hypothesis is chi squared with degrees of freedom equal to the reduction in the
number of dimensions of the parameter space of the alternative hypothesis that results
from imposing the restrictions.

Vuong’s analysis is concerned with nonnested models for which ¥; m; need not
be positive. Formalizing the test requires us to look more closely at what is meant
by the “right” model (and provides a convenient departure point for the discussion
in the next two sections). In the context of nonnested models, Vuong allows for the
possibility that neither model is “true” in the absolute sense. We maintain the clas-
sical assumption that there does exist a “true” model, A(y; |Z;, «) where « is the
“true” parameter vector, but possibly neither hypothesized model is that true model.
The Kullback-Leibler Information Criterion (KLIC) measures the distance between
the true model (distribution) and a hypothesized model in terms of the likelihood
function. Loosely, the KLIC is the log likelihood function under the hypothesis of
the true model minus the log-likelihood function for the (misspecified) hypothesized
model under the assumption of the true model. Formally, for the model of the null
hypothesis,

KLIC = E[In h(y; | Z;, @) | his true] — E[In f(y; | Z; 0) | h is true].

The first term on the right hand side is what we would estimate with (1/n)ln L if we
maximized the log likelihood for the true model, A(y; | Z;, «). The second term is what
is estimated by (1/n) In L assuming (incorrectly) that f(y; | Z;, #) is the correct model.
Notice that f(y; |Z;, @) is written in terms of a parameter vector, 6. Because « is the
“true” parameter vector, it is perhaps ambiguous what is meant by the parameteriza-
tion, 6. Vuong (p. 310) calls this the “pseudotrue” parameter vector. It is the vector
of constants that the estimator converges to when one uses the estimator implied by
fOilZ;,0). In Example 5.2, if Hy gives the correct model, this formulation assumes
that the least squares estimator in H; would converge to some vector of pseudo-true
parameters. But, these are not the parameters of the correct model —they would be the
slopes in the population linear projection of C, on [1, ¥}, C,_4].

Suppose the “true” model is y = X + &, with normally distributed disturbances
and y = Z§ + w is the proposed competing model. The KLIC would be the ex-
pected log likelihood function for the true model minus the expected log likelihood
function for the second model, still assuming that the first one is the truth. By con-
struction, the KLIC is positive. We will now say that one model is “better” than an-
other if it is closer to the “truth” based on the KLIC. If we take the difference of
the two KLICs for two models, the true log likelihood function falls out, and we are
left with

KLIC; — KLIC) = E[ln f(y; | Z;, 0) | his true] — E[In g(y; | Z;, ) | h is true].

To compute this using a sample, we would simply compute the likelihood ratio statis-
tic, nm (without multiplying by 2) again. Thus, this provides an interpretation of the
LR statistic. But, in this context, the statistic can be negative—we don’t know which
competing model is closer to the truth.
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14.

Vuong’s general result for nonnested models (his Theorem 5.1) describes the be-
havior of the statistic

\/ﬁ(% > mi)

= /n@m/sy), m=InLy—InL;.

He finds:

1. Under the hypothesis that the models are “equivalent”, V' LN N[0, 1]
2. Under the hypothesis that f(y; | Z;. 8) is “better”, V = 400
3. Under the hypothesis that g(y; | Z;, y) is “better”, V 23 —cc.

This test is directional. Large positive values favor the null model while large neg-
ative values favor the alternative. The intermediate values (e.g., between —1.96 and
+1.96 for 95 percent significance) are an inconclusive region. An application appears in
Example 19.10.

7 TWO-STEP MAXIMUM LIKELIHOOD
ESTIMATION

The applied literature contains a large and increasing number of applications in which
elements of one model are embedded in another, which produces what are known as
“two-step” estimation problems. [Among the best known of these is Heckman’s (1979)
model of sample selection discussed in Example 1.1 and in Chapter 18.] There are two
parameter vectors, #; and 6,. The first appears in the second model, but not the reverse.
In such assituation, there are two ways to proceed. Full information maximum likelihood
(FIML) estimation would involve forming the joint distribution f(y;, y2| X1, X2, 01, 02)
of the two random variables and then maximizing the full log-likelihood function,

In 101, 02) = Zln FOi, yiz I X1, Xi2, 01, 02).
i=1
A two-step, procedure for this kind of model could be used by estimating the parameters
of model 1 first by maximizing

n
InLy(81) =Y In fiyir %1, 61)
i=1
and then maximizing the marginal likelihood function for y, while embedding the con-
sistent estimator of @4, treating it as given. The second step involves maximizing

n
In 1,81, 0,) = Zln Hilxiz, 01, 602).

i=1
There are at least two reasons one might proceed in this fashion. First, it may be straight-
forward to formulate the two separate log-likelihoods, but very complicated to derive
the joint distribution. This situation frequently arises when the two variables being mod-
eled are from different kinds of populations, such as one discrete and one continuous
(which is a very common case in this framework). The second reason is that maximizing
the separate log-likelihoods may be fairly straightforward, but maximizing the joint
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log-likelihood may be numerically complicated or difficult.!! The results given here
can be found in an important reference on the subject, Murphy and Topel (2002, first
published in 1985).

Suppose, then, that our model consists of the two marginal distributions,
filr 1x1,601) and f>(y2 | x2, 01, 02). Estimation proceeds in two steps.

1. Estimate #; by maximum likelihood in model 1. Let V; be #n times any of the
estimators of the asymptotic covariance matrix of this estimator that were discussed
in Section 14.4.6.

2. Estimate 6, by maximum likelihood in model 2, with 91 inserted in place of #; as
if it were known. Let V, be n times any appropriate estimator of the asymptotic
covariance matrix of 5.

The argument for consistency of 8, is essentially that if §; were known, then all our results
for MLEs would apply for estimation of 6,, and because plim §; = 6;, asymptotically,
this line of reasoning is correct. (See point 3 Theorem D.16.) But the same line of
reasoning is not sufficient to justify using (1/n)V, as the estimator of the asymptotic
covariance matrix of 6,. Some correction is necessary to account for an estimate of 6
being used in estimation of #,. The essential result is the following.

THEOREM 14.8 Asymptotic Distribution of the Two-Step MLE
[Murphy and Topel (2002)]

Ifthe standard regularity conditions are met for both log-likelihood functions, then

the second-step maximum likelihood estimator of @, is consistent and asymptoti-

cally normally distributed with asymptotic covariance matrix

A % [V2 + V,[CV,C’ — RV,C’ — CV,R']V,],
where

Vi = Asy. Var[/n(f; — 6,)] based on In L,

V, = Asy. Var[/n(f, — 0,)] based onIn L, | 6,

=3 (*5) ()] we el () (5]
n 802 801 n 802 801

The correction of the asymptotic covariance matrix at the second step requires
some additional computation. Matrices V1 and V, are estimated by the respective
uncorrected covariance matrices. Typically, the BHHH estimators,

1
L () (58
3 96, 06,

HUThere is a third possible motivation. If either model is misspecified, then the FIML estimates of both
models will be inconsistent. Butif only the second is misspecified, at least the first will be estimated consistently.
Of course, this result is only “half a loaf,” but it may be better than none.
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THEOREM 14.8 (Continued)

v li(alnﬁg)({ilnﬁz) -
T n =\ 06, 00}

are used. The matrices R and C are obtained by summing the individual obser-
vations on the cross products of the derivatives. These are estimated with

155 (5
n < 00, 30'1

i=1

lz <8lnf,2>(81nf,1>
n 30, a0, )’

and

and

z>

A derivation of this useful result is instructive. We will rely on (14-11) and the
results of Section 14.4.5.b where the asymptotic normality of the maximum likelihood
estimator is developed. The first step MLE of 6, is defined by

19In Li(6y) _ li dIn fi(yirlxi1, 01)
n 91 n 391

i=1

1< A .
= > g =g =0.
i=1
Using the results in that section, we obtained the asymptotic distribution from (14-15),
~ d -1 ~
NZORIDECES O I YOO
where the expression means that the limiting distribution of the two random vectors is
the same, and
b 1 3%In L1 (61)
1 n 301 80/1
The second step MLE of 6 is defined by
19InLy(01,6,) 1 Zn: d1n fr(yi2lxi1. Xi2. 01, 6)
n 392 n 392

i=1
1S .
= Zgiz(al, 02) = 2:(01,0,) = 0.
i=1

Expand the derivative vector, gz(él, 6,), in a linear Taylor series as usual, and use the
results in Section 16.4.5.b once again;

8,(01,02) = 8,(01,02) + [Hé?(ol, 02)} (2

+ [Hézl) (01, 92)} (91 —61) +o(1/n) =0.
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where

132111[/2(01,92)

19%1In L,(84, 65)
HS) (61,0, = E —
21( 1, 2) |:I’l 30230/1

dH (01,0, = E
:| an 2 (01, 02) n 390,007,
To obtain the asymptotic distribution, we use the same device as before,
A d @ S
Vs~ 02) <5 |HE 01,62)] Vg 61.6)
@ g 5
+ |—H}; (01, 02) H;, (01,02)| Vn(@, — 61).

For convenience, denote HS; = HS (81, 6,), Hgi) = Hgi) (01,62) and H;ll) = H;ll) 01).
Now substitute the first step estimator of 6, in this expression to obtain

P d -1
iy~ 02) > [-HE| Vg 81,62)
-1 -1
+ [-Hg] [HY] [-hY] vz e,
Consistency and asymptotic normality of the two estimators follow from our earlier
results. To obtain the asymptotic covariance matrix for #, we will obtain the limiting

variance of the random vector in the preceding expression. The joint normal distribution
of the two first derivative vectors has zero means and

Jng; (01) } . [Zu )312}
var L/ﬁ& 02,00 | Zau X’

Then, the asymptotic covariance matrix we seek is
5 @] @]
Var [, — 07)] = {—sz} o [—sz}
217! [y n]!t ] [y@]’ 277!
+ -] (][] s o] [ [ong)
-1 -1 / -1
+ 1]z |- ] [-ng)
-1 -1 -1
+ [-HQ] [21?) [-n)] ze [-HE]
As we found earlier, the variance of the first derivative vector of the log likelihood is

the negative of the expected second derivative matrix [see (14-11)]. Therefore X, =
[—Hézz)] and Xq; = [—Hgll)]. Making the substitution we obtain

Var [V 0] = [-B@] " + [-8@] " [Bg] [-n] " 8] [-ng]

1 -1 / -1
o] o] ]

-1 -1 -1
+[-Hg] B[] e [ag]

+ |-Hg]



Greene-2140242 book November 23, 2010 23:3

540 PART Il 4 Estimation Methodology

From (14-15), [-H{}]~" and [-H{} ]! are the V; and V; that appear in Theorem 14.8,
which further reduces the expression to

Var [/n(8: - 6)]
= Vo + V3 [H| Vi [BR] Vo - voxa Vi [HE] V, = Vs [HY] ViZ,oVs.

Two remaining terms are Hézl) which is the E[3%In L,(01, 6,)/36,861?], which is being
estimated by —C in the statement of the theorem [note (14-11) again for the change of
sign] and X,; which is the covariance of the two first derivative vectors. This is being
estimated by R in Theorem 14.8. Making these last two substitutions produces

Var [n(@; — 0,)] = V2 4+ V,CV1C'V, — VRV C'V, — V,CVIR'V,,
which completes the derivation.

Example 14.5 Two-Step ML Estimation
A common application of the two-step method is accounting for the variation in a con-
structed regressor in a second step model. In this instance, the constructed variable is often
an estimate of an expected value of a variable that is likely to be endogenous in the sec-
ond step model. In this example, we will construct a rudimentary model that illustrates the
computations.

In Riphahn, Wambach and Million (RWM, 2003), the authors studied whether individuals’
use of the German health care system was at least partly explained by whether or not they
had purchased a particular type of supplementary health insurance. We have used their data
set, German Socioeconomic Panel (GSOEP) at several points. (See, e.g., Example 7.6.) One
of the variables of interest in the study is DocVis, the number of times the an individual
visits the doctor during the survey year. RWM considered the possibility that the presence of
supplementary (Addon) insurance had an influence on the number of visits. Our simple model
is as follows: The model for the number of visits is a Poisson regression (see Section 19.2).
This is a loglinear model that we will specify as

EDocVis|Xz, Pagaon] = i(X38, 7, X,) = explxsB + ¥ A(X;t)].

The model contains not the dummy variable 1 if the individual has Addon insurance and 0
otherwise, which is likely to be endogenous in this equation, but an estimate of E[Addon|x]
from a logistic probability model (see Section 17.3) for whether the individual has insurance,

exp(x;a)

A(Xq) = DY
(x2) 1 + exp(x, )

= Prob[Individual has purchased Addon insurance | x4].

For purposes of the exercise, we will specify
(y1 = Addon)xy = (constant, Age, Education, Married, Kids),
(y» = DocVis)x, = (constant, Age, Education, Income, Female).

As before, to sidestep issues related to the panel data nature of the data set, we will use the
4483 observations in the 1988 wave of the data set, and drop the two observations for which
Income is zero.

The log likelihood for the logistic probability model is

INLqi(a) = Z;{(1 — yi1) In[1 — A(X} ;)] + yi1 IN A(X,00) }.
The derivatives of this log-likelihood are

gi1(e) = dIn fi(yi11xi1, @) /dee = [yi1 — A(Xjq00) ]x;1.



Greene-2140242 book November 23, 2010 23:3

CHAPTER 14 ¢ Maximum Likelihood Estimation 541

We will maximize this log likelihood with respect to « and then compute V4 using the BHHH
estimator, as in Theorem 14.8. We will also use g;4(e) in computing R.
The log-likelihood for the Poisson regression model is

INLy =X [—u(Xi2B, ¥, Xi1et) + Yio In u(Xi2B, ¥, Xi10t) — Iny/,].
The derivatives of this log likelihood are
9,‘?(& v, a) =3I oYz, X1, Xi2, B, ¥, ) /3(B', ¥) = [Vie — n(Xi2B, ¥, Xi1a) ][X;5, A(Xi;a)]
97 (B, v, @) = 0In F2(Yi2, Xi1, Xi2, B, ¥, @) /0t = [y — w(Xi2B, ¥, Xi1e) [y A(X 1) [1 — A(X 1) 11

We will use gfg) for computing V, and in computing R and C and gﬁ) in computing C. In
particular,

(1/N)Zig;1(@) g1 () T,
(1/n)zig3 (B, 7. )82 (B, 7, @)1,
(1/n) s

(

[
[ )

[(1/n)Zi92 (B, ¥, )9 (B, v, )],
=[(1/n)Z:9}3 (B, 7. @) gi1(a) ].

Table 14.2 presents the two-step maximum likelihood estimates of the model parameters
and estimated standard errors. For the first-step logistic model, the standard errors marked
H, vs. V; compares the values computed using the negative inverse of the second derivatives
matrix (H4) vs. the outer products of the first derivatives (V). As expected with a sample this
large, the difference is minor. The latter were used in computing the corrected covariance
matrix at the second step. In the Poisson model, the comparison of V, to V;; shows distinctly
that accounting for the presence of & in the constructed regressor has a substantial impact on
the standard errors, even in this relatively large sample. Note that the effect of the correction
is to double the standard errors on the coefficients for the variables that the equations have
in common, but it is quite minor for Income and Female, which are unique to the second step
model.

Vi
Vz
C
R

The covariance of the two gradients, R, may converge to zero in a particular appli-
cation. When the first- and second-step estimates are based on different samples, R is
exactly zero. For example, in our earlier application, R is based on two residuals,

gi1 = {AddOl’li — E[AddOl’li|Xi1]} and gg) = {DOCViSi — E[DOCViS”X,‘z, Ail]}~

The two residuals may well be uncorrelated. This assumption would be checked on a
model-by-model basis, but in such an instance, the third and fourth terms in V; vanish

TABLE 14.2 Estimated Logistic and Poisson Models

Logistic Model for Addon Poisson Model for DocVis
Standard Standard Standard Standard
Coefficient  Error (Hy) Error (V) Coefficient  Error (V3) Error (V)
Constant —6.19246 0.60228 0.58287 0.77808 0.04884 0.09319
Age 0.01486 0.00912 0.00924 0.01752 0.00044 0.00111
Education 0.16091 0.03003 0.03326 —0.03858 0.00462 0.00980
Married 0.22206 0.23584 0.23523
Kids —0.10822 0.21591 0.21993
Income —0.80298 0.02339 0.02719
Female 0.16409 0.00601 0.00770

A(Xjo) 3.91140 0.77283 1.87014
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asymptotically and what remains is the simpler alternative,
V;* =(1/n) [V2 + V,CV; C'Vz].

(In our application, the sample correlation between g;; and gl%) is only 0.015658 and the
elements of the estimate of R are only about 0.01 times the corresponding elements of
C—essentially about 99 percent of the correction in V,** is accounted for by C.)

It has been suggested that this set of procedures might be more complicated than
necessary. [E.g., Cameron and Trivedi (2005, p. 202).] There are two alternative ap-
proaches one might take. First, under general circumstances, the asymptotic covariance
matrix of the second-step estimator could be approximated using the bootstrapping
procedure discussed in Section 15.6. We would note, however, if this approach is taken,
then it is essential that both steps be “bootstrapped.” Otherwise, taking 6, as given and
fixed, we will end up estimating (1/n)V,, not the appropriate covariance matrix. The
point of the exercise is to account for the variation in @,. The second possibility is to
fit the full model at once. That is, use a one-step, full information maximum likelihood
estimator and estimate #; and 8, simultaneously. Of course, this is usually the procedure
we sought to avoid in the first place. And with modern software, this two-step method is
often quite straightforward. Nonetheless, this is occasionally a possibility. Once again,
Heckman’s (1979) famous sample selection model provides an illuminating case. The
two-step and full information estimators for Heckman’s model are developed in Sec-
tion 18.5.3.

14.8 PSEUDO-MAXIMUM LIKELIHOOD

ESTIMATION AND ROBUST ASYMPTOTIC
COVARIANCE MATRICES

Maximum likelihood estimation requires complete specification of the distribution of
the observed random variable. If the correct distribution is something other than what
we assume, then the likelihood function is misspecified and the desirable properties
of the MLE might not hold. This section considers a set of results on an estimation
approach that is robust to some kinds of model misspecification. For example, we have
found that in a model, if the conditional mean function is E[y|x] = x'8, then certain
estimators, such as least squares, are “robust” to specifying the wrong distribution of
the disturbances. That is, LS is MLE if the disturbances are normally distributed, but
we can still claim some desirable properties for LS, including consistency, even if the
disturbances are not normally distributed. This section will discuss some results that
relate to what happens if we maximize the “wrong” log-likelihood function, and for those
cases in which the estimator is consistent despite this, how to compute an appropriate
asymptotic covariance matrix for it.'?

2The following will sketch a set of results related to this estimation problem. The important references on this
subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); and Amemiya (1985).
A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations
in these works are complex, and we will only attempt to provide an intuitive introduction to the topic.
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14.8.1 MAXIMUM LIKELIHOOD AND GMM ESTIMATION

Let f(y: | x;, B) be the true probability density for a random variable y; given a set of co-
variates x; and parameter vector . The log-likelihood functionis (1/n)In L(B |y, X) =
1/n) Zf:] In f(y;|x;, 8). The MLE, ﬁML, is the sample statistic that maximizes this
function. (The division of In L by n does not affect the solution.) We maximize the
log-likelihood function by equating its derivatives to zero, so the MLE is obtained by
solving the set of empirical moment equations

Lo foilne ) _ LSy 50 = ag = o.
i=1

i3 B o -

The population counterpart to the sample moment equation is
19lnL 1

E { ] =E|-> d(p)
i=1

n o
Using what we know about GMM estimators, if E [(i(ﬁ)] = 0, then BML is consistent
and asymptotically normally distributed, with asymptotic covariance matrix equal to

Vme = [G(B)G(B)] ' G(B) { Var[d(B)]} G(B)[G(B)G(B)] ",

where G(B) =plim dd(B)/98’. Because d(B) is the derivative vector, G(B) is 1/n times
the expected Hessian of In L; that is, (1/n)E[H(B)]=H(B). As we saw earlier,
Var[dIn L/9B]=—E[H(B)]. Collecting all seven appearances of (1/n)E[H(B)],
we obtain the familiar result Vyp = {—E [H(ﬁ)]}_l. [All the n’s cancel and
Var[d] =(1/n)H(B).] Note that this result depends crucially on the result Var[d In L/d ] =
—E[H(B)].

= E[d(8)] = 0.

14.8.2 MAXIMUM LIKELIHOOD AND M ESTIMATION

The maximum likelihood estimator is obtained by maximizing the function &, (y, X, ) =
(1/n) 3" In f(y:, x;, B). This function converges to its expectation as n — oo. Be-
cause this function is the log-likelihood for the sample, it is also the case (not proven
here) that as n — oo, it attains its unique maximum at the true parameter vector,
B. (We used this result in proving the consistency of the maximum likelihood estima-
tor.) Since plim 7, (y, X, B) = E[h,(y, X, B)], it follows (by interchanging differentia-
tion and the expectation operation) that plim a4, (y, X, B)/08 = E [0h,(y, X, B)/3B].
But, if this function achieves its maximum at f, then it must be the case that plim
ok, (y. X. /38 = 0.

An estimator that is obtained by maximizing a criterion function is called an M
estimator [Huber (1967)] or an extremum estimator [Amemiya (1985)]. Suppose that
we obtain an estimator by maximizing some other function, M, (y, X, B) that, although
not the log-likelihood function, also attains its unique maximum at the true g as n — co.
Then the preceding argument might produce a consistent estimator with a known asymp-
totic distribution. For example, the log-likelihood for a linear regression model with
normally distributed disturbances with different variances, o%w;, is

n

— _«'B)2
ha(y, X, B) = %Z {—1 [m (270w;) + w} }

‘ 2 o2w;
i=1
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By maximizing this function, we obtain the maximum likelihood estimator. But we
also examined another estimator, simple least squares, which maximizes M, (y, X, ) =
—(1/n) 3" (i — x!B). As we showed earlier, least squares is consistent and asymp-
totically normally distributed even with this extension, so it qualifies as an M estimator
of the sort we are considering here.

Now consider the general case. Suppose that we estimate 8 by maximizing a criterion
function

1 n
M(y1X, ) =~ Ing(y|%i, ).
i=1

Suppose as well that plimM,(y,X, 8)=E[M,(y|X, )] and that as n— oo,
E[M,(y X, B)] attains its unique maximum at . Then, by the argument we used ear-
lier for the MLE, plim dM,(y| X, B)/98 = E[0M,(y|X, B)/3B] = 0. Once again, we
have a set of moment equations for estimation. Let § ; be the estimator that maximizes
M, (y | X, B). Then the estimator is defined by

OM(y|X. Bp) _ 12": dlng(yi|xi. Br)

IBE n= BE
Thus, B is a GMM estimator. Using the notation of our earlier discussion, GgB E) 1S
the symmetric Hessian of E[M,(y, X, B)], which we will denote (1/n)E[Hy(Br)] =

HM(,B £). Proceeding as we did above to obtain Vyr, we find that the appropriate
asymptotic covariance matrix for the extremum estimator would be

Vi =[] (@ ) e

where ® = Var[dlogg(y; | x;, B)/dB], and, as before, the asymptotic distribution is
normal.
The Hessian in Vg can easily be estimated by using its empirical counterpart,
_ 1 {~ 9’ Ing(yi|%i. Br)
Est[Ay(Bp]=- Y L8N X Fe),
n<3 B EIPE

But, ® remains to be specified, and itis unlikely that we would know what function to use.
The important difference is that in this case, the variance of the first derivatives vector
need not equal the Hessian, so Vg does not simplify. We can, however, consistently
estimate ® by using the sample variance of the first derivatives,

po Ly [alng(yijxi,ﬂ)] [alng@gxi,ﬂ)} .
n 0B 0B

i=1
If this were the maximum likelihood estimator, then & would be the OPG estimator
that we have used at several points. For example, for the least squares estimator in the
heteroscedastic linear regression model, the criterion is M, (y, X, ) =—(1/n) > (yi—
x/B)?, the solution is b, G(b) = (—2/n)X'X, and

=m(Bg) = 0.

P 1 - 4 ’ ’ 4 . ’
&=~ 2x0i —xBI2x i — XA =~ > ePxix.
=1 i=1
Collecting terms, the 4s cancel and we are left precisely with the White estimator of
(9-27)!
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14.8.3 SANDWICH ESTIMATORS

At this point, we consider the motivation for all this weighty theory. One disadvantage
of maximum likelihood estimation is its requirement that the density of the observed
random variable(s) be fully specified. The preceding discussion suggests that in some
situations, we can make somewhat fewer assumptions about the distribution than a
full specification would require. The extremum estimator is robust to some kinds of
specification errors. One useful result to emerge from this derivation is an estimator for
the asymptotic covariance matrix of the extremum estimator that is robust at least to
some misspecification. In particular, if we obtain 8 z by maximizing a criterion function
that satisfies the other assumptions, then the appropriate estimator of the asymptotic
covariance matrix is

1 _ . ~n A _ A
Est. Ve = [HBo] ' ®BHB] "

If /§ g 1is the true MLE, then Vg simplifies to {— [H(ﬁ E)]}_]. In the current literature,
this estimator has been called the sandwich estimator. There is a trend in the current
literature to compute this estimator routinely, regardless of the likelihood function. It
is worth noting that if the log-likelihood is not specified correctly, then the parameter
estimators are likely to be inconsistent, save for the cases such as those noted later, so
robust estimation of the asymptotic covariance matrix may be misdirected effort. But
if the likelihood function is correct, then the sandwich estimator is unnecessary. This
method is not a general patch for misspecified models. Not every likelihood function
qualifies as a consistent extremum estimator for the parameters of interest in the model.

One might wonder at this point how likely it is that the conditions needed for all
this to work will be met. There are applications in the literature in which this machin-
ery has been used that probably do not meet these conditions, such as the tobit model
of Chapter 18. We have seen one important case. Least squares in the generalized
regression model passes the test. Another important application is models of “individ-
ual heterogeneity” in cross-section data. Evidence suggests that simple models often
overlook unobserved sources of variation across individuals in cross sections, such as
unmeasurable “family effects” in studies of earnings or employment. Suppose that the
correct model for a variableis 4(y; | x;, v;, B, 0), where v; is arandom term that is not ob-
served and 6 is a parameter of the distribution of v. The correct log-likelihood function
is X;In f(yi |x;, B,0)=2;In [, h(y; | x;, vi, B, 0) f(v;) dv;. Suppose that we maximize
some other pseudo-log-likelihood function, X; In g(y; | x;, §) and then use the sandwich
estimator to estimate the asymptotic covariance matrix of B. Does this produce a con-
sistent estimator of the true parameter vector? Surprisingly, sometimes it does, even
though it has ignored the nuisance parameter, . We saw one case, using OLS in the GR
model with heteroscedastic disturbances. Inappropriately fitting a Poisson model when
the negative binomial model is correct—see Chapter 19—is another case. For some
specifications, using the wrong likelihood function in the probit model with proportions
datais a third. [These examples are suggested, with several others, by Gourieroux, Mon-
fort, and Trognon (1984).] We do emphasize once again that the sandwich estimator,
in and of itself, is not necessarily of any virtue if the likelihood function is misspecified
and the other conditions for the M estimator are not met.
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14.8.4 CLUSTER ESTIMATORS

Micro-level, or individual, data are often grouped or “clustered.” A model of production
or economic success at the firm level might be based on a group of industries, with
multiple firms in each industry. Analyses of student educational attainment might be
based on samples of entire classes, or schools, or statewide averages of schools within
school districts. And, of course, such “clustering” is the defining feature of a panel data
set. We considered several of these types of applications in our analysis of panel data
in Chapter 11. The recent literature contains many studies of clustered data in which
the analyst has estimated a pooled model but sought to accommodate the expected
correlation across observations with a correction to the asymptotic covariance matrix.
We used this approach in computing a robust covariance matrix for the pooled least
squares estimator in a panel data model [see (11-3) and Example 11.1 in Section 11.3.2].

For the normal linear regression model, the log-likelihood that we maximize with
the pooled least squares estimator is

n T
l 1 1 2 1 (yir — X;tﬂ)z

i=1 1=1
[See (14-34).] The “cluster-robust” estimator in (11-3) can be written

W= (izn;xgx,->_l [zn:(x’e, (eX)] (ZX’ >_]

i=1

1 & e (o -
’
_(’)\'72 § Xir Xy § § lelezt eztx ,\2 E E Xltxlt
i=1 t=1 i=1 t=1 t= l i=1 t=1

81nflt " (I 9 f, a1n fi n lnf,t
Eros) B )(2 o) (S5

where f;, is the normal density with mean x,8 and variance o2. This is precisely the
“cluster-corrected” robust covariance matrix that appears elsewhere in the literature
[minus an ad hoc “finite population correction” as in (11-4)].

In the generalized linear regression model (as in others), the OLS estimator is
consistent, and will have asymptotic covariance matrix equal to

Asy. Var[b] = (X'X)'[X'(022)X](X'X) .

(See Theorem 9.1.) The center matrix in the sandwich for the panel data case can be
written

n
X' (029) X = ngzxi,
i=1
which motivates the preceding robust estimator. Whereas when we first encountered
it, we motivated the cluster estimator with an appeal to the same logic that leads to the
White estimator for heteroscedasticity, we now have an additional result that appears
to justify the estimator in terms of the likelihood function.
Consider the specification error that the estimator is intended to accommodate.
Suppose that the observations in group i were multivariate normally distributed with
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disturbance mean vector 0 and unrestricted 7; x T; covariance matrix, X;. Then, the
appropriate log-likelihood function would be

n
InL=> " (-T/2In27 — }In|Zi| - &% ;).

where ¢; is the T; x 1 vector of disturbances for individual i. Therefore, we have maxi-
mized the wrong likelihood function. Indeed, the B that maximizes this log likelihood
function is the GLS estimator, not the OLS estimator. OLS, and the cluster corrected
estimator given earlier, “work” in the sense that (1) the least squares estimator is consis-
tent in spite of the misspecification and (2) the robust estimator does, indeed, estimate
the appropriate asymptotic covariance matrix.

Now, consider the more general case. Suppose the data set consists of » multivariate
observations, [yi1,...,¥i.7],i = 1,...,n. Each cluster is a draw from joint density
fi(yi 1 X, 0). Once again, to preserve the generality of the result, we will allow the
cluster sizes to differ. The appropriate log likelihood for the sample is

InL=> In fi(y:|X:. 0).

i=1

Instead of maximizing In L, we maximize a pseudo-log-likelihood

n T
InLp=> "> Ing(yilxi.0).

i=1 t=1

where we make the possibly unreasonable assumption that the same parameter vec-
tor, # enters the pseudo-log-likelihood as enters the correct one. Assume that it does.
Using our familiar first-order asymptotics, the pseudo-maximum likelihood estimator
(MLE) will satisfy

1 n T
) - Pinfi) [ L eI} L,
Opmr —0) ~ (Zz 1TZ; 00006’ ) <Z?=1T'ZZ 96 >+(0 7

L=l =1

-1 n
( ZZHH> (Zwigi) +©0-8),
T i=1 r=1 i=1

where w; = T/> " T, and g = (1/T)) ZIT":l d1n f;,/060. The trailing term in the ex-
pression is included to allow for the possibility that plim @p,; = B, which may not
equal 0. [Note, for example, Cameron and Trivedi (2005, p. 842) specifically assume
consistency in the generic model they describe.] Taking the expected outer product
of this expression to estimate the asymptotic mean squared deviation will produce two
terms — the cross term vanishes. The first will be the cluster-corrected matrix that is ubig-
uitous in the current literature. The second will be the squared error that may persist as
n increases because the pseudo-MLE need not estimate the parameters of the model
of interest.

We draw two conclusions. We can justify the cluster estimator based on this approx-
imation. In general, it will estimate the expected squared variation of the pseudo-MLE
around its probability limit. Whether it measures the variation around the appropriate
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parameters of the model hangs on whether the second term equals zero. In words, per-
haps not surprisingly, this apparatus only works if the estimator is consistent. Is that
likely? Certainly not if the pooled model is ignoring unobservable fixed effects. More-
over, it will be inconsistent in most cases in which the misspecification is to ignore latent
random effects as well. The pseudo-MLE is only consistent for random effects in a
few special cases, such as the linear model and Poisson and negative binomial models
discussed in Chapter 19. It is not consistent in the probit and logit models in which this
approach often used. In the end, the cases in which the estimator are consistent are
rarely, if ever, enumerated. The upshot is stated succinctly by Freedman (2006, p. 302):
“The sandwich algorithm, under stringent regularity conditions, yields variances for
the MLE that are asymptotically correct even when the specification—and hence the
likelihood function—are incorrect. However, it is quite another thing to ignore bias. It
remains unclear why applied workers should care about the variance of an estimator
for the wrong parameter.”

14.9 APPLICATIONS OF MAXIMUM

LIKELIHOOD ESTIMATION

We will now examine several applications of the maximum likelihood estimator (MLE).
We begin by developing the ML counterparts to most of the estimators for the classical
and generalized regression models in Chapters 4 through 11. (Generally, the develop-
ment for dynamic models becomes more involved than we are able to pursue here. The
one exception we will consider is the standard model of autocorrelation.) We empha-
size, in each of these cases, that we have already developed an efficient, generalized
method of moments estimator that has the same asymptotic properties as the MLE
under the assumption of normality. In more general cases, we will sometimes find that
the GMM estimator is actually preferred to the MLE because of its robustness to fail-
ures of the distributional assumptions or its freedom from the necessity to make those
assumptions in the first place. However, for the extensions of the classical model based
on generalized least sqaures that are treated here, that is not the case. It might be argued
that in these cases, the MLE is superfluous. There are occasions when the MLE will be
preferred for other reasons, such as its invariance to transformation in nonlinear models
and, possibly, its small sample behavior (although that is usually not the case). And, we
will examine some nonlinear models in which there is no linear, method of moments
counterpart, so the MLE is the natural estimator. Finally, in each case, we will find some
useful aspect of the estimator, itself, including the development of algorithms such as
Newton’s method and the EM method for latent class models.

14.9.1 THE NORMAL LINEAR REGRESSION MODEL
The linear regression model is
yi =X +ei

The likelihood function for a sample of n independent, identically and normally dis-
tributed disturbances is

L= Quo?)y "2 e/ (14-32)
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The transformation from ¢; to y; is &; = y; — X} 8, so the Jacobian for each observation,
|de;/dy;|, is one.!> Making the transformation, we find that the likelihood function for
the n observations on the observed random variables is

L= (27.[62)—n/2e(—1/(202))<y—xﬂ)’(y—xﬂ) ) (14-33)

To maximize this function with respect to 8, it will be necessary to maximize the expo-
nent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood
function for the classical regression model:

-XB)y—-X
InL=—2In2r — ZIng? - 4 ’32)0(2’/ b (14-34)
The necessary conditions for maximizing this log-likelihood are
dln L X'(y — XB)
2 0
B | _ o = [ } . (14-35)
dnL| | -n  -XB'G-XB| L0
902 202 204
The values that satisfy these equations are
A= (X'X)"'X'y=b and 63 = . (14-36)
n

The slope estimator is the familiar one, whereas the variance estimator differs from the
least squares value by the divisor of n instead of n — K.!4

The Cramér—Rao bound for the variance of an unbiased estimator is the negative
inverse of the expectation of

?InL d’InL X'X X'e
aBap’  9Bdc? ) ot
L I - (14-37)
?InL 9’InL X n ee
3023}9' 8((72)2 o4 204 o
In taking expected values, the off-diagonal term vanishes, leaving
o2(X'X)! 0
I8, 09)] " = 14-38
[X(B, 07)] [ Y 204/ ( )

The least squares slope estimator is the maximum likelihood estimator for this model.
Therefore, it inherits all the desirable asymptotic properties of maximum likelihood
estimators.

We showed earlier that s> = e’e/(n — K) is an unbiased estimator of o2. Therefore,
the maximum likelihood estimator is biased toward zero:

K K
E[63,] =" o’ = <1 - n)02 <ol (14-39)

13gee (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we
will leave this aspect of the model implicit in the results. As noted earlier, we assume that the data generating
process for X does not involve 8 or o and that the data are well behaved as discussed in Chapter 4.

14 As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.
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Despite its small-sample bias, the maximum likelihood estimator of o has the same
desirable asymptotic properties. We see in (14-39) that s> and 62 differ only by a factor
—K/n, which vanishes in large samples. It is instructive to formalize the asymptotic
equivalence of the two. From (14-38), we know that

V(62 —o?) -5 N[0, 20%].

It follows that

Zn = (1 - %)\/ﬁ(ﬂfdL —o%) + %02 LN (1 — §>N[O, 201 + %02.

But K//n and K/n vanish as n — 00, so the limiting distribution of z,, is also N[0, 254].
Because z, = +/n(s> — o), we have shown that the asymptotic distribution of s is the
same as that of the maximum likelihood estimator.

The standard test statistic for assessing the validity of a set of linear restrictions in
the linear model, RB — q = 0, is the F ratio,
(ele. —e'e)/]  (Rb—¢)[Rs*X'X)"'R']"'(Rb — q)

ee/(n—K) J '

With normally distributed disturbances, the F test is valid in any sample size. There re-
mains a problem with nonlinear restrictions of the form ¢(8) = 0, since the counterpart
to F, which we will examine here, has validity only asymptotically even with normally
distributed disturbances. In this section, we will reconsider the Wald statistic and ex-
amine two related statistics, the likelihood ratio statistic and the Lagrange multiplier
statistic. These statistics are both based on the likelihood function and, like the Wald
statistic, are generally valid only asymptotically.

No simplicity is gained by restricting ourselves to linear restrictions at this point, so
we will consider general hypotheses of the form

Hy:e(B) =0,
Hi:e(B) #0.

The Wald statistic for testing this hypothesis and its limiting distribution under Hy would
be

FlJ.n— K] =

W = c(b) (C(b)[62(X'X) " |Ch)'} " e(b) > x2[J], (14-40)
where
C(b) = [dc(b)/ab’]. (14-41)

The likelihood ratio (LR) test is carried out by comparing the values of the log-likelihood
function with and without the restrictions imposed. We leave aside for the present how
the restricted estimator b, is computed (except for the linear model, which we saw
earlier). The test statistic and its limiting distribution under H; are

LR = —2[In L, — In L] -5 »2[J]. (14-42)

The log-likelihood for the regression model is given in (14-34). The first-order conditions
imply that regardless of how the slopes are computed, the estimator of o without
restrictions on B will be 62 = (y —Xb)'(y —Xb)/n and likewise for a restricted estimator
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6% = (y — Xb,)'(y — Xb,)/n = €_e,/n. The concentrated log-likelihood'® will be
InL, = —g[l +1n27 + In(e'e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we
obtain

LR = nln[ele./e’e] =n(Iné? —Iné?) = nln (67/67). (14-43)

The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood
function. The principle of the test is that if the hypothesis is valid, then at the restricted
estimator, the derivatives of the log-likelihood function should be close to zero. There
are two ways to carry out the LM test. The log-likelihood function can be maximized
subject to a set of restrictions by using

[(y —XB)'(y — XB)]/n

InLiy= " n2n +Ino? + +AXe(B).
2 o?
The first-order conditions for a solution are
d1n LLM
o Fim X'(y — XB) ,
o8 FOED L e ,
m# = |, O - XB)'y—Xp)| = |0] . (14-44)
180L 202 204 0
dlnlim ¢(B)
oA

The solutions to these equations give the restricted least squares estimator, b,; the usual
variance estimator, now e’.e,/n; and the Lagrange multipliers. There are now two ways
to compute the test statistic. In the setting of the classical linear regression model, when
we actually compute the Lagrange multipliers, a convenient way to proceed is to test
the hypothesis that the multipliers equal zero. For this model, the solution for A, is A, =
[R(X’X)'R’]"!(Rb—q). This equation is a linear function of the least squares estimator.
If we carry out a Wald test of the hypothesis that A, equals 0, then the statistic will be

LM = A/ {Est. Var[A,]} "1, = (Rb — q)'[Rs2(X’X) 'R’ (Rb — q). (14-45)

The disturbance variance estimator, s2, based on the restricted slopes is €/e,/n.

An alternative way to compute the LM statistic often produces interesting results.
In most situations, we maximize the log-likelihood function without actually computing
the vector of Lagrange multipliers. (The restrictions are usually imposed some other
way.) An alternative way to compute the statistic is based on the (general) result that
under the hypothesis being tested,

E[0InL/3B] = E[(1/cHX'e] =0

and!®

Asy. Var[dIn L/dB] = —E[9*In L/3B3f'] ! = o?(X’X)L. (14-46)

15See Section E4.3.
16This makes use of the fact that the Hessian is block diagonal.
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We can test the hypothesis that at the restricted estimator, the derivatives are equal to
zero. The statistic would be
e XX'X) ' X'e,

IM= 2" """ =nR. 14-47
ele./n nR, ( )

In this form, the LM statistic is n times the coefficient of determination in a regression
of the residuals e;,, = (y; — X'b,) on the full set of regressors.

With some manipulation we can show that W = [rn/(n — K)]JF and LR and LM
are approximately equal to this function of F.!7 All three statistics converge to JF asn
increases. The linear model is a special case in that the LR statistic is based only on the
unrestricted estimator and does not actually require computation of the restricted least
squares estimator, although computation of F does involve most of the computation of
b... Because the log function is concave, and W/n > In(1 + W/n), Godfrey (1988) also
shows that W > LR > LM, so for the linear model, we have a firm ranking of the three
statistics.

There is ample evidence that the asymptotic results for these statistics are problem-
atic in small or moderately sized samples. [See, e.g., Davidson and MacKinnon (2004,
pp- 424-428).] The true distributions of all three statistics involve the data and the un-
known parameters and, as suggested by the algebra, converge to the F distribution
from above. The implication is that critical values from the chi-squared distribution are
likely to be too small; that is, using the limiting chi-squared distribution in small or
moderately sized samples is likely to exaggerate the significance of empirical results.
Thus, in applications, the more conservative F statistic (or z for one restriction) is likely
to be preferable unless one’s data are plentiful.

14.9.2 THE GENERALIZED REGRESSION MODEL
For the generalized regression model of Section 8.1,

Yi =X:ﬂ+85,i=1,...,n,
Ele|X] =0,
E[ee’ | X] = o2,

as before, we first assume that € is a matrix of known constants. If the disturbances are
multivariate normally distributed, then the log-likelihood function for the sample is

_.n CMe?— L xeYe-lv - XB) — & .
In L= 21n(27'r) 2lno 202(y XB)'L (y — XB) 21n|SZ|. (14-48)

Because @ is a matrix of known constants, the maximum likelihood estimator of § is
the vector that minimizes the generalized sum of squares,

S.(B) = (y—XB)e ' (y—XB)

7See Godfrey (1988, pp. 49-51).
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(hence the name generalized least squares). The necessary conditions for maximizing L

are
dlnL 1 1
=X 'y=-XB) = =X"(y, — X.8) =0,
0B o ¥ —Xp) = X,y B) =0
dln L n 1
- 4 (y-XpQ'y-X 14-49
557 557 T 553 B (y—XB) ( )
n

1 , _

The solutions are the OLS estimators using the transformed data:

BuL = X X)Xy, = XXXy, (14-50)

Q

£

&
Il

1 ~ A
53 (¥ - X.B) (v« — X.B)
(14-51)

1 ~ A
== Xy (y — XB),

which implies that with normally distributed disturbances, generalized least squares is
also maximum likelihood. As in the classical regression model, the maximum likelihood
estimator of o2 is biased. An unbiased estimator is the one in (9-14). The conclusion,
which would be expected, is that when € is known, the maximum likelihood estimator
is generalized least squares.

When @ is unknown and must be estimated, then it is necessary to maximize the log-
likelihood in (14-48) with respect to the full set of parameters [, o2, ®]simultaneously.
Because an unrestricted 2 alone contains n(n+1)/2 — 1 parameters, it is clear that some
restriction will have to be placed on the structure of  for estimation to proceed. We will
examine several applications in which € = () for some smaller vector of parameters
in the next several sections. We note only a few general results at this point.

1. For a given value of 6 the estimator of § would be feasible GLS and the estimator
of o2 would be the estimator in (14-51).

2. The likelihood equations for # will generally be complicated functions of g and o2,
so joint estimation will be necessary. However, in many cases, for given values of g
and o2, the estimator of @ is straightforward. For example, in the model of (9-15),
the iterated estimator of & when B and o2 and a prior value of 6 are given is the
prior value plus the slope in the regression of (e?/6? — 1) on z.

The second step suggests a sort of back and forth iteration for this model that will work
in many situations—starting with, say, OLS, iterating back and forth between 1 and 2
until convergence will produce the joint maximum likelihood estimator. This situation
was examined by Oberhofer and Kmenta (1974), who showed that under some fairly
weak requirements, most importantly that @ not involve o? or any of the parametersin 8,
this procedure would produce the maximum likelihood estimator. Another implication
of this formulation which is simple to show (we leave it as an exercise) is that under the
Oberhofer and Kmenta assumption, the asymptotic covariance matrix of the estimator
is the same as the GLS estimator. This is the same whether £ is known or estimated,
which means that if # and § have no parameters in common, then exact knowledge of
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Q brings no gain in asymptotic efficiency in the estimation of B over estimation of B with
a consistent estimator of Q2.

We will now examine the two primary, single-equation applications: heteroscedas-
ticity and autocorrelation.

14.9.2.a Multiplicative Heteroscedasticity

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

of = o’ exp(Z.a). (14-52)

A model with heteroscedasticity of the form
M
of =o” [ (14-53)

results if the logs of the variables are placed in z;. The groupwise heteroscedasticity
model described in Section 9.8.2is produced by making z; a set of group dummy variables
(one must be omitted). In this case, o2 is the disturbance variance for the base group
whereas for the other groups, oy = o exp(ay).

We begin with a useful simplification. Let z; include a constant term so that z; =
[1, q/], where q; is the original set of variables, and let y’ = [Ino?, &’]. Then, the model
is simply o = exp(z,y). Once the full parameter vector is estimated, exp(y;) provides
the estimator of o2. (This estimator uses the invariance result for maximum likelihood
estimation. See Section 14.4.5.d.)

The log-likelihood is

1 &?
InL= —fln(27r) - fZlna 5;(’?
1 &2 (14-54)
:—fln(2n)— y — -y — .
Z v ; exp(z}y)
The likelihood equations are
dlnL < i
n = in 78 ; = X’Sl*le = 0,
08 = exp(zy)
" (14-55)

E)lnL__Z < 1>:0'
— eXp(z y)

For this model, the method of scoring turns out to be a particularly convenient way to
maximize the log-likelihood function. The terms in the Hessian are

3%In L - 1
— = —xx, = -X'Q'X, (14-56)
9B 0B ; exp(z}y)
3InL . ;

) (14-57)
9B dy — exp(z;y)

3’InL 1 Zn: e? ,

e D 14-58
dy oy 2% exply) 1439
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The expected value of 3>In L/dBdy’ is 0 because E [;]x;, z;] = 0. The expected value
of the fraction in 8°In L/dydy’ is E[e}/o?|x;, z;] = 1. Let § = [B, y]. Then

9%In L
(¥l _
98 96
The method of scoring is an algorithm for finding an iterative solution to the likelihood
equations. The iteration is

X 'X 0
o 'z

- - (14-59)

8t+1 =& — I:Iilgz,

where §; (i.e., B,, y,, and €,) is the estimate at iteration ¢, g, is the two-part vector of first
derivatives [91n L/dB],d1n L/3y!]’, and H is partitioned likewise. [Newton’s method
uses the actual second derivatives in (14-56)—(14-58) rather than their expectations in
(14-59). The scoring method exploits the convenience of the zero expectation of the off-
diagonal block (cross derivative) in (14-57).] Because H is block diagonal, the iteration
can be written as separate equations:

Biyi=8B+ (X,QTIX) - (X'ﬂ;lst)
= B, + (X'2;'X)"'X'Q ' (y - XB,) (14-60)
= (X'flle)_]X’SZ[_ly (of course).

Therefore, the updated coefficient vector 8, iscomputed by FGLS using the previously
computed estimate of y to compute 2. We use the same approach for y:

12}1: : <82 . 1) (14-61)
2 2" exp(ly) '

i=1

Y=y, + @7

The 2 and % cancel. The updated value of y is computed by adding the vector of coeffi-
cients in the least squares regression of [¢?/ exp(z.y) — 1] on z; to the old one. Note that
the correction is 2(Z/Z)~'Z/(d In L/dy), so convergence occurs when the derivative is
Zero.

The remaining detail is to determine the starting value for the iteration. Because
any consistent estimator will do, the simplest procedure is to use OLS for g and the
slopes in a regression of the logs of the squares of the least squares residuals on z;
for y. Harvey (1976) shows that this method will produce an inconsistent estimator of
y1 = Ino?, but the inconsistency can be corrected just by adding 1.2704 to the value
obtained.'® Thereafter, the iteration is simply:

Estimate the disturbance variance o7 with exp(z/y).

Compute B,,; by FGLS."”

Update y, using the regression described in the preceding paragraph.
Compute di1 = [B,11. ¥i41] — [B,. ] If d;4 is large, then return to step 1.

BN

18He also presents a correction for the asymptotic covariance matrix for this first step estimator of y.

19The two-step estimator obtained by stopping here would be fully efficient if the starting value for y were
consistent, but it would not be the maximum likelihood estimator.
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If d;;; at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance
matrix is simply —H~!, which is block diagonal with blocks

Asy. Var[By ] = (X'271X)71,
Asy. Var[py ] = 2Z' 7).

If desired, then 62 = exp(1) can be computed. The asymptotic variance would be

[exp(y1)]*(Asy. Var[P1.m1]).
Testing the null hypothesis of homoscedasticity in this model,

Hpy:a =0

in (14-52), is particularly simple. The Wald test will be carried out by testing the hypoth-
esis that the last M elements of y are zero. Thus, the statistic will be

0
Awarp = &' {[0 N[22Z'7Z)]" M } Q.
Because the first column in Z is a constant term, this reduces to
1 ~1 gt na0 ~
AWALD = ke (ZIM"Zy)a

where Z; is the last M columns of Z, not including the column of ones, and M’
creates deviations from means. The likelihood ratio statistic is computed based on
(14-54). Under both the null hypothesis (homoscedastic—using OLS) and the alterna-
tive (heteroscedastic—using MLE), the third term in In L reduces to —n/2. Therefore,
the statistic is simply

n
Ar=2(nL; —InLy) =nlns* — Zlnaf,
i=1

where s° = e’e/n using the OLS residuals. To compute the LM statistic, we will use
the expected Hessian in (14-59). Under the null hypothesis, the part of the derivative
vector in (14-55) that corresponds to B is (1/s*)X’e = 0. Therefore, using (14-55), the

LM statistic is
I~ /e 1
- -+ -1 .
2 ; (52 ) <Zi1)

LA N7,
Ao = L; (&) <zﬂ)] @)

The first element in the derivative vector is zero, because Zieiz = ns?. Therefore, the

expression reduces to
n el2
— -1 Zi1| .
E: §2
i=1

j
)»LM—E Z;<S_2_1>zll
This is one-half times the explained sum of squares in the linear regression of the
variable h; = (ei2 /s> — 1) on Z, which is the Breusch-Pagan/Godfrey LM statistic from
Section 9.5.2.

’
ZM"Zy)!
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Example 14.6 Multiplicative Heteroscedasticity

In Example 6.2, we fit a cost function for the U.S. airline industry of the form
INCi¢ = B1 + B2In Qi + Balln Qe + B4 In Pueyi¢ + Ps Loadfactor; ¢ + e; ¢,

where C, ; is total cost, Q;; is output, and Py ;; is the price of fuel and the 90 observations
in the data set are for six firms observed for 15 years. (The model also included dummy
variables for firm and year, which we will omit for simplicity.) In Example 8.4, we fit a revised
model in which the load factor appears in the variance of ¢; ; rather than in the regression
function. The model is

of, = o exp(a Loadfactor; ;)

= exp(y1 + y» Loadfactor; ;).

Estimates were obtained by iterating the weighted least squares procedure using weights
W, = exp(—c1 — ¢, Loadfactor; ;). The estimates of y4 and y» were obtained at each iteration
by regressing the logs of the squared residuals on a constant and Loadfactor;;. It was noted
at the end of the example [and is evident in (14-61)] that these would be the wrong weights
to use for the iterated weighted least if we wish to compute the MLE. Table 14.3 reproduces
the results from Example 9.4 and adds the MLEs produced using Harvey’s method. The
MLE of y» is substantially different from the earlier result. The Wald statistic for testing the
homoscedasticity restriction (« = 0) is (9.78076/2.839)%> = 11.869, which is greater than
3.84, so the null hypothesis would be rejected. The likelihood ratio statistic is —2(54.2747 —
57.3122) = 6.075, which produces the same conclusion. However, the LM statistic is 2.96,
which conflicts. This is a finite sample result that is not uncommon.

14.9.2.b Autocorrelation

At various points in the preceding sections, we have considered models in which there
is correlation across observations, including the spatial autocorrelation case in Sec-
tion 11.6.2, autocorrelated disturbances in panel data models [Section 11.6.3 and in
(11-28)], and in the seemingly unrelated regressions model in Section 9.2.6. The first
order autoregression model examined there will be formalized in detail in Chapter 20.

TABLE 14.3 Multiplicative Heteroscedasticity Model

Sum of
Constant LnQ Ln* Q Ln Py R? Squares

OLS 9.1382 0.92615 0.029145  0.41006
In L =542747 0.24507*  0.032306  0.012304  0.018807  0.9861674¢  1.577479¢
0.22595°>  0.030128  0.011346  0.017524

Two-step 9.2463 0.92136 0.024450  0.40352

0.21896 0.033028  0.011412  0.016974  0.986119 1.612938
Iterated® 9.2774 0.91609 0.021643  0.40174

0.20977 0.032993  0.011017  0.016332  0.986071 1.645693
MLE! 9.2611 0.91931 0.023281  0.40266

In L =573122  0.2099 0.032295  0.010987  0.016304  0.986100 1.626301

2Conventional OLS standard errors

PWhite robust standard errors

°Squared correlation between actual and fitted values

dSum of squared residuals

“Values of ¢, by iteration: 8.254344, 11.622473, 11.705029, 11.710618, 11.711012,
11.711040, 11.711042

fEstimate of y, is 9.78076 (2.839).
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We will briefly examine it here to highlight some useful results about the maximum
likelihood estimator.
The linear regression model with first order autoregressive [AR(1)] disturbances is

y[ ZX;ﬂ+8t,t=1,..., T,

& = p&—1 +u, |pl < 1,

Eluus | X] =02 ift =s and 0 otherwise.
Feasible GLS estimation of the parameters of this model is examined in detail in Chap-
ter 20. We now add the assumption of normality; u, ~ N[0, 2], and construct the
maximum likelihood estimator.

Because every observation on y; is correlated with every other observation, in

principle, to form the likelihood function, we have the joint density of one 7-variate

observation. The Prais and Winsten (1954) transformation in (20-28) suggests a useful
way to reformulate this density. We can write

fOL Yy, oy = fFOD D ly), fsly) ..o fOrlyr—).
Because

V1I=p2y = V1-p2X|B +1uy
Vel Yee1 = pye—1 + (X — pXe—1)' B + uy,

and the observations on u, are independently normally distributed, we can use these
results to form the log-likelihood function,

(14-62)

A =P —xB)’
202

1 1 1
InL= {—E In2m — Elncfu2 + > In(1 — p?)
(14-63)

g 1 1 2 [V — pyi—1) — (¢ — ,Oxtfl)'ﬂ]2
+Z[—2ln2n—zlnau— 702 }
t=2 u

As usual, the MLE of g is GLS based on the MLEs of 03 and p, and the MLE for
o2 will be uw'u/ T given B and p. The complication is how to compute p. As we will note
in Chapter 20, there is a strikingly large number of choices for consistently estimating
p in the AR(1) model. It is tempting to choose the most convenient, and then begin
the back and forth iterations between g and (o2, p) to obtain the MLE. However, this

strategy will not (in general) locate the MLE unless the intermediate estimates of the
variance parameters also satisfy the likelihood equation, which for p is

dln L pe} P XT: T
ap of 1-p* & of '

One could sidestep the problem simply by scanning the range of p of (-1, +1) and

computing the other estimators at every point, to locate the maximum of the likelihood

function by brute force. With modern computers, even with long time series, the amount

of computation involved would be minor (if a bit inelegant and inefficient). Beach and

MacKinnon (1978a) developed a more systematic algorithm for searching for p in this

model. The iteration is then defined between p and (B, o) as usual.

’ u
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The information matrix for this log-likelihood is
1 -
=X 'X 0 0
u
E 8%In L B o T P
- B = 20 o2(1—p?
3|02 |0(Ba2p) e P T-2 1+ p?
P I ofl—p») 1—-p* (1—pH?2]
(14-64)

Note that the diagonal elements in the matrix are O(7). But the (2, 3) and (3, 2)
elements are constants of O(1) that will, like the second part of the (3, 3) element,
become minimal as 7 increases. Dropping these “end effects” (and treating 7' — 2 as
the same as 7' when T increases) produces a diagonal matrix from which we extract the
standard approximations for the MLEs in this model:

Asy. Var[f] = o2(X'Q71X) 7!,
204

Asy. Var [63] = T”,

(14-65)

1— 2
Asy. Var[p] = Tp .

Example 14.7 Autocorrelation in a Money Demand Equation
Using the macroeconomic data in Table F5.2, we fit a money demand equation,

In(M1/CPI_u); = B1 + B2 InReal GDP; + B3 In T-bill rate; + &;.

The least squares residuals shown in Figure 14.3 display the typical pattern for a highly
autocorrelated series.

FIGURE 14.3 Residuals from Estimated Money Demand Equation.
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TABLE 14.4 Estimates of Money Demand Equation: T = 204

OLS Prais and Winsten Maximum Likelihood
Variable Estimate  Std. Error  Estimate Std. Error  Estimate Std. Error
Constant —2.1316  0.09100 —1.4755 0.2550 —1.6319 0.4296
Ln real GDP 0.3519 0.01205 0.2549 0.03097 0.2731 0.0518
Ln T-bill rate  —0.1249  0.009841 —0.02666  0.007007 —0.02522  0.006941
o, 0.06185 0.07767 0.07571
oy 0.06185 0.01298 0.01273
0 0. 0. 0.9557 0.02061 0.9858 0.01180

The simple first-order autocorrelation of the ordinary least squares residuals isr = 1 —
d/2 = 0.9557, where d is the Durbin-Watson Statistic in (20-23). We then refit the model
using the Prais and Winsten FGLS estimator and the maximum likelihood estimator using
the Beach and MacKinnon algorithm. The results are shown in Table 14.4. Although the OLS
estimator is consistent in this model, nonetheless, the FGLS and ML estimates are quite
different.

14.9.3 SEEMINGLY UNRELATED REGRESSION MODELS
The general form of the seemingly unrelated regression (SUR) model is given in
(10-1)—(10-3);
Y: =Xiﬂi+€iai =1,.... M,
Ele: Xy, ..., Xy] =0, (14-66)
E[é‘,’é"j |X1, ey XM] = G,'jl.
FGLS estimation of this model is examined in detail in Section 10.2.3. We will now
add the assumption of normally distributed disturbances to the model and develop the
maximum likelihood estimators. Given the covariance structure defined in (14-66), the

joint normality assumption applies to the vector of M disturbances observed at time ¢,
which we write as

elXi,.... Xy ~N[0,Z],t=1,.... T (14-67)

14.9.3.a The Pooled Model

The pooled model, in which all coefficient vectors are equal, provides a convenient
starting point. With the assumption of equal coefficient vectors, the regression model
becomes

Yir = XitB + €ir,
Elei | X1, ..., Xy] =0, (14-68)
Eleigjs |1 X4, ..., Xu]=0;; if t=s, and 0 if r#s.

This is a model of heteroscedasticity and cross-sectional correlation. With multivariate

normality, the log likelihood is

T
M 1 1
InL=>" [—71n2n—§1n|):|—§e;):—‘e, . (14-69)

t=1
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As we saw earlier, the efficient estimator for this model is GLS as shown in (10-21).
Because the elements of £ must be estimated, the FGLS estimator based on (10-9) is
used.
As we have seen in several applications now, the maximum likelihood estimator of
B, given X, is GLS, based on (10-21). The maximum likelihood estimator of X is
2 ’ 2 o
Gij = (¥ = XiBur) (v — X Bur) _ éi8, (14-70)
T T
based on the MLE of B. If each MLE requires the other, how can we proceed to obtain
both? The answer is provided by Oberhofer and Kmenta (1974), who show that for
certain models, including this one, one can iterate back and forth between the two esti-
mators. Thus, the MLEs are obtained by iterating to convergence between (14-70) and

B =X X x'Qlyl]. (14-71)
The process may begin with the (consistent) ordinary least squares estimator, then
(14-70), and so on. The computations are simple, using basic matrix algebra. Hypothe-
sis tests about 8 may be done using the familiar Wald statistic. The appropriate estimator
of the asymptotic covariance matrix is the inverse matrix in brackets in (10-21).

For testing the hypothesis that the off-diagonal elements of X are zero—that is, that
there is no correlation across firms—there are three approaches. The likelihood ratio
test is based on the statistic

M
ALR = T(ln |2heler()scedastic| —1In |2geneml|) =T <Z In 6i2 —In |2|> ’ (14'72)
i=1

where 67 are the estimates of o/ obtained from the maximum likelihood estimates
of the groupwise heteroscedastic model and £ is the maximum likelihood estimator
in the unrestricted model. (Note how the excess variation produced by the restrictive
model is used to construct the test.) The large-sample distribution of the statistic is chi-
squared with M(M — 1)/2 degrees of freedom. The Lagrange multiplier test developed
by Breusch and Pagan (1980) provides an alternative. The general form of the statistic is

n i—1

am=TY Y (14-73)

i=2 j=1

where rl-zj is the ijth residual correlation coefficient. If every equation had a different
parameter vector, then equation specific ordinary least squares would be efficient (and
ML) and we would compute r;; from the OLS residuals (assuming that there are suffi-
cient observations for the computation). Here, however, we are assuming only a single-
parameter vector. Therefore, the appropriate basis for computing the correlations is the
residuals from the iterated estimator in the groupwise heteroscedastic model, that is,
the same residuals used to compute 67. (An asymptotically valid approximation to the
test can be based on the FGLS residuals instead.) Note that this is not a procedure for
testing all the way down to the classical, homoscedastic regression model. That case in-
volves different LM and LR statistics based on the groupwise heteroscedasticity model.
If either the LR statistic in (14-72) or the LM statistic in (14-73) are smaller than the
critical value from the table, the conclusion, based on this test, is that the appropriate
model is the groupwise heteroscedastic model.
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14.9.3.b The SUR Model

The Oberhofer-Kmenta (1974) conditions are met for the seemingly unrelated regres-
sions model, so maximum likelihood estimates can be obtained by iterating the FGLS
procedure. We note, once again, that this procedure presumes the use of (10-9) for esti-
mation of o;; at each iteration. Maximum likelihood enjoys no advantages over FGLS
in its asymptotic properties.’’ Whether it would be preferable in a small sample is an
open question whose answer will depend on the particular data set.

14.9.3.c Exclusion Restrictions
By simply inserting the special form of € in the log-likelihood function for the gen-
eralized regression model in (14-48), we can consider direct maximization instead of
iterated FGLS. It is useful, however, to reexamine the model in a somewhat different
formulation. This alternative construction of the likelihood function appears in many
other related models in a number of literatures.

Consider one observation on each of the M dependent variables and their associated
regressors. We wish to arrange this observation horizontally instead of vertically. The

model for this observation can be written
i v o yuli=IxT[m o o wyldla & - eu]
o "4
= [x]T+E,

where x7' is the full set of all K* differentindependent variables that appear in the model.
The parameter matrix then has one column for each equation, but the columns are not
the same as B; in (14-66) unless every variable happens to appear in every equation.
Otherwise, in the ith equation, ; will have a number of zeros in it, each one imposing
an exclusion restriction. For example, consider a two-equation model for production
costs for two airlines,

Ciy =a1+ pipPis + i LFy + s,
Cy =ar+ Bop Py + Por LFy + &,

where C is cost, P is fuel price, and LF is load factor. The ¢th observation would be

o] o
Bp O
[Ci Gl =[1 Ao LFi P LFE | 0 |+[a el
0 Bor
0 B

This vector is one observation. Let &, be the vector of M disturbances for this
observation arranged, for now, in a column. Then E[e;e}] = X. The log of the joint
normal density of these M disturbances is

M 1 1
InL = —?m(zn) -3 In|X| — Ee;z—le,. (14-75)

20Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the
estimator that allows for the possibility that the normality assumption might be violated.
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The log-likelihood for a sample of 7 joint observations is the sum of these over ¢:

T T
MT T 1
InL=>InL = —=-In@m) = 5 W|Z| - 5 > ez le, (14-76)
t=1

t=1

The term in the summation in (14-76) is a scalar that equals its trace. We can always
permute the matrices in a trace, so

T T T
Ze;):’le, = Ztr(séi’lel) = Ztr(E’lete‘;). (14-77)
=1 t=1 t=1

This can be further simplified. The sum of the traces of T matrices equals the trace of
the sum of the matrices [see (A-91)]. We will now also be able to move the constant
matrix, 2!, outside the summation. Finally, it will prove useful to multiply and divide
by 7. Combining all three steps, we obtain

T
Z tr(z'ee)) = Ttr
=1

T
¥l (1T) Ze,e;] = Ttr(T~'W), (14-78)

t=1

where

1 T
Wij = TZSU'&‘U'.
t=1

Because this step uses actual disturbances, E[W;;] = o;;; W is the M x M matrix we
would use to estimate X if the ¢’s were actually observed. Inserting this result in the
log-likelihood, we have

InL= —;[Mln(Zn) +1In|3| + tr(T7'W))]. (14-79)

We now consider maximizing this function.
It has been shown?! that

dlnL IX*’EZ’l

o 2 ’
dln L T__,4 )

5y =3 TT(E-W)X .
where the X}’ in (14-74) is row ¢ of X*. Equating the second of these derivatives to a zero
matrix, we see that given the maximum likelihood estimates of the slope parameters, the
maximum likelihood estimator of X is W, the matrix of mean residual sums of squares
and cross products—that is, the matrix we have used for FGLS. [Notice that there is no
correction for degrees of freedom; 9 In /3% = 0 implies (10-9).]

We also know that because this model is a generalized regression model, the maxi-

mum likelihood estimator of the parameter matrix 3] must be equivalent to the FGLS
estimator we discussed earlier.?? It is useful to go a step further. If we insert our solution

(14-80)

21See, for example, Joreskog (1973).

22This equivalence establishes the Oberhofer-Kmenta conditions.
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for X in the likelihood function, then we obtain the concentrated log-likelihood,
T
InL. = _E[M(l + In(27)) + In|W|]. (14-81)

We have shown, therefore, that the criterion for choosing the maximum likelihood
estimator of B is

Bnve = Ming 1 In|W|, (14-82)

subject to the exclusion restrictions. This important result reappears in many other mod-
els and settings. This minimization must be done subject to the constraints in the pa-
rameter matrix. In our two-equation example, there are two blocks of zeros in the
parameter matrix, which must be present in the MLE as well. The estimator of 8 is the
set of nonzero elements in the parameter matrix in (14-74).

The likelihood ratio statistic is an alternative to the F statistic discussed earlier for
testing hypotheses about . The likelihood ratio statistic is*?

A= —2(log L, —log L,) = T(log|W,| — log|W,,|). (14-83)

where W, and W, are the residual sums of squares and cross-product matrices using
the constrained and unconstrained estimators, respectively. Under the null hypothesis
of the restrictions, the limiting distribution of the likelihood ratio statistic is chi-squared
with degrees of freedom equal to the number of restrictions. This procedure can also
be used to test the homogeneity restriction in the multivariate regression model. The
restricted model is the pooled model discussed in the preceding section.

It may also be of interest to test whether X is a diagonal matrix. Two possible
approaches were suggested in Section 14.9.3a [see (14-72) and (14-73)]. The unrestricted
model is the one we are using here, whereas the restricted model is the groupwise
heteroscedastic model of Section 9.8.2 (Example 9.5), without the restriction of equal-
parameter vectors. As such, the restricted model reduces to separate regression models,
estimable by ordinary least squares. The likelihood ratio statistic would be

r="T : (14-84)

M
Zlog&? —log|%|
i=1

where &7 is e/e;/ T from the individual least squares regressions and ¥ is the maxi-
mum likelihood estimate of X. This statistic has a limiting chi-squared distribution with
M(M — 1)/2 degrees of freedom under the hypothesis. The alternative suggested by
Breusch and Pagan (1980) is the Lagrange multiplier statistic,

M i-1

am=TY Y k. (14-85)

i=2 j=1

where r;; is the estimated correlation 6;;/[6;;6;;]'/*. This statistic also has a limiting chi-
squared distribution with M(M — 1)/2 degrees of freedom. This test has the advantage
thatit does not require computation of the maximum likelihood estimator of X, because
it is based on the OLS residuals.

2See Attfield (1998) for refinements of this calculation to improve the small sample performance.
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Example 14.8 ML Estimates of a Seemingly Unrelated
Regressions Model
Although a bit dated, the Grunfeld data used in Application 11.1 have withstood the test of
time and are still the standard data set used to demonstrate the SUR model. The data in
Appendix Table F10.4 are for 10 firms and 20 years (1935-1954). For the purpose of this
illustration, we will use the first four firms. [The data are downloaded from the web site for
Baltagi (2005), at http://www.wiley.com/legacy/wileychi/baltagi/supp/Grunfeld.fil.]
The model is an investment equation:

lit = B1i + Boi Fit + BaiCit + &ir, t =1,...,20,i =1,...,10,
where

lit = real gross investment for firm/ in year t,
Fit = real value of the firm-shares outstanding,

Ci: = real value of the capital stock.

The OLS estimates for the four equations are shown in the left panel of Table 14.5. The
correlation matrix for the four OLS residual vectors is

1 -0.261 0279 -0.273
R. — —0.261 1 0.428 0.338
€~ | 0279 0428 1 —0.0679

—0.273 0.338 -0.0679 1
Before turning to the FGLS and MLE estimates, we carry out the LM test against the null
hypothesis that the regressions are actually unrelated. We leave as an exercise to show that
the LM statistic in (14-85) can be computed as
Am = (T/2)[trace(RRe) — M] = 10.451.
The 95 percent critical value from the chi squared distribution with 6 degrees of freedom is

12.59, so at this point, it appears that the null hypothesis is not rejected. We will proceed in
spite of this finding.

TABLE 14.5 Estimated Investment Equations

OLS FGLS MLE

Firm Variable Estimate St. Er. Estimate St. Er. Estimate St. Er.
Constant —149.78 97.58 —160.68 90.41 —179.41 86.66

1 F 0.1192 0.02382 0.1205 0.02187 0.1248 0.02086
C 0.3714 0.03418 0.3800 0.03311 0.3802 0.03266
Constant  —49.19 136.52 21.16 116.18 36.46 106.18

2 F 0.1749 0.06841 0.1304 0.05737 0.1244 0.05191
C 0.3896 0.1312 0.4485 0.1225 0.4367 0.1171
Constant —9.956 28.92 —19.72 26.58 —-24.10 25.80

3 F 0.02655 0.01435 0.03464 0.01279 0.03808 0.01217
C 0.1517 0.02370 0.1368 0.02249 0.1311 0.02223
Constant —6.190 12.45 0.9366 11.59 2.581 11.54

4 F 0.07795 0.01841 0.06785 0.01705 0.06564 0.01698

C 0.3157 0.02656 0.3146 0.02606 0.3137 0.02617
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The next step is to compute the covariance matrix for the OLS residuals using

7160.29 —-1967.05 607.533 —282.756
—1967.05 7904.66 978.45 367.84
607.533 978.45 660.829 —21.3757 |’
—282.756 367.84 —21.3757 149.872

W =(1/T)EE =

where E is the 20 x 4 matrix of OLS residuals. Stacking the data in the partitioned matrices

X, 0 0 0 v,
o x. 0 o 2
X=190 0 x, o ad v= |yl

0 0 0 X Vs

we now compute £ = W ® Iy and the FGLS estimates,
B=Xe XX y.

The estimated asymptotic covariance matrix for the FGLS estimates is the bracketed inverse
matrix. These results are shown in the center panel in Table 14.5.

To compute the MLE, we will take advantage of the Oberhofer and Kmenta (1974) re-
sult and iterate the FGLS estimator. Using the FGLS coefficient vector, we recompute the
residuals, then recompute W, then reestimate B. The iteration is repeated until the estimated
parameter vector converges. We use as our convergence measure the following criterion
based on the change in the estimated parameter from iteration (s — 1) to iteration (s):

5 = [(s) — Bls — DIX'[(s)] " XI[B(s) — B(s — 1)].

The sequence of values of this criterion function are: 0.21922, 0.16318, 0.00662, 0.00037,
0.00002367825, 0.000001563348, 0.1041980 x 10~8. We exit the iterations after iteration 7.
The ML estimates are shown in the right panel of Table 14.5.

We then carry out the likelihood ratio test of the null hypothesis of a diagonal covariance
matrix. The maximum likelihood estimate of X is

7235.46  —2455.13 615.167 —325.413
$ - —2455.13 8146.41 1288.66 427.011
- 615.167 1288.66 702.268 2.51786

—325.413 427.011 2.51786  153.889

The estimate for the constrained model is the diagonal matrix formed from the diagonals of
W shown earlier for the OLS results. (The estimates are shown in boldface in the preceding
matrix.) The test statistic is then

LR = T(In|diag(W)| — In|%|) = 18.55.

Recall that the critical value is 12.59. The results contradict the LM statistic. The hypothesis
of diagonal covariance matrix is now rejected.

Note that aside from the constants, the four sets of coefficient estimates are fairly similar.
Because of the constants, there seems little doubt that the pooling restriction will be rejected.
To find out, we compute the Wald statistic based on the MLE results. For testing

Ho: By = B> = B3 = B4
we can formulate the hypothesis as
Ho: B4y —B4=0,B8,—B,=0,8,—-8,=0.
The Wald statistic is
aw = (RB — q)'[RVR] (RS — q) = 2190.96
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I; 0 0 —l3 0
whereR= (0 I3 0 -Iz{,g= |0

0 0 I3 —I; 0
Wald statistic has a limiting chi-squared distribution with 9 degrees of freedom. The critical
value is 16.92, so, as expected, the hypothesis is rejected. It may be that the difference is due
to the different constant terms. To test the hypothesis that the four pairs of slope coefficients
are equal, we replaced the I3 in R with [0, I,], the Os with 2 x 3 zero matrices and q with
a 6 x 1 zero vector, The resulting chi-squared statistic equals 229.005. The critical value is
12.59, so this hypothesis is rejected also.

,andV = [X’Q71X]‘1. Under the null hypothesis, the

14.9.4 SIMULTANEOUS EQUATIONS MODELS

In Chapter 10, we noted two approaches to maximum likelihood estimation in the
equation system

y,T +xB=g¢],
& |X ~ N[O, Z]

(14-86)

The limited information maximum likelihood (LIML) estimator is a single-equation
approach that estimates the parameters one equation at a time. The full information
maximum likelihood (FIML) estimator analyzes the full set of equations at one step.

Derivation of the LIML estimator is quite complicated. Lengthy treatments appear
in Anderson and Rubin (1948), Theil (1971), and Davidson and MacKinnon (1993,
Chapter 18). The mechanics of the computation are surprisingly simple, as shown earlier
(Section 10.5.4). The LIML estimates for Klein’s Model I appear in Example 10.9 with
the other single-equation and system estimators. For the practitioner, a useful result
is that the asymptotic variance of the two-stage least squares (2SLS) estimator, which
is yet simpler to compute, is the same as that of the LIML estimator. For practical
purposes, this would generally render the LIML estimator, with its additional normality
assumption, moot. The virtue of the LIML is largely theoretical —it provides a useful
benchmark for the analysis of the properties of single-equation estimators. The single
exception would be the invariance of the estimator to normalization of the equation
(i.e., which variable appears on the left of the equals sign). This turns out to be useful in
the context of analysis in the presence of weak instruments. (See Sections 8.7 and 10.5.6)

The FIML estimator is much simpler to derive than the LIML and considerably
more difficult to implement. To obtain the needed results, we first operated on the
reduced form

e =xT+v,

(14-87)
v: | X ~ N[0, ],

which is the seemingly unrelated regressions model analyzed at length in Chapter 10
and in Section 14.9.3. The complication is the restrictions imposed on the parameters,

O=-Br! and =T Ysa@h. (14-88)

As is now familiar from several applications, given estimates of ' and B in (14-86),
the estimator of X is (1/T)E’E based on the residuals. We can even show fairly easily
that given I and X, the estimator of (—B) in (14-86) would be provided by the results
for the SUR model in Section 14.9.3.c (where we estimate the model subject to the
zero restrictions in the coefficient matrix). The complication in estimation is brought by
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I'; this is a Jacobian. The term In |I'| appears in the log-likelihood function. Nonlinear
optimization over the nonzero elements in a function that includes this term is exceed-
ingly complicated. However, three-stage least squares (3SLS) has the same asymptotic
efficiency as the FIML estimator, again without the normality assumption and without
the practical complications.

The end result is that for the practitioner, the LIML and FIML estimators have
been supplanted in the literature by much simpler GMM estimators, 2SLS, H2SLS,
3SLS, and H3SLS. Interest remains in these estimators, but largely as a component of
the ongoing theoretical development.

14.9.5 MAXIMUM LIKELIHOOD ESTIMATION OF NONLINEAR
REGRESSION MODELS

In Chapter 7, we considered nonlinear regression models in which the nonlinearity in
the parameters appeared entirely on the right-hand side of the equation. Maximum
likelihood is used when the disturbances in a regression, or the dependent variable,
more generally, is not normally distributed. The geometric regression model provides
an application.

Example 14.9 Identification in a Loglinear Regression Model
In Example 7.6, we estimated an exponential regression model, of the form

E[lncome|Age, Education, Female] = exp(y; + y2Age + ysEducation + y sFemale).

This loglinear conditional mean is consistent with several different distributions, including the
lognormal, Weibull, gamma, and exponential models. In each of these cases, the conditional
mean function is of the form

Ellncomelx] = g(6) exp(y; +X7,)
= exp(y] +X7,),

where 6 is an additional parameter of the distribution and y3 = Ing(#) + y1. Two implications
are:

1. Nonlinear least squares (NLS) is robust at least to some failures of the distributional as-
sumption. The nonlinear least squares estimator of y, will be consistent and asymptotically
normally distributed in all cases for which E[lncome|x] = exp(y} + X'y>).

2. The NLS estimator cannot produce a consistent estimator of y4; plime; = yj, which
varies depending on the correct distribution. In the conditional mean function, any pair of
values for which y) =Ing(#) + y1 is the same will lead to the same sum of squares. This
is a form of multicollinearity; the pseudoregressor for 6 is d E[Income|x]/00 = exp(y} +
X'y2)[9'(0)/9(0)] while that for y+ is dE[Income|x]/dy+ = exp(y; + X'y2). The first is a
constant multiple of the second.

NLS cannot provide separate estimates of # and y; while MLE can—see the example to
follow. Second, NLS might be less efficient than MLE since it does not use the information
about the distribution of the dependent variable. This second consideration is uncertain. For
estimation of y,, the NLS estimator is less efficient for not using the distributional information.
However, that shortcoming might be offset because the NLS estimator does not attempt to
compute an independent estimator of the additional parameter, 6.

To illustrate, we reconsider the estimator in Example 7.6. The gamma regression model
specifies

w(x)?
(o)

f(ylx) = expl—n(X)yly’", y > 0,0 > 0, u(X) = exp(—y1 — X'y2).
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TABLE 14.6 Estimated Gamma Regression Model

2)
a Constrained A3) “@)

NLS NLS MLE NLS/MLE

Constant 1.22468 1.69331 3.36826 3.36380
(47722.5) (0.04408) (0.05048) (0.04408)
Age —0.00207 —0.00207 —0.00153 —0.00207
(0.00061) (0.00061) (0.00061) (0.00061)
Education —0.04792 —0.04792 —0.04975 —0.04792
(0.00247) (0.00247) (0.00286) (0.00247)

Female 0.00658 0.00658 0.00696 0.00658
(0.01373) (0.01373) (0.01322) (0.08677)

P 0.62699 — 5.31474 5.31474
(29921.3) — (0.10894) (0.00000)

The conditional mean function for this model is

ElyIx] = 60/11(x) = 6 exp(ys + X'y2) = exp(y; + X'y2).

Table 14.6 presents estimates of 6 and (y1, y») . Estimated standard errors appear in parenthe-
ses. The estimates in columns (1), (2) and (4) are all computed using nonlinear least squares.
In (1), an attempt is made to estimate 6 and y; separately. The estimator “converged” on two
values. However, the estimated standard errors are essentially infinite. The convergence to
anything at all is due to rounding error in the computer. The results in column (2) are for y;* and
y2. The sums of squares for these two estimates as well as for those in (4) are all 112.19688,
indicating that the three results merely show three different sets of results for which y.* is the
same. The full maximum likelihood estimates are presented in (3). Note that an estimate of
0 is obtained here because the assumed gamma distribution provides another independent
moment equation for this parameter, dInL /30 = —nIn ¥(0) + X;(Iny; — In u(x)) = 0, while
the normal equations for the sum of squares provides the same normal equation for 6 and y4.

The standard approach to modeling counts of events begins with the Poisson re-
gression model,
exp(—A)A"

yi!
which has loglinear conditional mean function E[y; |x;] = ;. (The Poisson regression
model and other specifications for data on counts are discussed at length in Chapter 19.
We introduce the topic here to begin development of the MLE in a fairly straight-
forward, typical nonlinear setting.) Appendix Table F7.1 presents the Riphahn et al.
(2003) data, which we will use to analyze a count variable, DocVis, the number of visits
to physicans in the survey year. The histogram in Figure 14.4 shows a distinct spike at
zero followed by rapidly declining frequencies. While the Poisson distribution, which
is typically hump-shaped, can accommodate this configuration if A; is less than one,
the shape is nonetheless somewhat “non-Poisson.” [So-called Zero Inflation models
(discussed in Chapter 19) are often used for this situation.]

The geometric distribution,

FOilx) =6;(1—6)",6; =1/(1 + 1), 2 = exp(x;B),y; =0,1,...,

is a convenient specification that produces the effect shown in Figure 14.4. (Note that,
formally, the specification is used to model the number of failures before the first success

Prob[Y = y; | x;] = A =exp(X;B),yi =0,1,...
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FIGURE 14.4 Histogram for Doctor Visits.

in successive independent trials each with success probability 6;, so in fact, it is misspec-
ified as a model for counts. The model does provide a convenient and useful illustration,
however.) The conditional mean function is also E[y; |x;] = A;. The partial effects in
the model are

E[y: |x] — 1B,

3Xl‘
so this is a distinctly nonlinear regression model. We will construct a maximum likeli-
hood estimator, then compare the MLE to the nonlinear least squares and (misspecified)
linear least squares estimates.
The log-likelihood function is

In L= Zln filxi, B) = Zln@i + yi In(1 — 6;).
i=1 i=1
The likelihood equations are
3lIlL_ " (1 Vi )d@ia)xi

B 6 1-6;) dn 0p
Because
ik (= N = —ed—ex
d}\,l aﬂ - (1+)\‘l)2 LA — ] ] L
the likelihood equations simplify to
dln L -
=) Oy — 1 —0))x
35 ;( yi — (1= 6))x

=> @A+ ) - Dx;.

i=1
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To estimate the asymptotic covariance matrix, we can use any of the three estimators
of Asy. Var [Byg]- The BHHH estimator would be

A N 7 —1
Est. Asy. VaI'BHHH[BMLE] = lz <31ﬂ f(;%' h ﬂ)> <8ln f(;);‘; h ﬁ)) ]
i=1

lZ(éi(l + ) - 1)2XiX;] .

i=1

The negative inverse of the second derivatives matrix evaluated at the MLE is

3%1n L} ! [ 1 . . ] -
———= = A+ y)6: A —0)xix; | .
) |

Finally, as noted earlier, E[y; |x;] = 4, = (1 — 6,)/6;, is known, so we can also use the
negative inverse of the expected second derivatives matrix,

3 In L)] - l " . ] -
—FE | —— = (1 — Qi)X,'Xl- .
- Gaw)] |2

To compute the estimates of the parameters, either Newton’s method,
g+l — B _ [ —1
B =p"—[H] g,
or the method of scoring,
2 a A1~ A
ﬂt+1 — ﬁt _ {E[Hl]} g[’

can be used, where H and g are the second and first derivatives that will be evaluated
at the current estimates of the parameters. Like many models of this sort, there is a
convenient set of starting values, assuming the model contains a constant term. Because
Ely: | x;] = A, if we start the slope parameters at zero, then a natural starting value for
the constant term is the log of y.

Example 14.10 Geometric Regression Model for Doctor Visits
In Example 11.14, we considered nonlinear least squares estimation of a loglinear model
for the number of doctor visits variable shown in Figure 14.4. The data are drawn from the
Riphahn et al. (2003) data set in Appendix Table F7.1. We will continue that analysis here by
fitting a more detailed model for the count variable DocVis. The conditional mean analyzed
here is

In E[DocVisit | X;] = p1 + B2 Age;; + B3 Educit + BaIncome;r + s Kidss

(This differs slightly from the model in Example 11.14. For this exercise, with an eye toward
the fixed effects model in Example 14.13), we have specified a model that does not contain
any time-invariant variables, such as Female;.) Sample means for the variables in the model
are given in Table 14.7. Note, these data are a panel. In this exercise, we are ignoring that
fact, and fitting a pooled model. We will turn to panel data treatments in the next section,
and revisit this application.
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We used Newton’s method for the optimization, with starting values as suggested earlier.
The five iterations are as follows:

Variable Constant Age Educ Income Kids
Start values: .11580e+01 .00000e+00  .00000e+00 .00000e+00  .00000e-+00
1st derivs. —.25191e—-08 —.61777e+05  .73202e+04  .42575e+04  .16464e+04
Parameters: .11580e+-01 .00000e+00  .00000e+00 .00000e+00  .00000e-+00
lteration 1F= .6287e+05 ¢’inv(H)g = .4367e+02

1st derivs. .48616e+03 —.22449e+05 —.57162e+04 —.17112e+04 —.16521e+03
Parameters: .11186e+01 .17563e—01 —.50263e—01 —.46274e—01 —.15609e-+00
lteration 2F= .6192e+05 g’'inv(H)g = .3547e+-01

1st derivs. —.31284e+01 —.15595e+03 —.37197e+02 —.10630e+02 —.77186e+00
Parameters: .10922e+-01 .17981e—01 —.47303e—01 —.46739e—01 —.15683e-+00
lteration 3 F= .6192e+05 ¢’inv(H)g = .2598e—01

1st derivs. —.18417e—03 —.99368e—02 —.21992e—02 -.59354e—03 —.25994e—-04
Parameters: .10918e+01 .17988e—01 —.47274e—01 —.46751e—01 —.15686e-+00
lteration 4 F= .6192e+05 g’'inv(H)g = .1831e—-05

1st derivs. —.35727e—11 .86745e—10 —.26302e—10 —.61006e—11 —.15620e—11
Parameters: .10918e+01 .17988e—01 —.47274e—-01 —.46751e—01 —.15686e+00
lteration 5 F= .6192e+05 ¢’inv(H)g = A772e—-12

Convergence based on the LM criterion, g’H 'g is achieved after the fourth iteration. Note
that the derivatives at this point are extremely small, albeit not absolutely zero. Table 14.7
presents the maximum likelihood estimates of the parameters. Several sets of standard er-
rors are presented. The three sets based on different estimators of the information matrix
are presented first. The fourth set are based on the cluster corrected covariance matrix
discussed in Section 14.8.4. Because this is actually an (unbalanced) panel data set, we
anticipate correlation across observations. Not surprisingly, the standard errors rise sub-
stantially. The partial effects listed next are computed in two ways. The “Average Partial
Effect” is computed by averaging A;8 across the individuals in the sample. The “Partial
Effect” is computed for the average individual by computing A at the means of the data.
The next-to-last column contains the ordinary least squares coefficients. In this model,
there is no reason to expect ordinary least squares to provide a consistent estimator of
B. The question might arise, What does ordinary least squares estimate? The answer is the
slopes of the linear projection of DocVis on x;;. The resemblance of the OLS coefficients
to the estimated partial effects is more than coincidental, and suggests an answer to the
question.

The analysis in the table suggests three competing approaches to modeling DocVis. The
results for the geometric regression model are given in Table 14.7. At the beginning of this
section, we noted that the more conventional approach to modeling a count variable such as
DocVis is with the Poisson regression model. The log-likelihood function and its derivatives

TABLE 14.7 Estimated Geometric Regression Model Dependent Variable: DocVis:

Mean = 3.18352, Standard Deviation = 5.68969

St. Er  St. Er. St Er. St Er. PE
Variable Estimate H E[H] BHHH Cluster APE Mean OLS Mean
Constant 1.0918 0.0524 0.0524 0.0354 0.1112 — — 2.656
Age 0.0180  0.0007 0.0007 0.0005 0.0013 0.0572 0.0547 0.061 43.52
Education —0.0473 0.0033 0.0033 0.0023  0.0069 —0.150 —0.144 —-0.121 11.32
Income —0.0468 0.0041 0.0042 0.0023 0.0075 —-0.149 —0.142 —-0.162  3.52
Kids —-0.1569 0.0156 0.0155 0.0103 0.0319 —0.499 —0.477 -0.517 040
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TABLE 14.8 Estimates of Three Models for DOCVIS

Geometric Model Poisson Model Nonlinear Reg.
Variable Estimate St. Er Estimate St. Er. Estimate St. Er.
Constant 1.0918 0.0524 1.0480 0.0272 0.9801 0.0893
Age 0.0180 0.0007 0.0184 0.0003 0.0187 0.0011
Education —0.0473 0.0033 —0.0433 0.0017 —0.0361 0.0057
Income —0.0468 0.0041 —0.0520 0.0022 —0.0591 0.0072
Kids —0.1569 0.0156 —0.1609 0.0080 —0.1692 0.0264

are even simpler than the geometric model,

n
InL :Z}/,Ink,—k, —Iny!,
i=1

dINL/0B =D (yi — 1),

i=1

n
32InL/3BIp = Z —MXX.

i=1
A third approach might be a semiparametric, nonlinear regression model,
Yit = exp(X;;B) + €it.

This is, in fact, the model that applies to both the geometric and Poisson cases. Under
either distributional assumption, nonlinear least squares is inefficient compared to MLE.
But, the distributional assumption can be dropped altogether, and the model fit as a simple
exponential regression. Table 14.8 presents the three sets of estimates.

It is not obvious how to choose among the alternatives. Of the three, the Poisson model is
used most often by far. The Poisson and geometric models are not nested, so we cannot use
a simple parametric test to choose between them. However, these two models will surely fit
the conditions for the Vuong test described in Section 14.6.6. To implement the test, we first
computed

Vit = In f;; | geometric — In f;; | Poisson

using the respective MLEs of the parameters. The test statistic given in Section 14.6.6 is then

W)y

Sy

V =

This statistic converges to standard normal under the underlying assumptions. A large posi-
tive value favors the geometric model. The computed sample value is 37.885, which strongly
favors the geometric model over the Poisson.

14.9.6 PANEL DATA APPLICATIONS

Application of panel data methods to the linear panel data models we have considered
so far is a fairly marginal extension. For the random effects linear model, considered in
the following Section 14.9.6.a, the MLE of B is, as always, FGLS given the MLEs of the
variance parameters. The latter produce a fairly substantial complication, as we shall
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see. This extension does provide a convenient, interesting application to see the payoff
to the invariance property of the MLE —we will reparameterize a fairly complicated
log-likelihood function to turn it into a simple one. Where the method of maximum like-
lihood becomes essential is in analysis of fixed and random effects in nonlinear models.
We will develop two general methods for handling these situations in generic terms in
Sections 14.9.6.b and 14.9.6.c, then apply them in several models later in the book.

14.9.6.a ML Estimation of the Linear Random Effects Model
The contribution of the i th individual to the log-likelihood for the random effects model
[(11-26) to (11-29)] with normally distributed disturbances is

-1
InL (B.ol.0}) = 7[7; In27 +1n 2| + (yi — XiB)'2; ' (yi — XiB)]
(14-89)

-1
7[7;1nzn +1n || + &R "],
where

Q= UfITi + 0'3ii,,

andidenotes a 7; x 1 column of ones. Note that the ; varies overi becauseitis 7; x T;.
Baltagi (2005, pp. 19-20) presents a convenient and compact estimator for this model
that involves iteration between an estimator of ¢? = [02/(c? + To;2)], based on sums
of squared residuals, and («, B, 02) (« is the constant term) using FGLS. Unfortunately,
the convenience and compactness come unraveled in the unbalanced case. We consider,
instead, what Baltagi labels a “brute force” approach, that is, direct maximization of
the log-likelihood function in (14-89). (See, op. cit, pp. 169-170.)
Using (A-66), we find (in (11-28) that

1 o?
Q= — I - 2~ i
booo? o + Tio;
We will also need the determinant of ;. To obtain this, we will use the product of its
characteristic roots. First, write
I .o
] = (07)" T+ yii'l,
where y = 02 /02. To find the characteristic roots of the matrix, use the definition
[T+ yii']e = Ac,
where cis a characteristic vector and A is the associated characteristic root. The equation
implies that yii'c = (A — 1)c. Premultiply by ¥’ to obtain y (i'i)(i'c) = (A — 1)(i'c). Any
vector ¢ with elements that sum to zero will satisfy this equality. There will be 7; — 1
such vectors and the associated characteristic roots will be (A — 1) = 0 or A = 1. For

the remaining root, divide by the nonzero (i'c) and note that i'i = T;, so the last root is
Ty =x—1ori= (14 Ty).?* It follows that the determinant is

In|Q;| = Y}Inag2 +In(1 + Tjy).

24By this derivation, we have established a useful general result. The characteristic roots of a 7' x T matrix
of the form A = (I + abb’) are 1 with multiplicity (7 — 1) and ab’b with multiplicity 1. The proof follows
precisely along the lines of our earlier derivation.
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Expanding the parts and multiplying out the third term gives the log-likelihood function

n
InL = Zln L;
i=1

1 [, ol (T&)* }
-— ele; — 21— |.
o 2o

= _% [(ann +Ino?) Y T+ In(l+ Ty)

i=1 i=1

Note that in the third term, we can write o + Tio? = 02(1 + T;y) and 07 = o’y . After
inserting these, two appearances of o2 in the square brackets will cancel, leaving

L ) L[, y@&)?

Now, let 9 =1 /082, R; =1+ Ty, and Q; = y/R;. The individual contribution to the
log likelihood becomes

1
InL; = —= [0(e}e; — Qi(T&)*) +In R; — T;In6 + T, In2n].

2

The likelihood equations are

[ ; Ti
8lanﬂLi =0 [intsiz] -0 [Qi ( Xit) (Z 81‘:)1 ,
=1 t=1 =1

- . 2
dln L; 1 (zT: 2) 0 (T, ) T
=—z & | — O g | ——1.
Y 2 |\ & - )

=

d1n Li 1

1 (<& ? T
_H L ‘ _ T
oy 2 R? (;8”> R;

L

These will be sufficient for programming an optimization algorithm such as DFP or
BFGS. (See Section E3.3.) We could continue to derive the second derivatives for
computing the asymptotic covariance matrix, but this is unnecessary. For By g, we
know that because this is a generalized regression model, the appropriate asymptotic
covariance matrix is

-1

R 1 A1
Asy. Var[Byg] = [Z X2 X;
i1

(See Section 11.5.1.) We also know that the MLEs of the variance components estima-
tors will be asymptotically uncorrelated with that of 8. In principle, we could continue
to estimate the asymptotic variances of the MLEs of o2 and o2. It would be necessary to
derive these from the estimators of 6 and y, which one would typically do in any event.
However, statistical inference about the disturbance variance, %2 in a regression model,
is typically of no interest. On the other hand, one might want to test the hypothesis that
o2 equals zero, or y = 0. Breusch and Pagan’s (1979) LM statistic in (11-39) extended
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to the unbalanced panel case considered here would be

(=47) [ staer 1] |
{2 S TH(T — 1)} POHID DrN

_ (Zz]\il 7})2 -E;L[(Eéi)z _ e;ei]r
eyt na-n| L Xlice

LM =

Example 14.11 Maximum Likelihood and FGLS Estimates of a
Wage Equation

Example 11.6 presented FGLS estimates of a wage equation using Cornwell and Rupert’s
panel data. We have reestimated the wage equation using maximum likelihood instead of
FGLS. The parameter estimates appear in Table 14.9, with the FGLS and pooled OLS es-
timates. The estimates of the variance components are shown in the table as well. The
similarity of the MLEs and FGLS estimates is to be expected given the large sample size.
The LM statistic for testing for the presence of the common effects is 3,881.34, which is far
larger than the critical value of 3.84. With the MLE, we can also use an LR test to test for
random effects against the null hypothesis of no effects. The chi-squared statistic based on
the two log-likelihoods is 4297.57, which leads to the same conclusion.

14.9.6.b Nested Random Effects
Consider a data set on test scores for multiple school districts in a state. To establish a
notation for this complex model, we define a four-level unbalanced structure,

Zijie = test score for student ¢, teacher k, schoolj, district 7,
L = school districts,i =1, ..., L,
M; = schools in each district, j =1, ..., M;
N;; = teachers in each school, k=1, ..., N

Tjjx = studentsin each class, t =1, ..., Tj.

TABLE 14.9 Estimates of the Wage Equation

Pooled Least Squares Random Effects MLE Random Effects FGLS
Variable Estimate Std. Error? Estimate Std. Error Estimate Std. Error
Exp 0.0361 0.004533 0.1078 0.002480 0.08906 0.002280
Exp? —0.0006550  0.0001016 —0.0005054  0.00005452  —0.0007577  0.00005036
Wks 0.004461 0.001728 0.0008663  0.0006031 0.001066 0.0005939
Occ —-0.3176 0.02726 —0.03954 0.01374 —0.1067 0.01269
Ind 0.03213 0.02526 0.008807 0.01531 —0.01637 0.01391
South —-0.1137 0.02868 —0.01615 0.03201 —0.06899 0.02354
SMSA 0.1586 0.02602 —0.04019 0.01901 —0.01530 0.01649
MS 0.3203 0.03494 —0.03540 0.01880 —0.02398 0.01711
Union 0.06975 0.02667 0.03306 0.01482 0.03597 0.01367
Constant 5.8802 0.09673 4.8197 0.06035 5.3455 0.04361
o’ 0.146119 0.023436 (0 = 42.66926) 0.023102
o2 0 0.876517 (y = 37.40035) 0.838361
In L —1899.537 249.25 —

4 Robust standard errors
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Thus, from the outset, we allow the model to be unbalanced at all levels. In general
terms, then, the random effects regression model would be

’
Yijlt = X B+ Uijic + vij + Wi + Eijier-

Strict exogeneity of the regressors is assumed at all levels. All parts of the disturbance
are also assumed to be uncorrelated. (A normality assumption will be added later as
well.) From the structure of the disturbances, we can see that the overall covariance
matrix, €2, is block-diagonal over i, with each diagonal block itself block-diagonal in
turn over j, each of these is block-diagonal over k, and, at the lowest level, the blocks,
for example, for the class in our example, have the form for the random effects model
that we saw earlier.

Generalized least squares has been well worked out for the balanced case. [See, e.g.,
Baltagi, Song, and Jung (2001), who also provide results for the three-level unbalanced
case.| Deﬁne the following to be constructed from the variance components, 02, 0.2, 0.2,
and 02:

01 —TU +a
05 = NTo? + To? + o2 = o} + NTo?,
03 = MNTo? + NTo? + Tol + o2 = 0f + MNTo?.

Then, full generalized least squares is equivalent to OLS regression of

- oe\ - A e 0c ) _
Vike = Yigg =\ 1= — ) Vi- = — = — ) V- = —— — | Vi - -
o1 o1 02 o3

on the same transformation of x;,. FGLS estimates are obtained by three groupwise
between estimators and the within estimator for the innermost grouping.

The counterparts for the unbalanced case can be derived [see Baltagi et al. (2001)],
but the degree of complexity rises dramatically. As Antwiler (2001) shows, however,
if one is willing to assume normality of the distributions, then the log likelihood is
very tractable. (We note an intersection of practicality with nonrobustness.) Define the
variance ratios

2 2 o2
—Ju o Ty — W
Iou_o_ezvpu O_Szvlow 0'82
Construct the following intermediate results:
M/ T i ¢
‘9£/k =1+ 7;jkious ¢ij = Z 9;/ =1 +¢t]pvv ¢ = Z _117 0, =14 pui
= O’ = i

1 !
and sums of squares of the disturbances e;jx; = ik — X B

uk

A’lk - § :et]kt’
L/k M
Z Z Bl]k } : By
B = 7
l]k = Cijkt, Dijj = 9 .

k=1
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The log likelihood is

L

1 1 . -
In L=—2Hln(2r0}) =5 |3 ln@i—f-Z; 1n9ij+k§;
= -

i=1

. B: B B2
{ll’l eijk =+ Aljzk pu l]k} — 77l] — 'Oiwil ,

2 o2 o2
o; Oijic o 0ij o 0; o

where H is the total number of observations. (For three levels, L = 1 and p,, = 0.)
Antwiler (2001) provides the first derivatives of the log likelihood function needed to
maximize In L. However, he does suggest that the complexity of the results might make
numerical differentiation attractive. On the other hand, he finds the second derivatives
of the function intractable and resorts to numerical second derivatives in his application.
The complex part of the Hessian is the cross derivatives between f and the variance
parameters, and the lower right part for the variance parameters themselves. However,
these are not needed. As in any generalized regression model, the variance estimators
and the slope estimators are asymptotically uncorrelated. As such, one need only invert
the part of the matrix with respect to § to get the appropriate asymptotic covariance
matrix. The relevant block is

82 ln L 1 [V’/ I/k IO L M; IVL_/ L_//( 1//(
w
- Xllkfx jkt — 2 Z Xijke Xz jkt
YIT azZZZZ S B Ir EZ ;
BiB € =1 j=1 k=l =1 € =1 j=1 k=1 UK
M; 1 Nji 1 Tijk Nj 1 Tijk
’
ZZ Z D i || 2o 5 | 2 X U0
g 91} l]k — — Gijk — /
i=1 j=1 t=1 k=1 t=1
L M; Nij ik M; N ik
Iou 1 if U 1 U 1 U
Xiik — — X
=D D Z > |12 (2 Z i
o ) B B
e =1 \ j=1 Oi =1 j=1 O \ = ik

The maximum likelihood estimator of g is FGLS based on the maximum likelihood
estimators of the variance parameters. Thus, expression (14-90) provides the appropriate
covariance matrix for the GLS or maximum likelihood estimator. The difference will
be in how the variance components are computed. Baltagi et al. (2001) suggest a variety
of methods for the three-level model. For more than three levels, the MLE becomes
more attractive.

Given the complexity of the results, one might prefer simply to use OLS in spite
of its inefficiency. As might be expected, the standard errors will be biased owing to
the correlation across observations; there is evidence that the bias is downward. [See
Moulton (1986).] In that event, the robust estimator in (11-4) would be the natural
alternative. In the example given earlier, the nesting structure was obvious. In other
cases, such as our application in Example 11.12, that might not be true. In Example 14.12
[and in the application in Baltagi (2005)], statewide observations are grouped into
regions based on intuition. The impact of an incorrect grouping is unclear. Both OLS and
FGLS would remain consistent—both are equivalent to GLS with the wrong weights,
which we considered earlier. However, the impact on the asymptotic covariance matrix
for the estimator remains to be analyzed.


Bill
Line
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Example 14.12 Statewide Productivity
Munnell (1990) analyzed the productivity of public capital at the state level using a Cobb—
Douglas production function. We will use the data from that study to estimate a three-level
log linear regression model,

Ingspjx = &+ B1In pCjke + B2 In hwy iy + B3 In water
+ BaIn utiljxe + Bs In emp; + Pe Unemp ;. + i + Uj + v,
j=1,..,9%t=1,..,17,k=1,...,N;,
where the variables in the model are

gsp = gross state product,
p-cap = public capital = hwg + water + util
hwy = highway capital,
water = water utility capital,

util = utility capital,
pc = private capital,
emp = employment (labor),

unemp = unemployment rate,

and we have defined M = 9 regions each consisting of a group of the 48 continental states:

Gulf = AL, FL, LA, MS,

Midwest = IL, IN, KY, MI, MN, OH, WI,
Mid Atlantic = DE, MD, NJ, NY, PA, VA,
Mountain = CO, ID, MT, ND, SD, WY,
New England = CD, ME, MA, NH, RI, VT,
South = GA, NC, SC, TN, Wy,

Southwest = AZ, NV, NM, TX, UT,
Tornado Alley = AR, IA, KS, MO, NE, OK,
West Coast = CA, OR, WA.

For each state, we have 17 years of data, from 1970 to 1986.%° The two- and three-level
random effects models were estimated by maximum likelihood. The two-level model was
also fit by FGLS using the methods developed in Section 11.5.3.

Table 14.10 presents the estimates of the production function using pooled OLS, OLS
for the fixed effects model and both FGLS and maximum likelihood for the random effects
models. Overall, the estimates are similar, though the OLS estimates do stand somewhat
apart. This suggests, as one might suspect, that there are omitted effects in the pooled
model. The F statistic for testing the significance of the fixed effects is 76.712 with 47 and 762
degrees of freedom. The critical value from the table is 1.379, so on this basis, one would reject
the hypothesis of no common effects. Note, as well, the extremely large differences between
the conventional OLS standard errors and the robust (cluster) corrected values. The three or
four fold differences strongly suggest that there are latent effects at least at the state level.
It remains to consider which approach, fixed or random effects is preferred. The Hausman
test for fixed vs. random effects produces a chi-squared value of 18.987. The critical value
is 12.592. This would imply that the fixed effects model would be the preferred specification.
When we repeat the calculation of the Hausman statistic using the three-level estimates in the
last column of Table 11.9, the statistic falls slightly to 15.327. Finally, note the similarity of all
three sets of random effects estimates. In fact, under the hypothesis of mean independence,
all three are consistent estimators. It is tempting at this point to carry out a likelihood ratio test

2The data were downloaded from the web site for Baltagi (2005) at http://www.wiley.com/legacy/wileychi/
baltagi3e/. See Appendix Table F11.5.3.
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TABLE 14.10 Estimated Statewide Production Function

Nested
Random Random Random
Fixed Effects  Effects FGLS Effects ML Effects
OLS Estimate Estimate Estimate Estimate
Estimate  Std. Err.? (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)
o 1.9260 0.05250 2.1608 2.1759 2.1348
(0.2143) (0.1380) (0.1477) (0.1514)
B 0.3120 0.01109 0.2350 0.2755 0.2703 0.2724
(0.04678) (0.02621) (0.01972) (0.02110) (0.02141)
B 0.05888 0.01541 0.07675 0.06167 0.06268 0.06645
(0.05078) (0.03124) (0.02168) (0.02269) (0.02287)
Bs 0.1186 0.01236 0.0786 0.07572 0.07545 0.07392
(0.03450) (0.0150) (0.01381) (0.01397) (0.01399)
Ba 0.00856 0.01235 —0.11478 —0.09672 —0.1004 —0.1004
(0.04062) (0.01814) (0.01683) (0.01730) (0.01698)
Bs 0.5497 0.01554 0.8011 0.7450 0.7542 0.7539
(0.06770) (0.02976) (0.02482) (0.02664) (0.02613)
Be —0.00727 0.001384 —0.005179 —0.005963 —0.005809 —0.005878
(0.002946) (0.000980) (0.0008814) (0.0009014) (0.0009002)
I 0.085422 0.03676493 0.0367649 0.0366974 0.0366964
ou 0.0771064 0.0875682 0.0791243
o, 0.0386299
In L 853.1372 1565.501 1429.075 1430.30576

4Robust (cluster) standard errors in parentheses. The covariance matrix is multiplied by a degrees of
freedom correction, nT/(nT — k) = 8161810.

of the hypothesis of the two-level model against the broader alternative three-level model. The
test statistic would be twice the difference of the log likelihoods, which is 2.46. For one degree
of freedom, the critical chi-squared with one degree of freedom is 3.84, so on this basis, we
would not reject the hypothesis of the two-level model. We note, however, that there is a
problem with this testing procedure. The hypothesis that a variance is zero is not well defined
for the likelihood ratio test—the parameter under the null hypothesis is on the boundary of
the parameter space (o2 > 0). In this instance, the familiar distribution theory does not apply.

14.9.6.c Random Effects in Nonlinear Models: MLE using Quadrature
Section 14.9.5.b describes a nonlinear model for panel data, the geometric regression
model,
Prob[Y; = yir %] = 01 = 0;1)", yiy = 0,1, .. ;i =1,...
Oir = 1/(1 + Air), Air = eXP(X:‘lﬂ)~

As noted, this is a panel data model, although as stated, it has none of the features we
have used for the panel data in the linear case. It is a regression model,

Elyir | Xit] = Air,
which implies that
Yie = die + €ir.

This is simply a tautology that defines the deviation of y;, from its conditional mean. It
might seem natural at this point to introduce a common fixed or random effect, as we
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did earlier in the linear case, as in
Yie = Mi¢ + &ir + ¢

However, the difficulty in this specification is that whereas ¢;; is defined residually just as
the difference between y;; and its mean, ¢; is a freely varying random variable. Without
extremely complex constraints on how ¢; varies, the model as stated cannot prevent
vir from being negative. When building the specification for a nonlinear model, greater
care must be taken to preserve the internal consistency of the specification. A frequent
approach in index function models such as this one is to introduce the common effect
in the conditional mean function. The random effects geometric regression model, for
example, might appear

PrOb[}]l[ Zyil|xil] =9il(1_0il)yi[7yil :0715"';i=1a"'7nat=15"'7 7}7
Oie = 1/(1 + Xir), dir = exp(X, B + u;),

f(u;) = the specification of the distribution of random effects over individuals.
By this specification, it is now appropriate to state the model specification as
Prob[Y, = yir [ Xir, u;] = 0, (1 — 6;1)".

That is, our statement of the probability is now conditioned on both the observed data
and the unobserved random effect. The random common effect can then vary freely
and the inherent characteristics of the model are preserved.

Two questions now arise:

e How does one obtain maximum likelihood estimates of the parameters of the
model? We will pursue that question now.

e [f we ignore the individual heterogeneity and simply estimate the pooled model,
will we obtain consistent estimators of the model parameters? The answer is
sometimes, but usually not. The favorable cases are the simple loglinear models
such as the geometric and Poisson models that we consider in this chapter. The
unfavorable cases are most of the other common applications in the literature,
including, notably, models for binary choice, censored regressions, sample
selection, and, generally, nonlinear models that do not have simple exponential
means. [Note that this is the crucial issue in the consideration of robust covariance
matrix estimation in Sections 14.8.3 and 14.8.4. See, as well, Freedman (2006).]

We will now develop a maximum likelihood estimator for a nonlinear random
effects model. To set up the methodology for applications later in the book, we will do
this in a generic specification, then return to the specific application of the geometric
regression model in Example 14.12. Assume, then, that the panel data model defines
the probability distribution of a random variable, y;;, conditioned on a data vector, x;;,
and an unobserved common random effect, u;. As always, there are 7; observations
in the group, and the data on x;; and now u; are assumed to be strictly exogenously
determined. Our model for one individual is, then,

Pie | Xis ui) = (i | Xir, w4, 0),
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where p(yi/ | Xi;, ;) indicates that we are defining a conditional density while
f(yir | X, u;, 0) defines the functional form and emphasizes the vector of parameters to
be estimated. We are also going to assume that, but for the common u;, observations
within a group would be independent—the dependence of observations in the group
arises through the presence of the common u;. The joint density of the 7; observations
on y;; given u; under these assumptions would be

T

PO Yizs s yir 1 Xiy ) = [ [ £ i | %ir, i, 9),
=1

because conditioned on u;, the observations are independent. But because u; is part of
the observation on the group, to construct the log-likelihood, we will require

7
PO, Yoo oo Vi i | XG) = [H J e 1Xie, wi, 0)] fu).

t=1

The likelihood function is the joint density for the observed random variables. Because
u; is an unobserved random effect, to construct the likelihood function, we will then
have to integrate it out of the joint density. Thus,

pOit, Yiz, - Vi 1 X)) = /

u;

T
[H e | Xir, ui, 0)] f(u)du;.
=1

The contribution to the log-likelihood function of group i is, then,

T
InL; = ln/ [H F e 1 Xie, wi, 0)] fui)du;.
Ui | =1

There are two practical problems to be solved to implement this estimator. First, it
will be rare that the integral will exist in closed form. (It does when the density of y;, is
normal with linear conditional mean and the random effect is normal, because, as we
have seen, this is the random effects linear model.) As such, the practical complication
that arises is how the integrals are to be computed. Second, it remains to specify the
distribution of u; over which the integration is taken. The distribution of the common
effect is part of the model specification. Several approaches for this model have now
appeared in the literature. The one we will develop here extends the random effects
model with normally distributed effects that we have analyzed in the previous section.
The technique is Butler and Moffitt’s (1982) method. It was originally proposed for
extending the random effects model to a binary choice setting (see Chapter 17), but,
as we shall see presently, it is straightforward to extend it to a wide range of other
models. The computations center on a technique for approximating integrals known as
Gauss-Hermite quadrature.

We assume that u; is normally distributed with mean zero and variance o2. Thus,

fu) = #CX - L
' _\/2710,42 P 202)°
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With this assumption, the ith term in the log-likelihood is

1 u?
lnL,~=1n/ [wawl"wl‘“‘”] \/2;T—geXp< zé?)dui'

To put this function in a form that will be convenient for us later, we now let w; =
u;/ (0.+/2) so that u; = o,v2w; = ¢w; and the Jacobian of the transformation from u;
to w; is du; = ¢dw;. Now, we make the change of variable in the integral, to produce
the function

11'1 Lq lll —— / [H f(ytt |X1tv ¢le 0)] eXp ( )dW’

For the moment, let

T
gwi) = [ £ 1%, pwi. ).
=1
Then, the function we are manipulating is

InL; _ln—/ gw;) exp (—wy)dw;.

The payoff to all this manipulation is that integrals of this form can be computed very
accurately by Gauss—Hermite quadrature. Gauss—Hermite quadrature replaces the in-
tegration with a weighted sum of the functions evaluated at a specific set of points. For
the general case, this is

/ g(wi) exp (—w})dw; ~ Z 28 (vn)

o]

where z;, is the weight and vy, is the node. Tables of the weights and nodes are found
in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and
weights for a four-point quadrature are

v = £0.52464762327529002 and +1.6506801238857849,
zpn = 0.80491409000549996 and 0.081312835447250001.

In practice, it is common to use eight or more points, up to a practical limit of about
96. Assembling all of the parts, we obtain the approximation to the contribution to the
log-likelihood,

InL;, =ln— Z Zn [H f i | Xie, don, 0)1

The Hermite approximation to the log-likelihood function is

InL= f Zlnz % [H f it [ Xie, pon, 0)]

t=1

This function is now to be maximized with respect to 8 and ¢. Maximization is a complex
problem. However, it has been automated in contemporary software for some models,



Greene-2140242

book November 23, 2010 23:3

584 PART IIl ¢ Estimation Methodology

notably the binary choice models mentioned earlier, and is in fact quite straightforward
to implement in many other models as well. The first and second derivatives of the log-
likelihood function are correspondingly complex but still computable using quadrature.
The estimate of o, and an appropriate standard error are obtained from ¢ using the result
¢ = 0,~/2. The hypothesis of no cross-period correlation can be tested, in principle,
using any of the three standard testing procedures.

Example 14.13 Random Effects Geometric Regression Model
We will use the preceding to construct a random effects model for the DocVis count variable
analyzed in Example 14.10. Using (14-90), the approximate log-likelihood function will be

1 n H Ti ’
InLy = ﬁZInZzh [H@‘t“ -0,
i=1  h=1 t=1

O = 1/(1 4 Xit), Air = exp(x;; B + ¢pvp).

The derivatives of the log-likelihood are approximated as well. The following is the general
result—development is left as an exercise:

‘ —_

dlogL _ oL;

(5) = 50(0)

h=1 =1

Ti

Z d |Og f(ylt |xifa ¢Uha ﬂ)

()
: 1 &, |1
i=1 {ﬁ ;zh [E f(y,-t |X;t,¢Uh-ﬂ)‘| }

It remains only to specialize this to our geometric regression model. For this case, the density
is given earlier. The missing components of the preceding derivatives are the partial deriva-
tives with respect to B and ¢ that were obtained in Section 14.9.5.b. The necessary result is

aln f(yit | Xit, pvn, B)
B
8(¢>

Maximum likelihood estimates of the parameters of the random effects geometric regression
model are given in Example 14.13 with the fixed effects estimates for this model.

f(ylf |xitv ¢Uh, ﬂ)‘|

3

R

=1+ - ().

Uh

14.9.6.d Fixed Effects in Nonlinear Models: Full MLE

Using the same modeling framework that we used in the previous section, we now
define a fixed effects model as an index function model with a group-specific constant
term. As before, the “model” is the assumed density for a random variable,

pie | die, Xit) = f(yir | aidye + X}, B),

where d;, is a dummy variable that takes the value one in every period for individual i
and zero otherwise. (In more involved models, such as the censored regression model
we examine in Chapter 18, there might be other parameters, such as a variance. For
now, it is convenient to omit them—the development can be extended to add them
later.) For convenience, we have redefined x;, to be the nonconstant variables in the
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model.?® The parameters to be estimated are the K elements of B and the n individual
constant terms. The log-likelihood function for the fixed effects model is

n T
InL=3"% Inf(ylei+x,8).
i=1 t=1
where f(.) is the probability density function of the observed outcome, for example, the
geometric regression model that we used in our previous example. It will be convenient
to let z;; = a; + x;}, B so that p(yi, | dir, Xir) = f(ie | Zir)-

In the fixed effects linear regression case, we found that estimation of the parameters
was made possible by a transformation of the data to deviations from group means that
eliminated the person-specific constants from the equation. (See Section 11.4.1.) In a
few cases of nonlinear models, it is also possible to eliminate the fixed effects from
the likelihood function, although in general not by taking deviations from means. One
example is the exponential regression model that is used for lifetimes of electronic
components and electrical equipment such as light bulbs:

FOirloi + X, B) = 6 xp(—0;; i), Ui = exple + X, B), yir > 0.

It will be convenient to write 6;; = y; exp(x},) = y; Ai;. We are exploiting the invariance
property of the MLE —estimating y; = exp(«;) is the same as estimating «;. The log-
likelihood is

n T
InL = Zzlneit — GitYir

i=1 t=1

n T
= Z Zln()/iAi[) — (Viir) it

i=1 t=1

(14-91)

The MLE will be found by equating the n + K partial derivatives with respect to y; and
B to zero. For each constant term,

%

dln L
8y~ Z <_ - Aztyn)
Equating this to zero provides a solution for y; in terms of the data and S,
T
Vi= = (14-92)
E, 1 1tyn

[Note the analogous result for the linear model in (11-15).] Inserting this solution back
in the log-likelihood function in (14-91), we obtain the concentrated log-likelihood,

TA, T A;
InLc= Z Zln : —— | ¥
i=1 t=1 ZS lAlSyls ZS 1Asts

26n estimating a fixed effects linear regression model in Section 11.4, we found that it was not possible to
analyze models with time-invariant variables. The same limitation applies in the nonlinear case, for essentially
the same reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns
of the data matrix with time-invariant variables will be transformed to columns of zeros when we compute
derivatives of the log-likelihood function.
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which is now only a function of B. This function can now be maximized with respect
to B alone. The MLEs for «; are then found as the logs of the results of (14-91). Note,
once again, we have eliminated the constants from the estimation problem, but not by
computing deviations from group means. That is specific to the linear model.

The concentrated log-likelihood is only obtainable in only a small handful of cases,
including the linear model, the exponential model (as just shown), the Poisson regres-
sion model, and a few others. Lancaster (2000) lists some of these and discusses the
underlying methodological issues. In most cases, if one desires to estimate the parame-
ters of a fixed effects model, it will be necessary to actually compute the possibly huge
number of constant terms, ¢;, at the same time as the main parameters, . This has widely
been viewed as a practical obstacle to estimation of this model because of the need to
invert a potentially large second derivatives matrix, but this is a misconception. [See,
e.g., Maddala (1987), p. 317.] The likelihood equations for the fixed effects model are

T
E)lnL Blnf(y,t |th) BZ” zl:
= Z = > &i=gi=0,
=1

az,»t 30[1'

and
n T

BlnL _ Z":Z 8lnf8(il,l,|z”) 0zir _ Zzguxn o

i=1 t=1 i=1 t=1

The second derivatives matrix is

92 ln L 3% In f (yie | zie) e
- = h,=h <0,
™ l Z 3Z,, ; it i <

PInL &
9Bo; = Zhitxit,

PInL &

Tanar = hirxix;, = Hpgg,

BB~ 2
where Hgp is a negative definite matrix. The likelihood equations are a large system,
but the solution turns out to be surprisingly straightforward. [See Greene (2001).]

By using the formula for the partitioned inverse, we find that the K x K submatrix

of the inverse of the Hessian that corresponds to 8, which would provide the asymptotic
covariance matrix for the MLE, is

n T; 1 T T -
HPF = {Z lz hieXiX;, — h (Z hi[x”) (Z h"’ng)l } ’
Lo\r=1 t=1

i=1 Lt=1

n [ % ! ST i
= {Z lz hi (X — X;) (X, _ii)"| } ., where X; = %M

i=1 Lt=1

Note the striking similarity to the result we had in (9-18) for the fixed effects model in
the linear case. [A similar result is noted briefly in Chamberlain (1984).] By assembling
the Hessian as a partitioned matrix for f and the full vector of constant terms, then
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using (A-66b) and the preceding definitions to isolate one diagonal element, we find

HOo — XHP's,.
h;,
Once again, the result has the same format as its counterpart in the linear model. [See
(11.18).] In principle, the negatives of these would be the estimators of the asymptotic
variances of the maximum likelihood estimators. (Asymptotic properties in this model
are problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand,
so that in fact, practical estimation of the model is not really the obstacle. [This must
be qualified, however. Consider the likelihood equation for one of the constants in the
geometric regression model. This would be

1
D 161 +yi) =11 =0,
=1
Suppose y;; equals zero in every period for individual i. Then, the solution occurs where
%;(0;; —1) = 0. But §;; is between zero and one, so the sum must be negative and cannot
equal zero. The likelihood equation has no solution with finite coefficients. Such groups
would have to be removed from the sample to fit this model.]

It is shown in Greene (2001) in spite of the potentially large number of parameters
in the model, Newton’s method can be used with the following iteration, which uses
only the K x K matrix computed earlier and a few K x 1 vectors:

n T; -1 n T
BOTD = B — {Z [Z hi (Xir — X)) (Xip — ii),] } {Z lz 8it (Xir — ii)] }

i=1 Lt=1 i=1 Lt=1
10 (s)
= B9+ AY,
and
A 1 A (S —
al(s+ ) — al(Y) _ [(gii/hii) + X:Ag)] .27

This is a large amount of computation involving many summations, but it is linear
in the number of parameters and does not involve any n x n matrices.

In addition to the theoretical virtues and shortcomings of this model, we note the
practical aspect of estimation of what are possibly a huge number of parameters, n+ K.
In the fixed effects case, n is not limited, and could be in the thousands in a typical
application. [In Example 14.13, n is 7,293. As of this writing, the largest application of
the method described here that we are aware of is Kingdon and Cassen’s (2007) study
in which they fit a fixed effects probit model with well over 140,000 dummy variable
coefficients.] The problems with the fixed effects estimator are statistical, not practical.”®
The estimator relies on 7; increasing for the constant terms to be consistent—in essence,
each o; is estimated with 7; observations. In this setting, not only is 7; fixed, it is also

27Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973) and Chamberlain
(1980, 1984).

283ee Vytlacil, Aakvik, and Heckman (2005), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano
(1997), and Chen (1998) for some extensions of parametric and semiparametric forms of the binary choice
models with fixed effects.
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TABLE 14.11 Panel Data Estimates of a Geometric Regression for DOCVIS

Pooled Random Effects” Fixed Effects
Variable Estimate St. Er. Estimate St. Er. Estimate St. Er.
Constant 1.0918 0.1112 0.3998 0.09531
Age 0.0180 0.0013 0.02208 0.001220 0.04845 0.003511
Education —0.0473 0.0069 —0.04507 0.006262 —0.05437 0.03721
Income —0.0468 0.0075 —0.1959 0.06103 —0.1892 0.09127
Kids —0.1569 0.0319 —0.1242 0.02336 —0.002543 0.03687

4Estimated o, = 0.9542921.

likely to be quite small. As such, the estimators of the constant terms are not consistent
(not because they converge to something other than what they are trying to estimate,
but because they do not converge at all). There is, as well, a small sample (small 7;) bias
in the slope estimators. This is the incidental parameters problem. [See Neyman and
Scott (1948) and Lancaster (2000).] We will examine the incidental parameters problem
in a bit more detail with a Monte Carlo study in Section 15.3.

Example 14.14 Fixed and Random Effects Geometric Regression
Example 14.10 presents pooled estimates for the geometric regression model

f(Yie | Xie) = 6ie(1 — 6;)"t, 6;e = 1/(1 + Xir), it = exp(c +X;8), yit = 0,1, ...

We will now reestimate the model under the assumptions of the random and fixed effects
specifications. The methods of the preceding two sections are applied directly—no modi-
fication of the procedures was required. Table 14.11 presents the three sets of maximum
likelihood estimates. The estimates vary considerably. The average group size is about five.
This implies that the fixed effects estimator may well be subject to a small sample bias. Save
for the coefficient on Kids, the fixed effects and random effects estimates are quite similar.
On the other hand, the two panel models give similar results to the pooled model except
for the Income coefficient. On this basis, it is difficult to see, based solely on the results,
which should be the preferred model. The model is nonlinear to begin with, so the pooled
model, which might otherwise be preferred on the basis of computational ease, now has no
redeeming virtues. None of the three models is robust to misspecification. Unlike the linear
model, in this and other nonlinear models, the fixed effects estimator is inconsistent when T
is small in both random and fixed effects models. The random effects estimator is consistent
in the random effects model, but, as usual, not in the fixed effects model. The pooled esti-
mator is inconsistent in both random and fixed effects cases (which calls into question the
virtue of the robust covariance matrix). It might be tempting to use a Hausman specification
test (see Section 11.5.5); however, the conditions that underlie the test are not met—unlike
the linear model where the fixed effects is consistent in both cases, here it is inconsistent in
both cases. For better or worse, that leaves the analyst with the need to choose the model
based on the underlying theory.

14.10 LATENT CLASS AND FINITE MIXTURE

MODELS

In this final application of maximum likelihood estimation, rather than explore a partic-
ular model, we will develop a technique that has been used in many different settings.
The latent class modeling framework specifies that the distribution of the observed data
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is a mixture of a finite number of underlying distributions. The model can be motivated
in several ways:

e In the classic application of the technique, the observed data are drawn from a mix
of distinct underlying populations. Consider, for example, a historical or fossilized
record of the intersection (or collision) of two populations. The anthropological
record consists of measurements on some variable that would differ imperfectly,
but substantively, between the populations. However, the analyst has no definitive
marker for which subpopulation an observation is drawn from. Given a sample of
observations, they are interested in two statistical problems: (1) estimate the
parameters of the underlying populations and (2) classify the observations in hand
as having originated in which population. The technique has seen a number of
recent applications in health econometrics. For example, in a study of obesity,
Greene, Harris, Hollingsworth and Maitra (2008) speculated that their ordered
choice model (see Chapter 17) might systematically vary in a sample that
contained (it was believed) some individuals who have a genetic predisposition
toward obesity and most that did not. In another contemporary application,
Lambert (1992) studied the number of defective outcomes in a production
process. When a “zero defectives” condition is observed, it could indicate either
regime 1, “the process is under control,” or regime 2, “the process is not under
control but just happens to produce a zero observation.”

e In a narrower sense, one might view parameter heterogeneity in a population as a
form of discrete mixing. We have modeled parameter heterogeneity using
continuous distributions in Chapter T1amd15. The “finite mixture” approach
takes the distribution of parameters across individuals to be discrete. (Of course,
this is another way to interpret the first point.)

e The finite mixing approach is a means by which a distribution (model) can be
constructed from a mixture of underlying distributions. Goldfeld and Quandt’s
mixture of normals model in Example 13.4 is a case in which a nonnormal
distribution is created by mixing two normal distributions with different
parameters.

14.10.1 A FINITE MIXTURE MODEL

To lay the foundation for the more fully developed model that follows, we revisit the
mixture of normals model from Example 13.4. Consider a population that consists of a
latent mixture of two underlying normal distributions. Neglecting for the moment that
it is unknown which applies to a given individual, we have, for individual i,

exp [—3 (v — m)?/o?)
T l | = 1 = N . 2 = 2 s
f (i | class; = 1) = N[u1. o7 e~
and (14-93)

exp [—3 (i — n2)?/03 ]
i | class; =2) = N[uy, 02| = 2 .
Fi | ) [N«Z 02] sz

The contribution to the likelihood functionis f(y; | class; = 1) for anindividual in class 1
and f(y; | class = 2) for an individual in class 2. Assume that there is a true proportion
A = Prob(class; = 1) of individuals in the population that are in class 1, and (1 — ) in
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class 2. Then the unconditional (marginal) density for individual i is
FO) =rf(yilclass; =1) + (1 = 1) f(yi | class; = 2) (14-94)

= Lclasses f(yt | class;).

The parameters to be estimated are A, w1, (2, o1, and 0. Combining terms, the log-
likelihood for a sample of » individual observations would be

1 1
I iln rexp [—5 (i —m)?/o7] | (=2 exp[—30i = wo)*/of]
i—1 o1V 21 o2/ 21
This is the mixture density that we saw in Example 13.4. We suggested the method of

moments as an estimator of the five parameters in that example. However, this appears
to be a straightforward problem in maximum likelihood estimation.

) . (14-95)

Example 14.15 Latent Class Model for Grade Point Averages
Appendix Table F14.1 contains a data set of 32 observations used by Spector and Mazzeo
(1980) to study whether a new method of teaching economics, the Personalized System of
Instruction (PSI), significantly influenced performance in later economics courses. Variables
in the data set include

GPA; = the student’s grade point average,

GRADE; = dummy variable for whether the student’s grade in intermediate
macroeconomics was higher than in the principles course,

PSI; = dummy variable for whether the individual participated in the PSI,
TUCE; = the student’s score on a pretest in economics.

We will use these data to develop a finite mixture normal model for the distribution of grade
point averages.

We begin by computing maximum likelihood estimates of the parameters in (14-95). To
estimate the parameters using an iterative method, it is necessary to devise a set of starting
values. It is might seem natural to use the simple values from a one-class model, y and s,
and a value such as 1/2 for 1. However, the optimizer will immediately stop on these values,
as the derivatives will be zero at this point. Rather, it is common to use some value near
these—perturbing them slightly (a few percent), just to get the iterations started. Table 14.12
contains the estimates for this two-class finite mixture model. The estimates for the one-class
model are the sample mean and standard deviations of GPA. [Because these are the MLEs,

6% = - 7 (GPA; — GPA)2] The means and standard deviations of the two classes are

noticeably different—the model appears to be revealing a distinct splitting of the data into two
classes. (Whether two is the appropriate number of classes is considered in Section 14.9.7.¢e).
It is tempting at this point to identify the two classes with some other covariate, either in the
data set or not, such as PSI/. However, at this point, there is no basis for doing so—the
classes are “latent.” As the analysis continues, however, we will want to investigate whether
any observed data help to predict the class membership.

TABLE 14.12 Estimated Normal Mixture Model

One Class Latent Class 1 Latent Class 2
Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
" 3.1172 0.08251 3.64187 0.3452 2.8894 0.2514
o 0.4594 0.04070 0.2524 0.2625 0.3218 0.1095
Probability 1.0000 0.0000 0.3028 0.3497 0.6972 0.3497

InL —20.51274 —19.63654
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14.10.2 MEASURED AND UNMEASURED HETEROGENEITY

The development thus far has assumed that the analyst has no information about class
membership. Estimation of the “prior” probabilities (1 in the preceding example) is part
of the estimation problem. There may be some, albeit imperfect, information about class
membership in the sample as well. For our earlier example of grade point averages,
we also know the individual’s score on a test of economic literacy (TUCE). Use of
this information might sharpen the estimates of the class probabilities. The mixture of
normals problem, for example, might be formulated

Prob(class = 1]z;) exp [—3 (v — n1)*/o}]

o1V 2
N [1 — Prob(class = 1|z;)]exp [~ (yi — w2)?/0}]

oo 21

where z; is the vector of variables that help to explain the class probabilities. To make the
mixture model amenable to estimation, it is necessary to parameterize the probabilities.
The logit probability model is a common device. (See Section 17.4. For applications, see
Greene (2007d, Section 2.3.3) and references cited.) For the two-class case, this might
appear as follows:

filz) =

'0
Prob(class =1|z;) = M, Prob(class =2|z;) =1 — Prob(class =1|z;).
1+ exp(z;0)
(14-96)

(The more general J class case is shown in Section 14.10.6.) The log-likelihood for our
mixture of two normals example becomes

n
InL = Zln L;
i=1

( exp(z}0) ) exp [—1(yi — m)?/o?]
n ’
=Y | N exeE) ovIr - a497)
i1 ( 1 > exp [—5 (v — n2)?/o3]
1+ exp(z;0) o221
The log-likelihood is now maximized with respect to u1, o1, (42, 02, and 6. If z; contains
a constant term and some other observed variables, then the earlier model returns if

the coefficients on those other variables all equal zero. In this case, it follows that A =
In[6/(1 — 0)]. (This device is usually used to ensure that 0 < A < 1 in the earlier model.)

14.10.3 PREDICTING CLASS MEMBERSHIP

The model in (14-97) now characterizes two random variables, y;, the outcome variable
of interest, and class;, the indicator of which class the individual resides in. We have
a joint distribution, f(y;, class;), which we are modeling in terms of the conditional
density, f(y; | class;) in (14-93), and the marginal density of class; in (14-96). We have
initially assumed the latter to be a simple Bernoulli distribution with Prob(class; = 1) =
X, but then modified in the previous section to equal Prob(class; = 1|z;) = A(z0).
These can be viewed as the “prior” probabilities in a Bayesian sense. If we wish to make
a prediction as to which class the individual came from, using all the information that we
have on that individual, then the prior probability is going to waste some information.
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The “posterior,” or conditional (on the remaining data) probability,
f(yi,class =1|z;)
FOn ’
will be based on more information than the marginal probabilities. We have the elements
that we need to compute this conditional probability. Use Baye’s theorem to write this as

Prob(class; =1|zy;) =

(14-98)

Prob(class; = 1|z;, y;)
f(yi|class; = 1,z;)Prob(class; = 11;)
- f(yi | class; = 1, z;)Prob(class; = 1|z;) + f(y; | class; = 2, z;)Prob(class; =2 |z;)
(14-99)

The denominatoris L; (notIn ;) from (14-97). The numerator is the first term in ;. To
continue our mixture of two normals example, the conditional (posterior) probability is

( exp(z6) ) exp[—3 i — n)?/of]
1+ exp(z}0) o127

L )
while the unconditional probability is in (14-96). The conditional probability for the
second class is computed using the other two marginal densities in the numerator (or by
subtraction from one). Note that the conditional probabilities are functions of the data
even if the unconditional ones are not. To come to the problem suggested at the outset,
then, the natural predictor of class; is the class associated with the largest estimated
posterior probability.

Prob(class; = 1|z;, y;) =

(14-100)

14.10.4 A CONDITIONAL LATENT CLASS MODEL

To complete the construction of the latent class model, we note that the means (and,
in principle, the variances) in the original model could be conditioned on observed
data as well. For our normal mixture models, we might make the marginal mean, p;, a
conditional mean:

wij = X; B;.
In the data of Example 14.14, we also observe an indicator of whether the individual has

participated in a special program designed to enhance the economics program (PSI).
We might modify the model,

exp[—3 (i — Bi1 — 21 PSL)* /o]

(AR 2 '
and similarly for f(y; | class; = 2, PSI;). The modelis now a latent class linear regression
model.

More generally, as we will see shortly, the latent class, or finite mixture model for a
variable y; can be formulated as

f(yl |Cl[lSSl‘ = 1, PSIZ) = N[/'Lila 0-12] =

fQilclass; = j,xi) = hj(yi, Xi, ¥)).
where /; denotes the density conditioned on class j —indexed by j to indicate, for exam-

ple, the jth parameter vector y; = (8, o;) and so on. The marginal class probabilities
are

Prob(class; = j|z;) = p;(j,z;,0).
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The methodology can be applied to any model for y;. In the example in Section 16.10.6,
we will model a binary dependent variable with a probit model. The methodology
has been applied in many other settings, such as stochastic frontier models [Orea and
Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)],
and a wide variety of count, discrete choice, and limited dependent variable models
[McLachlan and Peel (2000), Greene (2007b)].

Example 14.16 Latent Class Regression Model for Grade
Point Averages
Combining 14.10.2 and 14.10.4, we have a latent class model for grade point averages,

. exp[—3(yi — B1j — BejPSI)?/o?]
f(GPA; |class; = j, PSI;) = =12,
(GPA Tclassi =1, PSI) oo /

TUCE;
Prob(class; = 1| TUCE;) = 1 ixgzlef —of GQUT(L:/CL)
1

Prob(class; = 2| TUCE;) = 1 — Prob(class = 1| TUCE;).

The log-likelihood is now

< exp(6s + 6, TUCE)) ) exp [—2(yi — B1.1 — P2,1PSI)?/o?]
n

In L _ Z In 1 + eXp(91 + 92TUCEI) O‘1V27T

i=1

N 1 exp [~ 5(%i — P12 — Bo2PSI)?/0f]
1+ exp(61 + 92TUCE,') 0'2\/5

Maximum likelihood estimates of the parameters are given in Table 14.13.

Table 14.14 lists the observations sorted by GPA. The predictions of class membership re-
flect what one might guess from the coefficients in the table of coefficients. Class 2 members
on average have lower GPAs than in class 1. The listing in Table 14.14 shows this clustering.
It also suggests how the latent class model is using the sample information. If the results in
Table 14.12—just estimating the means, constant class probabilities—are used to produce
the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in
class 2. The more elaborate model is adding information on TUCE to the computation. A
low TUCE score can push a high GPA individual into class 2. (Of course, this is largely what
multiple linear regression does as well).

TABLE 14.13 Estimated Latent Class Linear Regression Model for GPA

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
B 3.1011 0.1117 3.3928 0.1733 2.7926 0.04988
B2 0.03675 0.1689 —0.1074 0.2006 —0.5703 0.07553
o =¢e'e/n 0.4443 0.0003086 0.3812 0.09337 0.1119 0.04487
0 0.0000 0.0000 —6.8392 3.07867 0.0000 0.0000
6, B 0.0000 0.0000 0.3518 0.1601 0.0000 0.0000
Prob | TUCE 1.0000 0.7063 0.2937

InL —20.48752 —13.39966
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TABLE 14.14 Estimated Latent Class Probabilities

GPA TUCE PSI CLASS P1 P1* P2 P2*

2.06 22 1 2 0.7109 0.0116 0.2891 0.9884
2.39 19 1 2 0.4612 0.0467 0.5388 0.9533
2.63 20 0 2 0.5489 0.1217 0.4511 0.8783
2.66 20 0 2 0.5489 0.1020 0.4511 0.8980
2.67 24 1 1 0.8325 0.9992 0.1675 0.0008
2.74 19 0 2 0.4612 0.0608 0.5388 0.9392
2.75 25 0 2 0.8760 0.3499 0.1240 0.6501
2.76 17 0 2 0.2975 0.0317 0.7025 0.9683
2.83 19 0 2 0.4612 0.0821 0.5388 0.9179
2.83 27 1 1 0.9345 1.0000 0.0655 0.0000
2.86 17 0 2 0.2975 0.0532 0.7025 0.9468
2.87 21 0 2 0.6336 0.2013 0.3664 0.7987
2.89 14 1 1 0.1285 1.0000 0.8715 0.0000
2.89 22 0 2 0.7109 0.3065 0.2891 0.6935
2.92 12 0 2 0.0680 0.0186 0.9320 0.9814
3.03 25 0 1 0.8760 0.9260 0.1240 0.0740
3.10 21 1 1 0.6336 1.0000 0.3664 0.0000
312 23 1 1 0.7775 1.0000 0.2225 0.0000
3.16 25 1 1 0.8760 1.0000 0.1240 0.0000
3.26 25 0 1 0.8760 0.9999 0.1240 0.0001
3.28 24 0 1 0.8325 0.9999 0.1675 0.0001
332 23 0 1 0.7775 1.0000 0.2225 0.0000
3.39 17 1 1 0.2975 1.0000 0.7025 0.0000
3.51 26 1 1 0.9094 1.0000 0.0906 0.0000
3.53 26 0 1 0.9094 1.0000 0.0906 0.0000
3.54 24 1 1 0.8325 1.0000 0.1675 0.0000
3.57 23 0 1 0.7775 1.0000 0.2225 0.0000
3.62 28 1 1 0.9530 1.0000 0.0470 0.0000
3.65 21 1 1 0.6336 1.0000 0.3664 0.0000
3.92 29 0 1 0.9665 1.0000 0.0335 0.0000
4.00 21 0 1 0.6336 1.0000 0.3664 0.0000
4.00 23 1 1 0.7775 1.0000 0.2225 0.0000

14.10.5 DETERMINING THE NUMBER OF CLASSES

There is an unsolved inference issue remaining in the specification of the model. The
number of classes has been taken as a known parameter—two in our main example
thus far, three in the following application. Ideally, one would like to determine the
appropriate number of classes statistically. However, J is not a parameter in the model.
A likelihood ratio test, for example, will not provide a valid result. Consider the original
modelin Example 14.14. The model has two classes and five parameters in total. It would
seem natural to test down to a one-class model that contains only the mean and variance
using the LR test. However, the number of restrictions here is actually ambiguous. If
n1 = pp and o = oy, then the mixing probability is irrelevant—the two class densities
are the same, and it is a one-class model. Thus, the number of restrictions needed to
get from the two-class model to the one-class model is ambiguous. It is neither two
nor three. One strategy that has been suggested is to test upward, adding classes until
the marginal class insignificantly changes the log-likelihood or one of the information
criteria such as the AIC or BIC (see Section 14.6.5). Unfortunately, this approach is
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likewise problematic because the estimates from any specification that is too short are
inconsistent. The alternative would be to test down from a specification known to be
too large. Heckman and Singer (1984b) discuss this possibility and note that when the
number of classes becomes larger than appropriate, the estimator should break down. In
our Example 14.14, if we expand to four classes, the optimizer breaks down, and it is no
longer possible to compute the estimates. A five-class model does produce estimates,
but some are nonsensical. This does provide at least the directions to seek a viable
strategy. The authoritative treatise on finite mixture models by McLachlan and Peel
(2000, Chapter 6) contains extensive discussion of this issue.

14.10.6 A PANEL DATA APPLICATION

The latent class model is a useful framework for applications in panel data. The class
probabilities partly play the role of common random effects, as we will now explore.
The latent class model can be interpreted as a random parameters model, as suggested
in Section 11.8.2, with a discrete distribution of the parameters.

Suppose that 8 is generated from a discrete distribution with J outcomes, or classes,
so that the distribution of B8; is over these classes. Thus, the model states that an indi-
vidual belongs to one of the J latent classes, indexed by the parameter vector, but it
is unknown from the sample data exactly which one. We will use the sample data to
estimate the parameter vectors, the parameters of the underlying probability distribu-
tion and the probabilities of class membership. The corresponding model formulation
is now

J
Fie 1%, 7, A, By, Bos oo By) =Y (i, A) f(yic | class = j, xic, B)),

j=1

where it remains to parameterize the class probabilities, p;;, and the structural model,
(il class = j,xit, B i) The parameter matrix, A, contains the parameters of the
discrete probability distribution. It has J rows, one for each class, and M columns, for
the M variables in z;. At a minimum, M = 1 and z; contains a constant term if the
class probabilities are fixed parameters as in Example 14.15. Finally, to accommodate
the panel data nature of the sampling situation, we suppose that conditioned on 8},
that is, on membership in class j, which is fixed over time, the observations on y;, are
independent. Therefore, for a group of 7; observations, the joint density is

T
Fits Yo oo yom | class = j, X, Xz, o X7, B) = H il class = J, X, B).
t=1

The log-likelihood function for a panel of data is
n J T
InL=> In|Y pj(Az) ][] fulclass = j xi, B))
i=1 j=1 =1

The class probabilities must be constrained to sum to 1. The approach that is usually
used is to reparameterize them as a set of logit probabilities, as we did in the preceding
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examples. Then,

Pij(zi, A) = w’
=1 exp(6y)

(See Section 17.11 for development of this model for the set of probabilities.) Note
the restriction on ;. This is an identification restriction. Without it, the same set of
probabilities will arise if an arbitrary vector is added to every §;. The resulting log
likelihood is a continuous function of the parameters #1, ..., 8, and é1, ..., ;. For all
its apparent complexity, estimation of this model by direct maximization of the log-
likelihood is not especially difficult. [See Section E.3 and Greene (2001, 2007b). The
EM algorithm discussed in Section E.3.7 is especially well suited for estimating the
parameters of latent class models. See McLachlan and Peel (2000).] The number of
classes that can be identified is likely to be relatively small (on the order of 5 or 10 at
most), however, which has been viewed as a drawback of the approach. In general, the
more complex the model for y;;, the more difficult it becomes to expand the number
of classes. Also, as might be expected, the less rich the data set in terms of cross-group
variation, the more difficult it is to estimate latent class models.

Estimation produces values for the structural parameters, (8;,6;), j = 1,...,J.
With these in hand, we can compute the prior class probabilities, p; using (14-101).
For prediction purposes, we are also interested in the posterior (on the data) class
probabilities, which we can compute using Bayes theorem [see (14-99)]. The conditional
probability is

J:1,...,J,9ij:z;8j,9[j =0(51 =0) (14-101)

Prob(class = j | observation i)
f(observation i | class = j)Prob(classj)

- Z]J‘:1 f(observation i | class = j)Prob(class j)

o JOun s Yin I X Xia, - Xi s By) (2, A) (14-102)
- ij‘zl Fits Yizs -5 i I Xi1, Xias - Xi 1, B ) pij(Z, A)
= Wj.

The set of probabilities, w; = (w;1, wiz, ..., w;y) gives the posterior density over the

distribution of values of B, that is, [, B, ..., B,].

Example 14.17 Latent Class Model for Health Care Utilization
In Example 11.13, we proposed an exponential regression model,

Yit = DocVisj; = exp(x;,B) + ¢it,

for the variable DocVis, the number of visits to the doctor, in the German health care data.
(See Example 11.13 for details.) The regression results for the specification,

xi = (1, Age;;, Education;;, Income;;, Kids;)

are repeated (in parentheses) in Table 14.15 for convenience. The nonlinear least squares
estimator is only semiparametric; it makes no assumption about the distribution of DocVis;;
or about ¢;;. We do see striking increases in the standard errors when the “cluster robust”
asymptotic covariance matrix is used. (The estimates are given in Example 11.13.) The analy-
sis at this point assumes that the nonlinear least squares estimator remains consistent in the
presence of the cross-observation correlation. Given the way the model is specified, that is,
only in terms of the conditional mean function, this is probably reasonable. The extension
would imply a nonlinear generalized regression as opposed to a nonlinear ordinary regression.
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TABLE 14.15 Panel Data Estimates of a Geometric Regression for DocVis

Pooled MLE
(Nonlinear Least Squares) Random Effects® Fixed Effects
Variable Estimate St. Er Estimate St. Er. Estimate St. Er.
Constant 1.0918 0.1082 0.3998 0.09531
(0.9801) (0.1813)
Age 0.0180 0.0013 0.02208  0.001220 0.04845 0.003511
(0.01873) (0.00198)
Education —0.0473 0.0067 —0.04507  0.006262 —0.05437 0.03721
(—0.03613) (0.01228)
Income —0.4687 0.0726 —0.1959 0.06103 —0.1982 0.09127
(—0.5911) (0.1282)
Kids —0.1569 0.0306 —0.1242 0.02336 —0.002543  0.03687

(-0.1692)  (0.04882)

#Estimated o, = 0.9542921.

In Example 14.10, we narrowed this model by assuming that the observations on doctor
visits were generated by a geometric distribution,

f(y, |X,') 29,(1 —9,')“/’.,9,' = 1/(1 +)\.i),A.I' :eXp(xfﬂ),y,- =0,1,....

The conditional mean is still exp(x/,8), but this specification adds the structure of a particu-
lar distribution for outcomes. The pooled model was estimated in Example 14.10. Example
14.14 added the panel data assumptions of random then fixed effects to the model. The
model is now

F(Yit 1%it) = 6ie(1 — 6;0) ", 6 = 1/(1 4+ Xi), ke = exp(G +X;B8), yir =0,1,....

The pooled, random effects and fixed effects estimates appear in Table 14.15. The pooled es-
timates, where the standard errors are corrected for the panel data grouping, are comparable
to the nonlinear least squares estimates with the robust standard errors. The parameter esti-
mates are simila—both are consistent and this is a very large sample. The smaller standard
errors seen for the MLE are the product of the more detailed specification.

We will now relax the specification by assuming a two-class finite mixture model. We also
specify that the class probabilities are functions of gender and marital status. For the latent
class specification,

Prob(class; = 1|z;) = A(01 + 6, Female; + 63 Married;).

The model structure is the geometric regression as before. Estimates of the parameters of the
latent class model are shown in Table 14.16. See Section E3.7 for discussion of estimation
methods.

Deb and Trivedi (2002) suggested that a meaningful distinction between groups of health
care system users would be between “infrequent” and “frequent” users. To investigate
whether our latent class model is picking up this distinction in the data, we used (14-102)
to predict the class memberships (class 1 or 2). We then linearly regressed DocVis;; on a
constant and a dummy variable for class 2. The results are

DocVis;; = 5.8034 (0.0465) — 4.7801 (0.06282) Class2; + ez,

where estimated standard errors are in parentheses. The linear regression suggests that the
class membership dummy variable is strongly segregating the observations into frequent and
infrequent users. The information in the regression is summarized in the descriptive statistics
in Table 14.17.
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TABLE 14.16 Estimated Latent Class Linear Regression Model for GPA

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
Bi 1.0918 0.1082 1.6423 0.05351 —0.3344 0.09288
B 0.0180 0.0013 0.01691 0.0007324 0.02649 0.001248
B —0.0473 0.0067 —0.04473 0.003451 —0.06502 0.005739
Ba —0.4687 0.0726 —0.4567 0.04688 0.01395 0.06964
Bs —0.1569 0.0306 —0.1177 0.01611 —0.1388 0.02738
0, 0.0000 0.0000 —0.4280 0.06938 0.0000 0.0000
6, 0.0000 0.0000 0.8255 0.06322 0.0000 0.0000
03 0.0000 0.0000 —0.07829 0.07143 0.0000 0.0000
Prob |z 1.0000 0.47697 0.52303
In L —61917.97 —58708.63

TABLE 14.17 Descriptive Statistics for Doctor

Visits

Class Mean Standard Deviation

All,n = 27,326 3.18352 7.47579

Class 1,n = 12,349 5.80347 1.63076

Class 2, n = 14,977 1.02330 3.18352

14.11 SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood
estimation, which is the most frequently used estimation technique in econometrics
after least squares. The maximum likelihood estimators are consistent, asymptotically
normally distributed, and efficient among estimators that have these properties. The
drawback to the technique is that it requires a fully parametric, detailed specification of
the data generating process. As such, it is vulnerable to misspecification problems. The
previous chapter considered GMM estimation techniques which are less parametric, but
more robust to variation in the underlying data generating process. Together, ML and
GMM estimation account for the large majority of empirical estimation in econometrics.

Key Terms and Concepts

e AIC ¢ Concentrated log-likelihood e Fixed effects

o Asymptotic efficiency ¢ Conditional likelihood ¢ Full information maximum
e Asymptotic normality ¢ Consistency likelihood (FIML)

e Asymptotic variance e Cramér—Rao lower bound e Gauss—Hermite quadrature
e Autocorrelation o Efficient score e Generalized sum of squares
e Baye’s theorem ¢ Estimable parameters e Geometric regression

e BHHH estimator ¢ Exclusion restriction e GMM estimator

e BIC ¢ Exponential regression e Identification

¢ Butler and Moffitt’s model model e Incidental parameters

o Cluster estimator e Finite mixture model problem
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e Index function model

e Information matrix

e Information matrix
equality

e Invariance

e Jacobian

e Kullback-Leibler
information criterion

o Latent regression

e Lagrange multiplier statistic

e Lagrange multiplier (LM)
test

e Latent class model

e Latent class linear
regression model

e Likelihood equation

e Likelihood function

e Likelihood inequality

e Likelihood ratio

e Likelihood ratio index

e Likelihood ratio statistic

Exercises

e Likelihood ratio (LR) test

e Limited information
maximum likelihood

e Logistic probability mode

e Logit model

¢ Loglinear conditional mean

e Maximum likelihood

e Maximum likelihood
estimator

e M estimator

e Method of scoring

e Murphy and Topel
estimator

e Newton’s method

¢ Noncentral chi-squared
distribution

¢ Nonlinear least squares

e Nonnested models

e Normalization

e Oberhofer-Kmenta
estimator

599

¢ Outer product of gradients
estimator (OPG)

e Parameter space

e Precision parameter

e Pseudo-log likelihood
function

¢ Pseudo MLE

e Pseudo R squared

e Quadrature

e Random effects

e Regularity conditions

e Sandwich estimator

e Score test

e Score vector

o Stochastic frontier

o Two-step maximum
likelihood estimation

o Wald statistic

e Wald test

e Vuong test

1. Assume that the distribution of x is f(x) = 1/6,0 < x < 6. In random sampling

from this distribution, prove that the sample maximum is a consistent estimator of
0. Note that you can prove that the maximum is the maximum likelihood estimator
of 0. But the usual properties do not apply here. Why not? (Hint: Attempt to verify
that the expected first derivative of the log-likelihood with respect to 6 is zero.)

. In random sampling from the exponential distribution f(x)=(1/68)e */%, x>0,

0 >0, find the maximum likelihood estimator of 6 and obtain the asymptotic dis-
tribution of this estimator.

. Mixture distribution. Suppose that the joint distribution of the two random variables

x and y is

Ge— B0y x

flep =2 TP

a. Find the maximum likelihood estimators of g and 6 and their asymptotic joint
distribution.

b. Find the maximum likelihood estimator of 6 /(8 + 0) and its asymptotic distri-
bution.

c. Prove that f(x) is of the form

fO=yd-yx=0,12,...,

and find the maximum likelihood estimator of y and its asymptotic distribution.
d. Prove that f(y|x) is of the form

re M (hy)*
fiyln = 220
X

B,0>0,y>0,x=0,1,2,....

y>0,1>0.
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Prove that f(y|x) integrates to 1. Find the maximum likelihood estimator of A
and its asymptotic distribution. (Hint: In the conditional distribution, just carry
the x’s along as constants.)

e. Prove that

fy)y=60e y=>0, 6>0.

Find the maximum likelihood estimator of 6 and its asymptotic variance.
f. Prove that
—By x
foely) = 220 (fgy) ., x=0,1,2,...,8>0.
x!
Based on this distribution, what is the maximum likelihood estimator of 8?
4. Suppose that x has the Weibull distribution

fx) = aﬁxﬁ_le_"‘xﬂ, x>0,a,8>0.

a. Obtain the log-likelihood function for a random sample of n observations.

b. Obtain the likelihood equations for maximum likelihood estimation of « and g.
Note that the first provides an explicit solution for « in terms of the data and g.
But, after inserting this in the second, we obtain only an implicit solution for g.
How would you obtain the maximum likelihood estimators?

c. Obtain the second derivatives matrix of the log-likelihood with respect to « and
B. The exact expectations of the elements involving g involve the derivatives
of the gamma function and are quite messy analytically. Of course, your exact
result provides an empirical estimator. How would you estimate the asymptotic
covariance matrix for your estimators in part b?

d. Prove that @fCov[lnx, xf] = 1. (Hint: The expected first derivatives of the
log-likelihood function are zero.)

5. The following data were generated by the Weibull distribution of Exercise 4:

1.3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1.0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0.33453 1.1227 2.0296 1.2797 0.96080 2.0070

a. Obtain the maximum likelihood estimates of « and 8, and estimate the asymp-
totic covariance matrix for the estimates.

b. Carry out a Wald test of the hypothesis that 8 = 1.

c. Obtain the maximum likelihood estimate of & under the hypothesis that g = 1.

d. Using the results of parts a and c, carry out a likelihood ratio test of the hypothesis
that B = 1.

e. Carry out a Lagrange multiplier test of the hypothesis that 8 = 1.

6. Limited Information Maximum Likelihood Estimation. Consider a bivariate dis-
tribution for x and y that is a function of two parameters, « and 8. The joint
density is f(x, y |, B). We consider maximum likelihood estimation of the two
parameters. The full information maximum likelihood estimator is the now famil-
iar maximum likelihood estimator of the two parameters. Now, suppose that we
can factor the joint distribution as done in Exercise 3, but in this case, we have
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fx,yla,B) = f(y|x,a, B) f(x|a). Thatis, the conditional density for y is a func-

tion of both parameters, but the marginal distribution for x involves only «.

a. Write down the general form for the log-likelihood function using the joint
density.

b. Because thejoint density equals the product of the conditional times the marginal,
the log-likelihood function can be written equivalently in terms of the factored
density. Write this down, in general terms.

c. The parameter « can be estimated by itself using only the data on x and the log
likelihood formed using the marginal density for x. It can also be estimated with
B by using the full log-likelihood function and data on both y and x. Show this.

d. Show that the first estimator in part ¢ has a larger asymptotic variance than
the second one. This is the difference between a limited information maximum
likelihood estimator and a full information maximum likelihood estimator.

e. Show that if 92 In f(ylx,a, B)/dadB =0, then the result in part d is no longer
true.

. Show that the likelihood inequality in Theorem 14.3 holds for the Poisson distribu-

tion used in Section 14.3 by showing that E[(1/n) In L(6 | y)]is uniquely maximized
at 0 = 6y. (Hint: First show that the expectation is —6 + 6y In6 — Ey[In y;!].)

. Show that the likelihood inequality in Theorem 14.3 holds for the normal distribu-

tion.

. For random sampling from the classical regression model in (14-3), reparameterize

the likelihood function in terms of n = 1/0 and § = (1/0)B. Find the maximum
likelihood estimators of n and § and obtain the asymptotic covariance matrix of the
estimators of these parameters.

Consider sampling from a multivariate normal distribution with mean vector g =
(i1, U2, - .., wa) and covariance matrix o21. The log-likelihood function is

—nM nM 2 1 . ’
InL=——1In@2r)~ —-lno” ﬁ;()’i — ) (yi — ).

Show that the maximum likelihood estimates of the parameters are ft = y,,, and

n M - \2 M n M
22 izt 2amet Oim —Ym)” 1 1 oL A2
5 = L = W2 2 O =y 35

Derive the second derivatives matrix and show that the asymptotic covariance
matrix for the maximum likelihood estimators is

g [PmLN T [o?yn 0
96006’ o 0 204/ (nM) |-
Suppose that we wished to test the hypothesis that the means of the M distributions
were all equal to a particular value u°. Show that the Wald statistic would be

) -1
W= -1y <(;1> §—u' = () F - '@ - .

where ¥ is the vector of sample means.
Prove the result claimed in Example 4.7.
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Applications

1. Binary Choice. This application will be based on the health care data analyzed
in Example 16.15 and several others. Details on obtaining the data are given in
Example 11.14. We consider analysis of a dependent variable, y;;, that takes values
and 1 and 0 with probabilities F(x/8) and 1 — F(x!8), where F is a function that
defines a probability. The dependent variable, y;,, is constructed from the count
variable DocVis, which is the number of visits to the doctor in the given year.
Construct the binary variable

vir = 1if DocVis;; > 0, 0 otherwise.

We will build a model for the probability that y;, equals one. The independent
variables of interest will be,

x;; = (1, age;,, educ;,, female;,, married;;, hsat;,).
a. According to the model, the theoretical density for y;; is
fi 1xi) = F(x;,B) for y;, =1 and 1 — F(x;,f) for y;; = 0.
We will assume that a “logit model” (see Section 17.4) is appropriate, so that
exp(x;,B)

FX.B)=AX,B)= —127
(,8) = A B) = s
Show that for the two outcomes, the probabilities may be may be combined
into the density function

Fie %) = gWies Xir, B) = A[(Zyn — 1)X:‘zﬂ]~

Now, use this result to construct the log-likelihood function for a sample of
data on (y;, x;¢). (Note: We will be ignoring the panel aspect of the data set.
Build the model as if this were a cross section.)

b. Derive the likelihood equations for estimation of .

¢. Derive the second derivatives matrix of the log likelihood function. (Hint: The
following will prove useful in the derivation: dA(¢)/dt = A(®)[1 — A(1)].)

d. Show how to use Newton’s method to estimate the parameters of the model.

e. Doesthe method of scoring differ from Newton’s method? Derive the negative
of the expectation of the second derivatives matrix.

f. Obtain maximum likelihood estimates of the parameters for the data and vari-
ables noted. Report your results: estimates, standard errors, etc., as well as the
value of the log-likelihood.

g. Test the hypothesis that the coefficients on female and marital status are zero.
Show how to do the test using Wald, LM, and LR tests, and then carry out the
tests.

h. Test the hypothesis that all the coefficients in the model save for the constant
term are equal to zero.





