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SIMULATION-BASED
ESTIMATION AND
INFERENCE AND RANDOM
PARAMETER MODELS

15.1 INTRODUCTION

Simulation-based methods have become increasingly popular in econometrics. They are
extremely computer intensive, but steady improvements in recent years in computation
hardware and software have reduced that cost enormously. The payoff has been in the
form of methods for solving estimation and inference problems that have previously
been unsolvable in analytic form. The methods are used for two main functions. First,
simulation-based methods are used to infer the characteristics of random variables, in-
cluding estimators, functions of estimators, test statistics, and so on, by sampling from
their distributions. Second, simulation is used in constructing estimators that involve
complicated integrals that do not exist in a closed form that can be evaluated. In such
cases, when the integral can be written in the form of an expectation, simulation methods
can be used to evaluate it to within acceptable degrees of approximation by estimating
the expectation as the mean of a random sample. The technique of maximum simulated
likelihood (MSL) is essentially a classical sampling theory counterpart to the hierarchi-
cal Bayesian estimator considered in Chapter 16. Since the celebrated paper of Berry,
Levinsohn, and Pakes (1995) and a related literature advocated by McFadden and Train
(2000), maximum simulated likelihood estimation has been used in a large and growing
number of studies.

The following are three examples from earlier chapters that have relied on simula-
tion methods.

Example 15.1 Inferring the Sampling Distribution of the Least Squares
Estimator
In Example 4.1, we demonstrated the idea of a sampling distribution by drawing several
thousand samples from a population and computing a least squares coefficient with each
sample. We then examined the distribution of the sample of linear regression coefficients. A
histogram suggested that the distribution appeared to be normal and centered over the true
population value of the coefficient.

Example 15.2 Bootstrapping the Variance of the LAD Estimator
In Example 4.5, we compared the asymptotic variance of the least absolute deviations (LAD)
estimator to that of the ordinary least squares (OLS) estimator. The form of the asymptotic
variance of the LAD estimator is not known except in the special case of normally distributed
disturbances. We relied, instead, on a random sampling method to approximate features
of the sampling distribution of the LAD estimator. We used a device (bootstrapping) that
allowed us to draw a sample of observations from the population that produces the estimator.
With that random sample, by computing the corresponding sample statistics, we can infer
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characteristics of the distribution such as its variance and its 2.5th and 97.5th percentiles
which can be used to construct a confidence interval.

Example 15.3 Least Simulated Sum of Squares

Familiar estimation and inference methods, such as least squares and maximum likelihood,
rely on “closed form” expressions that can be evaluated exactly [at least in principle—
likelihood equations such as (14-4)] may require an iterative solution. Model building and
analysis often require evaluation of expressions that cannot be computed directly. Familiar
examples include expectations that involve integrals with no closed form such as the ran-
dom effects nonlinear regression model presented in Section 14.9.2. The estimation problem
posed there involved nonlinear least squares estimation of the parameters of

E[yulxw, ui] = h(x;B + u;).
Minimizing the sum of squares,

S(B) =Y > Iy — h(xiB + up)P?,
i t
is not feasible because u; is not observed. In this formulation,

ElyIxi] = ELE[yilxz, ui] = /E[y/‘t|xit,ui] f(u;)du;,
u
so the feasible estimation problem would involve the sum of squares,

2
B =) ) {yn - / h(x;B +u)) f(u,->du,-] :
it u

When the function is linear and u; is normally distributed, this is a simple problem—it reduces
to ordinary linear least squares. If either condition is not met, then the integral generally
remains in the estimation problem. Although the integral,

Eulh(xiB + u;)] = /h(xftﬁ +u;) f(ui)duj,

u
cannot be computed, if a large sample of R observations from the population of u;, that is,

uir,r =1,..., R, were observed, then by virtue of the law of large numbers, we could rely on
lim(1/R) > " h(X,B + ui) = ELELyilxi, uy]
r - / X8 + ) F(u)du. (15-1)
u

We are suppressing the extra parameter, o,, which would become part of the estimation
problem. A convenient way to formulate the problem is to write u; = o,v; where v; has zero
mean and variance one. By using this device, integrals can be replaced with sums that are
feasible to compute. Our “simulated sum of squares” becomes

Ssimuatea(B) = Y > [y —(1/R) > h(X;B + ouvi)

which can be minimized by conventional methods. As long as (15-1) holds, then

2 2

1 1
=YD | (/R D KB o) | > =Y {y - / h(X;B + 0uvi) f(v,)dvf]

i r it ! (15-3)
and it follows that with sufficiently increasing R, the g that minimizes the left-hand side con-
verges (in nT) to the same parameter vector that minimizes the probability limit of the
right-hand side. We are thus able to substitute a computer simulation for the intractable
computation on the right-hand side of the expression.

2
; (15-2)

This chapter will describe some of the (increasingly) more common applications of
simulation methods in econometrics. We begin in Section 15.2 with the essential tool at
the heart of all the computations, random number generation. Section 15.3 describes
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simulation-based inference using the method of Krinsky and Robb as an alternative
to the delta method (see Section 4.4.4). The method of bootstrapping for inferring the
features of the distribution of an estimator is described in Section 15.4. In Section 15.5,
we will use a Monte Carlo study to learn about the behavior of a test statistic and the
behavior of the fixed effects estimator in some nonlinear models. Sections 15.6 to 15.9
present simulation-based estimation methods. The essential ingredient of this entire set
of results is the computation of integrals. Section 15.6.1 describes an application of a
simulation-based estimator, a nonlinear random effects model. Section 15.6.2 discusses
methods of integration. Then, the methods are applied to the estimation of the random
effects model. Sections 15.7-15.9 describe several techniques and applications, includ-
ing maximum simulated likelihood estimation for random parameter and hierarchical
models. A third major (perhaps the major) application of simulation-based estimation in
the current literature is Bayesian analysis using Markov Chain Monte Carlo (MCMC or
MC?) methods. Bayesian methods are discussed separately in Chapter 16. Sections 15.10
and 15.11 consider two remaining aspects of modeling parameter heterogeneity, estima-
tion of individual specific parameters, and a comparison of modeling with continuous
distributions to modeling with discrete distributions using latent class models.

15.2 RANDOM NUMBER GENERATION

All the techniques we will consider here rely on samples of observations from an under-
lying population. We will sometimes call these “random samples,” though it will emerge
shortly that they are never actually random. One of the important aspects of this entire
body of research is the need to be able to replicate one’s computations. If the samples
of draws used in any kind of simulation-based analysis were truly random, then this
would be impossible. Although the methods we consider here will appear to be ran-
dom, they are, in fact, deterministic—the “samples” can be replicated. For this reason,
the sampling methods described in this section are more often labeled “pseudo-random
number generators.” (This does raise an intriguing question: Is it possible to generate
truly random draws from a population with a computer? The answer for practical pur-
poses is no.) This section will begin with a description of some of the mechanical aspects
of random number generation. We will then detail the methods of generating particular
kinds of random samples. [See Train (2009, Chapter 3) for extensive further discussion.]

15.2.1 GENERATING PSEUDO-RANDOM NUMBERS

Data are generated internally in a computer using pseudo-random number generators.
These computer programs generate sequences of values that appear to be strings of
draws from a specified probability distribution. There are many types of random num-
ber generators, but most take advantage of the inherent inaccuracy of the digital repre-
sentation of real numbers. The method of generation is usually by the following steps:

Set a seed.

Update the seed by seed; = seed;_; x s value.

x;j =seed; x x value.

Transform x; if necessary, and then move x; to desired place in memory.
Return to step 2, or exit if no additional values are needed.

BN



Greene-2140242

book November 24, 2010 23:28

606 PART IIl ¢ Estimation Methodology

Random number generators produce sequences of values that resemble strings of
random draws from the specified distribution. In fact, the sequence of values produced
by the preceding method is not truly random at all; it is a deterministic Markov chain
of values. The set of 32 bits in the random value only appear random when subjected
to certain tests. [See Press et al. (1986).] Because the series is, in fact, deterministic, at
any point that this type of generator produces a value it has produced before, it must
thereafter replicate the entire sequence. Because modern digital computers typically
use 32-bit double words to represent numbers, it follows that the longest string of values
that this kind of generator can produce is 2*? — 1 (about 4.3 billion). This length is the
period of a random number generator. (A generator with a shorter period than this
would be inefficient, because it is possible to achieve this period with some fairly simple
algorithms.) Some improvements in the periodicity of a generator can be achieved by
the method of shuffling. By this method, a set of, say, 128 values is maintained in an
array. The random draw is used to select one of these 128 positions from which the draw
is taken and then the value in the array is replaced with a draw from the generator. The
period of the generator can also be increased by combining several generators. [See
L’Ecuyer (1998), Gentle (2002, 2003), and Greene (2007b).]

The deterministic nature of pseudo-random number generators is both a flaw and
a virtue. Many Monte Carlo studies require billions of draws, so the finite period of
any generator represents a nontrivial consideration. On the other hand, being able to
reproduce a sequence of values just by resetting the seed to its initial value allows the
researcher to replicate a study.! The seed itself can be a problem. It is known that
certain seeds in particular generators will produce shorter series or series that do not
pass randomness tests. For example, congruential generators of the sort just discussed
should be started from odd seeds.

15.2.2 SAMPLING FROM A STANDARD UNIFORM POPULATION

The output of the generator described in Section 15.2.1 will be a pseudo-draw from
the U[0, 1] population. (In principle, the draw should be from the closed interval
[0, 1]. However, the actual draw produced by the generator will be strictly between
zero and one with probability just slightly below one. In the application described,
the draw will be constructed from the sequence of 32 bits in a double word. All but
two of the 23'—1 strings of bits will produce a value in (0, 1). The practical result
is consistent with the theoretical one, that the probabilities attached to the termi-
nal points are zero also.) When sampling from a standard uniform, U[0, 1] popula-
tion, the sequence is a kind of difference equation, because given the initial seed, x;
is ultimately a function of x;_;. In most cases, the result at step 3 is a pseudo-draw
from the continuous uniform distribution in the range zero to one, which can then be
transformed to a draw from another distribution by using the fundamental probability
transformation.

IReaders of empirical studies are often interested in replicating the computations. In Monte Carlo studies, at
least in principle, data can be replicated efficiently merely by providing the random number generator and
the seed.
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15.2.3 SAMPLING FROM CONTINUOUS DISTRIBUTIONS

One is usually interested in obtaining a sequence of draws, xi, . . ., Xg, from some partic-
ular population such as the normal with mean u and variance o2. A sequence of draws
from U[0, 1], uy, ..., ug, produced by the random number generator is an intermediate
step. These will be transformed into draws from the desired population. A common
approach is to use the fundamental probability transformation. For continuous distri-
butions, this is done by treating the draw, u, = F, as if F, were F(x,), where F(.) is the
cdf of x. For example, if we desire draws from the exponential distribution with known 9,
then F(x) = 1 —exp(—6x). The inverse transform is x = (—1/0) In(1 — F). For example,
for a draw of u = 0.4 with & = 5, the associated x would be (—1/5) In(1 — .4) = 0.1022.
For the logistic population with cdf F(x) = A(x) = exp(x)/[1 + exp(x)], the inverse
transformation is x = In[F/(1 — F)]. There are many references, for example, Evans,
Hastings, and Peacock (2000) and Gentle (2003), that contain tables of inverse trans-
formations that can be used to construct random number generators.

One of the most common applications is the draws from the standard normal dis-
tribution. This is complicated because there is no closed form for ®~!(F). There are
several ways to proceed. A well-known approximation to the inverse function is given
in Abramovitz and Stegun (1971):

C0+C1T+C2T2
14+d T+ T +d; T3

where T = [In(1/H?)]"/? and H = F if F > 0.5 and 1 — F otherwise. The sign is then
reversed if F < 0.5. A second method is to transform the U[0, 1] values directly to a
standard normal value. The Box-Muller (1958) method is z = (=2 Inu;)Y/? cos2mus),
where u; and u, are two independent U[0, 1] draws. A second N[0, 1] draw can be
obtained from the same two values by replacing cos with sin in the transformation. The
Marsaglia-Bray (1964) generator is z; = x;[—(2/v) Inv]"/?, where x; = 2u; — 1, u; is a
random draw from U[0, 1] and v = u% + u%, i = 1, 2. The pair of draws is rejected and
redrawn if v > 1.

Sequences of draws from the standard normal distribution can easily be transformed
into draws from other distributions by making use of the results in Section B.4. For
example, the square of a standard normal draw will be a draw from chi-squared[1], and
the sum of K chi-squared[1]s is chi-squared [ K]. From this relationship, it is possible to
produce samples from the chi-squared[ K], ¢t[n], and F[K, n] distributions.

A related problem is obtaining draws from the truncated normal distribution. The
random variable with truncated normal distribution is obtained from one with a normal
distribution by discarding the part of the range above a value U and below a value L.
The density of the resulting random variable is that of a normal distribution restricted
to the range [ L, U]. The truncated normal density is

f0) . (1/0)$[(x — w)/o]
Prob[L<x < U] ®[(U - /o] — ®[(L—- /o]

O NF)=x~T

fxIL<x<U)=

where ¢ (1) = (2m)~ /2 exp(—t?/2) and ®(t) is the cdf. An obviously inefficient (albeit
effective) method of drawing values from the truncated normal [u, o] distribution in
the range [ L, U] is simply to draw F from the U[0, 1] distribution and transform it first
to a standard normal variate as discussed previously and then to the N[u, o%] variate by
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using x = p + o ®~1(F). Finally, the value x is retained if it falls in the range [L, U] and
discarded otherwise. This rejection method will require, on average, 1/{®[(U —u)/o]—
®[(L— w)/o]} draws per observation, which could be substantial. A direct transforma-
tion that requires only one draw is as follows: Let P; = ®[(j — n)/o], j = L, U. Then

x=u+0d [P+ Fx (Py— Pl (15-4)

15.2.4 SAMPLING FROM A MULTIVARIATE NORMAL POPULATION

A common application involves draws from a multivariate normal distribution with
specified mean g and covariance matrix X. To sample from this K-variate distribution,
we begin with a draw, z, from the K-variate standard normal distribution. This is done
by first computing K independent standard normal draws, zi, ..., zx using the method
of the previous section and stacking them in the vector z. Let C be a square root of X
such that CC’ = X. The desired draw is then x = g + Cz, which will have covariance
matrix E[(x — u)(x — p)'] = CE[zz']C’' = CIC' = X. For the square root matrix, the
usual device is the Cholesky decomposition, in which C is a lower triangular matrix.
(See Section A.6.11.) For example, suppose we wish to sample from the bivariate normal
distribution with mean vector g, unit variances and correlation coefficient p. Then,

|1 p |1 0
Z_{p 1] andC_{p *1—,02]'
The transformation of two draws z; and z; is x; = w1 + z1 and x; = us + [pz1 +
(1—p?)!?z,]. Section 15.3 and Example 15.4 following show a more involved application.

15.2.5 SAMPLING FROM DISCRETE POPULATIONS

There is generally no inverse transformation available for discrete distributions such as
the Poisson. An inefficient, though usually unavoidable method for some distributions
is to draw the Fand then search sequentially for the smallest value that has cdf equal to
or greater than F. For example, a generator for the Poisson distribution is constructed
as follows. The pdf is Prob[x = j] = p; = exp(—w)u’/j! where p is the mean of
the random variable. The generator will use the recursion p; = pj_1 x u/j, j =1, ...
beginning with py = exp(—u). An algorithm that requires only a single random draw
is as follows:

Initialize c=exp(—u); p=c;x=0;

Draw F from U[0, 1];

Deliver x * exit with draw x if ¢ > F;

Iterate x=x+1Lp=pxp/x;c=c+ p;
go to *.

This method is based explicitly on the pdf and cdf of the distribution. Other methods
are suggested by Knuth (1969) and Press et al. (1986, pp. 203-209).

The most common application of random sampling from a discrete distribution is,
fortunately, also the simplest. The method of bootstrapping, and countless other applica-
tions involve random samples of draws from the discrete uniform distribution, Prob(x =
jy=1/n,j=1,..., n. In the bootstrapping application, we are going to draw random
samples of observations from the sequence of integers 1, ..., n, where each value must
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be equally likely. In principle, the random draw could be obtained by partitioning the
unit interval into n equal parts, [0, a1), [a1, a2), ..., [@n—2, Gn-1), [an-1, 1];a; = j/n, j =
1,...,n— 1. Then, random draw F delivers x = j if F falls into interval j. This would
entail a search, which could be time consuming. However, a simple method that will
be much faster is simply to deliver x = the integer part of (n x F + 1.0). (Once again,
we are making use of the practical result that F will equal exactly 1.0 (and x will equal
n + 1) with ignorable probability.)

3 SIMULATION-BASED STATISTICAL
INFERENCE: THE METHOD OF KRINSKY
AND ROBB

Most of the theoretical development in this text has concerned the statistical properties
of estimators—that is, the characteristics of sampling distributions such as the mean
(probability limits), variance (asymptotic variance), and quantiles (such as the bound-
aries for confidence intervals). In cases in which these properties cannot be derived
explicitly, it is often possible to infer them by using random sampling methods to draw
samples from the population that produced an estimator and deduce the characteristics
from the features of such a random sample. In Example 4.4, we computed a set of least
squares regression coefficients, by, ..., bx, and then examined the behavior of a non-
linear function ¢; = by/(1 — b,,) using the delta method. In some cases, the asymptotic
properties of nonlinear functions such as these are difficult to derive directly from the
theoretical distribution of the parameters. The sampling methods described here can be
used for that purpose. A second common application is learning about the behavior of
test statistics. For example, at the end of Section 5.6 and in Section 14.9.1 [see (14-47)], we
defined a Lagrange multiplier statistic for testing the hypothesis that certain coefficients
are zero in a linear regression model. Under the assumption that the disturbances are
normally distributed, the statistic has a limiting chi-squared distribution, which implies
that the analyst knows what critical value to employ if they use this statistic. Whether
the statistic has this distribution if the disturbances are not normally distributed is un-
known. Monte Carlo methods can be helpful in determining if the guidance of the
chi-squared result is useful in more general cases. Finally, in Section 14.7, we defined
a two-step maximum likelihood estimator. Computation of the asymptotic variance of
such an estimator can be challenging. Monte Carlo methods, in particular, bootstrap-
ping methods, can be used as an effective substitute for the intractible derivation of the
appropriate asymptotic distribution of an estimator. This and the next two sections will
detail these three procedures and develop applications to illustrate their use.

The method of Krinsky and Robb is suggested as a way to estimate the asymptotic
covariance matrix of ¢ = f(b), where b is an estimated parameter vector with asymptotic
covariance matrix X and f(b) defines a set of possibly nonlinear functions of b. We as-
sume that f(b) is a set of continuous and continuously differentiable functions that do not
involve the sample size and whose derivatives do not equal zero at 8 = plimb. (These
are the conditions underlying the Slutsky theorem in Section D.2.3.) In Section 4.4.4,
we used the delta method to estimate the asymptotic covariance matrix of ¢; Est. Asy.
Var[e] = GSG’, where S is the estimate of X and G is the matrix of partial derivatives,
G = 9f(b)/3b’. The recent literature contains some occasional skepticism about the
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accuracy of the delta method. The method of Krinsky and Robb (1986, 1990, 1991) is
often suggested as an alternative. In a study of the behavior of estimated elasticities
based on a translog model, the authors (1986) advocated an alternative approach based
on Monte Carlo methods and the law of large numbers. We have consistently estimated 8
and (02/n)Q~!, the mean and variance of the asymptotic normal distribution of the esti-
mator b, with b and s2(X’X) L. It follows that we could estimate the mean and variance of
the distribution of a function of b by drawing a random sample of observations from the
asymptotic normal population generating b, and using the empirical mean and variance
of the sample of functions to estimate the parameters of the distribution of the function.
The quantiles of the sample of draws, for example, the .025th and .975th quantiles, can
be used to estimate the boundaries of a confidence interval of the functions. The mul-
tivariate normal sample would be drawn using the method described in Section 15.2.4.

Krinsky and Robb (1986) reported huge differences in the standard errors produced
by the delta method compared to the simulation-based estimator. In a subsequent paper
(1990), they reported that the entire difference could be attributed to a bug in the soft-
ware they used —upon redoing the computations, their estimates were essentially the
same with the two methods. It is difficult to draw a conclusion about the effectiveness
of the delta method based on the received results—it does seem at this juncture that the
delta method remains an effective device that can often be employed with a hand cal-
culator as opposed to the much more computation-intensive Krinsky and Robb (1986)
technique. Unfortunately, the results of any comparison will depend on the data, the
model, and the functions being computed. The amount of nonlinearity in the sense of
the complexity of the functions seems not to be the answer. Krinsky and Robb’s case
was motivated by the extreme complexity of the elasticities in a translog model. In an-
other study, Hole (2006) examines a similarly complex problem and finds that the delta
method still appears to be the more accurate procedure.

Example 15.4 Long Run Elasticities
Adynamic version of the demand for gasoline model is estimated in Example 4.4. The modelis

In(G/Pop)t = B1 + B2 In Pt + B3 In(Income/Pop); + B4 In Pt
+ Bs IN Pyet + ¥ In(G/Pop);_1 + &t.

In this model, the short-run price and income elasticities are g, and 3. The long-run elastici-
tiesare ¢ = B>/(1—y) and ¢35 = B3/(1—1y), respectively. To estimate the long-run elasticities,
we estimated the parameters by least squares and then computed these two nonlinear func-
tions of the estimates. Estimates of the full set of model parameters and the estimated asymp-
totic covariance matrix are given in Example 4.4. The delta method was used to estimate the
asymptotic standard errors for the estimates of ¢» and ¢3. The three estimates of the specific
parameters and the 3 x 3 submatrix of the estimated asymptotic covariance matrix are

P2 by —0.069532
Est. | B3 bs | = 0.164047 |,

14 c 0.830971
by 0.00021705 1.61265e -5 —0.0001109
Est.Asy.Var | bs | = 1.61265e -5  0.0030279 —0.0021881 | .
c —0.0001109 —0.0021881 0.0020943

The method suggested by Krinsky and Robb would use a random number generator to draw
a large trivariate sample, (b, b3, ¢),,r =1, ..., R, from the normal distribution with this mean
vector and covariance matrix, and then compute the sample of observations on f, and f3
and obtain the empirical mean and variance and the .025 and .975 quantiles from the sample.
The method of drawing such a sample is shown in Section 15.2.4. We will require the square
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TABLE 15.1 Simulation Results

Regression Estimate Simulated Values
Estimate Std.Error Mean Std.Dev.
B> —0.069532 0.0147327 —0.068791 0.0138485
B3 0.164047 0.0550265 0.162634 0.0558856
y 0.830971 0.0457635 0.831083 0.0460514
1033 —0.411358 0.152296 —0.453815 0.219110
o3 0.970522 0.162386 0.950042 0.199458

TABLE 15.2 Estimated Confidence Intervals

(2 &3
Lower Upper Lower Upper
Delta Method —0.718098 —0.104618 0.643460 1.297585
Krinsky and Robb —0.895125 —0.012505 0.548313 1.351772
Sample Quantiles —0.983866 —0.209776 0.539668 1.321617

root of the covariance matrix. The Cholesky matrix is

0.0147326 0 0
C= 0.00109461 0.0550155 O
—0.0075275 —0.0396227  0.0216259

The sample is drawn by drawn by obtaining vectors of three random draws from the stan-
dard normal population, v, = (v, V2, vs),,r =1, ..., R. The draws needed for the estimation
are then obtained by computing b, = b + Cv, where b is the set of least squares esti-
mates. We then compute the sample of estimated long-run elasticities, f, = by /(1 — ¢)
and f3 = b3 /(1 — ¢). The mean and variance of the sample observations constitute the
estimates of the functions and asymptotic standard errors.

Table 15.1 shows the results of these computations based on 1,000 draws from the un-
derlying distribution. The estimates from Example 4.4 using the delta method are shown as
well. The two sets of estimates are in quite reasonable agreement. A 95 percent confidence
interval for ¢ based on the estimates, the t distribution with 51 — 6 = 45 degrees of freedom
and the delta method would be —0.411358 +2.014103(0.152296). The result for ¢3 would be
0.970522 +2,014103(0.162386) . These are shown in Table 15.2 with the same computation
using the Krinsky and Robb estimated standard errors. The table also shows the empirical
estimates of these quantiles computed using the 26th and 975th values in the samples. There
is reasonable agreement in the estimates, though there is also evident a considerable amount
of sample variability, even in a sample as large as 1,000.

We note, finally, that it is generally not possible to replicate results such as these across
software platforms, because they use different random number generators. Within a given
platform, replicability can be obtained by setting the seed for the random number generator.

15.4 BOOTSTRAPPING STANDARD ERRORS
AND CONFIDENCE INTERVALS

The technique of bootstrapping is used to obtain a description of the sampling properties
of empirical estimators using the sample data themselves, rather than broad theoretical
results.” Suppose that @, is an estimator of a parameter vector # based on a sample

2See Efron (1979), Efron and Tibshirani (1994), and Davidson and Hinkley (1997), Brownstone and Kazimi
(1998), Horowitz (2001), and MacKinnon (2002).
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Z = [(y1,x1). ..., (Ju, Xn)]- An approximation to the statistical properties of 8, can
be obtained by studying a sample of bootstrap estimators 8 (b),,, m, b =1, ..., B, ob-
tained by sampling m observations, with replacement, from Z and recomputing 6 with
each sample. After a total of B times, the desired sampling characteristic is computed
from

O =01, 02, ....0(B).

The most common application of bootstrapping for consistent estimators when 7 is
reasonably large is approximating the asymptotic covariance matrix of the estimator 8,
with
A 1 B A = A = 17

Est.Asy.Var [B,] = =— ; (0@ = 85] [0 — 03] . (15-5)
where 6 3 is the average of the B bootstrapped estimates of #. There are few theoretical
prescriptions for the number of replications, B. Andrews and Buchinsky (2000) and
Cameron and Trivedi (2005, pp. 361-362) make some suggestions for particular appli-
cations; Davidson and MacKinnon (2000) recommend at least 399. Several hundred is
the norm; we have used 1,000 in our application to follow. This technique was developed
by Efron (1979) and has been appearing with increasing frequency in the applied econo-
metrics literature. [See, for example, Veall (1987, 1992), Vinod (1993), and Vinod and
Raj (1994). Extensive surveys of uses and methods in econometrics appear in Cameron
and Trivedi (2005), Horowitz (2001), and Davidson and MacKinnon (2006).] An appli-
cation of this technique to the least absolute deviations estimator in the linear model is
shown in the following example and in Chapter 4.

The preceding is known as a paired bootstrap. The pairing is the joint sampling
of y; and x;. An alternative approach in a regression context would be to sample the
observations on x; only and then with each x; sampled, generate the accompanying y;
by randomly generating the disturbance, then ;(b) = x; (b)'0,, + &;(b). This would be
a parametric bootstrap in that in order to simulate the disturbances, we need either to
know (or assume) the data generating process that produces ¢;. In other contexts, such
asin discrete choice modeling in Chapter 17, one would bootstrap sample the exogenous
data in the model and then generate the dependent variable by this method using the
appropriate underlying DGP. This is the approach used in 15.5.5 and in Greene (2004b)
in a study of the incidental parameters problem in several limited dependent variable
models. The obvious disadvantage of the parametric bootstrap is that one cannot learn
of the influence of an unknown DGP for ¢ by assuming it is known. For example, if
the bootstrap is being used to accommodate unknown heteroscedasticity in the model,
a parametric bootstrap that assumes homoscedasticity would defeat the purpose. The
more natural application would be a nonparametric-bootstrap, in which both x; and y;,
and, implicitly, ¢;, are sampled simultaneously.

Example 15.5 Bootstrapping the Variance of the Median
There are few cases in which an exact expression for the sampling variance of the median
is known. Example 15.7, examines the case of the median of a sample of 500 observations
from the tdistribution with 10 degrees of freedom. This is one of those cases in which there
is no exact formula for the asymptotic variance of the median. However, we can use the
bootstrap technique to estimate one empirically. In one run of the experiment, we obtained
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a sample of 500 observations for which we computed the median, —0.00786. We drew 100
samples of 500 with replacement from this sample of 500 and recomputed the median with
each of these samples. The empirical square root of the mean squared deviation around this
estimate of —0.00786 was 0.056. In contrast, consider the same calculation for the mean.
The sample mean is —0.07247. The sample standard deviation is 1.08469, so the standard
error of the mean is 0.04657. (The bootstrap estimate of the standard error of the mean was
0.052.) This agrees with our expectation in that the sample mean should generally be a more
efficient estimator of the mean of the distribution in a large sample. There is another approach
we might take in this situation. Consider the regression model

_yi :a+8i!

where ¢ has a symmetric distribution with finite variance. The least absolute deviations
estimator of the coefficient in this model is an estimator of the median (which equals the
mean) of the distribution. So, this presents another estimator. Once again, the bootstrap
estimator must be used to estimate the asymptotic variance of the estimator. Using the
same data, we fit this regression model using the LAD estimator. The coefficient estimate is
—.05397 with a bootstrap estimated standard error of 0.05872. The estimated standard error
agrees with the earlier one. The difference in the estimated coefficient stems from the different
computations—the regression estimate is the solution to a linear programming problem while
the earlier estimate is the actual sample median.

The bootstrap estimation procedure has also been suggested as a method of reduc-
ing bias. In principle, we would compute §,,— bias(8,) = 8,, — { E[f,,] — 8}. Since neither
0 nor the exact expectation of 8, is known, we estimate the first with the mean of the
bootstrap replications and the second with the estimator, itself. The revised estimator is

. . 1. . .
0,5=20,— [E ;O(m) - 0,1] =20, —03. (15-6)

(Efron and Tibshirani (1994, p. 138) provide justification for what appears to be the
wrong sign on the correction.) Davidson and MacKinnon (2006) argue that the smaller
bias of the corrected estimator is offset by an increased variance compared to the un-
corrected estimator. [See, as well, Cameron and Trivedi (2005).] The authors offer some
other cautions for practitioners contemplating use of this technique. First, perhaps ob-
viously, the extension of the method to samples with dependent observations presents
some obstacles. For time-series data, the technique makes little sense —none of the boot-
strapped samples will be a time series, so the properties of the resulting estimators will
not satisfy the underlying the assumptions needed to make the technique appropriate.

A second common application of bootstrapping methods is the computation of
confidence intervals for parameters. This calculation will be useful when the underly-
ing data generating process is unknown, and the bootstrap method is being used to
obtain appropriate standard errors for estimated parameters. A natural approach to
bootstrapping confidence intervals for parameters would be to compute the estimated
asymptotic covariance matrix using (15-5) and then form confidence intervals in the
usual fashion. An improvement in terms of the bias of the estimator is provided by the
percentile method [Cameron and Trivedi (2005, p. 364)]. By this technique, during each
bootstrap replication, we compute

Ok (b) — Ok

* b — - ,
i (0) se. (Qn,k)

(15-7)
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where “k” indicates the kth parameter in the model, and @n, o s.e.(@n, o) and 0, (b) are the
original estimator and estimated standard error from the full sample and the bootstrap
replicate. Then, with all B replicates in hand, the bootstrap confidence interval is

On i + ti[a/2]se.On ) 10 O i + 15 [1 — /2]s.e. (Onk) - (15-8)

(Note that ¢ [«/2] is negative, which explains the plus sign in left term.) For example, in
our application, next, we compute the estimator and the asymptotic covariance matrix
using the full sample. We compute 1,000 bootstrap replications, and compute the ¢
ratio in (15-7) for the education coefficient in each of the 1,000 replicates. After the
bootstrap samples are accumulated, we sorted the results from (15-7), and the 25th and
975th largest values provide the values of ¢*.

Example 15.6 demonstrates the computation of a confidence interval for a coef-
ficient using the bootstrap. The application uses the Cornwell and Rupert panel data
set used in Example 11.1 and several later applications. There are 595 groups of seven
observations in the data set. Bootstrapping with panel data requires an additional el-
ement in the computations. The bootstrap replications are based on sampling over i,
not z. Thus, the bootstrap sample consists of n blocks of 7" (or 7;) observations—the ith
group as a whole is sampled. This produces, then, a block bootstrap sample.

Example 15.6 Bootstrapping Standard Errors and Confidence Intervals
in a Panel

Example 11.1 presents least squares estimates and robust standard errors for the labor
supply equation using Cornwell and Rupert’s panel data set. There are 595 individuals and
seven periods in the data set. As seen in the results in Table 11.1 (reproduced below), using a
clustering correction in a robust covariance matrix for the least squares estimator produces
substantial changes in the estimated standard errors. Table 15.3 reproduces the least squares
coefficients and the standard errors associated with the conventional s?(X’X) ~" and the robust
standard errors using the clustering correction, and presents the bootstrapped standard
errors using 1,000 bootstrap replications. The resemblance between the original estimates
in the leftmost column and the average of the bootstrap replications in the rightmost column
is to be expected; the sample is quite large and the number of replications is large. What is
striking (and reassuring) is the ability of the bootstrapping procedure to detect and mimic the
effect of the clustering that is evident in the second and third columns of estimated standard
errors.

TABLE 15.3 Bootstrap Estimates of Standard Errors for a Wage Equation

Least Squares Standard Cluster Robust  Bootstrap Bootstrap
Variable Estimate Error Std. Error Std. Error Coefficient
Constant 5.25112 0.07129 0.1233 0.12421 5.25907
Wks 0.00422 0.00108 0.001538 0.00159 0.00409
South —0.05564 0.01253 0.02610 0.02557 —0.05417
SMSA 0.15167 0.01207 0.02405 0.02383 0.15140
MS 0.04845 0.02057 0.04085 0.04208 0.04676
Exp 0.04010 0.00216 0.004067 0.00418 0.04017
Exp? —0.00067 0.00004744  0.00009111 0.00009235 —0.00067
Occ —0.14001 0.01466 0.02718 0.02733 —0.13912
Ind 0.04679 0.01179 0.02361 0.02350 0.04728
Union 0.09263 0.01280 0.02362 0.02390 0.09126
Ed 0.05670 0.00261 0.005552 0.00576 0.05656
Fem —0.36779 0.02510 0.04547 0.04562 —0.36855
Blk —0.16694 0.02204 0.04423 0.04663 —0.16811
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FIGURE 15.1 Distributions of Test Statistics.

We also computed a confidence interval for the coefficient on Ed using the conventional,
symmetric approach, bgy £+ 1.96s(bgy), and the percentile method in (15-7)-(15-8). The two
intervals are

Conventional: 0.051583 to 0.061825
Percentile: 0.045560 to 0.067909

Not surprisingly (given the larger standard errors), the percentile method gives a much wider
interval. Figure 15.1 shows a kernel density estimator of the distribution of the t statistics
computed using (15-7). It is substantially wider than the (approximate) standard normal den-
sity shown with it. This demonstrates the impact of the latent effect of the clustering on the
standard errors, and ultimately on the test statistic used to compute the confidence intervals.

15.5 MONTE CARLO STUDIES

Simulated data generated by the methods of the preceding sections have various uses
in econometrics. One of the more common applications is the analysis of the properties
of estimators or in obtaining comparisons of the properties of estimators. For exam-
ple, in time-series settings, most of the known results for characterizing the sampling
distributions of estimators are asymptotic, large-sample results. But the typical time
series is not very long, and descriptions that rely on 7, the number of observations,
going to infinity may not be very accurate. Exact finite-sample properties are usually
intractable, however, which leaves the analyst with only the choice of learning about
the behavior of the estimators experimentally.

In the typical application, one would either compare the properties of two or more
estimators while holding the sampling conditions fixed or study how the properties of
an estimator are affected by changing conditions such as the sample size or the value
of an underlying parameter.
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Example 15.7 Monte Carlo Study of the Mean Versus the Median
In Example D.8, we compared the asymptotic distributions of the sample mean and the
sample median in random sampling from the normal distribution. The basic result is that
both estimators are consistent, but the mean is asymptotically more efficient by a factor of
Asy. Var[Median] _ T _ 15708
Asy. Var[Mean] 2
This result is useful, but it does not tell which is the better estimator in small samples, nor does
it suggest how the estimators would behave in some other distribution. It is known that the
mean is affected by outlying observations whereas the median is not. The effect is averaged
out in large samples, but the small-sample behavior might be very different. To investigate
the issue, we constructed the following experiment: We sampled 500 observations from the
t distribution with d degrees of freedom by sampling d + 1 values from the standard normal
distribution and then computing

tp= 2 j_4,...,500, r=1,...,100.

1 —a
d D12

The t distribution with a low value of d was chosen because it has very thick tails and because
large outlying values have high probability. For each value of d, we generated R = 100
replications. For each of the 100 replications, we obtained the mean and median. Because
both are unbiased, we compared the mean squared errors around the true expectations using

r=1
(1/R) 7, (% — 0)2

We obtained ratios of 0.6761, 1.2779, and 1.3765 for d = 3, 6, and 10, respectively. (You
might want to repeat this experiment with different degrees of freedom.) These results agree
with what intuition would suggest. As the degrees of freedom parameter increases, which
brings the distribution closer to the normal distribution, the sample mean becomes more
efficient—the ratio should approach its limiting value of 1.5708 as d increases. What might
be surprising is the apparent overwhelming advantage of the median when the distribution
is very nonnormal even in a sample as large as 500.

(1/R) 27 (median, — 0)2.

The preceding is a very small application of the technique. In a typical study, there
are many more parameters to be varied and more dimensions upon which the results
are to be studied. One of the practical problems in this setting is how to organize the
results. There is a tendency in Monte Carlo work to proliferate tables indiscriminately.
It is incumbent on the analyst to collect the results in a fashion that is useful to the
reader. For example, this requires some judgment on how finely one should vary the
parameters of interest. One useful possibility that will often mimic the thought process
of the reader is to collect the results of bivariate tables in carefully designed contour
plots.

There are any number of situations in which Monte Carlo simulation offers the
only method of learning about finite-sample properties of estimators. Still, there are a
number of problems with Monte Carlo studies. To achieve any level of generality, the
number of parameters that must be varied and hence the amount of information that
must be distilled can become enormous. Second, they are limited by the design of the
experiments, so the results they produce are rarely generalizable. For our example, we
may have learned something about the ¢ distribution, but the results that would apply
in other distributions remain to be described. And, unfortunately, real data will rarely
conform to any specific distribution, so no matter how many other distributions we
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analyze, our results would still only be suggestive. In more general terms, this problem
of specificity [Hendry (1984)] limits most Monte Carlo studies to quite narrow ranges
of applicability. There are very few that have proved general enough to have provided
a widely cited result.?

15.56.1 A MONTE CARLO STUDY: BEHAVIOR OF A TEST STATISTIC

Monte Carlo methods are often used to study the behavior of test statistics when their
true properties are uncertain. This is often the case with Lagrange multiplier statistics.
For example, Baltagi (2005) reports on the development of several new test statistics for
panel data models such as a test for serial correlation. Examining the behavior of a test
statistic is fairly straightforward. We are interested in two characeristics: the true size of
the test—that is, the probability that it rejects the null hypothesis when that hypothesis
is actually true (the probability of a type 1 error) and the power of the test—that is the
probability that it will correctly reject a false null hypothesis (one minus the probability
of a type 2 error). As we will see, the power of a test is a function of the alternative
against which the null is tested.

To illustrate a Monte Carlo study of a test statistic, we consider how a familiar
procedure behaves when the model assumptions are incorrect. Consider the linear
regression model

Vi=a+Bxi+yzten el z) ~ N[0, 0%

The Lagrange multiplier statistic for testing the null hypothesis that y equals zero for
this model is

LM = e, X(X'X) " 'X'ey/(e)eo/n)

where X = (1, x,z) and ey is the vector of least squares residuals obtained from the
regression of y on the constant and x (and not z). (See Section 14.6.3.) Under the
assumptions of the preceding model, above, the large sample distribution of the LM
statistic is chi-squared with one degree of freedom. Thus, our testing procedure is to
compute LM and then reject the null hypothesis y = 0 if LM is greater than the critical
value. We will use a nominal size of 0.05, so the critical value is 3.84. The theory for
the statistic is well developed when the specification of the model is correct. [See, for
example, Godfrey (1988).] We are interested in two specification errors. First, how
does the statistic behave if the normality assumption is not met? Because the LM
statistic is based on the likelihood function, if some distribution other than the normal
governs ¢;, then the LM statistic would not be based on the OLS estimator. We will
examine the behavior of the statistic under the true specification that ¢; comes from
a ¢t distribution with five degrees of freedom. Second, how does the statistic behave
if the homoscedasticity assumption is not met? The statistic is entirely wrong if the
disturbances are heteroscedastic. We will examine the case in which the conditional
variance is Var[e; | (x;, z;)] = o?[exp(0.2x;)]>.

The design of the experiment is as follows: We will base the analysis on a sample
of 50 observations. We draw 50 observations on x; and z; from independent N[0, 1]
populations at the outset of each cycle. For each of 1,000 replications, we draw a sample
of 50 ¢;’s according to the assumed specification. The LM statistic is computed and the

3Two that have withstood the test of time are Griliches and Rao (1969) and Kmenta and Gilbert (1968).
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TABLE 15.4

Size and Power Functions for LM Test

Gamma
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Model 0.0 -0.1 -0.2 -0.3 -04 -05 -06 -07 -08 -09 -10
Normal 0.059 0.090 0235 0464 0.691 0.859 0.957 0989 0998 1.000 1.000
0.103 0.236 0451 0686 0863 0.961 0.989 0.999 1.000 1.000
t(5) 0.052 0.083 0.169 0320 0.508 0.680 0.816 0911 0956 0.976 0.994
0.080 0.177 0312 0500 0.677 0.822 0.921 0.953 0984 0.993
Het. 0.071  0.098 0249 0457 0.666 0.835 0.944 0984 0995 0.998 1.000
0.107 0.239 0442 0.651 0832 0940 0.985 0.996 1.000 1.000

proportion of the computed statistics that exceed 3.84 is recorded. The experiment is
repeated for y = 0 to ascertain the true size of the test and for values of y including
-1,...,-0.2,-0.1,0,0.1,0.2, ..., 1.0 to assess the power of the test. The cycle of tests
is repeated for the two scenarios, the #(5) distribution and the model with hetero-
scedasticity.

Table 15.4 lists the results of the experiment. The first row shows the expected
results for the LM statistic under the model assumptions for which is is appropriate.
The size of the test appears to be in line with the theoretical results. Comparing the first
and third rows, it appears that the presence of heteroscedasticity seems not to degrade
the power of the statistic. But the different distributional assumption does. Figure 15.2
plots the values in the table, and displays the characteristic form of the power function
for a test statistic.

FIGURE 15.2 Power Functions.
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15.56.2 A MONTE CARLO STUDY: THE INCIDENTAL
PARAMETERS PROBLEM

Section 14.9.6.d examines the maximum likelihood estimator of a panel data model with
fixed effects,

Fu 1 xi) = gWirs X;;Ig +a;,0)
where the individual effects may be correlated with x;. The extra parameter vector
represents M other parameters that might appear in the model, such as the disturbance
variance, crf, in a linear regression model with normally distributed disturbance. The
development there considers the mechanical problem of maximizing the log-likelihood

n T
InL= ZZ In g(yir, X;,B + a;, 0)
i=1 t=1

with respect to the n + K + M parameters (a1, .. ., &y, B, 8). A statistical problem with
this estimator that was suggested there is a phenomenon labeled the incidental para-
meters problem [see Neyman and Scott (1948), Lancaster (2000)]. With the exception
of a very small number of specific models (such as the Poisson regression model in
Section 19.3.2), the “brute force,” unconditional maximum likelihood estimator of the
parameters in this model is inconsistent. The result is straightforward to visualize with
respect to the individual effects. Suppose that g and 6 were actually known. Then, each ¢;
would be estimated with 7; observations. Because 7; is assumed to be fixed (and small),
there is no asymptotic result to provide consistency for the MLE of «;. But, § and 6 are
estimated with X; 7; = N observations, so their large sample behavior is less transparent.
One known result concerns the logit model for binary choice (see Section 17.2-17.5).
Kalbfleisch and Sprott (1970), Andersen (1973), Hsiao (1996), and Abrevaya (1997)
have established that in the binary logit model, if 7; = 2, then plim ,BMLE = 28. Two
other cases are known with certainty. In the linear regression model with fixed effects and
normally distributed disturbances, the slope estimator, by spy is unbiased and consistent,
however, the MLE of the variance, o> converges to (T — 1)a?/T. (The degrees of
freedom correction will adjust for this, but the MLE does not correct for degrees of
freedom.) Finally, in the Poisson regression model (Section 19.3.2), the unconditional
MLE is consistent [see Cameron and Trivedi (1988)]. Almost nothing else is known
with certainty —that is, as a firm theoretical result —about the behavior of the maximum
likelihood estimator in the presence of fixed effects. The literature appears to take as
given the qualitative wisdom of Hsiao and Abrevaya, that the FE/MLE is inconsistent
when T'is small and fixed. (The implication that the severity of the inconsistency declines
as T increases makes sense, but, again, remains to be shown analytically.)

The result for the two-period binary logit model is a standard result for discrete
choice estimation. Several authors, all using Monte Carlo methods have pursued the
result for the logit model for larger values of 7. [See, for example, Katz (2001).] Greene
(2004) analyzed the incidental parameters problem for other discrete choice models
using Monte Carlo methods. We will examine part of that study.

The current studies are preceded by a small study in Heckman (1981) which exam-
ined the behavior of the fixed effects MLE in the following experiment:

Zie = 0.1¢ +0.5z; 1 + tir, zio = S + 10.0u9,

u; ~ U[-0.5,0.5],i =1,...,100,t =0,...,8,
Y = octi + Bzir + &ir, T ~ N[0, 1], &; ~ N[0, 1],
vi = 1if Y > 0, 0 otherwise.
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Heckman attempted to learn something about the behavior of the MLE for the probit
model with T = 8. He used values of 8 = —1.0, —0.1, and 1.0 and o, = 0.5, 1.0, and 3.0.
The mean values of the maximum likelihood estimates of § for the nine cases are as
follows:

B=-10 B=-01 B=10

o, =05 —0.96 —0.10 0.93
o, =10 =095 —0.09 0.91
o =30 —0.96 —0.10 0.90.

The findings here disagree with the received wisdom. Where there appears to be a bias
(that is, excluding the center column), it seems to be quite small, and toward, not away
from zero.

The Heckman study used a very small sample and, moreover, analyzed the fixed
effects estimator in a random effects model (note that ; is independent of z;). Greene
(2004a), using the same parameter values, number of replications, and sample design,
found persistent biases away from zero on the order of 15-20 percent. Numerous authors
have extended the logit result for 7' = 2 with larger values of T, and likewise persistently
found biases, away from zero that diminish with increases in 7. Greene (2004a) redid
the experiment for the logit model and then replicated it for the probit and ordered
probit models. The experiment is designed as follows: All models are based on the same
index function

wir = o + Bxiy + 8dy;, where f=6=1,
Xit ~ N[O, 1], di = l[xi, + hi > 0], where h;; ~ N[O, 1],
o = ﬁfc; —+ vi, v; ~ N[O, 1]

The regressors d;; and x;; are constructed to be correlated. The random term 4;, is used
to produce independent variation in dj;;. There is, however, no within group correlation
in x;; or d;; built into the data generator. (Other experiments suggested that the marginal
distribution of x; mattered little to the outcome of the experiment.) The correlations
between the variables are approximately 0.7 between x; and d;,, 0.4 between «; and
x;;, and 0.2 between «; and d;,. The individual effect is produced from independent
variation, v; as well as the group mean of x;.. The latter is scaled by /7 to maintain the
unit variances of the two parts—without the scaling, the covariance between «; and x;,
falls tozero as T increases and X; converges to its mean of zero). Thus, the data generator
for the index function satisfies the assumptions of the fixed effects model. The sample
used for the results below contains n = 1,000 individuals. The data generating processes
for the discrete dependent variables are as follows:

probit: yie = wir + &ir > 0], & ~ N[0, 1],
ordered probit:  y; = 1wy + &y > 0] + 1[wy; + & > 3], e ~ N[0, 1],
loglt Yie = l[Wi[ + v > O], Vi = log[ul'[/(l — u,',)], Uiy ~ U[O, 1]

(The three discrete dependent variables are described in Chapter 17.)

Table 15.5 reports the results of computing the MLE with 200 replications. Models
were fit with T = 2, 3,5, 8, 10, and 20. (Note that this includes Heckman’s experiment.)
Each model specification and group size (7)) is fit 200 times with random draws for ¢;
or u;,.. The data on the regressors were drawn at the beginning of each experiment (that
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TABLE 15.5 Means of Empirical Sampling Distributions, N = 1,000 Individuals
Based on 200 Replications

T=2 T=3 T=5 T=8 T=10 T =20
B 8 B 8 B 8 B s B é B 8

Logit Coeff  2.020 2.027 1.698 1.668 1.379 1.323 1.217 1.156 1.161 1.135 1.069 1.062
Logit M.E.*  1.676 1.660 1.523 1.477 1.319 1254 1.191 1.128 1.140 1.111 1.034 1.052
Probit Coeff 2.083 1.938 1.821 1.777 1.589 1.407 1.328 1.243 1.247 1.169 1.108 1.068
Probit M.E.* 1.474 1388 1392 1354 1.406 1231 1.241 1.152 1.190 1.110 1.088 1.047
Ord. Probit  2.328 2.605 1.592 1.806 1.305 1.415 1.166 1.220 1.131 1.158 1.058 1.068

2 Average ratio of estimated marginal effect to true marginal effect.

is, for each T') and held constant for the replications. The table contains the average
estimate of the coefficient and, for the binary choice models, the partial effects. The
value at the extreme left corresponds to the received result, the 100 percent bias in
the T = 2 case. The remaining values show, as intuition would suggest, that the bias
decreases with increasing 7. The benchmark case of T = 8, appears to be less benign
than Heckman’s results suggested. One encouraging finding for the model builder is that
the biases in the estimated marginal effects appears to be somewhat less than for the
coefficients. Greene (2004b) extends this analysis to some other models, including the
tobit and truncated regression models discussed in Chapter 18. The results there suggest
that the conventional wisdom for the tobit model may not be correct—the incidental
parameters problem seems to appear in the estimator of o2 in the tobit model, not in
the estimators of the slopes. This is consistent with the linear regression model, but not
with the binary choice models.

15.6 SIMULATION-BASED ESTIMATION

Sections 15.3-15.5 developed a set of tools for inference about model parameters us-
ing simulation methods. This section will describe methods for using simulation as part
of the estimation process. The modeling framework arises when integrals that cannot
be computed directly appear in the estimation criterion function (sum of squares, log-
likelihood, and so on). To illustrate, and begin the development, in Section 15.6.1, we will
construct a nonlinear model with random effects. Section 15.6.2 will describe how sim-
ulation is used to evaluate integrals for maximum likelihood estimation. Section 15.6.3
will develop an application, the random effects regression model.

15.6.1 RANDOM EFFECTS IN A NONLINEAR MODEL

In Example 11.16, we considered a nonlinear regression model for the number of doctor
visits in the German Socioeconomic Panel. The basic form of the nonlinear regression
model is

El yulxu] = expx,B),t =1,...,T,i=1,...,n

In order to accommodate unobserved heterogeneity in the panel data, we extended the
model to include a random effect,

E[ yielxit, ;] = exp(x,B + u;), 15-9)
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where u; is an unobserved random effect with zero mean and constant variance, pos-
sibly normally distributed —we will turn to that shortly. We will now go a step further
and specify a particular probability distribution for y;. Since it is a count, the Poisson
regression model would be a natural choice,
exp(— i)}
D YirlXie, ;) = %, wir = exp(x;, B + u;). (15-10)
-

Conditioned on x;, and u;, the 7; observations for individual / are independent. That is,
by conditioning on u;, we treat them as data, the same as x;;. Thus, the 7; observations
are independent when they are conditioned on x;, and ;. The joint density for the 7;
observations for individual i is the product,

T;

exp(—ti) Wy
POty Yizs - - Vi 1 X, u) = H SXPAT M) iy

i =expx,B+u),t=1,...,T.

1 Yir!
15-11)
In principle at this point, the log-likelihood function to be maximized would be
. " exp(—pui )
InL=> In /0 PR = exp(X,B + up). (15-12)
> [H O] = expf
But, it is not possible to maximize this log-likelihood because the unobserved u;,i =
1,...,n, appears in it. The joint distribution of (y;1, yi2, ..., yi.7i, 4;) is equal to the
marginal distribution for u; times the conditional distribution of y; = (yi1, ..., Yi.7i)
given u;:

Pits Yizs - Vi1 il Xe) = p(yits Yizs - - - Vi1 1Xa, 1) f(uy),

where f(u;) is the marginal density for u;. Now, we can obtain the marginal distribution
of (yi1,Yi2» - -»yi,11) without u; by

pOit, Yiz, - Vi1 Xi) = / POty Yizs - Vi 1 X, w) f(w)du;.

Uu;

For the specific application, with the Poisson conditional distributions for y;|u; and a
normal distribution for the random effect,

T )

00 i ex (_M )I/Ly” 1 U ,

pWits Yizs -+ Vi1 Xi) = / 11 pi,n” —¢ (—l) du;, i = exp(x;,B + u;).
-0 |} Vie+ o o

The log-likelihood function will now be

R { ~ [ exp(—piu)
ne=3"mi [ ([ ERC L
i=1 -

1 Yie!

1 i
() d“i} i = exp(X},B + ;). (15-13)
o2

o

The optimization problem is now free of the unobserved u;, but that complication has
been traded for another one, the integral that remains in the function.

To complete this part of the derivation, we will simplify the log-likelihood function
slightly in a way that will make it fit more naturally into the derivations to follow. Make
the change of variable u; = ow; where w; has mean zero and standard deviation one.
Then, the Jacobian is du; = odw;, and the limits of integration for w; are the same as for
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u;. Making the substitution and multiplying by the Jacobian, the log-likelihood function
becomes

Ti

n Io%) . it
InL= Zln {/ lH %] ¢ (W) dwi} . i = exp(x; B +ow;). (15-14)
i—1

—00 =1 i

The log-likelihood is then maximized over (8, o). The purpose of the simplification is to
parameterize the model so that the distribution of the variable that is being integrated
out has no parameters of its own. Thus, in (15-14), w; is normally distributed with mean
zero and variance one.

In the next section, we will turn to how to compute the integrals. Section 14.9.6.c
analyzes this model and suggests the Gauss—Hermite quadrature method for computing
the integrals. In this section, we will derive a method based on simulation, Monte Carlo
integration.*

15.6.2 MONTE CARLO INTEGRATION

Integrals often appear in econometric estimators in “open form,” that is, in a form
for which there is no specific form function that is equivalent to them. (E.g., the in-
tegral, fot 0 exp(—Ow)dw = 1 — exp(—01), is in closed form. The integral in (15-14)
is in open form.) There are various devices available for approximating open form
integrals— Gauss—Hermite and Gauss-Laguerre quadrature noted in Section 14.9.6.c
and in Appendix E2.4 are two. The technique of Monte Carlo integration can often be
used when the integral is in the form

h(y) = / gyw) fwydw = E,[g(yIw)]

where f(w) is the density of w and and w is a random variable that can be simulated.
[There are some necessary conditions on w and g(y|w) that will be met in the applications
that interest us here. Some details appear in Cameron and Trivedi (2005) and Train
(2003).]

If wi, wa, ..., w, are a random sample of observations on the random variable w
and g(w) is a function of w with finite mean and variance, then by the law of large
numbers [Theorem D.4 and the corollary in (D-5)],

1
plim- l;g(wi) = E[gw)].

The function in (15-14) is in this form;

/°° ﬁ exp[—exp(X,,8 + ow;)][exp(X]B + ow;)]”"]
—00 yit!
=1

= E,, [§(i1, Yiz, -, yinIwi, Xi, B, 0)]

¢ (wi)dw;

4The term “Monte Carlo” is in reference to the casino at Monte Carlo, where random number generation is
a crucial element of the business.
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where

T
Texp[—exp(x,B + ow))][exp(x,B + ow;) ]
g(yilv)’i29 ---,YiY;|Wi7Xi,ﬂ15) — H p[ p ztﬂ i ][ p( uﬁ z)] ]

|
=1 Yie:

and w; is a random variable with standard normal distribution. It follows, then, that

R

1 & expl— exp(x,8 + awi)][exp(x,B + ow;)]"]
lim i - ‘ -

p ; E Yie!

- /OO [ﬂ exp[— exp(x},B + ow)][exp(x;,B + ow;)]"]

_ Yie!

t=1

(15-15)

o (W) dw;.

oo

This suggests the strategy for computing the integral. We can use the methods developed
in Section 15.2 to produce the necessary set of random draws on w; from the standard
normal distribution and then compute the approximation to the integral according to
(15-15).

Example 15.8 Fractional Moments of the Truncated Normal
Distribution
The following function appeared in Greene’s (1990) study of the stochastic frontier model:

© M1 | z=(-e=002)

Jo 219 [%} dz
© 1, | z=(=£=00?) '
0 §¢[ Ea - }dz

The integral only exists in closed form for integer values of M. However, the weighting function
that appears in the integral is of the form

f(2) 20 (34)

T Problz>0] [ 1p(22)az

This is a truncated normal distribution. It is the distribution of a normally distributed variable z
with mean p and standard deviation o, conditioned on z being greater than zero. The integral
is equal to the expected value of z given that z is greater than zero when z is normally
distributed with mean u = —e — 602 and variance o2.

The truncated normal distribution is examined in Section 18.2. The function h(M, ¢) is the
expected value of z when z is the truncation of a normal random variable with mean . and
standard deviation o. To evaluate the integral by Monte Carlo integration, we would require
a sample z4, ..., zg from this distribution. We have the results we need in (15-4) with L = 0
S0 P, = ®[0 — (—& — 80?) /o] = ®(g/o +60) and U = 400 so Py = 1. Then, adraw on z is
obtained by

h(M, ¢) =

f(zlz > Q)

Z=pu+0od '[P +F(1-P)l.

where F is the primitive draw from U[0, 1]. Finally, the integral is approximated by the simple
average of the draws,

R
h(M, &) ~ :—?Zz[e, 0,0, FM.
r=1

This is an application of Monte Carlo integration. In certain cases, an integral can
be approximated by computing the sample average of a set of function values. The
approach taken here was to interpret the integral as an expected value. Our basic
statistical result for the behavior of sample means implies that with a large enough



Greene-2140242

book November 24, 2010 23:28

CHAPTER 15 4 Simulation-Based Estimation and Inference 625

sample, we can approximate the integral as closely as we like. The general approach
is widely applicable in Bayesian econometrics and has begun to appear in classical
statistics and econometrics as well.?

15.6.2.a Halton Sequences and Random Draws
for Simulation-Based Integration

Monte Carlo integration is used to evaluate the expectation

Elg)] = / g (0 f(x) dx

where f(x) is the density of the random variable x and g(x) is a smooth function. The
Monte Carlo approximation is

E[g)] = Z g(x).

Convergence of the approximation to the expectation is based on the law of large
numbers—a random sample of draws on g(x) will converge in probability to its ex-
pectation. The standard approach to simulation-based integration is to use random
draws from the specified distribution. Conventional simulation-based estimation uses
a random number generator to produce the draws from a specified distribution. The
central component of this approach is drawn from the standard continuous uniform
distribution, U[0, 1]. Draws from other distributions are obtained from these draws by
using transformations. In particular, for a draw from the normal distribution, where u;
is one draw from U[0, 1], v; = ®~(&;). Given that the initial draws satisfy the necessary
assumptions, the central issue for purposes of specifying the simulation is the number
of draws. Good performance in this connection requires very large numbers of draws.
Results differ on the number needed in a given application, but the general finding is that
when simulation is done in this fashion, the number is large (hundreds or thousands). A
consequence of this is that for large-scale problems, the amount of computation time in
simulation-based estimation can be extremely large. Numerous methods have been de-
vised for reducing the numbers of draws needed to obtain a satisfactory approximation.
One such method is to introduce some autocorrelation into the draws —a small amount
of negative correlation across the draws will reduce the variance of the simulation.
Antithetic draws, whereby each draw in a sequence is included with its mirror image
(w; and —w; for normally distributed draws, w; and 1 — w; for uniform, for example) is
one such method. [See Geweke (1988) and Train (2009, Chapter 9).]

Procedures have been devised in the numerical analysis literature for taking “intel-
ligent” draws from the uniform distribution, rather than random ones. [See Train (1999,
2009) and Bhat (1999) for extensive discussion and further references.] An emerging
literature has documented dramatic speed gains with no degradation in simulation per-
formance through the use of a smaller number of Halton draws or other constructed,
nonrandom sequences instead of a large number of random draws. These procedures
appear to reduce vastly the number of draws needed for estimation (sometimes by a

5See Geweke (1986, 1988, 1989, 2005) for discussion and applications. A number of other references are given
in Poirier (1995, p. 654) and Koop (2003).
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factor of 90 percent or more) and reduce the simulation error associated with a given
number of draws. In one application of the method to be discussed here, Bhat (1999)
found that 100 Halton draws produced lower simulation error than 1,000 random num-
bers.

A sequence of Halton draws is generated as follows: Let r be a prime number.
Expand the sequence of integers g = 1, 2, ... in terms of the base r as

1
g= Zbiri where, by construction,0 < b; <r —landr! < g < rI*!,
i=0

The Halton sequence of values that corresponds to this series is

1
H(g) =Y br "
i =0

For example, using base 5, the integer 37 has by = 2, by = 2, and b3 = 1. Then
Hs(37) =2 x5 1 42x5241x573=0488.

The sequence of Halton values is efficiently spread over the unit interval. The sequence
is not random as the sequence of pseudo-random numbers is; it is a well-defined de-
terministic sequence. But, randomness is not the key to obtaining accurate approxima-
tions to integrals. Uniform coverage of the support of the random variable is the central
requirement. The large numbers of random draws are required to obtain smooth and
dense coverage of the unit interval. Figures 15.3 and 15.4 show two sequences of 1,000
Halton draws and two sequences of 1,000 pseudo-random draws. The Halton draws are
based onr = 7 and r = 9. The clumping evident in the first figure is the feature (among
others) that mandates large samples for simulations.

FIGURE 15.3 Bivariate Distribution of Random Uniform Draws.
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FIGURE 15.4 Bivariate Distribution of Halton (7) and Halton (9).

Example 15.9 Estimating the Lognormal Mean
We are interested in estimating the mean of a standard lognormally distributed variable.
Formally, this is

. NPz 2

To use simulation for the estimation, we will average n draws on y = exp(x) where x is drawn
from the standard normal distribution. To examine the behavior of the Halton sequence as
compared to that of a set of random draws, we did the following experiment. Let x; ; = the
sequence of values for a standard normally distributed variable. We draw t = 1, ..., 10,000
draws. Fori = 1, we used arandom number generator. Fori = 2, we used the sequence of the
first 10,000 Halton draws using r = 7. The Halton draws were converted to standard normal
using the inverse normal transformation. To finish preparation of the data, we transformed x; ;
to yi.+ = exp(x;¢) Then, forn = 100,110, ..., 10,000, we averaged the first n observations in
the sample. Figure 15.5 plots the evolution of the sample means as a function of the sample
size. The lower trace is the sequence of Halton-based means. The greater stability of the
Halton estimator is clearly evident in the figure.

Elyl= /oo exp(x) ! exp [—1x2} dx = 1.649.

15.6.2.b Computing Multivariate Normal Probabilities Using
the GHK Simulator

The computation of bivariate normal probabilities is typically done using quadrature
and requires a large amount of computing effort. Quadrature methods have been
developed for trivariate probabilities as well, but the amount of computing effort needed
at this level is enormous. For integrals of level greater than three, satisfactory (in terms
of speed and accuracy) direct approximations remain to be developed. Our work thus
far does suggest an alternative approach. Suppose that x has a K-variate normal distri-
bution with mean vector 0 and covariance matrix X. (No generality is sacrificed by the
assumption of a zero mean, because we could just subtract a nonzero mean from the
random vector wherever it appears in any result.) We wish to compute the K-variate
probability, Probla; <x; <bj,a; < x, < by, ...,ax < xg < bg]. Our Monte Carlo
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FIGURE 15.5 Estimates of E[exp(x)] Based on Random Draws and
Halton Sequences, by Sample Size.

integration technique is well suited for this problem. As a first approach, consider sam-
pling R observations, x,, 7 = 1, ..., R, from this multivariate normal distribution, using
the method described in Section 15.2.4. Now, define

d,=1[a1<x,1<b1,a2<x,2< bg,...,aK<er< bK].

(That is, d, = 1 if the condition is true and 0 otherwise.) Based on our earlier results, it
follows that

R
- 1
plimd = plimTe Zd, =Probla; < x; <bj,ay <x; <bs,...,ag < xx < bg].°

r=1

This method is valid in principle, but in practice it has proved to be unsatisfactory for
several reasons. For large-order problems, it requires an enormous number of draws
from the distribution to give reasonable accuracy. Also, even with large numbers of
draws, it appears to be problematic when the desired tail area is very small. Nonetheless,
the idea is sound, and recent research has built on this idea to produce some quite
accurate and efficient simulation methods for this computation. A survey of the methods
is given in McFadden and Ruud (1994).”

Among the simulation methods examined in the survey, the GHK smooth recursive
simulator appears to be the most accurate.® The method is surprisingly simple. The

5This method was suggested by Lerman and Manski (1981).

7 A symposium on the topic of simulation methods appears in Review of Economic Statistics, Vol. 76, November
1994. See, especially, McFadden and Ruud (1994), Stern (1994), Geweke, Keane, and Runkle (1994), and
Breslaw (1994). See, as well, Gourieroux and Monfort (1996).

8See Geweke (1989), Hajivassiliou (1990), and Keane (1994). Details on the properties of the simulator are
given in Borsch-Supan and Hajivassil (1993).
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general approach uses

R K
1
Prob[a; < x; <b1,az<xz<b2,...,a1<<x1<<b1<]%7e E HQ’k’
r=1 k=1

where Q, are easily computed univariate probabilities. The probabilities O, are com-
puted according to the following recursion: We first factor X using the Cholesky fac-
torization ¥ = CC’, where C is a lower triangular matrix (see Section A.6.11). The
elements of C are Iy, where [y, = 0if m > k. Then we begin the recursion with

O = @1/l — P(ar/ ).

Note that /;; = o013, so this is just the marginal probability, Prob[a; < x; < b1]. Now,
using (15-4), we generate a random observation ¢,1 from the truncated standard normal
distribution in the range

A to By = ay/liy to by /1.

(Note, again, that the range is standardized since /1; = o1;.) For steps k = 2, ..., K,

compute
k—1
Ak = [ak - Zlkmgrm] /lkkv
&
Brk = [bk - Z lkm&'m] /lkk~
m=1
Then

Qrk = (D(B,k) - cID(flrk)-

Finally, in preparation for the next step in the recursion, we generate a random draw
from the truncated standard normal distribution in the range A, to B.x. This process is
replicated R times, and the estimated probability is the sample average of the simulated
probabilities.

The GHK simulator has been found to be impressively fast and accurate for fairly
moderate numbers of replications. Its main usage has been in computing functions
and derivatives for maximum likelihood estimation of models that involve multivariate
normal integrals. We will revisit this in the context of the method of simulated moments
when we examine the probit model in Chapter 17.

15.6.3 SIMULATION-BASED ESTIMATION OF RANDOM
EFFECTS MODELS

In Section 15.4.2, (15-14), and (15-5), we developed a random effects specification for
the Poisson regression model. For feasible estimation and inference, we replace the
log-likelihood function,

T

InL= anln { / h [H exp[— exp(x;,B + owi)][exp(x;.B + ow»]y”]] ¢ (wi) dwl} ,
i=1 -

=1 Yir!
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with the simulated log-likelihood function,

n R T ’ . ’ . it
ln LS — Z ln {% Z H eXp[_ eXp(xitﬂ + O'W;“);l[exp(xuﬁ + ler)]y ] } . (15'16)
i=1 "

r=1 t=1

We now consider how to estimate the estimate the parameters via maximum simulated
likelihood. In spite of its complexity, the simulated log-likelihood will be treated in
the same way that other log-likelihoods were handled in Chapter 14. That is, we treat
In Lg as a function of the unknown parameters conditioned on the data, In Lg(B, o)
and maximize the function using the methods described in Appendix E, such as the
DFP or BFGS gradient methods. What is needed here to complete the derivation are
expressions for the derivatives of the function. We note that the function is a sum of n
terms; asymptotic results will be obtained in #; each observation can be viewed as one
T;-variate observation.

In order to develop a general set of results, it will be convenient to write each single
density in the simulated function as

Py(B,0) = f(yilXit, Wir, B, 0) = Fir(8) = Piyy.
For our specific application in (15-16),
_ exp[— exp(x},B + ow;)]|[exp(x;,B + aw;,)]*"]

Py = , .
Yit-

The simulated log-likelihod is, then,

n R T
InLg = Zln {11? Z H P,»,,(o)} . (15-17)
i=1

r=1 t=1

Continuing this shorthand, then, we will also define

T
P, =Py(0) =[] Pr®)
=1

so that
n 1 R
InLg= ;m {7?; B,(O)} .
And, finally,
1 R
P=F0O)=73> P
r=1
so that

InLs = InP(6). (15-18)
i=1

With this general template, we will be able to accommodate richer specifications of the
index function, now x, 8 + ow;, and other models such as the linear regression, binary
choice models, and so on, simply by changing the specification of P,.

The algorithm will use the usual procedure,

A (k)

k—1
) (k=1)

=0 + update vector,
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starting from an initial value, 9(0), and will exit when the update vector is sufficiently
small. A natural initial value would be from a model with no random effects; that is, the
pooled estimator for the linear or Poisson or other model with o = 0. Thus, at entry to
the iteration (update), we will compute

In I:(Skfl)

_ zn:ln {l i ﬁ exp [— exp (X:‘;B(k_l) + 5("’1)Wir)] [eXp (thﬁﬂc—l) + &(kfl)wir)]y,u] } |
i=1 R Yie!

To use a gradient method for the update, we will need the first derivatives of the function.
Computation of an asymptotic covariance matrix may require the Hessian, so we will
obtain this as well.

Before proceeding, we note two important aspects of the computation. First, a
question remains about the number of draws, R, required for the maximum simulated
likelihood estimator to be consistent. The approximated function,

r=1 t=1

R 1 &
Eu[fylxom]= 5> FIxw)
r=1

is an unbiased estimator of E, [ f(y|x, w)]. However, what appears in the simulated log-
likelihood is In E,[ f(y|x, w)], and the log of the estimator is a biased estimator of the
log of its expectation. To maintain the asymptotic equivalence of the MSL estimator of 6
and the true MLE (if w were observed), it is necessary for the estimators of these terms
in the log-likelihood to converge to their expectations faster than the expectation of In
L converges to its expectation. The requirement [see Gourieroux and Monfort (1996)]
is that n'/2/ R — 0. The estimator remains consistent if #!/> and R increase at the same
rate; however, the asymptotic covariance matrix of the MSL estimator will then be
larger than that of the true MLE. In practical terms, this suggests that the number of
draws be on the order of n°*® for some positive 8. [This does not state, however, what
R should be for a given #; it only establishes the properties of the MSL estimator as
n increases. For better or worse, researchers who have one sample of n observations
oftenrely on the numerical stability of the estimator with respect to changes in R as their
guide. Hajivassiliou (2000) gives some suggestions.] Note, as well, that the use of Halton
sequences or any other autocorrelated sequences for the simulation, which is becoming
more prevalent, interrupts this result. The appropriate counterpart to the Gourieroux
and Monfort result for random sampling remains to be derived. One might suspect that
the convergence result would persist, however. The usual standard is several hundred.

Second, it is essential that the same (pseudo- or Halton) draws be used every time
the function or derivatives or any function involving these is computed for observation
i. This can be achieved by creating the pool of draws for the entire sample before
the optimization begins, and simply dipping into the same point in the pool each time a
computation is required for observation i. Alternatively, if computer memory is an issue
and the draws are re-created for each individual each time, the same practical result can
be achieved by setting a preassigned seed for individual i, seed(i) = s(i) for some simple
monotonic function of i, and resetting the seed when draws for individual i are needed.

To obtain the derivatives, we begin with

sty _ g 0/R 27 (1 P®)) /00
06 /R XTI Pu6)

i=1

(15-19)
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For the derivative term,
i 1 7
o[ Pur6)/96 = (H B-,r(o)) 0 <1n 11 me)) /96
t=1
(H Pm«n) S 01 Pu(6)/00

t=1
%

— P (0) Z 31n Pitrw)/aa) = 2® Y gin®)
— P0)g0). -

Now, insert the result of (15-20) in (15-19) to obtain

R
n Plr0 ir0
8lan(0):Zrz1 (0)gir(0)

R
o= e
r=1

(15-20)

(1s5-21)

Define the weight Q;,(0) = P,~,(0)/E 1 Pr(@)sothat0 < Q;(8) < 1and ER L, 0i(0) =1.

Then,

dIn Ls(‘” -y Z Qi) () = > &),
i=1

i=1 r=1

To obtain the second derivatives, define H;,(6) = 8 In P,,(0)/0096’ and let

T
H;.(6) = > Hi,(0)
t=1
and

R
H;(0) =) 0y(0)H,;(0).

(15-22)

(15-23)

Then, working from (15-21), the second derivatives matrix breaks into three parts as

follows:

SR B(0)H,(0) N SR P(0)gi(0)gi(0)

1 Pr6 1 Pr6
32 In Ls(o) n Zr:l ( ) Zr_l ( ) /
Toe0e 2| [SR @] [T P0)g®)]
h 2
SR R0

We can now use (15-20)—(15-23) to combine these terms;

9%1In Ls _ -

(15-24)
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An estimator of the asymptotic covariance matrix for the MSLE can be obtained by
computing the negative inverse of this matrix.

Example 15.710 Poisson Regression Model with Random Effects
For the Poisson regression model, § = (B, o)’ and

Py(0) = exp[— exp(x;,B + owi)llexp(x;B + owi) "] expl—puir(0)]ir(6)
itr = }//r! = yit!

9itr(0) = [Yit — 1ir(0)] (V);lltr) (15-25)

Hiir(0) = —pier(0) <V);,:tr) <|:(V,,t,> .

Estimates of the random effects model parameters would be obtained by using these
expressions in the preceding general template. We will apply these results in an applica-
tion in Chapter 19 where the Poisson regression model is developed in greater detail.

Example 15.11 Maximum Simulated Likelhood Estimation of the
Random Effects Linear Regression Model
The preceding method can also be used to estimate a linear regression model with random
effects. We have already seen two ways to estimate this model, using two-step FGLS in
Section 11.5.3 and by (closed form) maximum likelihood in Section 14.9.6.a. It might seem
reduntant to construct yet a third estimator for the model. However, this third approach will
be the only feasible method when we generalize the model to have other random parame-
ters in the next section. To use the simulation estimator, we define § = (B, oy, 0.). We will

require
T (Yit — X, B — ouw;)?

Pul#) = ——exp [ 202 :

e = X4 — ouWir) \ ( xi .
®) o? Wir (¢itr/0?) (;;:r)
it = - ’
B w2 ’ (15-26)

(i /; o) ~ (1/0)[(e5/0?) — 1]

woio = |00 () () ~teewred ()
itr =

—(2eir/02) (X wir)  —(3ef /o) +(1/07)

Note in the computation of the disturbance variance, af, we are using the sum of squared
simulated residuals. However, the estimator of the variance of the heterogeneity, o,, is not
being computed as a mean square. It is essentially the regression coefficient on w;.. One
surprising implication is that the actual estimate of o, can be negative. This is the same
result that we have encountered in other situations. In no case is there a natural estimator
of auz that is based on a sum of squares. However, in this context, there is yet another
surprising aspect of this calculation. In the simulated log-likelihood function, if every w;, for
every individual were changed to —w;, and ¢ is changed to —o, then the exact same value of
the function and all derivatives results. The implication is that the sign of ¢ is not identified
in this setting. With no loss of generality, it is normalized to positive (+) to be consistent with
the underlying theory that it is a standard deviation.
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15.7 A RANDOM PARAMETERS LINEAR

REGRESSION MODEL

We will slightly reinterpret the random effects model as
Yie = Boi + X1 B1 + €,
Boi = Bo + u;.
This is equivalent to the random effects model, though in (15-27), we reinterpret it as a

regression model with a randomly distributed constant term. In Section 11.11.1, we built
a linear regression model that provided for parameter heterogeneity across individuals,

(15-27)

Yit = X;tﬂi + &ir,

Bi=p+u;,

where u; has mean vector 0 and covariance matrix I'. In that development, we took a
fixed effects approach in that no restriction was placed on the covariance between u;
and x;;. Consistent with these assumptions, we constructed an estimator that involved
n regressions of y; on X; to estimate 8 one unit at a time. Each estimator is consistent
in 7;. (This is precisely the approach taken in the fixed effects model, where there are
n unit specific constants and a common . The approach there is to estimate f§ first and
then to regress y; — X;brspy on d; to estimate «;.) In the same way that assuming that
u; is uncorrelated with x; in the fixed effects model provided a way to use FGLS to
estimate the parameters of the random effects model, if we assume in (15-28) that u;
is uncorrelated with X;, we can extend the random effects model in Section 15.4.3 to a
model in which some or all of the other coefficients in the regression model, not just the
constant term, are randomly distributed. The theoretical proposition is that the model
is now extended to allow individual heterogeneity in all coefficients.

To implement the extended model, we will begin with a simple formulation in which
u; has diagonal covariance matrix —this specification is quite common in the literature.
The implication is that the random parameters are uncorrelated; g; x has mean S and
variance yZ. The model in (15-26) can modified to allow this case with a few minor
changes in notation. Write

(15-28)

ﬂi =B+ Aw; (15-29)
where A is a diagonal matrix with the standard deviations (y1,2,...,¥k) of
(w1, ..., u;g) on the diagonal and w; is now a random vector with zero means and

unit standard deviations. The parameter vector in the model is now

0=(,31,...,,31(,)»1,...,)\1(,0'5).

(In an application, some of the y’s might be fixed at zero to make the corresponding
parameters nonrandom.) In order to extend the model, the disturbance in (15-16),
gir = (Vi — Xie — 0uwir), becomes

&ir = Yir — X (B + AWip). (15-30)
Now, combine (15-17) and (15-29) with (15-26) to produce
- [[RNIS | (v — x},(B + Awit)>2
Inlg=)» In{— — ‘ . 15-31
nLg EH{R;H ] 2n€Xp 203 (53)

0,
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In the derivatives in (15-26), the only change needed to accommodate this extended
model is that the scalar w;, becomes the vector (w;, 1Xi1, Wir2Xir2, - - . » Wir. kXir. k). This
is the element-by-element product of the regressors, x;;, and the vector of random draws,
w;,, which is the Hadamard product, direct product, or Schur product of the two vectors,
denoted x;; o W;,..

Although only a minor change in notation in the random effects template in
(15-26), this formulation brings a substantial change in the formulation of the model.
The integral in (15-16) is now a K dimensional integral. Maximum simulated likelihood
estimation proceeds as before, with potentially much more computation as each “draw”
now requires a K-variate vector of pseudo-random draws.

The random parameters model can now be extended to one with a full covariance
matrix, I as we did with the fixed effects case. We will now let A in (15-29) be the
Cholesky factorization of T', so T = AA’. (This was already the case for the simpler
model with diagonal I'.) The implementation in (15-26) will be a bit complicated. The
derivatives with respect to g are unchanged. For the derivatives with respect to A, it
is useful to assume for the moment that A is a full matrix, not a lower triangular one.
Then, the scalar w;, in the derivative expression becomes a K x 1 vector in which the
(k—1) x K + 1™ element is x;, x x w;,;. The full set of these is the Kronecker product
of x;, and w;,, x;; ® w;,. The necessary elements for maximization of the log-likelihood
function are then obtained by discarding the elements for which Ay are known to be
zero—these correspond to/ > k.

In (15-26), for the full model, for computing the MSL estimators, the derivatives
with respect to (8, A). are equated to zero. The result after some manipulation is

i

InLs 1 u—XB+Aw)) [ xy
3B, A) _IZ:;I_QZZ o2 |:Xit®wir:| =0

r=1 t=1

By multiplying this by o2, we find, as usual, that o2 is not needed for computation of the
estimates of (B, A). Thus, we can view the solution as the counterpart to least squares,
which might call, instead, the minimum simulated sum of squares estimator. Once the
simulated sum of squares is minimized with respect to 8 and A, then the solution for o2
can be obtained via the likelihood equation,

Bln LS _ 1 { 1 R —_7; + ZtTI:l (yit _X;[(ﬂ +Avi,r))2] } :0

do? _Z I_?Z 202 208

i=1 r=1

Multiply both sides of this equation by —20 to obtain the equivalent condition

n i ! 2
ag;stzz{%iTi 24 >ty (vie = X, (B + Aviy)) H:O.
3 r=1

—0
3
; I
i=1

By expanding this expression and manipulating it a bit, we find the solution for o is

) - 1 & ) ZE_I (yie — X[, (B + Avi,r))2
67 = Z Qil,—e Zogi,, where 67, = == ;,
i=1 r=1 ¢

and Q; = T;/ %, T; is a weight for each group that equals 1/#x if T; is the same for all ;.
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Example 15.12 Random Parameters Wage Equation
Estimates of the random effects log wage equation from the Cornwell and Rupert study in
Examples 11.1 and 15.6 are shown in Table 15.6. The table presents estimates based on
several assumptions. The encompassing model is

InWage;; = B1,i + Bo,iWks; ¢ + - - - + Bro,jFem; + B3, Blk; + &z, (15-32)
Bri = Br + MWk, Wik ~ N[0, 1], k =1, ..., 13. (15-33)

Under the assumption of homogeneity, that is, Ax = 0, the pooled OLS estimator is consistent
and efficient. As we saw in Chapter 11, under the random effects assumption, thatis A, =0
fork =2,...,13 but A1 # 0, the OLS estimator is consistent, as are the next three estimators
that explicitly account for the heterogeneity. To consider the full specification, write the model
in the equivalent form

13
InWagej; = x;B + | w1 + Z )»kWi,kX/r,k) + &t
k=2

= X;;B + Wi + &ir.

TABLE 15.6 Estimated Wage Equations (Standard Errors in Parentheses)

Feasible Maximum Maximum Random Parameters Max.
Two Likelihood  Simulated Simulated Likelihood®

Variable Pooled OLS  Step GLS Likelihood* B A

Wks .00422 .00096 .00084 .00086 —.00029 .00614
(.00108) (-00059) (.00060) (.00099) (.00082) (.00042)

South —.05564 —.00825 .00577 .00935 .04941 20997
(.01253) (.02246) (.03159) (.031006) (.02002) (.01702)

SMSA 15167 —.02840 —.04748 —.04913 —.05486 .01165
(.01207) (.01616) (.01896) (.03710) (.01747) (.02738)

MS .04845 —.07090 —.04138 —.04142 —.06358%* .02524
(.02057) (.01793) (.01899) (.02176) (.01896) (.03190)

Exp .04010 .08748 10721 10668 .09291 .01803
(.00216) (.00225) (.00248) (.00290) (.00216) (.00092)
Exp? —.00067 —.00076 —.00051 —.00050 —.00019 .0000812
(.0000474)  (.0000496)  (.0000545)  (.0000661)  (.0000732) (-00002)

Occ —.14001 —.04322 —.02512 —.02437 —.00963 .02565
(.01466) (.01299) (.01378) (.02485) (.01331) (.01019)

Ind .04679 .00378 .01380 .01610 .00207 .02575
(.01179) (.01373) (.01529) (.03670) (.01357) (.02420)

Union .09263 .05835 .03873 .03724 .05749 15260
(.01280) (.01350) (.01481) (.02814) (.01469) (.02022)

Ed .05670 10707 13562 13952 .09356 .00409
(.00261) (.00511) (.01267) (.03746) (-00359) (.00160)

Fem —.36779 —.30938 —.17562 —.11694 —.03864 28310
(.02510) (.04554) (.11310) (.10784) (.02467) (.00760)

Blk —.16694 —.21950 —.26121 —.15184 —.26864 .02930
(.02204) (.05252) (.13747) (.08356) (.03156) (.03841)

Constant 5.25112 4.04144 3.12622 3.08362 3.81680 26347
(.07129) (.08330) (.17761) (.48917) (.06905) (.01628)

oy .00000 31453 15334 21164
(.03070)
o, .34936 15206 .83949 15326 14354
(.00217) (.00208)
In L —1523.254 307.873 568.446 668.630

@ Based on 500 Halton draws
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This is still a regression: E[W; + ¢;|X] = 0. (For the product terms, E[Mw; Xt x|X] =
McXit k EIWi k|Xit] = 0.) Therefore, even OLS remains consistent. The heterogeneity induces
heteroscedasticity in W; so the OLS estimator is inefficient and the conventional covari-
ance matrix will be inappropriate. The random effects estimators of B in the center three
columns of Table 15.6 are also consistent, by a similar logic. However, they likewise are
inefficient. The result at work, which is specific to the linear regression model, is that we
are estimating the mean parameters, g, and the variance parameters, A, and o, sepa-
rately. Certainly, if A, is nonzero for k = 2,...,13, then the pooled and RE estimators
that assume they are zero are all inconsistent. With B estimated consistently in an other-
wise misspecified model, we would call the MLE and MSLE pseudo maximum likelihood
estimators.

Comparing the ML and MSL estimators of the random effects model, we find the esti-
mates are similar, though in a few cases, noticeably different nonetheless. The estimates
tend to differ most when the estimates themselves have large standard errors (small £ ratios).
This is partly due to the different methods of estimation in a finite sample of 595 obser-
vations. We could attribute at least some of the difference to the approximation error in
the simulation compared to the exact evaluation of the (closed form) integral in the MLE.
The difference in the log-likelihood functions would be attributable to this as well. Note,
however, that the difference is smaller than it first appears—the comparison of 586.446 to
307.883 is misleading; the comparison should be of the difference of the two values from
the log-likelihood from the pooled model of —1523.254. This produces a difference of about
14 percent.

The full random parameters model is shown in the last two columns. Based on the
likelihood ratio statistic of 2(668.630 — 568.446) = 200.368 with 12 degrees of freedom,
we would reject the hypothesis that 1, = A3 = --- = X135 = 0. The 95 percent critical
value with 12 degrees of freedom is 21.03. This random parameters formulation of the
model suggests a need to reconsider the notion of “statistical significance” of the estimated
parameters. In view of (15-33), it may be the case that the mean parameter might well be
significantly different from zero while the corresponding standard deviation, A, might be large
as well, suggesting that a large proportion of the population remains statistically close to
zero. Consider the estimate of B2, the coefficient on Fem;. The estimate of the mean,
B2, is —0.03864 with an estimated standard error of 0.02467. This implies a confidence
interval for this parameter of —0.03864 + 1.96(0.02467) = [-0.086993, 0.009713] But, this
is only the location of the center of the distribution. With an estimate of A, of 0.2831, the
random parameters model suggests that in the population, 95 percent of individuals have
an effect of Fem; within —0.03864 + 1.96(0.2831) = [-0.5935, 0.5163]. This is still cen-
tered near zero but has a different interpretation from the simple confidence interval for g
itself. This analysis suggests that it might be an interesting exercise to estimate g; rather
than just the parameters of the distribution. We will consider that estimation problem in
Section 15.10.

The next example examines a random parameters model in which the covariance
matrix of the random parameters is allowed to be a free, positive definite matrix.
That is

’
Yit = X,‘zﬂi + &ir

15-34
Bi = B +u;, E[w;|X] =0, Var[w;|X] = Z ( )

This is the counterpart to the fixed effects model in Section 11.4. Note that the difference
in the specifications is the random effects assumption, E[u;|X] = 0. We continue to use
the Cholesky decomposition of > in the reparameterized model

B =B+ Aw;, E[w;|X] =0, Var[w;|X] =L
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Example 15.13 Least Simulated Sum of Squares Estimates of a

Production Function Model
In Example 11.19, we examined Munell’s production model for gross state product,

Ingsp; = B1 + P2 Inpc;; + B3 INhwy;, + B4 In water;,
+Bs Inutily + Bs Inemp; + Brunempy; + e, i =1,...,48;t=1,...,17.

The panel consists of state-level data for 17 years. The model in Example 11.19
(and Munnell’s) provide no means for parameter heterogeneity save for the constant term.
We have reestimated the model using the Hildreth and Houck approach. The OLS, feasible
GLS and maximum likelihood estimates are given in Table 15.7. The chi-squared statistic
for testing the null hypothesis of parameter homogeneity is 25,556.26, with 7(47) = 329
degrees of freedom. The critical value from the table is 372.299, so the hypothesis would
be rejected. Unlike the other cases we have examined in this chapter, the FGLS estimates
are very different from OLS in these estimates, in spite of the fact that both estimators are
consistent and the sample is fairly large. The underlying standard deviations are computed
using G as the covariance matrix. [For these data, subtracting the second matrix rendered G
not positive definite so, in the table, the standard deviations are based on the estimates using
only the first term in (11-86).] The increase in the standard errors is striking. This suggests
that there is considerable variation in the parameters across states. We have used (11-87) to
compute the estimates of the state-specific coefficients.

The rightmost columns of Table 15.7 present the maximum simulated likelihood estimates
of the random parameters production function model. They somewhat resemble the OLS
estimates, more so than the FGLS estimates, which are computed by an entirely different
method. The values in parentheses under the parameter estimates are the estimates of the
standard deviations of the distribution of u;, the square roots of the diagonal elements of
¥. These are obtained by computing the square roots of the diagonal elements of AA’. The

TABLE 15.7 Estimated Random Coefficients Models
Maximum Simulated
Least Squares Feasible GLS Likelihood
Standard Standard  Popn. Std. Std.

Variable Estimate Error Estimate Error Deviation Estimate Error

Constant 1.9260 0.05250 1.6533 1.08331 7.0782 1.9463 0.03569
(0.0411)

In pc 0.3120 0.01109 0.09409 0.05152 0.3036 0.2962 0.00882
(0.0730)

In hwy 0.05888  0.01541 0.1050 0.1736 1.1112 0.09515 0.01157
(0.146)

In water 0.1186 0.01236 0.07672 0.06743 0.4340 0.2434 0.01929
(0.343)

In util 0.00856  0.01235 —0.01489 0.09886 0.6322 —0.1855 0.02713
(0.281)

In emp 0.5497 0.01554 0.9190 0.1044 0.6595 0.6795 0.02274
(0.121)

unemp —0.00727 0.001384  —0.004706  0.002067 0.01266 —0.02318 0.002712
(0.0308)

o, 0.08542 0.2129 0.02748

In L 853.1372 1567.233
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estimate of A is shown here.

0.04114 0 0 0 0
0.00715 0.07266 O 0 0
—0.02446 0.12392 0.07247 O 0

A = 009972 —0.00644 0.31916 0.07614 0

—0.08928 0.02143 —0.25105 0.07583 0.04053 O
0.03842 —0.06321 —0.03992 —0.06693 —0.05490 0.00857 O

—0.00833 —0.00257 —0.02478 0.01594 0.00102 —0.00185 0.0018.

OO OO
[cNololoNe]

An estimate of the correlation matrix for the parameters might also be informative. This is also
derived from A by computing ¥ = AA’and then transforming the covariances to correlations
by dividing by the products of the respective standard deviations (the values in parentheses
in Table 15.7). The result is

1

0.0979 1
—0.1680 0.83040 1
R= 0.2907 0.00980 0.3983 1
—0.3180 0.04481 —0.3266 —0.8659 1
0.3176 —0.48890 —0.6622 —0.3277 —0.06073 1

—0.2700 —0.10940 —0.4253 —0.7097 0.94190 —0.08228 1.

15.8 HIERARCHICAL LINEAR MODELS

Example 11.20 examined an application of a “two-level model,” or “hierarchical model,”
for mortgage rates,

RM;; = Bi1; + B2.iJit + various terms relating to the mortgate + ;.
The second level equation is

Br.i = a1 + ¢ GFA; + a3 one-year treasury rate + a4 ten-year treasure rate
+as credit risk + o prepayment risk + - - - + u;.

Recent research in many fields has extended the idea of hierarchical modeling to the
full set of parameters in the model. (Depending on the field studied, the reader may
find these labeled “hierarchical models,” mixed models, “random parameters models,”
or “random effects models.” The last of these generalizes our notion of random effects.)
A two-level formulation of the model in (11-82) might appear as

Vi = X;,B; + €ir,
Bi =B+ Az +u,.
(A three-level model is shown in Example 15.14.) This model retains the earlier stochas-
tic specification but adds the measurement equation to the generation of the random
parameters. In principle, this is actually only a minor extension of the model used thus
far. The model of the previous section now becomes
Yie = X, (B + Az + Aw;) + ¢,

which is essentially the same as our earlier model in (15-28)—(15-31) with the addition
of product (interaction) terms of the form §yx;yzi, Which suggests how it might be
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estimated (simply by adding the interaction terms to the previous formulation.) In the
template in (15-26), the term o, w;» becomes x},(Az; + Aw;),0 = (B', 8,1, 0.)’ where
§’ is a row vector composed of the rows of A, and 1’ is a row vector composed of the
rows of A. The scalar term w;, in the derivatives is replaced by a column vector of terms
contained in (x; ® z;, Xi ® Wj;).

The hierarchical model can be extended in several useful directions. Recent analyses
have expanded the model to accommodate multilevel stratification in data sets such as
those we considered in the treatment of nested random effects in Section 14.9.6.b. A
three-level model would appear as in the next example that relates to home sales,

Yij = X;jtﬁij + e, t = site, j = neighborhood, i = community,
B =B+ Azj+u; (15-35)
ﬂi =TT +<I>l‘i +Vi.

Example 15.14 Hierarchical Linear Model of Home Prices

Beron, Murdoch, and Thayer (1999) used a hedonic pricing model to analyze the sale
prices of 76,343 homes in four California counties: Los Angeles, San Bernardino, Riverside,
and Orange. The data set is stratified into 2,185 census tracts and 131 school districts. Home
prices are modeled using a three-level random parameters pricing model. (We will change
their notation somewhat to make roles of the components of the model more obvious.) Let
site denote the specific location (sale), nei denote the neighborhood, and com denote the
community, the highest level of aggregation. The pricing equation is

K

: 0 § : k
In Prlcesite,nei,com = ﬂne[ycom + ﬂneiycomxk,site,nei,com + Esite,nei,com>
k=1

L
K _ 0k 2 : 1,k , K _
Tnei,com = Peom T BiomZk.nei,com + I nei coms k=0,...,K,

=1
M

I,k 0,l.k Lk .k

com — V + g Vm em,com+ucomaI=11~-~al—~
m=1

There are K level-one variables, x,, and a constant in the main equation, L level-two variables,
7, and a constant in the second-level equations, and M level-three variables, e,, and a
constant in the third-level equations. The variables in the model are as follows. The level-one
variables define the hedonic pricing model,

x = house size, number of bathrooms, lot size, presence of central heating,
presence of air conditioning, presence of a pool, quality of the view,
age of the house, distance to the nearest beach.

Levels two and three are measured at the neighborhood and community levels

z = percentage of the neighborhood below the poverty line,
racial makeup of the neighborhood,
percentage of residents over 65,
average time to travel to work

and

e = FBI crime index, average achievement test score in school district,
air quality measure, visibility index.

The model is estimated by maximum simulated likelihood.
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The hierarchical linear model analyzed in this section is also called a “mixed model”
and “random parameters” model. Although the three terms are usually used inter-
changeably, each highlights a different aspect of the structural model in (15-35). The
“hierarchical” aspect of the model refers to the layering of coefficients that is built into
stratified and panel data structures, such as in Example (15-15). The random parameters
feature is a signature feature of the model that relates to the modeling of heterogeneity
across units in the sample. Note that the model in (15-35) or Beron et al.’s applica-
tion could be formulated without the random terms in the lower-level equations. This
would then provide a convenient way to introduce interactions of variables in the linear
regression model. The addition of the random component is motivated on precisely the
same basis that u; appears in the familiar random effects model in Section 11.5 and
(15-35). It is important to bear in mind, in all these structures, strict mean independence
is maintained between u;, and all other variables in the model. In most treatments, we
go yet a step further and assume a particular distribution for u;, typically joint nor-
mal. Finally, the “mixed” model aspect of the specification relates to the underlying
integration that removes the heterogencity, for example, in (15-13). The unconditional
estimated model is a mixture of the underlying models, where the weights in the mixture
are provided by the underlying density of the random component.

15.9 NONLINEAR RANDOM PARAMETER MODELS

Most of the preceding applications have used the linear regression model to illustrate
and demonstrate the procedures. However, the template used to build the model has
no intrinsic features that limit it to the linear regression. The initial description of the
model and the first example were applied to a nonlinear model, the Poisson regression.
We will examine a random parameters binary choice model in the next section as well.
This random parameters model has been used in a wide variety of settings. One of the
most common is the multinomial choice models that we will discuss in Chapter 17.

The simulation-based random parameters estimator/model is extremely flexible.
[See Train and McFadden (2000) for discussion.] The simulation method, in addition
to extending the reach of a wide variety of model classes, also allows great flexibility in
terms of the model itself. For example, constraining a parameter to have only one sign
is a perennial issue. Use of a lognormal specification of the parameter, g; = exp(8 +
ow;) provides one method of restricting a random parameter to be consistent with a
theoretical restriction. Researchers often find that the lognormal distribution produces
unrealistically large values of the parameter. A model with parameters that vary in a
restricted range that has found use is the random variable with symmetric about zero
triangular distribution,

fw)=1[—a <w <0](a +w)/a®> +1[0 < w < a](a — w)/a’.
A draw from this distribution with a = 1 can be computed as
w=1[u < 5|[Quw"* — 1]+ 1u > 5]|[1 - Q1 —u)'/?],

where u is the U[0, 1] draw. Then, the parameter restricted to the range g+ is obtained
as B+ aw. A further refinement to restrict the sign of the random coefficient is to force
A = B, so that 8; ranges from 0 to 2A. [Discussion of this sort of model construction is



Greene-2140242

book November 24, 2010 23:28

642 PART IIl 4 Estimation Methodology

15.

given in Train and Sonnier (2003) and Train (2009).] There is a large variety of methods
for simulation that allow the model to be extended beyond the linear model and beyond
the simple normal distribution for the random parameters.

Random parameters models have been implemented in several contemporary com-
puter packages. The PROC MIXED package of routines in SAS uses a kind of general-
ized least squares for linear, Poisson, and binary choice models. The GLAMM program
[Rabe-Hesketh, Skrondal, and Pickles (2005)] written for Stata uses quadrature meth-
ods for several models including linear, Poisson, and binary choice. The RPM and RPL
procedures in LIMDEP/NLOGIT use the methods described here for linear, binary
choice, censored data, multinomial, ordered choice, and several others. Finally, the ML-
Win package (http://cmm.bristol.ac.uk/MLwiN/) is a large implementation of some of
the models discussed here. MLWin uses MCMC methods with noninformative priors to
carry out maximum simulated likelihood estimation.

10 INDIVIDUAL PARAMETER ESTIMATES
In our analysis of the various random parameters specifications, we have focused on
estimation of the population parameters, #, A and A in the model,

B; =B+ Az; + Aw;,

for example, in Example 15.13, where we estimated theparameters-of-the-normal-dis-
tribution-of B At a few points, it is noted that it might be useful to estimate the

individual specific 8;. We did a similar exercise in analyzing the Hildreth/Houck/Swamy
model in Section 11.11.1. The model is

yi = XiB; + &
Bi=B+u,

where no restriction is placed on the correlation between w; and X;;. In this “fixed effects”
case, we obtained a feasible GLS estimator for the population mean, f,

n
B = Zwl‘bl‘,
i=1
where
" -1
. . -1 L -1
W, = {Z[r+aj(xgxi) 1 } [F+ 62X X))
and
b = (X[ X)) "' Xly;.

For each group, we then proposed an estimator of E[f;| information in hand about
groupi] as

Est. E[B;1y:. X:] = B+ Q:(b; — B)
where

Q= {[axx] T (15-36)


Bill
Line

Bill
Line
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The estimator of E[;]y;, X;] is equal to the estimator of-the-peputationmean plus a

proportion of the difference between B and b;. (The matrix Q; is between 0 and I. If
there were a single column in X;, then ¢; would equal (1/9)/{(1/9) + [1/(s?/x!x:)]}.)

We can obtain an analogous result for the mixed models we have examined in this
chapter. From the initial model assumption, we have

fulxie, Bi, 0)

where
B, =B+ Az; + Aw; (15-37)

and @ is any other parameters in the model, such as o, in the linear regression model.
For a panel, since we are conditioning on f3;, that is, on w;, the 7; observations are
independent, and it follows that

FOit yizs - yimilXa, B, 0) = f(yilXa, By, 0) = T, f(yulXir, B, 0). (15-38)

This is the contribution of group i to the likelihood function (not its log) for the sample,
given B;; that is, note that the log of this term is what appears in the simulated log
likelihood function in (15-31) for the normal linear model and in (15-16) for the Poisson
model. The marginal density for B; is induced by the density of w; in (15-37). For
example, if w; is joint normally distributed, then f(B8,) = N[B+ Az;, AA’]. As we noted
earlier in Section 15.9, some other distribution might apply. Write this generically as
the marginal density of B;, f(B;]zi, ), where  is the parameters of the underlying
distribution of B;, for example (8, A, A) in (15-37). Then, the joint distribution of y;
and B; is

f(Yi, ﬂi'Xi9Zia 05 SZ) = f(yi'Xi7 ﬁi’ 0)f(ﬂi|zia Sz)
We will now use Bayes’s theorem to obtain f(B;y;, Xi, z;, 0, R):

fyilXi, Bi, 0) f(Bilz;, @)

I1Xi,z;,0, Q)
R B8 Fig 9
~ I, fi BilXi. 2. 0. Q)dB;
f(yl|Xl9 Bi.0) f(Bilz:, )
B fﬁi FyilXi, Bi, 0) f(Bilzi, R)dB; '

f(ﬂ |y17Xlﬂzl70 SZ)

The denominator of this ratio is the integral of the term that appears in the log-likelihood
conditional on B;. We will return momentarily to computation of the integral. We now
have the conditional distribution of ;ly;, X;, z;, #, . The conditional expectation of
ﬂi'yi’ X,‘, Z;, 0, Qis

S, Bi f(yilXi, Bi. 0) f(Bilzi, )
f,g FyilX;, Bi. 0) f(Bilz;, Q)dﬂz

E[ﬂ |ythsz,0 SZ]
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Neither of these integrals will exist in closed form. However, using the methods already
developed in this chapter, we can compute them by simulation. The simulation estimator
will be

R p 17% x. B 0
ESI.E[ﬂ,—|yi, Xl', z, 0’ SZ] — (1/R) Zr:Rl ﬂlrnthl f(yll|xl[7,\ﬂlr10)
(1/R) Zr:l Htlzl f(yitlxila ﬂira 0)

R
= Z Qirﬂir
r=1

(15-39)

where O, is defined in (15-20)-(15-21) and
Bir = B + AZ[ + Aw,.

This can be computed after the estimation of the population parameters. (It may be
more efficient to do this computation during the iterations, since everything needed to
do the calculation will be in place and available while the iterations are proceeding.)
For example, for the random parameters linear model, we will use

P R 2
(yie — X}, (B + Az; + Aw;))
262

fulxir, By, 0) = exp |— (15-40)

1
e/ 21
We can also estimate the conditional variance of §; by estimating first, one element at
a time, E[ﬂ%k|yi, X;,z;, 0, 2], then, again one element at a time

- {ESt- E[.Biz,kb’h Xi. 2.0, 9]} .

Est.Var[Bilyi. Xi, z;, 0, 2] = {Est. E[Bilyi, Xi, 7,0, 2]}
. 1, 1 1y &1y Vs :

(15-41)
With the estimates of the conditional mean and conditional variance in hand, we can
then compute the limits of an interval that resembles a confidence interval as the mean
plus and minus two estimated standard deviations. This will construct an interval that
contains at least 95 percent of the conditional distribution of g;.

Some aspects worth noting about this computation are as follows:

e The preceding interval suggest is a classical (sampling-theory-based) counterpart
to the highest posterior density interval that would be computed for §; for a hier-
archical Bayesian estimator.

e The conditional distribution from which g; is drawn might not be symmetric or
normal, so a symmetric interval of the mean plus and minus two standard deviations
may pick up more or less than 95 percent of the actual distribution. This is likely
to be a small effect. In any event, in any population, whether symmetric or not,
the mean plus and minus two standard deviations will typically encompass at least
95 percent of the mass of the distribution.

e [t has been suggested that this classical interval is too narrow because it does not
account for the sampling variability of the parameter estimators used to construct
it. But, the suggested computation should be viewed as a “point” estimate of the
interval, not an interval estimate as such. Accounting for the sampling variability
of the estimators might well suggest that the endpoints of the interval should be
somewhat farther apart. The Bayesian interval that produces the same estimation
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would be narrower because the estimator is posterior to, that is, applies only to the
sample data.

Perhaps surprisingly so, even if the analysis departs from normal marginal distribu-
tions B;, the sample distribution of the n estimated conditional means is necessarily
normal. Kernel estimators based on the n estimators, for example, can have variety
of shapes.

A common misperception found in the Bayesian and classical literatures alike is that
the preceding produces an estimator of ;. In fact, it is an estimator of conditional
mean of the distribution from which 8, is an observation. By construction, for
example, every individual with the same (y;. X;, z;) has the same prediction even
though the w; and any other stochastic elements of the model, such as ¢;, will differ
across individuals.

Example 15.15 Individual State Estimates of Private Capital Coefficient

Example 15.13 presents feasible GLS and maximum simulated likelihood estimates of
Munnell’s state production model. We have computed the estimates of E[By;, X;] for the
48 states in the sample using (15-36) for the fixed effects estimates and (15-39) for the ran-
dom effects estimates. Figures 15.6 and 15.7 examine the estimated coefficients for private
capital. Figure 15.6 displays kernel density estimates for the population distributions based
on the fixed and random effects estimates computed using (15-36) and (15-39). The much
narrower distribution corresponds to the random effects estimates. The substantial overall
difference of the distributions is presumably due in large part to the difference between the
fixed effects and random effects assumptions. One might suspect on this basis that the ran-
dom effects assumption is restrictive. Figure 15.7 shows the results based on the random
parameters model, using (15-39) and (15-41) to compute the estimates. As expected, the
range of variation of the estimators in the conditional distributions is much smaller than the
overall range of variation shown in Figure 15.6.

FIGURE 15.6 Kernel Density Estimates of Parameter Distributions.
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95% Intervals of Conditional Distributions of b(PC)
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FIGURE 15.7 Estimates of Conditional Distributions for Private

Capital Coefficient.

Example 15.16 Mixed Linear Model for Wages
Koop and Tobias (2004) analyzed a panel of 17,919 observations in their study of the rela-
tionship between wages and education, ability and family characteristics. (See the end of
chapter applications in Chapters 3 and 5 and Appendix Table F3.2 for details on the location
of the data.) The variables used in the analysis are

Person id

Education

Log of hourly wage
Potential experience
Time trend

Ability

Mother’s education
Father’s education

(time varying)
(time varying)
(time varying)
(time varying)
(time invariant)
(time invariant)
(time invariant)

Dummy variable for residence in a broken home (time invariant)

Number of siblings

(time invariant)

This is an unbalanced panel of 2,178 individuals; Figure 15.8 shows a frequency count of
the numbers of observations in the sample. We will estimate the following hierarchical wage

model

InWage;; = B1, + B2 Education; + B3 Experience; + 4 Experience,zt
+ Bs Broken Home; + Bs Siblings; + ¢,
B1i = a1+ a1 2 Ability; + a1 3 Mother’s education; + a4 4 Father’s education; + u4 ,
Boi = a1 + ag 0 Ability; + an 3 Mother’s education; + a4 Father’s education; + uy ;.
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FIGURE 15.8 Group Sizes for Wage Data Panel.

Estimates are computed using the maximum simulated likelihood method described in
Sections 15.6.3 and 15.7. Estimates of the model parameters appear in Table 15.8. The
four models in Table 15.8 are the pooled OLS estimates, the random effects model, and
the random parameters models, first assuming that the random parameters are uncorrelated
(C24 = 0) and then allowing free correlation (I'>; = nonzero). The differences between the con-
ventional and the robust standard errors in the pooled model are fairly large, which suggests
the presence of latent common effects. The formal estimates of the random effects model
confirm this. There are only minor differences between the FGLS and the ML estimates of the
random effects model. But, the hypothesis of the pooled model is soundly rejected by the like-
lihood ratio test. The LM statistic [Section 11.5.4 and (11-39)] is 11,709.7, which is far larger
than the critical value of 3.84. So, the hypothesis of the pooled model is firmly rejected. The
likelihood ratio statistic based onthe MLEs is 2(10, 840.18—(—885.674)) = 23, 451.71, which
produces the same conclusion. An alternative approach would be to test the hypothesis that
o2 = 0 using a Wald statistic—the standard t test. The software used for this exercise repa-
rameterizes the log-likelihood in terms of 6; = 62/02 and 6, = 1/02. One approach, based
on the delta method (see Section 4.4.4), would be to estimate Ouz with the MLE of 64 /6,. The
asymptotic variance of this estimator would be estimated using Theorem 4.5. Alternatively,
we might note that o2 must be positive in this model, so it is sufficient simply to test the
hypothesis that 6; = 0. Our MLE of 6, is 0.999206 and the estimated asymptotic standard
error is 0.03934. Following this logic, then, the test statistic is 0.999206,/0.03934 = 25.397.
This is far larger than the critical value of 1.96, so, once again, the hypothesis is rejected.
We do note a problem with the LR and Wald tests. The hypothesis that 02 = 0 produces
a nonstandard test under the null hypothesis, because o2 = 0 is on the boundary of the
parameter space. Our standard theory for likelihood ratio testing (see Chapter 14) requires
the restricted parameters to be in the interior of the parameter space, not on the edge. The
distribution of the test statistic under the null hypothesis is not the familiar chi squared. This
issue is confronted in Breusch and Pagan (1980) and Godfrey (1988) and analyzed at (great)
length by Andrews (1998, 1999, 2000, 2001, 2002) and Andrews and Ploberger (1994, 1995).
The simple expedient in this complex situation is to use the LM statistic, which remains
consistent with the earlier conclusion.
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TABLE 15.8 Estimated Random Parameter Models

Random Effects FGLS Random Random
Pooled OLS [Random Effects MLE] Parameters Parameters
Std.Err. Estimate Std.Err. Estimate Estimate
Variable Estimate (Robusr) [MLE] [MLE] (Std.Err.) (Std.Err.)
Exp 0.04157 0.001819 0.04698 0.001468 0.04758 0.04802
(0.002242) [0.04715] [0.001481] (0.001108) (0.001118)
Exp? —0.00144 0.0001002 —0.00172 0.0000805 —0.001750 —0.001761
(0.000126) [—0.00172] [0.000081] (0.000063) (0.0000631)
Broken —0.02781 0.005296 —0.03185 0.01089 —0.01236 —0.01980
(0.01074) [—0.03224] [0.01172] (0.003669) (0.003534)
Sibs —0.00120 0.0009143 —0.002999 0.001925 0.0000496 —0.001953
(0.001975) [—0.00310] [0.002071] (0.000662) (0.0006599)
Constant 0.09728 0.01589 0.03281 0.02438 0.3277 0.3935
(0.02783) [0.03306] [0.02566] (0.03803) (0.03778)
Ability 0.04232 0.1107
(0.01064) (0.01077)
MEd —0.01393 —0.02887
(0.0040) (0.003990)
FEd —0.007548 0.002657
(0.003252) (0.003299)
oul 0.172278 0.004187 0.5026
[0.18767] (0.001320)
Educ 0.03854 0.001040 0.04072 0.001758 0.01253 0.007607
(0.002013) [0.04061] [0.001853] (0.003015) (0.002973)
Ability —0.0002560 —0.005316
(0.000869) (0.0008751)
MEd 0.001054 0.002142
(0.000321) (0.0003165)
Fed 0.0007754 0.00006752
(0.000255) (0.00001354)
0w 0.01622 0.03365
(0.000114)
Ou12 0.0000 —0.01560
0.0000 —0.92259
0, 0.2542736 0.187017 0.192741 0.1919182
[0.187742]
Ay 0.004187 0.5026
(0.001320) (0.008775)
0.0000 —0.03104
Ay (0) (0.0001114)
0.01622 0.01298
Ay (0.000113) (0.0006841)
In L —885.6740 [10480.18] 3550.594 3587.611
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The third and fourth models in Table 15.8 present the mixed model estimates. The first of
them imposes the restriction that I'oy = 0, or that the two random parameters are uncorre-
lated. The second mixed model allows A, to be a free parameter. The implied estimators
for 0,1, ou2 @and oy, 21 are the elements of AA’, or

2 _ a2
o = Afy,

Oupy = A51A21,2
Oup = Ny + Agpe

These estimates are shown separately in the table. Note that in all three random parame-
ters models (including the random effects model which is equivalent to the mixed model
with all o, = 0 save for a1 1 and ap¢1 as well as Ay = A = 0.0), the estimate of
o, is relatively unchanged. The three models decompose the variation across groups in
the parameters differently, but the overall variation of the dependent variable is largely the
same.

The interesting coefficient in the model is B,;. Reading across the row for Educ, one
might suspect that the random parameters model has washed out the impact of education,
since the “coefficient” declines from 0.04072 to 0.007607. However, in the mixed models,
the “mean” parameter, o, 1, is not the coefficient of interest. The coefficient on education in
the modelis B2 = o 1+ a2 Ability + Bo,3 Mother’s education + B, 4 Father’s education +us,; .
A rough indication of the magnitude of this result can be seen by inserting the sample means
for these variables, 0.052374, 11.4719, and 11.7092, respectively. With these values, the
mean value for the education coefficient is approximately 0.0327. This is comparable, though
somewhat smaller, than the estimates for the pooled and random effects model. Of course,
variation in this parameter across the sample individuals was the objective of this specifica-
tion. Figure 15.9 plots a kernel density estimate for the estimated conditional means for the
2,178 sample individuals. The figure shows the very wide range of variation in the sample
estimates.

FIGURE 15.9 Kernel Density Estimate for Education Coefficient.
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15.11 MIXED MODELS AND LATENT CLASS
MODELS

Sections 15.7-15-10 examined different approaches to modeling parameter heterogene-
ity. The fixed effects approach begun in Section 11.4 is extended to include the full set
of regression coefficients in Section 11.11.1. where

yi = XiB; + €,
Bi=B+u

and no restriction is placed on E[w;|X;]. Estimation produces a feasible GLS estimate
of B. Estimation of B begins with separate least squares estimation with each group,
i —because of the correlation between w; and x;;, the pooled estimator is not consis-
tent. The efficient estimator of B is then a mixture of the bi’s. We also examined an
estimator of 8;, using the optimal predictor from the conditional distributions, (15-39).
The crucial assumption underlying the analysis is the possible correlation between X;
and u;. We also considered two modifications of this random coefficients model. First,
a restriction of the model in which some coefficients are nonrandom provides a useful
simplification. The familiar fixed effects model of Section 11.4 is such a case, in which
only the constant term varies across individuals. Second, we considered a hierarchical
form of the model

B =B+ Az +u;. 15-42)

This approach is applied to an analysis of mortgage rates in Example 11.20. [Plumper
and Troeger’s (2007) FEVD estimator examined in Section 11.4.5 is essentially this
model as well.]

A second approach to random parameters modeling builds from the crucial assump-
tion added to (15-42) that w; and X; are uncorrelated. The general model is defined in
terms of the conditional density of the random variable, f(y;|x;, B;,#) and the marginal
density of the random coefficients, f(B;|z;, 2) in which  is the separate parameters of
this distribution. This leads to the mixed models examined in this chapter. The random
effects model that we examined in Section 11.5 and several other points is a special
case in which only the constant term is random (like the fixed effects model). We also
considered the specific case in which ; is distributed normally with variance o?2.

A third approach to modeling heterogeneity in parametric models is to use a
discrete distribution, either as an approximation to an underlying continuous distri-
bution, or as the model of the data generating process in its own right. (See Sec-
tion 14.10.) This model adds to the preceding a nonparametric specification of the
variation in S,

Prob(B; = B;lz;)) =m;, j=1,...,J.
A somewhat richer, semiparametric form that mimics (15-42) is
Prob(B; = Blz;) = 7 (2, R), j=1,...,J.

We continue to assume that the process generating variation in f; across individuals is
independent of the process that produces X; —that is, in a broad sense, we retain the
random effects approach. This latent class model is gaining popularity in the current
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TABLE 15.9 Estimated Random Parameters Model

Probit RP Mean RP Std. Dev. Empirical Distn.
Constant —-1.96 —-3.91 2.70 —-3.27
(0.23) (0.20) (0.57)
In Sales 0.18 0.36 0.28 0.32
(0.022) (0.019) (0.15)
Relative Size 1.07 6.01 5.99 3.33
(0.14) (0.22) (2.25)
Import 1.13 1.51 0.84 2.01
(0.15) (0.13) (0.58)
FDI 2.85 3.81 6.51 3.76
(0.40) (0.33) (1.69)
Productivity —2.34 -5.10 13.03 —8.15
(0.72) (0.73) (8.29)
Raw materials —0.28 —-0.31 1.65 —-0.18
(0.081) (0.075) (0.57)
Investment 0.19 0.27 1.42 0.27
(0.039) (0.032) (0.38)
In L —4114.05 —3498.654

literature. In the last example of this chapter, we will examine a comparison of mixed
and finite mixture models for a nonlinear model.

Example 15.17 Maximum Simulated Likelihood Estimation of a Binary

Choice Model
Bertschek and Lechner (1998) analyzed the product innovations of a sample of German
manufacturing firms. They used a probit model (Sections 17.2-17.4) to study firm innovations.
The model is for Probly; = 1|x;, ;] where

yi = 1 if firmi realized a product innovation in year t and 0 if not.

The independent variables in the model are

Xit1 = constant

Xito = log of sales

Xit,3 = relative size = ratio of employment in business unit to employment in the industry
Xit4 = ratio of industry imports to (industry sales + imports)

Xit5 = ratio of industry foreign direct investment to (industry sales + imports)

Xite = productivity = ratio of industry value added to industry employment

Xit,7 = dummy variable indicating firm is in the raw materials sector

Xits = dummy variable indicating firm is in the investment goods sector

The sample consists of 1,270 German firms observed for five years, 1984-1988. (See Ap-
pendix Table F15.1.) The density that enters the log-likelihood is

f(YielXit, B;) = Prob[y;|x;B;1 = ®[(2y; — 1)x;:8;1, ¥r =0, 1,
where
Bi=B+vi,vi~ N[O, ]

To be consistent with Bertschek and Lechner (1998) we did not fit any firm specific time-
invariant components in the main equation for g.° Table 15.9 presents the estimated

9 Apparently they did not use the second derivatives to compute the standard errors—we could not replicate
these. Those shown in the Table 15.9 are our results.
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TABLE 15.10 Estimated Latent Class Model

Class 1 Class 2 Class 3 Posterior
Constant —2.32 —2.71 —8.97 —3.38
(0.59) (0.69) (2.20) (2.14)
In Sales 0.32 0.23 0.57 0.34
(0.061) (0.072) (0.18) (0.09)
Relative Size 4.38 0.72 1.42 2.58
(0.89) (0.37) (0.76) (1.30)
Import 0.94 2.26 3.12 1.81
(0.37) (0.53) (1.38) (0.74)
FDI 2.20 2.81 8.37 3.63
(1.16) (1.11) (1.93) (1.98)
Productivity —5.86 —7.70 —0.91 —5.48
(2.70) (4.69) (6.76) (1.78)
Raw Materials —-0.11 —0.60 0.86 —0.08
(0.24) (0.42) (0.70) (0.37)
Investment 0.13 0.41 0.47 0.29
(0.11) (0.12) (0.26) (0.13)
In L —3503.55
Class Prob (Prior) 0.469 0.331 0.200
(0.0352) (0.0333) (0.0246)
Class Prob (Posterior) 0.469 0.331 0.200
(0.394) (0.289) (0.325)
Pred. Count 649 366 255

coefficients for the basic probit model in the first column. These are the values reported
in the 1998 study. The estimates of the means, g, are shown in the second column. There
appear to be large differences in the parameter estimates, although this can be misleading as
there is large variation across the firms in the posterior estimates. The third column presents
the square roots of the implied diagonal elements of ¥ computed as the diagonal elements of
CC'. These estimated standard deviations are for the underlying distribution of the parameter
in the model—they are not estimates of the standard deviation of the sampling distribution of
the estimator. That is shown for the mean parameter in the second column. The fourth col-
umn presents the sample means and standard deviations of the 1,270 estimated conditional
estimates of the coefficients.

The latent class formulation developed in Section 14.10 provides an alternative approach
for modeling latent parameter heterogeneity.'® To illustrate the specification, we will reesti-
mate the random parameters innovation model using a three-class latent class model. Esti-
mates of the model parameters are presented in Table 15.10. The estimated conditional mean
shown, which is comparable to the empirical means in the rightmost column in Table 17.4 for
the random parameters model, are the sample average and standard deviation of the 1,270
firm-specific posterior mean parameter vectors. They are computed using f; = ):?=17‘r,-,-ﬂ J
where 7; is the conditional estimator of the class probabilities in (14-102). These estimates
differ considerably from the probit model, but they are quite similar to the empirical means in
Table 15.9. In each case, a confidence interval around the posterior mean contains the one-
class pooled probit estimator. Finally, the (identical) prior and average of the sample posterior
class probabilities are shown at the bottom of the table. The much larger empirical standard
deviations reflect that the posterior estimates are based on aggregating the sample data and
involve, as well, complicated functions of all the model parameters. The estimated numbers
of class members are computed by assigning to each firm the predicted class associated
with the highest posterior class probability.

19See Greene (2001) for a survey. For two examples, Nagin and Land (1993) employed the model to study
age transitions through stages of criminal careers and Wang et al. (1998) and Wedel et al. (1993) used the
Poisson regression model to study counts of patents.
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15.12 SUMMARY AND CONCLUSIONS

This chapter has outlined several applications of simulation-assisted estimation and
inference. The essential ingredient in any of these applications is a random number
generator. We examined the most common method of generating what appear to be
samples of random draws from a population—in fact, they are deterministic Markov
chains that only appear to be random. Random number generators are used directly to
obtain draws from the standard uniform distribution. The inverse probability transfor-
mation is then used to transform these to draws from other distributions. We examined
several major applications involving random sampling:

e Randomsampling,in the form of bootstrapping, allows us to infer the characteristics
of the sampling distribution of an estimator, in particular its asymptotic variance. We
used this result to examine the sampling variance of the median in random sampling
from a nonnormal population. Bootstrapping is also a useful, robust method of
constructing confidence intervals for parameters.

e Monte Carlo studies are used to examine the behavior of statistics when the precise
sampling distribution of the statistic cannot be derived. We examined the behavior
of a certain test statistic and of the maximum likelihood estimator in a fixed effects
model.

e Many integrals that do not have closed forms can be transformed into expectations
of random variables that can be sampled with a random number generator. This
produces the technique of Monte Carlo integration. The technique of maximum
simulated likelihood estimation allows the researcher to formulate likelihood func-
tions (and other criteria such as moment equations) that involve expectations that
can be integrated out of the function using Monte Carlo techniques. We used the
method to fit random parameters models.

The techniques suggested here open up a vast range of applications of Bayesian statis-
tics and econometrics in which the characteristics of a posterior distribution are de-
duced from random samples from the distribution, rather than brute force derivation
of the analytic form. Bayesian methods based on this principle are discussed in the next
chapter.

Key Terms and Concepts

e Antithetic draws e GHK smooth recursive e Mixed model
e Block bootstrap stimulator e Monte Carlo integration
¢ Bootstrapping e Hadamard product e Monte Carlo study
e Cholesky decomposition e Halton draws e Nonparametric bootstrap
e Cholesky factorization ¢ Hierarchical linear e Paired bootstrap
e Delta method model e Parametric bootstrap
e Direct product e Incidental parameters e Percentile method
e Discrete uniform problem e Period
distribution e Kronecker product ¢ Poisson
e Fundamental probability e Markov chain e Power of a test
transformation e Maximum stimulated e Pseudo maximum likelihood

e Gauss—Hermite quadrature likelihood estimator
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Pseudo-random number e Schur product o Size of a test
generator e Seed o Specificity
Random parameters ¢ Simulation o Shuffling

Exercises

1. The exponential distribution has density f(x) = 6 exp(—6x). How would you obtain
a random sample of observations from an exponential population?

2. TheWeibull population has survival function S(x) = Ap exp(—(1x)p). How would
you obtain a random sample of observations from a Weibull population? (The
survival function equals one minus the cdf.)

3. Supp x and y are bivariate normally distributed with zero mean

X2 exp(y) + y2exp(x)].

4. Derive the first order conditions for nonlinear least squares estimation of the pa-
rameters in (15-2). How would you estimate the asymptotic covariance matrix for
your estimator of @ = (8, 0)?

Applications

1.

Does the Wald statistic reject the null too often? Construct a Monte Carlo study of
the behavior of the Wald statistic for testing the hypothesis that y equals zero in
the model of Section 17.4.1. Recall, theWald statistic is the square of the ¢ ratio on
the parameter in question. The procedure of the test is to reject the null hypothesis
if theWald statistic is greater than 3.84, the critical value from the chi-squared
distribution with one degree of freedom. Replicate the study in Section 17.4.1 that
is for all three assumptions about the underlying data.

A regression model that describes income as a function of experience is

In Income; = B1 + BrExperience; + ,83Experiencei2 + &;.

The model implies that In Income is largest when 9 In Income/d Experience equals
zero. The value of Experience at which this occurs is where 4 +28s Experience =0,
or Experience* = — B, /3. Describe how to use the delta method to obtain a con-
fidence interval for Experience®. Now, describe how to use bootstrapping for this
computation. A model of this sort using the Cornwell and Rupert data appears
in Example 15.6. Using your proposals here, carry out the computations for that
model using the Cornwell and Rupert data.



Bill
Rectangle

Bill
Line

Bill
Line




