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DISCRETE CHOICES
AND EVENT COUNTS

Q

18.1 INTRODUCTION

Chapter 17 presented most of the econometric issues that arise in analyzing discrete
dependent variables, including specification, estimation, inference, and a variety of vari-
ations on the basic model. All of these were developed in the context of a model of
binary choice, the choice between two alternatives. This chapter will use those results
in extending the choice model to three specific settings:

Multinomial Choice: The individual chooses among more than two choices, once
again, making the choice that provides the greatest utility. Applications include the
choice among political candidates, how to commute to work, where to live, or what
brand of car, appliance, or food product to buy.

Ordered Choice: The individual reveals the strength of their preferences with respect
to a single outcome. Familiar cases involve survey questions about strength of feelings
about a particular commodity such as a movie, a book, or a consumer product, or
self-assessments of social outcomes such as health in general or self-assessed well-
being. Although preferences will probably vary continuously in the space of individual
utility, the expression of those preferences for purposes of analyses is given in a discrete
outcome on a scale with a limited number of choices, such as the typical five-point scale
used in marketing surveys.

Event Counts: The observed outcome is a count of the number of occurrences. In
many cases, this is similar to the preceding settings in that the “dependent variable”
measures an individual choice, such as the number of visits to the physician or the
hospital, the number of derogatory reports in one’s credit history, or the number of
visits to a particular recreation site. In other cases, the event count might be the outcome
of some less focused natural process, such as incidence of a disease in a population or
the number of defects per unit of time in a production process, the number of traffic
accidents that occur at a particular location per month, or the number of messages that
arrive at a switchboard per unit of time over the course of a day. In this setting, we will
be doing a more familiar sort of regression modeling.

Most of the methodological underpinnings needed to analyze these cases were pre-
sented in Chapter 17. In this chapter, we will be able to develop variations on these basic
model types that accommodate different choice situations. As in Chapter 17, we are fo-
cused on models with discrete outcomes, so the analysis is framed in terms of models
of the probabilities attached to those outcomes.

760

Bill
Line



Greene-2140242 book November 26, 2010 23:29

CHAPTER 18 ✦ Discrete Choices and Event Counts 761

18.2 MODELS FOR UNORDERED
MULTIPLE CHOICES

Some studies of multiple-choice settings include the following:

1. Hensher (1986, 1991), McFadden (1974), and many others have analyzed the travel
mode of urban commuters. In Greene (2007b), Hensher and Greene analyze com-
muting between Sydney and Melbourne by a sample of individuals who choose
among air, train, bus, and car as the mode of travel.

2. Schmidt and Strauss (1975a, b) and Boskin (1974) have analyzed occupational
choice among multiple alternatives.

3. Rossi and Allenby (1999, 2003) studied consumer brand choices in a repeated
choice (panel data) model.

4. Train (2003) studied the choice of electricity supplier by a sample of California
electricity customers.

5. Hensher, Rose, and Greene (2006) analyzed choices of automobile models by a
sample of consumers offered a hypothetical menu of features.

In each of these cases, there is a single decision among two or more alternatives. In
this and the next section, we will encounter two broad types of multinomial choice
sets, unordered choice models and ordered choices. All of the choice sets listed are
unordered. In contrast, a bond rating or a preference scale is, by design, a ranking; that
is, its purpose. Quite different techniques are used for the two types of models. We will
examined models for ordered choices in Section 18.3. This section will examine models
for unordered choice sets. General references on the topics discussed here include
Hensher, Louviere, and Swait (2000), Train (2009), and Hensher, Rose, and Greene
(2006).

18.2.1 RANDOM UTILITY BASIS OF THE MULTINOMIAL
LOGIT MODEL

Unordered choice models can be motivated by a random utility model. For the ith
consumer faced with J choices, suppose that the utility of choice j is

Uij = z′
ijθ + εij.

If the consumer makes choice j in particular, then we assume that Uij is the maximum
among the J utilities. Hence, the statistical model is driven by the probability that choice
j is made, which is

Prob(Uij > Uik) for all other k �= j.

The model is made operational by a particular choice of distribution for the disturbances.
As in the binary choice case, two models are usually considered, logit and probit. Be-
cause of the need to evaluate multiple integrals of the normal distribution, the probit
model has found rather limited use in this setting. The logit model, in contrast, has been
widely used in many fields, including economics, market research, politics, finance, and
transportation engineering. Let Yi be a random variable that indicates the choice made.
McFadden (1974a) has shown that if (and only if) the J disturbances are independent
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and identically distributed with Gumbel (type 1 extreme value) distribution,

F(εij) = exp(−exp(−εij)), (18-1)

then

Prob(Yi = j) = exp(z′
ijθ)∑J

j=1 exp(z′
ijθ)

, (18-2)

which leads to what is called the conditional logit model. (lt is often labeled the multi-
nomial logit model, but this wording conflicts with the usual name for the model dis-
cussed in the next section, which differs slightly. Although the distinction turns out to
be purely artificial, we will maintain it for the present.)

Utility depends on zij, which includes aspects specific to the individual as well as to
the choices. It is useful to distinguish them. Let zij = [xij, wi ] and partition θ conformably
into [β ′, α′]′. Then xij varies across the choices and possibly across the individuals as
well. The components of xij are typically called the attributes of the choices. But wi

contains the characteristics of the individual and is, therefore, the same for all choices.
If we incorporate this fact in the model, then (18-2) becomes

Prob(Yi = j) = Prob(Yi = j) = exp(x′
ijβ + w′

iα)∑J
j=1 exp(x′

ijβ + w′
iα)

= exp(x′
ijβ) exp(w′

iα)[∑J
j=1 exp(x′

ijβ)
]

exp(w′
iα)

.

(18-3)
Terms that do not vary across alternatives—that is, those specific to the individual—

fall out of the probability. This is as expected in a model that compares the utilities of
the alternatives.

For example, in a model of a shopping center choice by individuals in various cities
that depends on the number of stores at the mall, Sij, the distance from the central
business district, Dij and the shoppers’ incomes, Ii , the utilities for three choices would
be

Ui1 = Di1β1 + Si1β2 + α + γ Ii + εi1;
Ui2 = Di2β1 + Si2β2 + α + γ Ii + εi2;
Ui3 = Di3β1 + Si3β2 + α + γ Ii + εi3.

The choice of alternative 1, for example, reveals that

Ui1 − Ui2 = (Di1 − Di2)β1 + (Si1 − Si2)β2 + (εi1 − εi2) > 0 and

Ui1 − Ui3 = (Di1 − Di3)β1 + (Si1 − Si3)β2 + (εi1 − εi3) > 0.

The constant term and Income have fallen out of the comparison. The result follows
from the fact that random utility model is ultimately based on comparisons of pairs of
alternatives, not the alternatives themselves. Evidently, if the model is to allow individ-
ual specific effects, then it must be modified. One method is to create a set of dummy
variables (alternative specific constants), Aj , for the choices and multiply each of them
by the common w. We then allow the coefficients on these choice invariant character-
istics to vary across the choices instead of the characteristics. Analogously to the linear
model, a complete set of interaction terms creates a singularity, so one of them must be
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dropped. For this example, the matrix of attributes and characteristics would be

Zi =

⎡⎢⎣ Si1 Di1 1 0 Ii 0

Si2 Di2 0 1 0 Ii

Si3 Di3 0 0 0 0

⎤⎥⎦
The probabilities for this model would be

Prob(Yi = j |Z i ) =

exp

⎛⎝ Storesij β1 + Distanceij β2

A1α1 + A2α2 + A3α3

A1 Incomeiγ1 + A2 Incomeiγ2 + A3 Incomeiγ3

⎞⎠
∑3

j=1 exp

⎛⎝ Storesij β1 + Distanceij β2

A1α1 + A2α2 + A3α3

A1 Incomeiγ1 + A2 Incomeiγ2 + A3 Incomeiγ3

⎞⎠ , α3 = γ3 = 0.

18.2.2 THE MULTINOMIAL LOGIT MODEL

To set up the model that applies when data are individual specific, it will help to consider
an example. Schmidt and Strauss (1975a, b) estimated a model of occupational choice
based on a sample of 1,000 observations drawn from the Public Use Sample for three
years: l960, 1967, and 1970. For each sample, the data for each individual in the sample
consist of the following:

1. Occupation: 0 = menial, 1 = blue collar, 2 = craft, 3 = white collar, 4 = professional.
(Note the slightly different numbering convention, starting at zero, which is
standard.)

2. Characteristics: constant, education, experience, race, sex.

The model for occupational choice is

Prob(Yi = j | wi ) = exp(w′
iα j )∑4

j=0 exp(w′
iα j )

, j = 0, 1, . . . , 4. (18-4)

(The binomial logit model in Section 17.3 is conveniently produced as the special case
of J = 1.)

The model in (18-4) is a multinomial logit model.1 The estimated equations provide
a set of probabilities for the J + 1 choices for a decision maker with characteristics wi .
Before proceeding, we must remove an indeterminacy in the model. If we define α∗

j =
α j +q for any vector q, then recomputing the probabilities defined later using α∗

j instead
of α j produces the identical set of probabilities because all the terms involving q drop
out. A convenient normalization that solves the problem is α0 = 0. (This arises because
the probabilities sum to one, so only J parameter vectors are needed to determine the
J + 1 probabilities.) Therefore, the probabilities are

Prob(Yi = j | wi ) = Pij = exp(w′
iα j )

1 + ∑J
k=1 exp(w′

iαk)
, j = 0, 1, . . . , J, α0 = 0. (18-5)

1Nerlove and Press (1973).
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The form of the binomial model examined in Section 17.3 results if J = 1. The model
implies that we can compute J log-odds

ln
[

Pij

Pik

]
= w′

i (α j − αk) = w′
iα j if k = 0.

From the point of view of estimation, it is useful that the odds ratio, Pij/Pik, does not
depend on the other choices, which follows from the independence of the disturbances
in the original model. From a behavioral viewpoint, this fact is not very attractive. We
shall return to this problem in Section 18.2.4.

The log-likelihood can be derived by defining, for each individual, dij = 1 if alter-
native j is chosen by individual i , and 0 if not, for the J + 1 possible outcomes. Then,
for each i , one and only one of the dij’s is 1. The log-likelihood is a generalization of
that for the binomial probit or logit model:

ln L =
n∑

i=1

J∑
j=0

dij ln Prob(Yi = j | wi ).

The derivatives have the characteristically simple form

∂ ln L
∂α j

=
n∑

i=1

(dij − Pij)wi for j = 1, . . . , J.

The exact second derivatives matrix has J 2 K × K blocks,2

∂2 ln L
∂α j∂α′

l
= −

n∑
i=1

Pij[1( j = l) − Pil]wi w′
i ,

where 1( j = l) equals 1 if j equals l and 0 if not. Because the Hessian does not involve
dij, these are the expected values, and Newton’s method is equivalent to the method
of scoring. It is worth noting that the number of parameters in this model proliferates
with the number of choices, which is inconvenient because the typical cross section
sometimes involves a fairly large number of regressors.

The coefficients in this model are difficult to interpret. It is tempting to associate α j

with the jth outcome, but that would be misleading. By differentiating (18-5), we find
that the partial effects of the characteristics on the probabilities are

δij = ∂ Pij

∂wi
= Pij

[
α j −

J∑
k=0

Pik αk

]
= Pij[α j − ᾱ]. (18-6)

Therefore, every subvector of α enters every partial effect, both through the probabili-
ties and through the weighted average that appears in δij. These values can be computed
from the parameter estimates. Although the usual focus is on the coefficient estimates,
equation (18-6) suggests that there is at least some potential for confusion. Note, for
example, that for any particular wik, ∂Pij/∂wik need not have the same sign as αjk. Stan-
dard errors can be estimated using the delta method. (See Section 4.4.4.) For pur-
poses of the computation, let α = [0, α′

1, α
′
2, . . . ,α

′
J ]′. We include the fixed 0 vector for

outcome 0 because although α0 = 0, δi0 = −Pi0 ᾱ, which is not 0. Note as well that

2If the data were in the form of proportions, such as market shares, then the appropriate log-likelihood and
derivatives are �i � j ni pij and �i � j ni (pij − Pij)wi , respectively. The terms in the Hessian are multiplied by ni .



Greene-2140242 book November 26, 2010 23:29

CHAPTER 18 ✦ Discrete Choices and Event Counts 765

Asy. Cov[α̂0, α̂ j ] = 0 for j = 0, . . . , J . Then

Asy. Var[δ̂ij] =
J∑

l=0

J∑
m=0

(
∂δij

∂α′
l

)
Asy. Cov[α̂′

l , α̂
′
m]

(
∂δ′

ij

∂αm

)
,

∂δij

∂α′
l

= [1( j = l) − Pil][PijI + δijw′
i ] − Pij[δilw′

i ].

Finding adequate fit measures in this setting presents the same difficulties as in
the binomial models. As before, it is useful to report the log-likelihood. If the model
contains no covariates and no constant term, then the log-likelihood will be

ln Lc =
J∑

j=0

nj ln
(

1
J + 1

)
where nj is the number of individuals who choose outcome j . If the characteristic vector
includes only a constant term, then the restricted log-likelihood is

ln L0 =
J∑

j=0

nj ln
(nj

n

)
=

J∑
j=0

nj ln pj ,

where pj is the sample proportion of observations that make choice j . A useful table
will give a listing of hits and misses of the prediction rule “predict Yi = j if P̂ij is the
maximum of the predicted probabilities.”3

Example 18.1 Hollingshead Scale of Occupations
Fair’s (1977) study of extramarital affairs is based on a cross section of 601 responses to a
survey by Psychology Today. One of the covariates is a category of occupations on a seven-
point scale, the Hollingshead (1975) scale. [See, also, Bornstein and Bradley (2003).] The
Hollingshead scale is intended to be a measure on a prestige scale, a fact which we’ll ignore
(or disagree with) for the present. The seven levels on the scale are, broadly,

1. Higher executives
2. Managers and proprietors of medium-sized businesses
3. Administrative personnel and owners of small businesses
4. Clerical and sales workers and technicians
5. Skilled manual employees
6. Machine operators and semiskilled employees
7. Unskilled employees

Among the other variables in the data set are Age, Sex, and Education. The data are given
in Appendix Table F18.1. Table 18.1 lists estimates of a multinomial logit model. (We em-
phasize that the data are a self-selected sample of Psychology Today readers in 1976, so
it is unclear what contemporary population would be represented. The following serves as
an uncluttered numerical example that readers could reproduce. Note, as well, that at least
by some viewpoint, the outcome for this experiment is ordered.) The log-likelihood for the
model is −770.28141 while that for the model with only the constant terms is −982.20533.
The likelihood ratio statistic for the hypothesis that all 18 coefficients of the model are zero
is 423.85, which is far larger than the critical value of 28.87. In the estimated parameters, it
appears that only gender is consistently statistically significant. However, it is unclear how

3It is common for this rule to predict all observation with the same value in an unbalanced sample or a model
with little explanatory power. This is not a contradiction of an estimated model with many “significant”
coefficients, because the coefficients are not estimated so as to maximize the number of correct predictions.
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TABLE 18.1 Estimated Multinomial Logit Model for Occupation (t ratios in
parentheses)

α0 α1 α2 α3 α4 α5 α6

Parameters

Constant 0.0 3.1506 2.0156 −1.9849 −6.6539 −15.0779 −12.8919
(0.0) (1.14) (1.28) (−1.38) (−5.49) (−9.18) (−4.61)

Age 0.0 −0.0244 −0.0361 −0.0123 0.0038 0.0225 0.0588
(0.0) (−0.73) (−1.64) (−0.63) (0.25) (1.22) (1.92)

Sex 0.0 6.2361 4.6294 4.9976 4.0586 5.2086 5.8457
(0.0) (5.08) (4.39) (4.82) (3.98) (5.02) (4.57)

Education 0.0 −0.4391 −0.1661 0.0684 0.4288 0.8149 0.4506
(0.0) (−2.62) (−1.75) (0.79) (5.92) (8.56) (2.92)

Partial Effects

Age −0.0001 −0.0002 −0.0028 −0.0022 0.0006 0.0036 0.0011
(−.19) (−0.92) (−2.23) (−1.15) (0.23) (1.89) (1.90)

Sex −0.2149 0.0164 0.0233 0.1041 −0.1264 0.1667 0.0308
(−4.24) (1.98) (1.00) (2.87) (−2.15) (4.20) (2.35)

Education −0.0187 −0.0069 −0.0387 −0.0460 0.0278 0.0810 0.0015
(−2.22) (−2.31) (−6.29) (−5.1) (2.12) (8.61) (0.56)

to interpret the fact that Education is significant in some of the parameter vectors and not
others. The partial effects give a similarly unclear picture, though in this case, the effect can
be associated with a particular outcome. However, we note that the implication of a test of
significance of a partial effect in this model is itself ambiguous. For example, Education is
not “significant” in the partial effect for outcome 6, though the coefficient on Education in
α6 is. This is an aspect of modeling with multinomial choice models that calls for careful
interpretation by the model builder.

18.2.3 THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of individual-specific char-
acteristics, the natural model formulation would be

Prob(Yi = j | xi1, xi2, . . . , xiJ) = Prob(Yi = j | Xi ) = Pij = exp(x′
ijβ)∑J

j=1 exp(x′
ijβ)

. (18-7)

Here, in accordance with the convention in the literature, we let j = 1, 2, . . . , J for a
total of J alternatives. The model is otherwise essentially the same as the multinomial
logit. Even more care will be required in interpreting the parameters, however. Once
again, an example will help to focus ideas.

In this model, the coefficients are not directly tied to the marginal effects. The
marginal effects for continuous variables can be obtained by differentiating (18-7) with
respect to a particular xm to obtain

∂Pij

∂xim
= [Pij(1( j = m) − Pim)]β, m = 1, . . . , J.

It is clear that through its presence in Pij and Pim, every attribute set xm affects all the
probabilities. Hensher (1991) suggests that one might prefer to report elasticities of the
probabilities. The effect of attribute k of choice m on Pij would be

∂ ln Pj

∂ ln xmk
= xmk[1( j = m) − Pim]βk.
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Because there is no ambiguity about the scale of the probability itself, whether one
should report the derivatives or the elasticities is largely a matter of taste.

Estimation of the conditional logit model is simplest by Newton’s method or the
method of scoring. The log-likelihood is the same as for the multinomial logit model.
Once again, we define dij = 1 if Yi = j and 0 otherwise. Then

ln L =
n∑

i=1

J∑
j=1

dij ln Prob(Yi = j).

Market share and frequency data are common in this setting. If the data are in this form,
then the only change needed is, once again, to define dij as the proportion or frequency.

Because of the simple form of L, the gradient and Hessian have particularly con-
venient forms: Let x̄i = ∑J

j=1 Pijxij. Then,

∂ log L
∂β

=
n∑

i=1

J∑
j=1

dij(xij − x̄i ),

(18-8)∂2 log L
∂β∂β ′ = −

n∑
i=1

J∑
j=1

Pij(xij − x̄i )(xij − x̄i )
′,

The usual problems of fit measures appear here. The log-likelihood ratio and tab-
ulation of actual versus predicted choices will be useful. There are two possible con-
strained log-likelihoods. The model cannot contain a constant term, so the constraint
β = 0 renders all probabilities equal to 1/J . The constrained log-likelihood for this
constraint is then Lc = −n ln J . Of course, it is unlikely that this hypothesis would fail
to be rejected. Alternatively, we could fit the model with only the J − 1 choice-specific
constants, which makes the constrained log-likelihood the same as in the multinomial
logit model, ln L∗

0 = ∑
j n j ln pj where, as before, nj is the number of individuals who

choose alternative j .

18.2.4 THE INDEPENDENCE FROM IRRELEVANT
ALTERNATIVES ASSUMPTION

We noted earlier that the odds ratios in the multinomial logit or conditional logit mod-
els are independent of the other alternatives. This property is convenient as regards
estimation, but it is not a particularly appealing restriction to place on consumer behav-
ior. The property of the logit model whereby Pij/Pim is independent of the remaining
probabilities is called the independence from irrelevant alternatives (IIA).

The independence assumption follows from the initial assumption that the distur-
bances are independent and homoscedastic. Later we will discuss several models that
have been developed to relax this assumption. Before doing so, we consider a test that
has been developed for testing the validity of the assumption. Hausman and McFadden
(1984) suggest that if a subset of the choice set truly is irrelevant, omitting it from the
model altogether will not change parameter estimates systematically. Exclusion of these
choices will be inefficient but will not lead to inconsistency. But if the remaining odds
ratios are not truly independent from these alternatives, then the parameter estimates
obtained when these choices are excluded will be inconsistent. This observation is the
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usual basis for Hausman’s specification test. The statistic is

χ2 = (β̂s − β̂ f )
′[V̂s − V̂f ]−1(β̂s − β̂ f ),

where s indicates the estimators based on the restricted subset, f indicates the estimator
based on the full set of choices, and V̂s and V̂ f are the respective estimates of the
asymptotic covariance matrices. The statistic has a limiting chi-squared distribution
with K degrees of freedom.4

18.2.5 NESTED LOGIT MODELS

If the independence from irrelevant alternatives test fails, then an alternative to the
multinomial logit model will be needed. A natural alternative is a multivariate probit
model:

Uij = x′
ijβ + εij, j = 1, . . . , J, [εi1, εi2, . . . , εiJ] ∼ N[0, �]. (18-9)

We had considered this model earlier but found that as a general model of consumer
choice, its failings were the practical difficulty of computing the multinormal integral
and estimation of an unrestricted correlation matrix. Hausman and Wise (1978) point
out that for a model of consumer choice, the probit model may not be as impractical
as it might seem. First, for J choices, the comparisons implicit in Uij > Uim for m �= j
involve the J − 1 differences, ε j − εm. Thus, starting with a J -dimensional problem, we
need only consider derivatives of (J − 1)-order probabilities. Therefore, to come to a
concrete example, a model with four choices requires only the evaluation of bivariate
normal integrals, which, albeit still complicated to estimate, is well within the received
technology. For larger models, however, other specifications have proved more useful.

One way to relax the homoscedasticity assumption in the conditional logit model
that also provides an intuitively appealing structure is to group the alternatives into
subgroups that allow the variance to differ across the groups while maintaining the IIA
assumption within the groups. This specification defines a nested logit model. To fix
ideas, it is useful to think of this specification as a two- (or more) level choice problem
(although, once again, the model arises as a modification of the stochastic specification
in the original conditional logit model, not necessarily as a model of behavior). Suppose,
then, that the J alternatives can be divided into B subgroups (branches) such that the
choice set can be written

[c1, . . . , cJ ] = [(c1|1, . . . , cJ1|1), (c1|2, . . . , cJ2|2) . . . , (c1|B, . . . , cJB|B)].

Logically, we may think of the choice process as that of choosing among the B choice
sets and then making the specific choice within the chosen set. This method produces
a tree structure, which for two branches and, say, five choices (twigs) might look as
follows:

Choice

Branch1 Branch2

c1 | 1 c2 | 1 c1 | 2 c2 | 2 c3 | 2

4McFadden (1987) shows how this hypothesis can also be tested using a Lagrange multiplier test.
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Suppose as well that the data consist of observations on the attributes of the choices
xij|b and attributes of the choice sets zib.

To derive the mathematical form of the model, we begin with the unconditional
probability

Prob[twigj, branchb] = Pijb = exp(x′
ij|bβ + z′

ibγ )∑B
b=1

∑Jb
j=1 exp(x′

ij|bβ + z′
ibγ )

.

Now write this probability as

Pijb = Pij|b Pb

=
(

exp(x′
ij|bβ)∑Jb

j=1 exp(x′
ij|bβ)

) (
exp(z′

ibγ )∑L
l=1 exp(z′

ibγ )

) (∑Jb
j=1 exp(x′

ij|bβ)
) (∑L

l=1 exp(z′
ibγ )

)
(∑L

l=1

∑Jl
j=1 exp(x′

ij|bβ + z′
ibγ )

) .

Define the inclusive value for the lth branch as

IVib = ln

⎛⎝ Jb∑
j=1

exp(x′
ij|bβ)

⎞⎠ .

Then, after canceling terms and using this result, we find

Pij|b = exp(x′
ij|bβ)∑Jb

j=1 exp(x′
ij|bβ)

and Pb = exp[τb(z′
ibγ + IVib)]∑B

b=1 exp[τb(z′
ibγ + IVib)]

,

where the new parameters τl must equal 1 to produce the original model. Therefore,
we use the restriction τl = 1 to recover the conditional logit model, and the preceding
equation just writes this model in another form. The nested logit model arises if this
restriction is relaxed. The inclusive value coefficients, unrestricted in this fashion, allow
the model to incorporate some degree of heteroscedasticity. Within each branch, the
IIA restriction continues to hold. The equal variance of the disturbances within the jth
branch are now5

σ 2
b = π2

6τb
. (18-10)

With τ j = 1, this reverts to the basic result for the multinomial logit model.
As usual, the coefficients in the model are not directly interpretable. The derivatives

that describe covariation of the attributes and probabilities are

∂ ln Prob[choice = m, branch = b]
∂x(k) in choice M and branch B

= {1(b = B)[1(m = M ) − PM|B] + τB[1(b = B) − PB]PM | B}βk.

The nested logit model has been extended to three and higher levels. The complexity
of the model increases rapidly with the number of levels. But the model has been found to
be extremely flexible and is widely used for modeling consumer choice in the marketing
and transportation literatures, to name a few.

5See Hensher, Louviere, and Swaite (2000). See Greene and Hensher (2002) for alternative formulations of
the nested logit model.
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There are two ways to estimate the parameters of the nested logit model. A limited
information, two-step maximum likelihood approach can be done as follows:

1. Estimate β by treating the choice within branches as a simple conditional logit
model.

2. Compute the inclusive values for all the branches in the model. Estimate γ and the
τ parameters by treating the choice among branches as a conditional logit model
with attributes zib and Iib.

Because this approach is a two-step estimator, the estimate of the asymptotic covariance
matrix of the estimates at the second step must be corrected. [See Section 14.7 and
McFadden (1984).] For full information maximum likelihood (FIML) estimation of the
model, the log-likelihood is

ln L =
n∑

i=1

ln[Prob(twig | branch)i × Prob(branch)i ].

[See Hensher (1986, 1991) and Greene (2007a).] The information matrix is not block
diagonal in β and (γ , τ ), so FIML estimation will be more efficient than two-step esti-
mation. The FIML estimator is now available in several commercial computer packages.
The two-step estimator is rarely used in current research.

To specify the nested logit model, it is necessary to partition the choice set into
branches. Sometimes there will be a natural partition, such as in the example given
by Maddala (1983) when the choice of residence is made first by community, then by
dwelling type within the community. In other instances, however, the partitioning of the
choice set is ad hoc and leads to the troubling possibility that the results might be de-
pendent on the branches so defined. (Many studies in this literature present several sets
of results based on different specifications of the tree structure.) There is no well- de-
fined testing procedure for discriminating among tree structures, which is a problematic
aspect of the model.

18.2.6 THE MULTINOMIAL PROBIT MODEL

A natural alternative model that relaxes the independence restrictions built into the
multinomial logit (MNL) model is the multinomial probit model (MNP). The structural
equations of the MNP model are

Uij = x′
ijβ + εij, j = 1, . . . , J, [εi1, εi2, . . . , εiJ] ∼ N[0, �].

The term in the log-likelihood that corresponds to the choice of alternative q is

Prob[choiceiq] = Prob[Uiq > Uij, j = 1, . . . , J, j �= q].

The probability for this occurrence is

Prob[choicei q] = Prob[εi1 − εiq < (xiq − xi1)
′β, . . . , εiJ − εiq < (xiq − xiJ)

′β]

for the J − 1 other choices, which is a cumulative probability from a (J − 1)-variate
normal distribution. Because we are only making comparisons, one of the variances
in this J − 1 variate structure—that is, one of the diagonal elements in the reduced
�—must be normalized to 1.0. Because only comparisons are ever observable in this
model, for identification, J −1 of the covariances must also be normalized, to zero. The
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MNP model allows an unrestricted (J − 1) × (J − 1) correlation structure and J − 2
free standard deviations for the disturbances in the model. (Thus, a two-choice model
returns to the univariate probit model of Section 17.2.) For more than two choices, this
specification is far more general than the MNL model, which assumes that � = I. (The
scaling is absorbed in the coefficient vector in the MNL model.) It adds the unrestricted
correlations to the heteroscedastic model of the previous section.

The main obstacle to implementation of the MNP model has been the difficulty in
computing the multivariate normal probabilities for any dimensionality higher than 2.
Recent results on accurate simulation of multinormal integrals, however, have made
estimation of the MNP model feasible. (See Section 15.6.2.b and a symposium in the
November 1994 issue of the Review of Economics and Statistics.) Yet some practical
problems remain. Computation is exceedingly time consuming. It is also necessary to
ensure that � remain a positive definite matrix. One way often suggested is to construct
the Cholesky decomposition of �, LL′, where L is a lower triangular matrix, and es-
timate the elements of L. The normalizations and zero restrictions can be imposed by
making the last row of the J × J matrix � equal (0, 0, . . . , 1) and using LL′ to create
the upper (J − 1)× (J − 1) matrix. The additional normalization restriction is obtained
by imposing L11 = 1.

Identification appears to be a serious problem with the MNP model. Although
the unrestricted MNP model is fully identified in principle, convergence to satisfactory
results in applications with more than three choices appears to require many additional
restrictions on the standard deviations and correlations, such as zero restrictions or
equality restrictions in the case of the standard deviations.

18.2.7 THE MIXED LOGIT MODEL

Another variant of the multinomial logit model is the random parameters logit model
(RPL) (also called the mixed logit model). [See Revelt and Train (1996); Bhat (1996);
Berry, Levinsohn, and Pakes (1995); Jain, Vilcassim, and Chintagunta (1994); and Hen-
sher and Greene (2004).] Train’s (2003) formulation of the RPL model (which encom-
passes the others) is a modification of the MNL model. The model is a random coeffi-
cients formulation. The change to the basic MNL model is the parameter specification
in the distribution of the parameters across individuals, i :

βik = βk + z′
iθk + σkuik, (18-11)

where uik, k = 1, . . . , K, is multivariate normally distributed with correlation matrix
R, σk is the standard deviation of the kth distribution, βk + z′

iθk is the mean of the
distribution, and zi is a vector of person specific characteristics (such as age and income)
that do not vary across choices. This formulation contains all the earlier models. For
example, if θk = 0 for all the coefficients and σk = 0 for all the coefficients except for
choice-specific constants, then the original MNL model with a normal-logistic mixture
for the random part of the MNL model arises (hence the name).

The model is estimated by simulating the log-likelihood function rather than direct
integration to compute the probabilities, which would be infeasible because the mix-
ture distribution composed of the original εij and the random part of the coefficient is
unknown. For any individual,

Prob[choice q | ui ] = MNL probability | βi (ui ),
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with all restrictions imposed on the coefficients. The appropriate probability is

Eu[Prob(choice q | u)] =
∫

u1,...,uk

Prob[choice q | u] f (u)du,

which can be estimated by simulation, using

Est. Eu[Prob(choice q | u)] = 1
R

R∑
r=1

Prob[choice q | β i (uir)],

where uir is the r th of R draws for observation i . (There are nkR draws in total. The
draws for observation i must be the same from one computation to the next, which can
be accomplished by assigning to each individual their own seed for the random number
generator and restarting it each time the probability is to be computed.) By this method,
the log-likelihood and its derivatives with respect to (βk, θk, σk), k = 1, . . . , K and R
are simulated to find the values that maximize the simulated log-likelihood.

The mixed model enjoys two considerable advantages not available in any of the
other forms suggested. In a panel data or repeated-choices setting (see Section 18.2.11),
one can formulate a random effects model simply by making the variation in the coef-
ficients time invariant. Thus, the model is changed to

Uijt = x′
ijtβ it + εijt, i = 1, . . . , n, j = 1, . . . , J, t = 1, . . . , T,

β it,k = βk + z′
itθk + σkuik.

The time variation in the coefficients is provided by the choice-invariant variables, which
may change through time. Habit persistence is carried by the time-invariant random
effect, uik. If only the constant terms vary and they are assumed to be uncorrelated,
then this is logically equivalent to the familiar random effects model. But, much greater
generality can be achieved by allowing the other coefficients to vary randomly across
individuals and by allowing correlation of these effects.6 A second degree of flexibility
is in (18-11). The random components, ui are not restricted to normality. Other distribu-
tions that can be simulated will be appropriate when the range of parameter variation
consistent with consumer behavior must be restricted, for example to narrow ranges or
to positive values.

18.2.8 A GENERALIZED MIXED LOGIT MODEL

The development of functional forms for multinomial choice models begins with the
conditional (now usually called the multinomial) logit model that we considered in
Section 18.2.3. Subsequent proposals including the multinomial probit and nested logit
models (and a wide range of variations on these themes) were motivated by a desire to
extend the model beyond the IIA assumptions. These were achieved by allowing corre-
lation across the utility functions or heteroscedasticity such as that in the heteroscedastic
extreme value model in (18-12). That issue has been settled in the current generation
of multinomial choice models, culminating with the mixed logit model that appears to
provide all the flexibility needed to depart from the IIA assumptions. [See McFadden
and Train (2000) for a strong endorsement of this idea.]

6See Hensher (2001) for an application to transportation mode choice in which each individual is observed in
several choice situations. A stated choice experiment in which consumers make several choices in sequence
about automobile features appears in Hensher, Rose, and Greene (2006).
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Recent research in choice modeling has focused on enriching the models to ac-
commodate individual heterogeneity in the choice specification. To a degree, including
observable characteristics, such as household income in our application to follow, serves
this purpose. In this case, the observed heterogeneity enters the deterministic part of
the utility functions. The heteroscedastic HEV model shown in (18-13) moves the ob-
servable heterogeneity to the scaling of the utility function instead of the mean. The
mixed logit model in (18-11) accommodates both observed and unobserved hetero-
geneity in the preference parameters. A recent thread of research including Keane
(2006), Feibig, Keane, Louviere, and Wasi (2009), and Greene and Hensher (2010) has
considered functional forms that accommodate individual heterogeneity in both taste
parameters (marginal utilities) and overall scaling of the preference structure. Keane
et al.’s generalized mixed logit model is

Ui, j = x′
ijβ i + εij,

β i = σiβ + [γ + σi (1 − γ )]vi

σi = exp[σ̄ + τwi ]

where 0 ≤ γ ≤ 1 and wi is an additional source of unobserved random variation in
preferences. In this formulation, the weighting parameter, γ , distributes the individual
heterogeneity in the preference weights, vi and the overall scaling parameter σi . Hetero-
geneity across individuals in the overall scaling of preference structures is introduced by
a nonzero τ while σ̄ is chosen so that Ew[σi ] = 1. Greene and Hensher (2010) proposed
including the observable heterogeneity already in the mixed logit model, and adding it
to the scaling parameter as well. Also allowing the random parameters to be correlated
(via the nonzero elements in 	), produces a multilayered form of the generalized mixed
logit model,

β i = σi [β + 
zi ] + [γ + σi (1 − γ )]	vi

σi = exp[σ̄ + δ′hi + τwi ].

Ongoing research has continued to produce refinements that will accommodate realistic
forms of individual heterogeneity in the basic multinomial logit framework.

18.2.9 APPLICATION: CONDITIONAL LOGIT MODEL
FOR TRAVEL MODE CHOICE

Hensher and Greene [Greene (2007a)] report estimates of a model of travel mode
choice for travel between Sydney and Melbourne, Australia. The data set contains 210
observations on choice among four travel modes, air, train, bus, and car. (See Appendix
Table F18.2.) The attributes used for their example were: choice-specific constants;
two choice-specific continuous measures; GC, a measure of the generalized cost of the
travel that is equal to the sum of in-vehicle cost, INVC, and a wagelike measure times
INVT, the amount of time spent traveling; and TTME, the terminal time (zero for car);
and for the choice between air and the other modes, HINC, the household income. A
summary of the sample data is given in Table 18.2. The sample is choice based so as to
balance it among the four choices—the true population allocation, as shown in the last
column of Table 18.2, is dominated by drivers.
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TABLE 18.2 Summary Statistics for Travel Mode Choice Data

Number True
GC TTME INVC INVT HINC Choosing p Prop.

Air 102.648 61.010 85.522 133.710 34.548 58 0.28 0.14
113.522 46.534 97.569 124.828 41.274

Train 130.200 35.690 51.338 608.286 34.548 63 0.30 0.13
106.619 28.524 37.460 532.667 23.063

Bus 115.257 41.657 33.457 629.462 34.548 30 0.14 0.09
108.133 25.200 33.733 618.833 29.700

Car 94.414 0 20.995 573.205 34.548 59 0.28 0.64
89.095 0 15.694 527.373 42.220

Note: The upper figure is the average for all 210 observations. The lower figure is the mean for the observations
that made that choice.

The model specified is

Uij = αairdi,air + αtraindi,train + αbusdi,bus + βGGCij + βTTTMEij + γHdi,airHINCi + εij,

where for each j, εij has the same independent, type 1 extreme value distribution,

Fε(εij) = exp(−exp(−εij)),

which has standard deviation π2/6. The mean is absorbed in the constants. Estimates
of the conditional logit model are shown in Table 18.3. The model was fit with and
without the corrections for choice-based sampling. Because the sample shares do not
differ radically from the population proportions, the effect on the estimated param-
eters is fairly modest. Nonetheless, it is apparent that the choice-based sampling is
not completely innocent. A cross tabulation of the predicted versus actual outcomes
is given in Table 18.4. The predictions are generated by tabulating the integer parts
of mjk = ∑210

i=1 p̂ijdik, j, k= air, train, bus, car, where p̂ij is the predicted probability of
outcome j for observation i and dik is the binary variable which indicates if individual
i made choice k.

Are the odds ratios train/bus and car/bus really independent from the presence of
the air alternative? To use the Hausman test, we would eliminate choice air, from the
choice set and estimate a three-choice model. Because 58 respondents chose this mode,

TABLE 18.3 Parameter Estimates

Unweighted Sample Choice-Based Weighting

Estimate t Ratio Estimate t Ratio

βG −0.015501 −3.517 −0.01333 −2.711
βT −0.09612 −9.207 −0.13405 −5.216
γH 0.01329 1.295 −0.00108 −0.097
αair 5.2074 6.684 6.5940 4.075
αtrain 3.8690 8.731 3.6190 4.317
αbus 3.1632 7.025 3.3218 3.822
Log-likelihood at β = 0 −291.1218 −291.1218
Log-likelihood (sample shares) −283.7588 −218.9929
Log-likelihood at convergence −199.1284 −147.5896
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TABLE 18.4 Predicted Choices Based on Model Probabilities (predictions
based on choice-based sampling in parentheses)

Air Train Bus Car Total (Actual)

Air 32 (30) 8 (3) 5 (3) 13 (23) 58
Train 7 (3) 37 (30) 5 (3) 14 (27) 63
Bus 3 (1) 5 (2) 15 (14) 6 (12) 30
Car 16 (5) 13 (5) 6 (3) 25 (45) 59
Total (Predicted) 58 (39) 63 (40) 30 (23) 59 (108) 210

TABLE 18.5 Results for IIA Test

Full-Choice Set Restricted-Choice Set

βG βT αtrain αbus βG βT αtrain αbus

Estimate −0.0155 −0.0961 3.869 3.163 −0.0639 −0.0699 4.464 3.105

Estimated Asymptotic Covariance Matrix Estimated Asymptotic Covariance Matrix

βG 0.194e-4 0.000101
βT −0.46e-6 0.000109 −0.000013 0.000221
αtrain −0.00060 −0.0038 0.196 −0.00244 −0.00759 0.410
αbus −0.00026 −0.0038 0.161 0.203 −0.00113 −0.00753 0.336 0.371

Note: 0.nnne-p indicates times 10 to the negative p power.
H = 33.3367. Critical chi-squared[4] = 9.488.

we would lose 58 observations. In addition, for every data vector left in the sample,
the air-specific constant and the interaction, di,air × HINCi would be zero for every
remaining individual. Thus, these parameters could not be estimated in the restricted
model. We would drop these variables. The test would be based on the two estimators
of the remaining four coefficients in the model, [βG, βT, αtrain, αbus]. The results for the
test are as shown in Table 18.5

The hypothesis that the odds ratios for the other three choices are independent
from air would be rejected based on these results, as the chi-squared statistic exceeds
the critical value.

Because IIA was rejected, they estimated a nested logit model of the following
type:

Travel Determinants

FLY GROUND (Income)

AIR TRAIN BUS CAR (G cost, T time)

Note that one of the branches has only a single choice, so the conditional prob-
ability, Pj |fly = Pair|fly = 1. The estimates marked “unconditional” in Table 18.6 are
the simple conditional (multinomial) logit (MNL) model for choice among the four
alternatives that was reported earlier. Both inclusive value parameters are constrained
(by construction) to equal 1.0000. The FIML estimates are obtained by maximizing the
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TABLE 18.6 Estimates of a Mode Choice Model (standard
errors in parentheses)

Parameter FIML Estimate Unconditional

αair 6.042 (1.199) 5.207 (0.779)
αbus 4.096 (0.615) 3.163 (0.450)
αtrain 5.065 (0.662) 3.869 (0.443)
βGC −0.03159 (0.00816) −0.1550 (0.00441)
βTTME −0.1126 (0.0141) −0.09612 (0.0104)
γH 0.01533 (0.00938) 0.01329 (0.0103)
τfly 0.5860 (0.141) 1.0000 (0.000)
τground 0.3890 (0.124) 1.0000 (0.000)
σfly 2.1886 (0.525) 1.2825 (0.000)
σground 3.2974 (1.048) 1.2825 (0.000)
ln L −193.6561 −199.1284

full log-likelihood for the nested logit model. In this model,

Prob(choice | branch) = P(αairdair + αtraindtrain + αbusdbus + βGGC + βTTTME),

Prob(branch) = P(γ dairHINC + τfly IVfly + τground IVground),

Prob(choice, branch) = Prob(choice | branch) × Prob(branch).

The likelihood ratio statistic for the nesting (heteroscedasticity) against the null hy-
pothesis of homoscedasticity is −2[−199.1284− (−193.6561)] = 10.945. The 95 percent
critical value from the chi-squared distribution with two degrees of freedom is 5.99, so
the hypothesis is rejected. We can also carry out a Wald test. The asymptotic covariance
matrix for the two inclusive value parameters is [0.01977 / 0.009621, 0.01529]. The Wald
statistic for the joint test of the hypothesis that τfly = τground = 1, is

W = (0.586 − 1.0 0.389 − 1.0)

[
0.1977 0.009621

0.009621 0.01529

]−1 (
0.586 − 1.0
0.389 − 1.0

)
= 24.475.

The hypothesis is rejected, once again.
The choice model was reestimated under the assumptions of a heteroscedastic

extreme value (HEV) specification. In its simplest form, this model allows a separate
variance,

σ 2
j = π2/

(
6θ2

j

)
(18-12)

for each εij in (18-1). (One of the θ ’s must be normalized to 1.0 because we can only
compare ratios of variances.) The results for this model are shown in Table 18.7. This
model is less restrictive than the nested logit model. To make them comparable, we note
that we found that σair = π /(τfly

√
6) = 2.1886 and σtrain = σbus = σcar = π /(τground

√
6) =

3.2974. The HEV model thus relaxes an additional restriction because it has three free
variances whereas the nested logit model has two. On the other hand, the important de-
gree of freedom is that the HEV model does not impose the IIA assumptions anywhere
in the choices, whereas the nexted logit does, within each branch. Table 18.7 contains
two additional results for HEV specifications. In the one denoted “Heteroscedastic
HEV Model,” we have allowed heteroscedasticity across individuals as well as across
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TABLE 18.7 Estimates of a Heteroscedastic Extreme Value Model
(standard errors in parentheses)

Heteroscedastic Restricted
Parameter HEV Model HEV Model HEV Model Nested Logit Model

αair 7.8326 (10.951) 5.1815 (6.042) 2.973 (0.995) 6.062 (1.199)
αbus 7.1718 (9.135) 5.1302 (5.132) 4.050 (0.494) 4.096 (0.615)
αtrain 6.8655 (8.829) 4.8654 (5.071) 3.042 (0.429) 5.065 (0.662)
βGC −0.05156 (0.0694) −0.03326 (0.0378) −0.0289 (0.00580) −0.03159 (0.00816)
βTTME −0.1968 (0.288) −0.1372 (0.164) −0.0828 (0.00576) −0.1126 (0.0141)
γ 0.04024 (0.0607) 0.03557 (0.0451) 0.0238 (0.0186) 0.01533 (0.00938)
τfly 0.5860 (0.141)
τground 0.3890 (0.124)
θair 0.2485 (0.369) 0.2890 (0.321) 0.4959 (0.124)
θtrain 0.2595 (0.418) 0.3629 (0.482) 1.0000 (0.000)
θbus 0.6065 (1.040) 0.6895 (0.945) 1.0000 (0.000)
θcar 1.0000 (0.000) 1.0000 (0.000) 1.0000 (0.000)
φ 0.0000 (0.000) 0.00552 (0.00573) 0.0000 (0.000)

Implied Standard
Deviations

σair 5.161 (7.667)
σtrain 4.942 (7.978)
σbus 2.115 (3.623)
σcar 1.283 (0.000)
ln L −195.6605 −194.5107 −200.3791 −193.6561

choices by specifying
θij = θ j × exp (φHINCi ). (18-13)

[See Salisbury and Feinberg (2010) and Louviere and Swait (2010) for an application
of this type of HEV model.]

In the “Restricted HEV Model,” the variance of εi,Air is allowed to differ from the
others. Finally, the nested logit model has different variance for Air and (Train, Bus,
Car).

A primary virtue of the HEV model, the nested logit model, and other alternative
models is that they relax the IIA assumption. This assumption has implications for
the cross elasticities between attributes in the different probabilities. Table 18.8 lists
the estimated elasticities of the estimated probabilities with respect to changes in the
generalized cost variable. Elasticities are computed by averaging the individual sample
values rather than computing them once at the sample means. The implication of the IIA
assumption can be seen in the table entries. Thus, in the estimates for the multinomial
logit (MNL) model, the cross elasticities for each attribute are all equal. In the nested
logit model, the IIA property only holds within the branch. Thus, in the first column, the
effect of GC of air affects all ground modes equally, whereas the effect of GC for train
is the same for bus and car, but different from these two for air. All these elasticities
vary freely in the HEV model.

Table 18.9 lists the estimates of the parameters of the multinomial probit and ran-
dom parameters logit models. For the multinomial probit model, we fit three specifi-
cations: (1) free correlations among the choices, which implies an unrestricted 3 × 3
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TABLE 18.8 Estimated Elasticities with Respect
to Generalized Cost

Cost Is That of Alternative

Effect on Air Train Bus Car

Multinomial Logit
Air −1.136 0.498 0.238 0.418
Train 0.456 −1.520 0.238 0.418
Bus 0.456 0.498 −1.549 0.418
Car 0.456 0.498 0.238 −1.061

Nested Logit
Air −0.858 0.332 0.179 0.308
Train 0.314 −4.075 0.887 1.657
Bus 0.314 1.595 −4.132 1.657
Car 0.314 1.595 0.887 −2.498

Heteroscedastic Extreme Value
Air −1.040 0.367 0.221 0.441
Train 0.272 −1.495 0.250 0.553
Bus 0.688 0.858 −6.562 3.384
Car 0.690 0.930 1.254 −2.717

TABLE 18.9 Parameter Estimates for Normal-Based Multinomial Choice Models

Multinomial Probit Random Parameters Logit

Parameter Unrestricted Homoscedastic Uncorrelated Unrestricted Constants Uncorrelated

αair 1.358 3.005 3.171 5.519 4.807 12.603
σair 4.940 1.000a 3.629 4.009d 3.225b 2.803c

αtrain 4.298 2.409 4.277 5.776 5.035 13.504
σtrain 1.899 1.000a 1.581 1.904 1.290b 1.373
αbus 3.609 1.834 3.533 4.813 4.062 11.962
σbus 1.000a 1.000a 1.000a 1.424 3.147b 1.287
αcar 0.000a 0.000a 0.000a 0.000a 0.000a 0.000
σcar 1.000a 1.000 1.000a 1.283a 1.283a 1.283a

βG −0.0351 −0.0113 −0.0325 −0.0326 −0.0317 −0.0544
σβG — — — 0.000a 0.000a 0.00561
βT −0.0769 −0.0563 −0.0918 −0.126 −0.112 −0.2822
σβT — — — 0.000a 0.000a 0.182
γH 0.0593 0.0126 0.0370 0.0334 0.0319 0.0846
σγ — — — 0.000a 0.000a 0.0768
ρAT 0.581 0.000a 0.000a 0.543 0.000a 0.000a

ρAB 0.576 0.000a 0.000a 0.532 0.000a 0.000a

ρBT 0.718 0.000a 0.000a 0.993 0.000a 0.000a

log L −196.9244 −208.9181 −199.7623 −193.7160 −199.0073 −175.5333

aRestricted to this fixed value.
bComputed as the square root of (π2/6 + θ2

j ), θair = 2.959, θtrain = 0.136, θbus = 0.183, θcar = 0.000.
cθair = 2.492, θtrain = 0.489, θbus = 0.108, θcar = 0.000.
dDerived standard deviations for the random constants are θair = 3.798, θtrain = 1.182, θbus = 0.0712, θcar = 0.000.

correlation matrix and two free standard deviations; (2) uncorrelated disturbances,
but free standard deviations, a model that parallels the heteroscedastic extreme value
model; and (3) uncorrelated disturbances and equal standard deviations, a model that
is the same as the original conditional logit model save for the normal distribution of
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the disturbances instead of the extreme value assumed in the logit model. In this case,
the scaling of the utility functions is different by a factor of (π2/6)1/2 = 1.283, as the
probit model assumes ε j has a standard deviation of 1.0.

We also fit three variants of the random parameters logit. In these cases, the choice-
specific variance for each utility function is σ 2

j + θ2
j where σ 2

j is the contribution of the
logit model, which is π2 / 6 = 1.645, and θ2

j is the estimated constant specific variance
estimated in the random parameters model. The combined estimated standard devia-
tions are given in the table. The estimates of the specific parameters, θ j , are given in the
footnotes. The estimated models are (1) unrestricted variation and correlation among
the three intercept parameters—this parallels the general specification of the multino-
mial probit model; (2) only the constant terms randomly distributed but uncorrelated,
a model that is parallel to the multinomial probit model with no cross-equation cor-
relation and to the heteroscedastic extreme value model shown in Table 18.7 and (3)
random but uncorrelated parameters. This model is more general than the others but is
somewhat restricted as the parameters are assumed to be uncorrelated. Identification
of the correlation matrix is weak in this model—after all, we are attempting to estimate
a 6 × 6 correlation matrix for all unobserved variables. Only the estimated parameters
are shown in Table 18.9 Estimated standard errors are similar to (although generally
somewhat larger than) those for the basic multinomial logit model.

The standard deviations and correlations shown for the multinomial probit model
are parameters of the distribution of εij, the overall randomness in the model. The coun-
terparts in the random parameters model apply to the distributions of the parameters.
Thus, the full disturbance in the model in which only the constants are random is
εiair + uair for air, and likewise for train and bus. Likewise, the correlations shown
for the first two models are directly comparable, although it should be noted that in the
random parameters model, the disturbances have a distribution that is that of a sum
of an extreme value and a normal variable, while in the probit model, the disturbances
are normally distributed. With these considerations, the “unrestricted” models in each
case are comparable and are, in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The
likelihood values are not comparable, so a direct test is precluded. Both relax the IIA
assumption, which is a crucial consideration. The random parameters model enjoys
a significant practical advantage, as discussed earlier, and also allows a much richer
specification of the utility function itself. But, the question still warrants additional
study. Both models are making their way into the applied literature.

18.2.10 ESTIMATING WILLINGNESS TO PAY

One of the standard applications of choice models is to estimate how much consumers
value the attributes of the choices. Recall that we are not able to observe the scale of
the utilities in the choice model. However, we can use the marginal utility of income,
also scaled in the same unobservable way, to effect the valuation. In principle, we could
estimate

WTP = (Marginal Utility of Attribute/σ)/(Marginal Utility of Income/σ)

= (βattribute/σ)/(γIncome/σ),
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where σ is the unknown scaling of the utility functions. Note that σ cancels out of the
ratio. In our application, for example, we might assess how much consumers would be
willing to pay to have shorter waits at the terminal for the public modes of transportation
by using

WTPtime = −β
T̂IME

/γIncome.

(We use the negative because additional time spent waiting at the terminal provides
disutility, as evidenced by its coefficient’s negative sign.) In settings in which income is
not observed, researchers often use the negative of the coefficient on a cost variable
as a proxy for the marginal utility of income. Standard errors for estimates of WTP
can be computed using the delta method or the method of Krinsky and Robb. (See
Sections 4.4.4 and 15.3.)

In the basic multinomial logit model, the estimator of WTP is a simple ratio of
parameters. In our estimated model in Table 18.3, for example, using the household
income coefficient as the numeraire, the estimate of WTP for a shorter wait at the
terminal is −0.09612/0.01329 = 7.239. The units of measurement must be resolved
in this computation, since terminal time is measured in minutes while the cost is in
$1,000/year. Multiplying this result by $60 minutes/hour and dividing by the equivalent
hourly income of income times 8,760/1,000 gives $49.54 per hour of waiting time. To
compute the estimated asymptotic standard error, for convenience, we first rescaled
the terminal time to hours by dividing it by 60 and the income variable to $/hour by
multiplying it by 1,000/8,760. The resulting estimated asymptotic distribution for the
estimators is(

β̂
T̂IME

γ̂HINC

)
∼ N

[(−5.76749
0.11639

)
,

(
0.392365 0.00193095
0.00193095 0.00808177

)]
.

The derivatives of WTP
T̂IME

= −β
T̂IME

/γH are −1/γH for βTIME and –WTP/γH

for γH. This provides an estimator of 38.8304 for the standard error. The confidence
interval for this parameter would be −26.56 to +125.63. This seems extremely wide. We
will return to this issue later.

In the mixed logit model, if either of the coefficients in the computation is random,
then the preceding simple computation above will not reveal the heterogeneity in the
result. In many studies of WTP using mixed logit models, it is common to allow the
utility parameter on the attribute (numerator) to be random and treat the numeraire
(income or cost coefficient) as nonrandom. Using our mode choice application, we refit
the model with β

T̂IME,i
= β

T̂IME
+ σ

T̂IME
vi and all other coefficients nonrandom. We

then used the method described in Section 15.10 to estimate E[β
T̂IME,i

|Xi , choicei ]/γH

to estimate the expected WTP for each individual in the sample. Income and terminal
time were scaled as before. Figure 18.1 displays a kernel estimator of the estimates
of WTPi by this method. Note that the distribution is roughly centered on our earlier
estimate of $49.53. The density estimator reveals the heterogeneity in the population
of this parameter.

Willingness to pay measures computed as suggested above are ultimately based
on a ratio of two asymptotically normally distributed parameter estimators. In general,
ratios of normally distributed random variables do not have a finite variance. This often
becomes apparent when using the delta method, as it seems previously. A number of
writers, notably, Daly, Hess, and Train (2009), have documented the problem of extreme
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FIGURE 18.1 Estimated Willingness to Pay for Decreased Terminal
Time.

results of WTP computations, and why they should be expected. One solution suggested,
for example, by Train and Weeks (2005), Sonnier, Ainsle, and Otter (2007), and Scarpa,
Thiene, and Train (2008), is to recast the original model in willingness to pay space. In
the multinomial logit case, this amounts to a trivial reparameterization of the model.
Using our application as an example, we would write

Uij = α j + βGC[GCi + β
T̂IME

/βGCTIMEi ] + γH AAIRHINCi + εij

= α j + βGC[GCi + λ
T̂IME

TIMEi ] + γH AAIRHINCi + εij.

This obviously returns the original model, though in the process, it transforms a linear
estimation problem into a nonlinear one. But, in principle, with the model reparame-
terized in “WTP space,” we have sidestepped the problem noted earlier – λ

T̂IME
is the

estimator of WTP with no further transformation of the parameters needed. As noted,
this will return the numerically identical results for a multinomial logit model. It will not
return the identical results for a mixed logit model, in which we write λTI ME,i = λ

T̂IME
+

θ
T̂IME

v
T̂IME,i

. Greene and Hensher (2010b) apply this method to the generalized mixed
logit model in Section 18.2.8.

18.2.11 PANEL DATA AND STATED CHOICE EXPERIMENTS

Panel data in the unordered discrete choice setting typically come in the form of se-
quential choices. Train (2009, Chapter 6) reports an analysis of the site choices of 258
anglers who chose among 59 possible fishing sites for a total of 962 visits. Allenby and
Rossi (1999) modeled brand choice for a sample of shoppers who made multiple store
trips. The mixed logit model is a framework that allows the counterpart to a random
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effects model. The random utility model would appear

Uij,t = x′
ij,tβ i + εij,t,

where conditioned on β i , a multinomial logit model applies. The random coefficients
carry the common effects across choice situations. For example, if the random coeffi-
cients include choice-specific constant terms, then the random utility model becomes
essentially a random effects model. A modification of the model that resembles Mund-
lak’s correction for the random effects model is

β i = β0 + 
zi + 	ui ,

where, typically, zi would contain demographic and socioeconomic information.
The stated choice experiment is similar to the repeated choice situation, with a

crucial difference. In a stated choice survey, the respondent is asked about his or her
preferences over a series of hypothetical choices, often including one or more that are
actually available and others that might not be available (yet). Hensher, Rose, and
Greene (2006) describe a survey of Australian commuters who were asked about hypo-
thetical commutation modes in a choice set that included the one they currently took
and a variety of alternatives. Revelt and Train (2000) analyzed a stated choice experi-
ment in which California electricity consumers were asked to choose among alternative
hypothetical energy suppliers. The advantage of the stated choice experiment is that it
allows the analyst to study choice situations over a range of variation of the attributes
or a range of choices that might not exist within the observed, actual outcomes. Thus,
the original work on the MNL by McFadden et al. concerned survey data on whether
commuters would ride a (then-hypothetical) underground train system to work in the
San Francisco Bay area. The disadvantage of stated choice data is that they are hypo-
thetical. Particularly when they are mixed with revealed preference data, the researcher
must assume that the same preference patterns govern both types of outcomes. This
is likely to be a dubious assumption. One method of accommodating the mixture of
underlying preferences is to build different scaling parameters into the model for the
stated and revealed preference components of the model. Greene and Hensher (2007)
suggest a nested logit model that groups the hypothetical choices in one branch of a
tree and the observed choices in another.

18.2.12 AGGREGATE MARKET SHARE DATA—THE BLP RANDOM
PARAMETERS MODEL

We note, finally, an important application of the mixed logit model, the structural de-
mand model of Berry, Levinsohn, and Pakes (1995). (Demand models for differenti-
ated products such as automobiles [BLP (1995), Goldberg (1995)], ready-to-eat cereals
[Nevo (2001)], and consumer electronics [Das, Olley, and Pakes (1996)], have been
constructed using the mixed logit model with market share data.7 A basic structure is
defined for

Markets, denoted t = 1, . . . , T

Consumers in the markets, denoted i = 1, . . . , nt

Products, denoted j = 1, . . . , J

7We draw heavily on Nevo (2000) for this discussion.



Greene-2140242 book November 26, 2010 23:29

CHAPTER 18 ✦ Discrete Choices and Event Counts 783

The definition of a market varies by application; BLP analyzed the U.S. national auto-
mobile market for 20 years; Nevo examined a cross section of cities over 20 quarters so
the city-quarter is a market; Das et al. defined a market as the annual sales to consumers
in particular income levels.

For market t , we base the analysis on average prices, pjt, aggregate quantities qjt,
consumer incomes yi observed product attributes, xjt and unobserved (by the analyst)
product attributes, �jt. The indirect utility function for consumer i , for product j in
market t is

uijt = αi (yi − pjt) + xjt
′β i + �jt + εijt, (18-14)

where αi is the marginal utility of income and β i are marginal utilities attached to
specific observable attributes of the products. The fact that some unobservable product
attributes, �jt will be reflected in the prices implies that prices will be endogenous
in a demand model that is based on only the observable attributes. Heterogeneity in
preferences is reflected (as we did earlier) in the formulation of the random parameters,(

αi

βi

)
=

(
α

β

)
+

(
π ′
�

)
di +

(
γ wi

	vi

)
(18-15)

where di is a vector of demographics such as gender and age while α, β, π , �, γ , and 	 are
structural parameters to be estimated (assuming they are identified). A utility function is
also defined for an “outside good” that is (presumably) chosen if the consumer chooses
none of the brands 1, . . . , J :

ui0t = αi yi + �0t + π ′
0di + εi0t .

Since there is no variation in income across the choices, αi yi will fall out of the logit
probabilities, as we saw earlier. A normalization is used instead, ui0t = εi0t , so that
comparisons of utilities are against the outside good. The resulting model can be recon-
structed by inserting (18-15) into (18-14),

uijt = αi yi + δjt(xjt, pjt, �jt : α, β) + τijt(xjt, pjt, vi , wi : π , �, γ , 	) + εijt

δjt = x′
jtβ − αpjt + �jt

τjt = [−pjt, x′
jt]

[(
π ′
�

)
di +

(
γ wi

	vi

)]
.

The preceding model defines the random utility model for consumer i in market t . Each
consumer is assumed to purchase the one good that maximizes utility. The market share
of the jth product in this market is obtained by summing over the choices made by those
consumers. With the assumption of homogeneous tastes (	 = 0 and γ = 0) and i.i.d.,
type I extreme value distributions for εijt, it follows that the market share of product
j is

sjt = exp(x′
jtβ − αpjt + �jt)

1 + ∑J
k=1 exp(x′

ktβ − αpkt + �kt )
.

The IIA assumptions produce the familiar problems of peculiar and unrealistic sub-
stitution patterns among the goods. Alternatives considered include a nested logit, a
“generalized extreme value” model and, finally, the mixed logit model, now applied to
the aggregate data.
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Estimation cannot proceed along the lines of Section 18.2.7 because �jt is unob-
served and pjt is, therefore, endogenous. BLP propose, instead to use a GMM estimator,
based on the moment equations

E{[Sjt − sjt(xjt, pjt|α, β)]zjt} = 0

for a suitable set of instruments. Layering in the random parameters specification, we
obtain an estimation based on method of simulated moments, rather than a maximum
simulated log likelihood. The simulated moments would be based on

Ew,v[sjt(xjt, pjt|αi , β i )] =
∫

w,v

{
sjt[xjt, pjt|αi (w), β i (v)]

}
dF(w) dF(v).

These would be simulated using the method of Section 18.2.7.

18.3 RANDOM UTILITY MODELS FOR ORDERED
CHOICES

The analysts at bond rating agencies such as Moody’s and Standard and Poor provide an
evaluation of the quality of a bond that is, in practice, a discrete listing of the continuously
varying underlying features of the security. The rating scales are as follows:

Rating S&P Rating Moody’s Rating

Highest quality AAA Aaa
High quality AA Aa
Upper medium quaity A A
Medium grade BBB Baa
Somewhat speculative BB Ba
Low grade, speculative B B
Low grade, default possible CCC Caa
Low grade, partial recovery possible CC Ca
Default, recovery unlikely C C

For another example, Netflix (www.netflix.com) is an Internet company that rents
movies. Subscribers order the film online for download or home delivery of a DVD.
The next time the customer logs onto the web site, they are invited to rate the movie
on a five-point scale, where five is the highest, most favorable rating. The ratings of
the many thousands of subscribers who rented that movie are averaged to provide a
recommendation to prospective viewers. As of April 5, 2009, the average rating of the
2007 movie National Treasure: Book of Secrets given by approximately 12,900 visitors
to the site was 3.8. Many other Internet sellers of products and services, such as Barnes
and Noble, Amazon, Hewlett Packard, and Best Buy, employ rating schemes such as
this. Many recently developed national survey data sets, such as the British Household
Panel Data Set (BHPS) (http://www.iser.essex.ac.uk/survey/bhps) and the German So-
cioeconomic Panel (GSOEP) (http://www.diw.de/en/soep), contain questions that elicit
self-assessed ratings of health, health satisfaction, or overall well-being. Like the other
examples listed, these survey questions are answered on a discrete scale, such as the
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zero to 10 scale of the question about health satisfaction in the GSOEP. Ratings such as
these provide applications of the models and methods that interest us in this section.8

For any individual respondent, we hypothesize that there is a continuously varying
strength of preferences that underlies the rating they submit. For convenience and
consistency with what follows, we will label that strength of preference “utility,” U∗.
Continuing the Netflix example, we describe utility as ranging over the entire real line:

−∞ < U∗
im < +∞

where i indicates the individual and m indicates the movie. Individuals are invited to
“rate” the movie on an integer scale from 1 to 5. Logically, then, the translation from
underlying utility to a rating could be viewed as a censoring of the underlying utility,

Rim = 1 if − ∞ < U∗
im ≤ μ1,

Rim = 2 if μ1 < U∗
im ≤ μ2,

Rim = 3 if μ2 < U∗
im ≤ μ3,

Rim = 4 if μ3 < U∗
im ≤ μ4,

Rim = 5 if μ4 < U∗
im < ∞.

The same mapping would characterize the bond ratings, since the qualities of bonds that
produce the ratings will vary continuously and the self-assessed health and well-being
questions in the panel survey data sets based on an underlying utility or preference
structure. The crucial feature of the description thus far is that underlying the discrete
response is a continuous range of preferences. Therefore, the observed rating represents
a censored version of the true underlying preferences. Providing a rating of five could
be an outcome ranging from general enjoyment to wild enthusiasm. Note that the
thresholds, μ j , number (J − 1) where J is the number of possible ratings (here, five) –
J−1 values are needed to divide the range of utility into J cells. The thresholds are an
important element of the model; they divide the range of utility into cells that are then
identified with the observed outcomes. Importantly, the difference between two levels
of a rating scale (e.g., one compared to two, two compared to three) is not the same
as on a utility scale; hence we have a strictly nonlinear transformation captured by the
thresholds, which are estimable parameters in an ordered choice model.

The model as suggested thus far provides a crude description of the mechanism
underlying an observed rating. Any individual brings their own set of characteristics to
the utility function, such as age, income, education, gender, where they live, family situ-
ation, and so on, which we denote xi1, xi2, . . . , xi K. They also bring their own aggregate
of unmeasured and unmeasurable (by the statistician) idiosyncrasies, denoted εim How
these features enter the utility function is uncertain, but it is conventional to use a linear
function, which produces a familiar random utility function,

U∗
im = β0 + β1xi1 + β2xi2 + · · · + βKxi K + εim.

8Greene and Hensher (2010) provide a survey of ordered choice modeling. Other textbook and monograph
treatments include DeMaris (2004), Long (1997), Johnson and Abbot (1999), and Long and Freese (2006).
Introductions to the model also appear in journal articles such as Winship and Mare (1984), Becker and
Kennedy (1992), Daykin and Moffatt (2002), and Boes and Winkelmann (2006).
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Example 18.2 Movie Ratings
The web site www.imdb.com invites visitors to rate movies that they have seen, in the same
fashion as the Netflix site. This site uses a 10 point scale. On December 1, 2008, they reported
the results in Figure 18.2 for the movie National Treasure: Book of Secrets for 41,771 users
of the site: The earlier panel at the left shows the overall ratings. The panel at the right shows
how the average rating varies across age, gender, and whether the rater is a U.S. viewer or not.

The rating mechanism we have constructed is

Rim = 1 if −∞ < x′
i β + εim ≤ μ1,

Rim = 2 if μ1 < x′
i β + εim ≤ μ2,

Rim = 3 if μ2 < x′
i β + εim ≤ μ3,

Rim = 4 if μ3 < x′
i β + εim ≤ μ4,

Rim = 5 if μ4 < x′
i β + εim < ∞.

Relying on a central limit to aggregate the innumerable small influences that add up to the
individual idiosyncrasies and movie attraction, we assume that the random component, εim,
is normally distributed with zero mean and (for now) constant variance. The assumption of
normality will allow us to attach probabilities to the ratings. In particular, arguably the most
interesting one is

Prob( Rim = 5 | xi ) = Prob[εim > μ4 − xi
′β].

The structure provides the framework for an econometric model of how individuals rate
movies (that they rent from Netflix). The resemblance of this model to familiar models of
binary choice is more than superficial. For example, one might translate this econometric
model directly into a probit model by focusing on the variable

Eim = 1 if Rim = 5

Eim = 0 if Rim < 5.

Thus, the model is an extension of a binary choice model to a setting of more than two choices.
But, the crucial feature of the model is the ordered nature of the observed outcomes and the
correspondingly ordered nature of the underlying preference scale.

FIGURE 18.2 IMDb.com Ratings (www.imdb.com/title/
tt0465234/ratings).
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The model described here is an ordered choice model. (The choice of the normal
distribution for the random term makes it an ordered probit model.) Ordered choice
models are appropriate for a wide variety of settings in the social and biological sciences.
The essential ingredient is the mapping from an underlying, naturally ordered preference
scale to a discrete ordered observed outcome, such as the rating scheme described. The
model of ordered choice pioneered by Aitcheson and Silvey (1957), Snell (1964), and
Walker and Duncan (1967) and articulated in its modern form by Zavoina and McElvey
(1975) has become a widely used tool in many fields. The number of applications in the
current literature is large and increasing rapidly, including

• Bond ratings [Terza (1985a)]
• Congressional voting on a Medicare bill [McElvey and Zavoina (1975)]
• Credit ratings [Cheung (1996) , Metz, and Cantor (2006)]
• Driver injury severity in car accidents [Eluru, Bhat, and Hensher (2008)]
• Drug reactions [Fu, Gordon, Liu, Dale, and Christensen.(2004)]
• Education [Machin and Vignoles (2005), Carneiro, Hansen, and Heckman (2003),

Cunha, Heckman, and Navarro (2007)]
• Financial failure of firms [Hensher and Jones (2007)]
• Happiness [Winkelmann (2005), Zigante (2007)]
• Health status [Jones, Koolman, and Rice (2003)]
• Life satisfaction [Clark, Georgellis, and Sanfey (2001), Groot and ven den Brink

(2003)]
• Monetary policy [Eichengreen, Watson, and Grossman (1985)]
• Nursing labor supply [Brewer, Kovner, Greene, and Cheng (2008)]
• Obesity [Greene, Harris, Hollingsworth, and Maitra (2008)]
• Political efficacy [King, Murray, Salomon, and Tandon [2004)]
• Pollution [Wang and Kockelman (2009)]
• Promotion and rank in nursing [Pudney and Shields [2000)]
• Stock price movements [Tsay (2005)]
• Tobacco use [Harris and Zhao (2007), Kasteridis, Munkin, and Yen (2008)]
• Work disability [Kapteyn et al. (2007)]

18.3.1 THE ORDERED PROBIT MODEL

The ordered probit model is built around a latent regression in the same manner as the
binomial probit model. We begin with

y∗ = x′β + ε.

As usual, y∗ is unobserved. What we do observe is

y = 0 if y∗ ≤ 0

= 1 if 0 < y∗ ≤ μ1

= 2 if μ1 < y∗ ≤ μ2

...

= J if μJ−1 ≤ y∗,

which is a form of censoring. The μ’s are unknown parameters to be estimated with β.
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FIGURE 18.3 Probabilities in the Ordered Probit Model.

We assume that ε is normally distributed across observations.9 For the same rea-
sons as in the binomial probit model (which is the special case of J = 1), we nor-
malize the mean and variance of ε to zero and one. We then have the following
probabilities:

Prob(y = 0 | x) = (−x′β),

Prob(y = 1 | x) = (μ1 − x′β) − (−x′β),

Prob(y = 2 | x) = (μ2 − x′β) − (μ1 − x′β),

...

Prob(y = J | x) = 1 − (μJ−1 − x′β).

For all the probabilities to be positive, we must have

0 < μ1 < μ2 < · · · < μJ−1.

Figure 18.3 shows the implications of the structure. This is an extension of the univariate
probit model we examined in chapter 17. The log-likelihood function and its derivatives
can be obtained readily, and optimization can be done by the usual means.

As usual, the marginal effects of the regressors x on the probabilities are not equal
to the coefficients. It is helpful to consider a simple example. Suppose there are three
categories. The model thus has only one unknown threshold parameter. The three

9Other distributions, particularly the logistic, could be used just as easily. We assume the normal purely for
convenience. The logistic and normal distributions generally give similar results in practice.
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probabilities are

Prob(y = 0 | x) = 1 − (x′β),

Prob(y = 1 | x) = (μ − x′β) − (−x′β),

Prob(y = 2 | x) = 1 − (μ − x′β).

For the three probabilities, the marginal effects of changes in the regressors are

∂ Prob(y = 0 | x)

∂x
= −φ(x′β)β,

∂ Prob(y = 1 | x)

∂x
= [φ(−x′β) − φ(μ − x′β)]β,

∂ Prob(y = 2 | x)

∂x
= φ(μ − x′β)β.

Figure 18.4 illustrates the effect. The probability distributions of y and y∗ are shown in
the solid curve. Increasing one of the x’s while holding β and μ constant is equivalent
to shifting the distribution slightly to the right, which is shown as the dashed curve.
The effect of the shift is unambiguously to shift some mass out of the leftmost cell.
Assuming that β is positive (for this x), Prob(y = 0 | x) must decline. Alternatively,
from the previous expression, it is obvious that the derivative of Prob(y = 0 | x) has the
opposite sign from β. By a similar logic, the change in Prob(y = 2 | x) [or Prob(y = J | x)

in the general case] must have the same sign as β. Assuming that the particular β is
positive, we are shifting some probability into the rightmost cell. But what happens
to the middle cell is ambiguous. It depends on the two densities. In the general case,
relative to the signs of the coefficients, only the signs of the changes in Prob(y = 0 | x)

and Prob(y = J | x) are unambiguous! The upshot is that we must be very careful
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FIGURE 18.4 Effects of Change in x on Predicted Probabilities.
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in interpreting the coefficients in this model. Indeed, without a fair amount of extra
calculation, it is quite unclear how the coefficients in the ordered probit model should
be interpreted.

Example 18.3 Rating Assignments
Marcus and Greene (1985) estimated an ordered probit model for the job assignments of
new Navy recruits. The Navy attempts to direct recruits into job classifications in which they
will be most productive. The broad classifications the authors analyzed were technical jobs
with three clearly ranked skill ratings: “medium skilled,” “highly skilled,” and “nuclear quali-
fied/highly skilled.” Because the assignment is partly based on the Navy’s own assessment
and needs and partly on factors specific to the individual, an ordered probit model was
used with the following determinants: (1) ENSPE = a dummy variable indicating that the
individual entered the Navy with an “A school” (technical training) guarantee; (2) EDMA =
educational level of the entrant’s mother; (3) AFQT = score on the Armed Forces Qualifying
Test; (4) EDYRS = years of education completed by the trainee; (5) MARR = a dummy variable
indicating that the individual was married at the time of enlistment; and (6) AGEAT = trainee’s
age at the time of enlistment. (The data used in this study are not available for distribution.)
The sample size was 5,641. The results are reported in Table 18.10. The extremely large t
ratio on the AFQT score is to be expected, as it is a primary sorting device used to assign
job classifications.

To obtain the marginal effects of the continuous variables, we require the standard normal
density evaluated at −x̄ ′β̂ = −0.8479 and μ̂ − x̄ ′β̂ = 0.9421. The predicted probabilities are
�(−0.8479) = 0.198, �(0.9421) − �(−0.8479) = 0.628, and 1 − �(0.9421) = 0.174. (The
actual frequencies were 0.25, 0.52, and 0.23.) The two densities are φ (−0.8479) = 0.278 and
φ (0.9421) = 0.255. Therefore, the derivatives of the three probabilities with respect to AFQT,
for example, are

∂ P0

∂AFQT
= (−0.278)0.039 = −0.01084,

∂ P1

∂AFQT
= (0.278 − 0.255)0.039 = 0.0009,

∂ P2

∂AFQT
= 0.255(0.039) = 0.00995.

Note that the marginal effects sum to zero, which follows from the requirement that the
probabilities add to one. This approach is not appropriate for evaluating the effect of a dummy
variable. We can analyze a dummy variable by comparing the probabilities that result when
the variable takes its two different values with those that occur with the other variables held
at their sample means. For example, for the MARR variable, we have the results given in
Table 18.11.

TABLE 18.10 Estimated Rating
Assignment Equation

Mean of
Variable Estimate t Ratio Variable

Constant −4.34 — —
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 12.1
AFQT 0.039 39.9 71.2
EDYRS 0.190 8.7 12.1
MARR −0.48 −9.0 0.08
AGEAT 0.0015 0.1 18.8
μ 1.79 80.8 —
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TABLE 18.11 Marginal Effect of a Binary Variable

−β̂ ′x μ̂ − β̂ ′x Prob[y = 0] Prob[y = 1] Prob[y = 2]

MARR = 0 −0.8863 0.9037 0.187 0.629 0.184
MARR = 1 −0.4063 1.3837 0.342 0.574 0.084
Change 0.155 −0.055 −0.100

18.3.2 A SPECIFICATION TEST FOR THE ORDERED CHOICE
MODEL

The basic formulation of the ordered choice model implies that for constructed binary
variables,

wij = 1 if yi ≤ j, 0 otherwise, j = 1, 2, . . . , J − 1, (18-16)

Prob(wij = 1 | xi ) = F(xi
′β−μ j ).

The first of these, when j = 1, is the binary choice model of Section 17.2. One implication
is that we could estimate the slopes, but not the threshold parameters, in the ordered
choice model just by using wi1 and xi in a binary probit or logit model. (Note that this
result also implies the validity of combining adjacent cells in the ordered choice model.)
But, (18-16) also defines a set of J−1 binary choice models with different constants but
common slope vector, β. This equality of the parameter vectors in (18-16) has been
labeled the parallel regression assumption. Although it is merely an implication of
the model specification, this has been viewed as an implicit restriction on the model.
[See, e.g., Long (1997, p. 141).] Brant (1990) suggests a test of the parallel regressions
assumption based on (18-16). One can, in principle, fit J −1 in such binary choice models
separately. Each will produce its own constant term and a consistent in estimator of the
common β. Brant’s Wald test examines the linear restrictions β1 = β2 = · · · = β J−1, or
H0: βq − β1 = 0, q = 2, . . . , J − 1. The Wald statistic will be

χ2[(J − 2)K] = (Rβ̂
∗
)′[R × Asy.Var[β̂

∗
] × R′]−1(Rβ̂

∗
),

where β̂
∗

is obtained by stacking the individual binary logit or probit estimates of β

(without the constant terms). [See Brant (1990), Long (1997), or Greene and Hensher
(2010, page 187) for details on computing the statistic.]

Rejection of the null hypothesis calls the model specification into question. An
alternative model in which there is a different β for each value of y has two problems:
it does not force the probabilities to be positive and it is internally inconsistent. On the
latter point, consider the suggested latent regression, y∗ = x′β j +ε. If the “β” is different
for each j , then it is not possible to construct a data generating mechanism for y∗ (or, for
example, simulate it); the realized value of y∗ cannot be defined without knowing y (i.e.,
the realized j), since the applicable β depends on j , but y is supposed to be determined
from y∗ through, for example, (18-16). There is no parametric restriction other than the
one we seek to avoid that will preserve the ordering of the probabilities for all values
of the data and maintain the coherency of the model. This still leaves the question of
what specification failure would logically explain the finding. Some suggestions in Brant
(1990) include (1) misspecification of the latent regression, x′β; (2) heteroscedasticity

Sherrie Rhine
Line

Sherrie Rhine
Line
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of ε; and (3) misspecification of the distributional form for the latent variable, that is,
“nonlogistic link function.”

Example 18.4 Brant Test for an Ordered Probit Model of Health
Satisfaction

In Example 17.4, we studied the health care usage of a sample of households in the Ger-
man Socioeconomic Panel (GSOEP). The data include a self-reported measure of “health
satisfaction,” (HSAT) that is coded 0–10. This variable provides a natural application of the
ordered choice models in this chapter. The data are an unbalanced panel. For purposes of
this exercise, we have used the fifth (1984) wave of the data set, which is a cross section of
4,483 observations. We then collapsed the 10 cells into 5 [(0–2),(3–5), (6–8),(9),(10)] for this
example. The utility function is

HSAT∗
i = β1 + β2 AGEi + β3 INCOMEi + β4 KIDSi

+ β5 EDUCi + β6 MARRIEDi β7 WORKINGi + εi .

Variables KIDS, MARRIED, and WORKING, are binary indicators of whether there are children
in the household, marital status, and whether the individual was working at the time of the
survey. (These data are examined further in Example 18.6.) The model contains six variables,
and there are four binary choice models fit, so there are ( J−2) ( K ) = (3) (6) = 18 restrictions.
The chi-squared for the probit model is 87.836. The critical value for 95 percent is 28.87, so
the homogeneity restriction is rejected. The corresponding value for the logit model is 77.84,
which leads to the same conclusion.

18.3.3 BIVARIATE ORDERED PROBIT MODELS

There are several extensions of the ordered probit model that follow the logic of the
bivariate probit model we examined in Section 17.5. A direct analog to the base case
two-equation model is used in the study in Example 18.3.

Example 18.5 Calculus and Intermediate Economics Courses
Butler et al. (1994) analyzed the relationship between the level of calculus attained and
grades in intermediate economics courses for a sample of Vanderbilt students. The two-step
estimation approach involved the following strategy. (We are stylizing the precise formulation
a bit to compress the description.) Step 1 involved a direct application of the ordered probit
model of Section 18.3.1 to the level of calculus achievement, which is coded 0, 1, . . . , 6:

m∗
i = x′

i β + εi , εi | xi ∼ N[0, 1],

mi = 0 if −∞ < m∗
i ≤ 0

= 1 if 0 < m∗
i ≤ μ1

· · ·
= 6 if μ5 < m∗

i < +∞.

The authors argued that although the various calculus courses can be ordered discretely by
the material covered, the differences between the levels cannot be measured directly. Thus,
this is an application of the ordered probit model. The independent variables in this first-step
model included SAT scores, foreign language proficiency, indicators of intended major, and
several other variables related to areas of study.

The second step of the estimator involves regression analysis of the grade in the interme-
diate microeconomics or macroeconomics course. Grades in these courses were translated
to a granular continuous scale (A = 4.0, A− = 3.7, etc.). A linear regression is specified,

Gradei = z′
i δ + ui , where ui | zi ∼ N

[
0, σ 2

u

]
.
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Independent variables in this regression include, among others, (1) dummy variables for
which outcome in the ordered probit model applies to the student (with the zero reference
case omitted), (2) grade in the last calculus course, (3) several other variables related to
prior courses, (4) class size, (5) freshman GPA, and so on. The unobservables in the Grade
equation and the math attainment are clearly correlated, a feature captured by the additional
assumption that (εi , ui | xi , zi ) ∼ N2[(0, 0) , (1, σ 2

u ) , ρσu]. A nonzero ρ captures this “selection”
effect. With this in place, the dummy variables in (1) have now become endogenous. The
solution is a “selection” correction that we will examine in detail in Chapter 19. The modified
equation becomes

Gradei | mi = z′
i δ + E [ui | mi ] + vi

= z′
i δ + (ρσu) [λ(x′

i β, μ1, . . . , μ5) ] + vi .

They thus adopt a “control function” approach to accommodate the endogeneity of the math
attainment dummy variables. [See Section 17.3.5 and (17-32) for another application of this
method.] The term λ(x′

i β, μ1, . . . , μ5) is a generalized residual that is constructed using the
estimates from the first-stage ordered probit model. [A precise statement of the form of this
variable is given in Li and Tobias (2006).] Linear regression of the course grade on zi and this
constructed regressor is computed at the second step. The standard errors at the second
step must be corrected for the use of the estimated regressor using what amounts to a
Murphy and Topel (2002) correction. (See Section 14.7.)

Li and Tobias (2006) in a replication of and comment on Butler et al. (1994), after roughly
replicating the classical estimation results with a Bayesian estimator, observe that the pre-
ceding Grade equation above could also be treated as an ordered probit model. The resulting
bivariate ordered probit model would be

m∗
i = x′

i β + εi , and g∗
i = z′

i δ + ui ,
mi = 0 if −∞ < m∗

i ≤ 0 gi = 0 if −∞ < g∗
i ≤ 0

= 1 if 0 < m∗
i ≤ μ1 = 1 if 0 < g∗

i ≤ α1

· · · · · ·
= 6 if μ5 < m∗

i < +∞. = 11 if μ9 < g∗
i < +∞

where

(εi , ui | xi , zi ) ∼ N2

[
(0, 0) ,

(
1, σ 2

u

)
, ρσu

]
.

Li and Tobias extended their analysis to this case simply by “transforming” the dependent
variable in Butler et al.’s second equation. Computing the log-likelihood using sets of bi-
variate normal probabilities is fairly straightforward for the bivariate ordered probit model.
[See Greene (2007).] However, the classical study of these data using the bivariate ordered
approach remains to be done, so a side-by-side comparison to Li and Tobias’s Bayesian
alternative estimator is not possible. The endogeneity of the calculus dummy variables
in (1) remains a feature of the model, so both the MLE and the Bayesian posterior
are less straightforward than they might appears. Whether the results in Section 17.5.5
on the recursive bivariate probit model extend to this case also remains to be
determined.

The bivariate ordered probit model has been applied in a number of settings in the
recent empirical literature, including husband and wife’s education levels [Magee et al.
(2000)], family size [(Calhoun (1991)], and many others. In two early contributions to
the field of pet econometrics, Butler and Chatterjee analyze ownership of cats and dogs
(1995) and dogs and televisions (1997).
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18.3.4 PANEL DATA APPLICATIONS

The ordered probit model is used to model discrete scales that represent indicators
of a continuous underlying variable such as strength of preference, performance, or
level of attainment. Many of the recently assembled national panel data sets con-
tain survey questions that ask about subjective assessments of health, satisfaction, or
well-being, all of which are applications of this interpretation. Examples include the
following:

• The European Community Household Panel (ECHP) includes questions about job
satisfaction [see D’Addio (2004)].

• The British Household Panel Survey (BHPS) includes questions about health status
[see Contoyannis et al. (2004)].

• The German Socioeconomic Household Panel (GSOEP) includes questions about
subjective well-being [see Winkelmann (2004)] and subjective assessment of health
satisfaction [see Riphahn et al. (2003) and Example 18.4.]

Ostensibly, the applications would fit well into the ordered probit frameworks already
described. However, given the panel nature of the data, it will be desirable to augment
the model with some accommodation of the individual heterogeneity that is likely to
be present. The two standard models, fixed and random effects, have both been applied
to the analyses of these survey data.

18.3.4.a Ordered Probit Models with Fixed Effects

D’Addio et al. (2003), using methodology developed by Frijters et al. (2004) and Ferrer-
i-Carbonel et al. (2004), analyzed survey data on job satisfaction using the Danish
component of the European Community Household Panel. Their estimator for an or-
dered logit model is built around the logic of Chamberlain’s estimator for the binary
logit model. [See Section 17.4.4.] Because the approach is robust to individual specific
threshold parameters and allows time-invariant variables, it differs sharply from the
fixed effects models we have considered thus far as well as from the ordered probit
model of Section 23.10.1.10 Unlike Chamberlain’s estimator for the binary logit model,
however, their conditional estimator is not a function of minimal sufficient statistics. As
such, the incidental parameters problem remains an issue.

Das and van Soest (2000) proposed a somewhat simpler approach. [See, as well,
Long’s (1997) discussion of the “parallel regressions assumption,” which employs this
device in a cross-section framework]. Consider the base case ordered logit model with
fixed effects,

y∗
it = αi + x′

itβ + εit, εit | Xi ∼ N[0, 1],

yit = j if μ j−1 < y∗
it < μ j , j = 0, 1, . . . , J and μ−1 = −∞, μ0 = 0, μJ = +∞.

The model assumptions imply that

Prob(yit = j | Xi ) = �(μ j − αi − x′
itβ) − �(μ j−1 − αi − x′

itβ),

10Cross-section versions of the ordered probit model with individual specific thresholds appear in Terza
(1985a), Pudney and Shields (2000), and Greene (2007).
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where �(t) is the cdf of the logistic distribution. Now, define a binary variable

wit, j = 1 if yit > j, j = 0, . . . , J − 1.

It follows that

Prob[wit, j = 1 | Xi ] = �(αi − μ j + x′
itβ)

= �(θi + x′
itβ).

The “ j ” specific constant, which is the same for all individuals, is absorbed in θi . Thus,
a fixed effects binary logit model applies to each of the J − 1 binary random variables,
wit, j . The method in Section 17.4.4 can now be applied to each of the J − 1 random
samples. This provides J − 1 estimators of the parameter vector β (but no estimator of
the threshold parameters). The authors propose to reconcile these different estimators
by using a minimum distance estimator of the common true β. (See Section 13.3.) The
minimum distance estimator at the second step is chosen to minimize

q =
J−1∑
j=0

J−1∑
m=0

(β̂ j − β)′
[
V−1

jm

]
(β̂m − β),

where [V−1
jm ] is the j, m block of the inverse of the (J − 1)K × (J − 1)K partitioned

matrix V that contains Asy. Cov[β̂ j , β̂m]. The appropriate form of this matrix for a set
of cross-section estimators is given in Brant (1990). Das and van Soest (2000) used the
counterpart for Chamberlain’s fixed effects estimator but do not provide the specifics
for computing the off-diagonal blocks in V.

The full ordered probit model with fixed effects, including the individual specific
constants, can be estimated by unconditional maximum likelihood using the results in
Section 14.9.6.d. The likelihood function is concave [see Pratt (1981)], so despite its
superficial complexity, the estimation is straightforward. (In the following application,
with more than 27,000 observations and 7,293 individual effects, estimation of the full
model required roughly five seconds of computation.) No theoretical counterpart to
the Hsiao (1986, 2003) and Abrevaya (1997) results on the small T bias (incidental
parameters problem) of the MLE in the presence of fixed effects has been derived
for the ordered probit model. The Monte Carlo results in Greene (2004) (see, as well,
Chapter 15), suggest that biases comparable to those in the binary choice models persist
in the ordered probit model as well. As in the binary choice case, the complication of
the fixed effects model is the small sample bias, not the computation. The Das and van
Soest approach finesses this problem—their estimator is consistent—but at the cost of
losing the information needed to compute partial effects or predicted probabilities.

18.3.4.b Ordered Probit Models with Random Effects

The random effects ordered probit model model has been much more widely used than
the fixed effects model. Applications include Groot and van den Brink (2003), who stud-
ied training levels of employees, with firm effects; Winkelmann (2003b), who examined
subjective measures of well-being with individual and family effects; Contoyannis et al.
(2004), who analyzed self-reported measures of health status; and numerous others.
In the simplest case, the method of the Butler and Moffitt (1982) quadrature method
(Section 14.9.6.b) can be extended to this model.

Sherrie Rhine
Line
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Example 18.6 Health Satisfaction
The GSOEP German Health Care data that we have used in Example 17.4, and others includes
a self-reported measure of health satisfaction, HSAT, that takes values 0, 1, . . . , 10.11 This
is a typical application of a scale variable that reflects an underlying continuous variable,
“health.” The frequencies and sample proportions for the reported values are as follows:

HSAT Frequency Proportion

0 447 1.6%
1 255 0.9%
2 642 2.3%
3 1173 4.2%
4 1390 5.0%
5 4233 15.4%
6 2530 9.2%
7 4231 15.4%
8 6172 22.5%
9 3061 11.2%

10 3192 11.6%

We have fit pooled and panel data versions of the ordered probit model to these data. The
model used is

y∗
it = β1 +β2 Ageit +β3 Incomeit +β4 Kidsitβ6 Educationit +β6 Marriedit +β7 Workingit + εit +ci,

where ci will be the common fixed or random effect. (We are interested in comparing the fixed
and random effects estimators, so we have not included any time-invariant variables such
as gender in the equation.) Table 18.12 lists five estimated models. (Standard errors for the
estimated threshold parameters are omitted.) The first is the pooled ordered probit model. The
second and third are fixed effects. Column 2 shows the unconditional fixed effects estimates
using the results of Section 14.9.6.d. Column 3 shows the Das and van Soest estimator. For
the minimum distance estimator, we used an inefficient weighting matrix, the block-diagonal
matrix in which the j th block is the inverse of the j th asymptotic covariance matrix for the
individual logit estimators. With this weighting matrix, the estimator is

β̂MDE =
[

9∑
j =0

V−1
j

]−1 9∑
j =0

V−1
j β̂ j ,

and the estimator of the asymptotic covariance matrix is approximately equal to the bracketed
inverse matrix. The fourth set of results is the random effects estimator computed using
the maximum simulated likelihood method. This model can be estimated using Butler and
Moffitt’s quadrature method; however, we found that even with a large number of nodes,
the quadrature estimator converged to a point where the log-likelihood was far lower than
the MSL estimator, and at parameter values that were implausibly different from the other
estimates. Using different starting values and different numbers of quadrature points did not
change this outcome. The MSL estimator for a random constant term (see Section 15.6)
is considerably slower but produces more reasonable results. The fifth set of results is the
Mundlak form of the random effects model, which includes the group means in the models
as controls to accommodate possible correlation between the latent heterogeneity and the
included variables. As noted in Example 18.2, the components of the ordered choice model
must be interpreted with some care. By construction, the partial effects of the variables on

11In the original data set, 40 (of 27,326) observations on this variable were coded with noninteger values
between 6 and 7. For purposes of our example, we have recoded all 40 observations to 7.
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TABLE 18.12 Estimated Ordered Probit Models for Health Satisfaction

(5)
(2) (3) (4) Random Effects

Mundlak Controls(1) Fixed Effects Fixed Effects Random
Variable Pooled Unconditional Conditional Effects Variables Means

Constant 2.4739 3.8577 3.2603
(0.04669) (0.05072) (0.05323)

Age −0.01913 −0.07162 −0.1011 −0.03319 −0.06282 0.03940
(0.00064) (0.002743) (0.002878) (0.00065) (0.00234) (0.002442)

Income 0.1811 0.2992 0.4353 0.09436 0.2618 0.1461
(0.03774) (0.07058) (0.07462) (0.03632) (0.06156) (0.07695)

Kids 0.06081 −0.06385 −0.1170 0.01410 −0.05458 0.1854
(0.01459) (0.02837) (0.03041) (0.01421) (0.02566) (0.03129)

Education 0.03421 0.02590 0.06013 0.04728 0.02296 0.02257
(0.002828) (0.02677) (0.02819) (0.002863) (0.02793) (0.02807)

Married 0.02574 0.05157 0.08505 0.07327 0.04605 −0.04829
(0.01623) (0.04030) (0.04181) (0.01575) (0.03506) (0.03963)

Working 0.1292 −0.02659 −0.007969 0.07108 −0.02383 0.2702
(0.01403) (0.02758) (0.02830) (0.01338) (0.02311) (0.02856)

μ1 0.1949 0.3249 0.2726 0.2752
μ2 0.5029 0.8449 0.7060 0.7119
μ3 0.8411 1.3940 1.1778 1.1867
μ4 1.111 1.8230 1.5512 1.5623
μ5 1.6700 2.6992 2.3244 2.3379
μ6 1.9350 3.1272 2.6957 2.7097
μ7 2.3468 3.7923 3.2757 3.2911
μ8 3.0023 4.8436 4.1967 4.2168
μ9 3.4615 5.5727 4.8308 4.8569
σu 0.0000 0.0000 1.0078 0.9936
ln L −56813.52 −41875.63 −53215.54 −53070.43

TABLE 18.13 Estimated Marginal Effects: Pooled Model

HSAT Age Income Kids Education Married Working

0 0.0006 −0.0061 −0.0020 −0.0012 −0.0009 −0.0046
1 0.0003 −0.0031 −0.0010 −0.0006 −0.0004 −0.0023
2 0.0008 −0.0072 −0.0024 −0.0014 −0.0010 −0.0053
3 0.0012 −0.0113 −0.0038 −0.0021 −0.0016 −0.0083
4 0.0012 −0.0111 −0.0037 −0.0021 −0.0016 −0.0080
5 0.0024 −0.0231 −0.0078 −0.0044 −0.0033 −0.0163
6 0.0008 −0.0073 −0.0025 −0.0014 −0.0010 −0.0050
7 0.0003 −0.0024 −0.0009 −0.0005 −0.0003 −0.0012
8 −0.0019 0.0184 0.0061 0.0035 0.0026 0.0136
9 −0.0021 0.0198 0.0066 0.0037 0.0028 0.0141

10 −0.0035 0.0336 0.0114 0.0063 0.0047 0.0233

the probabilities of the outcomes must change sign, so the simple coefficients do not show
the complete picture implied by the estimated model. Table 18.13 shows the partial effects
for the pooled model to illustrate the computations.

Winkelmann (2003b) used the random effects approach to analyze the subjec-
tive well-being (SWB) question (also coded 0 to 10) in the German Socioeconomic
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Panel (GSOEP) data set. The ordered probit model in this study is based on the latent
regression

y∗
imt = x′

imtβ + εimt + uim + vi .

The independent variables include age, gender, employment status, income, family size,
and an indicator for good health. An unusual feature of the model is the nested random
effects (see Section 14.9.6.b), which include a family effect, vi , as well as the individual
family member (i in family m) effect, uim. The GLS/MLE approach we applied to
the linear regression model in Section 14.9.6.b is unavailable in this nonlinear setting.
Winkelmann instead employed a Hermite quadrature procedure to maximize the log-
likelihood function.

Contoyannis, Jones, and Rice (2004) analyzed a self-assessed health scale that
ranged from 1 (very poor) to 5 (excellent) in the British Household Panel Survey. Their
model accommodated a variety of complications in survey data. The latent regression
underlying their ordered probit model is

h∗
it = x′

itβ + H′
i,t−1γ + αi + εit,

where xit includes marital status, race, education, household size, age, income, and num-
ber of children in the household. The lagged value, Hi,t−1, is a set of binary variables
for the observed health status in the previous period. (This is the same device that was
used by Butler et al. in Example 18.3.) In this case, the lagged values capture state
dependence—the assumption that the health outcome is redrawn randomly in each
period is inconsistent with evident runs in the data. The initial formulation of the re-
gression is a fixed effects model. To control for the possible correlation between the
effects, αi , and the regressors, and the initial conditions problem that helps to explain
the state dependence, they use a hybrid of Mundlak’s (1978) correction and a suggestion
by Wooldridge (2002a) for modeling the initial conditions,

αi = α0 + x̄′α1 + H′
i,1δ + ui ,

where ui is exogenous. Inserting the second equation into the first produces a random
effects model that can be fit using the quadrature method we considered earlier.

18.3.5 EXTENSIONS OF THE ORDERED PROBIT MODEL

The basic specification of the ordered probit model can be extended in the same direc-
tions as we considered in constructing models for binary choice in Chapter 17. These
include heteroscedasticity in the random utility function [see Section 17.3.7.b, Keele
and Park (2005), and Wang and Kockelman (2005), for an application] and heterogene-
ity in the preferences (i.e., random parameters and latent classes). [An extensive study
of heterogeneity in health satisfaction based on 22 waves of the GSOEP is Jones and
Schurer (2010).] Two specification issues that are specific to the ordered choice model
are accommodating heterogeneity in the threshold parameters and reconciling differ-
ences in the meaning of the preference scale across different groups. We will sketch
the model extensions in this section. Further details are given in Chapters 6 and 7 of
Hensher and Greene (2010).
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18.3.5.a Threshold Models—Generalized Ordered Choice Models

The model analyzed thus far assumes that the thresholds μ j are the same for every
individual in the sample. Terza (1985a), Pudney and Shields (2000), King, Murray, Sa-
lomon and Tandon (KMST, 2004), Boes and Winkelmann (2006a), Greene, Harris,
Hollingsworth and Maitra (2008), and Greene and Hensher (2009) all present applica-
tions that include individual variation in the thresholds of the ordered choice model.

In his analysis of bond ratings, Terza (1985) suggested the generalization,

μij = μ j + xi
′δ.

With three outcomes, the probabilities are

y∗
i = α + x′

iβ + εi ,

and

yi = 0 if y∗
i ≤ 0,

1 if 0 < y∗
i ≤ μ + xi

′δ,

2 if y∗
i > μ + xi

′δ.

For three outcomes, the model has two thresholds, μ0 = 0 and μ1 = μ + x′
iδ. The three

probabilities can be written

P0 = Prob(yi = 0 | xi ) = �[−(α + x′
iβ)]

P1 = Prob(yi = 1 | xi ) = �[(μ + xi
′δ) − (α + x′

iβ)] − �[−(α + x′
iβ)]

P2 = Prob(yi = 2 | xi ) = 1 − �[(μ + xi
′δ) − (α + x′

iβ)].

For applications of this approach, see, for example, Kerkhofs and Lindeboom (1995),
Groot and van den Brink (2003) and Lindeboom and van Doorslayer (2003). Note
that if δ is unrestricted, then Prob(yi = 1 | xi ) can be negative. This is a shortcoming
of the model when specified in this form. Subsequent development of the generalized
model involves specifications that avoid this internal inconsistency. Note, as well, that
if the model is recast in terms of μ and γ = [α,(β − δ)], then the model is not distin-
guished from the original ordered probit model with a constant threshold parameter.
This identification issue emerges prominently in Pudney and Shield’s (2000) continued
development of this model.

Pudney and Shields’s (2000) “generalized ordered probit model,” was also formu-
lated to accommodate observable individual heterogeneity in the threshold parameters.
Their application was in the context of job promotion for UK nurses in which the steps
on the promotion ladder are individual specific. In their setting, in contrast to Terza’s,
some of the variables in the threshold equations are explicitly different from those
in the regression. The authors constructed a generalized model and a test of “thresh-
old constancy” by defining qi to include a constant term and those variables that are
unique to the threshold model Variables that are common to both the thresholds and
the regression are placed in xi and the model is reparameterized as

Pr(yi = g | xi , qi ) = �[q′
iδg − x′

i (β − δg)] − [q′
iδg−1 − x′

i (β − δg−1)].
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An important point noted by the authors is that the same model results if these common
variables are placed in the thresholds instead. This is a minor algebraic result, but it
exposes an ambiguity in the interpretation of the model—whether a particular variable
affects the regression or the thresholds is one of the issues that was developed in the
original model specification.

As will be evident in the application in the next section, the specification of the
threshold parameters is a crucial feature of the ordered choice model. KMST (2004),
Greene (2007a), Eluru, Bhat, and Hensher (2008), and Greene and Hensher (2009)
employ a “hierarchical ordered probit,” or HOPIT model,

y∗
i = β ′xi + εi ,

yi = j if μi, j−1 ≤ y∗
i < μij,

μ0 = 0,

μi, j = exp(λ j + γ ′zi ) (case 1),

or μi, j = exp(λ j + γ ′
j zi ) (case 2).

Case 2 is the Terza (1985) and Pudney and Shields (2000) model with an exponential
rather than linear function for the thresholds. This formulation addresses two problems:
(1) The thresholds are mathematically distinct from the regression; (2) by this construc-
tion, the threshold parameters must be positive. With a slight modification, the ordering
of the thresholds can also be imposed. In case 1,

μi, j = [exp(λ1) + exp(λ2) + · · · + exp(λ j )] × exp(γ ′zi ),

and in case 2,
μi, j = μi, j−1 + exp(λ j + γ ′

j zi ).

In practical terms, the model can now be fit with the constraint that all predicted prob-
abilities are greater than zero. This is a numerical solution to the problem of ordering
the thresholds for all data vectors.

This extension of the ordered choice model shows a case of identification through
functional form. As we saw in the previous two models, the parameters (λ j , γ j , β) would
not be separately identified if all the functions were linear. The contemporary literature
views models that are unidentified without a change in functional form with some
skepticism. However, the underlying theory of this model does not insist on linearity of
the thresholds (or the utility function, for that matter), but it does insist on the ordering of
the thresholds, and one might equally criticize the original model for being unidentified
because the model builder insists on a linear form. That is, there is no obvious reason
that the threshold parameters must be linear functions of the variables, or that linearity
enjoys some claim to first precedence in the utility function. This is a methodological
issue that cannot be resolved here. The nonlinearity of the preceding specification,
or others that resemble it, does provide the benefit of a simple way to achieve other
fundamental results, for example, coherency of the model (all positive probabilities).

18.3.5.b Thresholds and Heterogeneity—Anchoring Vignettes

The introduction of observed heterogeneity into the threshold parameters attempts to
deal with a fundamentally restrictive assumption of the ordered choice model. Survey
respondents rarely view the survey questions exactly the same way. This is certainly true
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FIGURE 18.5 Differential item Functioning in Ordered Choices.

in surveys of health satisfaction or subjective well-being. [See Boes and Winkelmann
(2006b) and Ferrer-i-Carbonell and Frijters (2004).] KMST (2004) identify two very
basic features of survey data that will make this problematic. First, they often measure
concepts that are definable only with reference to examples, such as freedom, health,
satisfaction, and so on. Second, individuals do, in fact, often understand survey ques-
tions very differently, particularly with respect to answers at the extremes. A widely
used term for this interpersonal incomparability is differential item functioning (DIF).
Kapteyn, Smith, and Van Soest (KSV, 2007) and Van Soest, Delaney, Harmon, Kapteyn
and Smith (2007) suggest the results in Figure 18.5 to describe the implications of DIF.
The figure shows the distribution of Health (or drinking behavior in the latter study) in
two hypothetical countries. The density for country A (the upper figure) is to the left of
that for country B, implying that, on average, people in country A are less healthy than
those in country B. But, the people in the two countries culturally offer very different
response scales if asked to report their health on a five-point scale, as shown. In the
figure, those in country A have a much more positive view of a given, objective health
status than those in country B. A person in country A with health status indicated by
the dotted line would report that they are in “Very Good” health while a person in
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country B with the same health status would report only “Fair.” A simple frequency of
the distribution of self-assessments of health status in the two countries would suggest
that people in country A are much healthier than those in country B when, in fact, the
opposite is true. Correcting for the influences of DIF in such a situation would be essen-
tial to obtaining a meaningful comparison of the two countries. The impact of DIF is an
accepted feature of the model within a population but could be strongly distortionary
when comparing very disparate groups, such as across countries, as in KMST (political
groups), Murray, Tandon, Mathers, and Sudana (2002) (health outcomes), Tandon et al.
(2004), and KSV (work disability), Sirven, Santos-Egglmann, and Spagnoli (2008), and
Gupta, Kristensens, and Possoli (2008) (health), Angelini et al. (2008) (life satisfaction),
Kristensen and Johansson (2008), and Bago d’Uva et al. (2008), all of whom used the
ordered probit model to make cross group comparisons.

KMST proposed the use of anchoring vignettes to resolve this difference in per-
ceptions across groups. The essential approach is to use a series of examples that, it
is believed, all respondents will agree on to estimate each respondent’s DIF and cor-
rect for it. The idea of using vignettes to anchor perceptions in survey questions is not
itself new; KMST cite a number of earlier uses. The innovation is their method for
incorporating the approach in a formal model for the ordered choices. The bivariate
and multivariate probit models that they develp combine the elements described in
Sections 18.3.1–18.3.3 and the HOPIT model in Section 18.3.4.a.

18.4 MODELS FOR COUNTS OF EVENTS

We have encountered behavioral variables that involve counts of events at several
points in this text. In Examples 14.10 and 17.20, we examined the number of times an
individual visited the physician using the GSOEP data. The credit default data that we
used in Examples 7.10 and 17.22 also include another behavioral variable, the number
of derogatory reports in an individual’s credit history. Finally, in Example 17.23, we ana-
lyzed data on firm innovation. Innovation is often analyzed [for example, by Hausman,
Hall, and Griliches (1984) and many others] in terms of the number of patents that the
firm obtains (or applies for). In each of these cases, the variable of interest is a count
of events. This obviously differs from the discrete dependent variables we analyzed in
the previous two sections. A count is a quantitative measure that is, at least in principle,
amenable to analysis using multiple linear regression. However, the typical preponder-
ance of zeros and small values and the discrete nature of the outcome variable suggest
that the regression approach can be improved by a method that explicitly accounts for
these aspects.

Like the basic multinomial logit model for unordered data in Section 18.2 and the
simple probit and logit models for binary and ordered data in Sections 17.2 and 18.3,
the Poisson regression model is the fundamental starting point for the analysis of count
data. We will develop the elements of modeling for count data in this framework in
Sections 18.4.1–18.4.3, and then turn to more elaborate, flexible specifications in subse-
quent sections. Sections 18.4.4 and 18.4.5 will present the negative binomial and other
alternatives to the Poisson functional form. Section 18.4.6 will describe the implications
for the model specification of some complicating features of observed data, truncation,
and censoring. Truncation arises when certain values, such as zero, are absent from the
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observed data because of the sampling mechanism, not as a function of the data generat-
ing process. Data on recreation site visitation that are gathered at the site, for example,
will, by construction, not contain any zeros. Censoring arises when certain ranges of out-
comes are all coded with the same value. In the example analyzed the response variable
is censored at 12, though values larger than 12 are possible “in the field.” As we have
done in the several earlier treatments, in Section 18.4.7, we will examine extensions of
the count data models that are made possible when the analysis is based on panel data.
Finally, Section 18.4.8 discusses some behavioral models that involve more than one
equation. For an example, based on the large number of zeros in the observed data,
it appears that our count of doctor visits might be generated by a two-part process, a
first step in which the individual decides whether or not to visit the physician at all, and
a second decision, given the first, how many times to do so. The “hurdle model” that
applies here and some related variants are discussed in Section 18.4.8.

18.4.1 THE POISSON REGRESSION MODEL

The Poisson regression model specifies that each yi is drawn from a Poisson distribution
with parameter λi , which is related to the regressors xi . The primary equation of the
model is

Prob(Y = yi | xi ) = e−λi λ
yi
i

yi !
, yi = 0, 1, 2, . . . . (18-17)

The most common formulation for λi is the loglinear model,

ln λi = x′
iβ.

It is easily shown that the expected number of events per period is given by

E [yi | xi ] = Var[yi | xi ] = λi = ex′
i β,

so
∂ E [yi | xi ]

∂xi
= λiβ.

With the parameter estimates in hand, this vector can be computed using any data vector
desired.

In principle, the Poisson model is simply a nonlinear regression. But it is far easier
to estimate the parameters with maximum likelihood techniques. The log-likelihood
function is

ln L =
n∑

i=1

[−λi + yi x′
iβ − ln yi !].

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

(yi − λi )xi = 0.

The Hessian is

∂2 ln L
∂β∂β ′ = −

n∑
i=1

λi xi x′
i .

The Hessian is negative definite for all x and β. Newton’s method is a simple algo-
rithm for this model and will usually converge rapidly. At convergence, [

∑n
i=1 λ̂i xi x′

i ]
−1
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provides an estimator of the asymptotic covariance matrix for the parameter estimates.
Given the estimates, the prediction for observation i is λ̂i = exp(xi β̂). A standard error
for the prediction interval can be formed by using a linear Taylor series approximation.
The estimated variance of the prediction will be λ̂2

i x′
i Vxi , where V is the estimated

asymptotic covariance matrix for β̂.

For testing hypotheses, the three standard tests are very convenient in this model.
The Wald statistic is computed as usual. As in any discrete choice model, the likelihood
ratio test has the intuitive form

LR = 2
n∑

i=1

ln
(

P̂i

P̂restricted,i

)
,

where the probabilities in the denominator are computed with using the restricted
model. Using the BHHH estimator for the asymptotic covariance matrix, the LM
statistic is simply

LM =
[

n∑
i=1

xi (yi − λ̂i )

]′ [ n∑
i=1

xi x′
i (yi − λ̂i )

2

]−1 [
n∑

i=1

xi (yi − λ̂i )

]
= i′G(G′G)−1G′i,

(18-18)

where each row of G is simply the corresponding row of X multiplied by ei = (yi − λ̂i ), λ̂i

is computed using the restricted coefficient vector, and i is a column of ones.

18.4.2 MEASURING GOODNESS OF FIT

The Poisson model produces no natural counterpart to the R2 in a linear regression
model, as usual, because the conditional mean function is nonlinear and, moreover,
because the regression is heteroscedastic. But many alternatives have been suggested.12

A measure based on the standardized residuals is

R2
p = 1 −

∑n
i=1

[
yi −λ̂i√

λ̂i

]2

∑n
i=1

[
yi −ȳ√

ȳ

]2 .

This measure has the virtue that it compares the fit of the model with that provided by a
model with only a constant term. But it can be negative, and it can rise when a variable
is dropped from the model. For an individual observation, the deviance is

di = 2[yi ln(yi/λ̂i ) − (yi − λ̂i )] = 2[yi ln(yi/λ̂i ) − ei ],

where, by convention, 0 ln(0) = 0. If the model contains a constant term, then
∑n

i=1 ei =
0. The sum of the deviances,

G2 =
n∑

i=1

di = 2
n∑

i=1

yi ln(yi/λ̂i ),

is reported as an alternative fit measure by some computer programs. This statistic will
equal 0.0 for a model that produces a perfect fit. (Note that because yi is an integer

12See the surveys by Cameron and Windmeijer (1993), Gurmu and Trivedi (1994), and Greene (1995b).
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while the prediction is continuous, it could not happen.) Cameron and Windmeijer
(1993) suggest that the fit measure based on the deviances,

R2
d = 1 −

∑n
i=1

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i )

]
∑n

i=1

[
yi log

(
yi

ȳ

)] ,

has a number of desirable properties. First, denote the log-likelihood function for the
model in which ψi is used as the prediction (e.g., the mean) of yi as �(ψi , yi ). The Poisson
model fit by MLE is, then, �(λ̂i , yi ), the model with only a constant term is �(ȳ, yi ), and
a model that achieves a perfect fit (by predicting yi with itself) is l(yi , yi ). Then

R2
d = �(λ̂, yi ) − �(ȳ, yi )

�(yi , yi ) − �(ȳ, yi )
.

Both numerator and denominator measure the improvement of the model over one
with only a constant term. The denominator measures the maximum improvement,
since one cannot improve on a perfect fit. Hence, the measure is bounded by zero and
one and increases as regressors are added to the model.13 We note, finally, the passing
resemblance of R2

d to the “pseudo-R2,” or “likelihood ratio index” reported by some
statistical packages (e.g., Stata),

R2
LRI = 1 − �(λ̂i , yi )

�(ȳ, yi )
.

Many modifications of the Poisson model have been analyzed by economists. In this
and the next few sections, we briefly examine a few of them.

18.4.3 TESTING FOR OVERDISPERSION

The Poisson model has been criticized because of its implicit assumption that the vari-
ance of yi equals its mean. Many extensions of the Poisson model that relax this as-
sumption have been proposed by Hausman, Hall, and Griliches (1984), McCullagh and
Nelder (1983), and Cameron and Trivedi (1986), to name but a few.

The first step in this extended analysis is usually a test for overdispersion in the
context of the simple model. A number of authors have devised tests for “overdisper-
sion” within the context of the Poisson model. [See Cameron and Trivedi (1990), Gurmu
(1991), and Lee (1986).] We will consider three of the common tests, one based on a
regression approach, one a conditional moment test, and a third, a Lagrange multiplier
test, based on an alternative model.

Cameron and Trivedi (1990) offer several different tests for overdispersion. A sim-
ple regression-based procedure used for testing the hypothesis

H0: Var[yi ] = E [yi ],

H1: Var[yi ] = E [yi ] + αg(E [yi ]),

13Note that multiplying both numerator and denominator by 2 produces the ratio of two likelihood ratio
statistics, each of which is distributed as chi-squared.
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is carried out by regressing

zi = (yi − λ̂i )
2 − yi

λ̂i
√

2
,

where λ̂i is the predicted value from the regression, on either a constant term or λ̂i with-
out a constant term. A simple t test of whether the coefficient is significantly different
from zero tests H0 versus H1.

The next section presents the negative binomial model. This model relaxes the
Poisson assumption that the mean equals the variance. The Poisson model is obtained
as a parametric restriction on the negative binomial model, so a Lagrange multiplier
test can be computed. In general, if an alternative distribution for which the Poisson
model is obtained as a parametric restriction, such as the negative binomial model, can
be specified, then a Lagrange multiplier statistic can be computed. [See Cameron and
Trivedi (1986, p. 41).] The LM statistic is

LM =
[∑n

i=1 ŵi [(yi − λ̂i )
2 − yi ]√

2
∑n

i=1 ŵi λ̂
2
i

]2

. (18-19)

The weight, ŵi , depends on the assumed alternative distribution. For the negative bi-
nomial model discussed later, ŵi equals 1.0. Thus, under this alternative, the statistic is
particularly simple to compute:

LM = (e′e − nȳ)2

2 λ̂
′
λ̂

. (18-20)

The main advantage of this test statistic is that one need only estimate the Poisson model
to compute it. Under the hypothesis of the Poisson model, the limiting distribution of
the LM statistic is chi-squared with one degree of freedom.

18.4.4 HETEROGENEITY AND THE NEGATIVE BINOMIAL
REGRESSION MODEL

The assumed equality of the conditional mean and variance functions is typically taken
to be the major shortcoming of the Poisson regression model. Many alternatives have
been suggested [see Hausman, Hall, and Griliches (1984), Cameron and Trivedi (1986,
1998), Gurmu and Trivedi (1994), Johnson and Kotz (1993), and Winkelmann (2003)
for discussion]. The most common is the negative binomial model, which arises from a
natural formulation of cross-section heterogeneity. [See Hilbe (2007).] We generalize
the Poisson model by introducing an individual, unobserved effect into the conditional
mean,

ln μi = x′
iβ + εi = ln λi + ln ui ,

where the disturbance εi reflects either specification error, as in the classical regression
model, or the kind of cross-sectional heterogeneity that normally characterizes micro-
economic data. Then, the distribution of yi conditioned on xi and ui (i.e., εi ) remains
Poisson with conditional mean and variance μi :

f (yi | xi , ui ) = e−λi ui (λi ui )
yi

yi !
.
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The unconditional distribution f (yi | xi ) is the expected value (over ui ) of f (yi | xi , ui ),

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
g(ui ) dui .

The choice of a density for ui defines the unconditional distribution. For mathematical
convenience, a gamma distribution is usually assumed for ui = exp(εi ).14 As in other
models of heterogeneity, the mean of the distribution is unidentified if the model con-
tains a constant term (because the disturbance enters multiplicatively) so E [exp(εi )] is
assumed to be 1.0. With this normalization,

g(ui ) = θθ

�(θ)
e−θui uθ−1

i .

The density for yi is then

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
θθuθ−1

i e−θui

�(θ)
dui

= θθλ
yi
i

�(yi + 1)�(θ)

∫ ∞

0
e−(λi +θ)ui uθ+yi −1

i dui

= θθλ
yi
i �(θ + yi )

�(yi + 1)�(θ)(λi + θ)θ+yi

= �(θ + yi )

�(yi + 1)�(θ)
r yi

i (1 − ri )
θ , where ri = λi

λi + θ
,

which is one form of the negative binomial distribution. The distribution has conditional
mean λi and conditional variance λi (1 + (1/θ)λi ). [This model is Negbin 2 in Cameron
and Trivedi’s (1986) presentation.] The negative binomial model can be estimated by
maximum likelihood without much difficulty. A test of the Poisson distribution is often
carried out by testing the hypothesis α = 1/θ = 0 using the Wald or likelihood ratio test.

18.4.5 FUNCTIONAL FORMS FOR COUNT DATA MODELS

The equidispersion assumption of the Poisson regression model, E[yi | xi ] = Var[yi | xi ],
is a major shortcoming. Observed data rarely, if ever, display this feature. The very large
amount of research activity on functional forms for count models is often focused on
testing for equidispersion and building functional forms that relax this assumption.
In practice, the Poisson model is typically only the departure point for an extended
specification search.

One easily remedied minor issue concerns the units of measurement of the data.
In the Poisson and negative binomial models, the parameter λi is the expected number
of events per unit of time. Thus, there is a presumption in the model formulation, for

14An alternative approach based on the normal distribution is suggested in Terza (1998), Greene (1995a,
1997a, 2007d), Winkelmann (1997) and Riphahn, Wambach and Million (2003). The normal-Poisson mixture
is also easily extended to the random effects model discussed in the next section. There is no closed form
for the normal-Poisson mixture model, but it can be easily approximated by using Hermite quadrature or
simulation. See Sections 14.9.6.b and 17.4.8.
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example, the Poisson, that the same amount of time is observed for each i . In a spatial
context, such as measurements of the incidence of a disease per group of Ni persons, or
the number of bomb craters per square mile (London, 1940), the assumption would be
that the same physical area or the same size of population applies to each observation.
Where this differs by individual, it will introduce a type of heteroscedasticity in the
model. The simple remedy is to modify the model to account for the exposure, Ti , of
the observation as follows:

Prob(yi = j | xi , Ti ) = exp(−Tiφi )(Tiφi )
j

j!
, φi = exp(x′

iβ), j = 0, 1, . . . .

The original model is returned if we write λi = exp(x′
iβ + ln Ti ). Thus, when the ex-

posure differs by observation, the appropriate accommodation is to include the log of
exposure in the regression part of the model with a coefficient of 1.0. (For less than
obvious reasons, the term “offset variable” is commonly associated with the exposure
variable Ti ·) Note that if Ti is the same for all i, ln Ti will simply vanish into the constant
term of the model (assuming one is included in xi ).

The recent literature, mostly associating the result with Cameron and Trivedi’s
(1986, 1998) work, defines two familiar forms of the negative binomial model. The
Negbin 2 (NB2) form of the probability is

Prob(Y = yi | xi ) = �(θ + yi )

�(yi + 1)�(θ)
r yi

i (1 − ri )
θ ,

λi = exp(x′
iβ), (18-21)

ri = λi/(θ + λi ).

This is the default form of the model in the received econometrics packages that
provide an estimator for this model. The Negbin 1 (NB1) form of the model results
if θ in the preceding is replaced with θi = θλi . Then, ri reduces to r = 1/(1 + θ), and
the density becomes

Prob(Y = yi | xi ) = �(θλi + yi )

�(yi + 1)�(θλi )
r yi (1 − r)θλi . (18-22)

This is not a simple reparameterization of the model. The results in Example 18.7
demonstrate that the log-likelihood functions are not equal at the maxima, and the
parameters are not simple transformations in one model versus the other. We are not
aware of a theory that justifies using one form or the other for the negative binomial
model. Neither is a restricted version of the other, so we cannot carry out a likelihood
ratio test of one versus the other. The more general Negbin P (NBP) family does nest
both of them, so this may provide a more general, encompassing approach to finding
the right specification. [See Greene (2005, 2008).] The Negbin P model is obtained by
replacing θ in the Negbin 2 form with θλ2−P

i . We have examined the cases of P = 1 and
P = 2 in (19-5) and (19-6). The full model is

Prob(Y = yi | xi ) = �(θλ
Q
i + yi )

�(yi + 1)�
(
θλ

Q
i

) (
λi

θλ
Q
i + λi

)yi
(

θλ
Q
i

θλ
Q
i + λi

)θλ
Q
i

, Q = 2 − P.
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The conditional mean function for the three cases considered is

E[yi | xi ] = exp(x′
iβ) = λi .

The parameter P is picking up the scaling. A general result is that for all three variants
of the model,

Var[yi | xi ] = λi
(
1 + αλP−1

i

)
, where α = 1/θ.

Thus, the NB2 form has a variance function that is quadratic in the mean while the NB1
form’s variance is a simple multiple of the mean. There have been many other functional
forms proposed for count data models, including the generalized Poisson, gamma, and
Polya-Aeppli forms described in Winkelmann (2003) and Greene (2007a, Chapter 24).

The heteroscedasticity in the count models is induced by the relationship between
the variance and the mean. The single parameter θ picks up an implicit overall scaling, so
it does not contribute to this aspect of the model. As in the linear model, microeconomic
data are likely to induce heterogeneity in both the mean and variance of the response
variable. A specification that allows independent variation of both will be of some virtue.
The result

Var[yi | xi ] = λi
(
1 + (1/θ)λP−1

i

)
suggests that a natural platform for separately modeling heteroscedasticity will be the
dispersion parameter, θ , which we now parameterize as

θi = θ exp(z′
iδ).

Operationally, this is a relatively minor extension of the model. But, it is likely to
introduce quite a substantial increase in the flexibility of the specification. Indeed, a
heterogeneous Negbin P model is likely to be sufficiently parameterized to accommo-
date the behavior of most data sets. (Of course, the specialized models discussed in
Section 18.4.8, for example, the zero inflation models, may yet be more appropriate for
a given situation.)

Example 18.7 Count Data Models for Doctor Visits
The study by Riphahn et al. (2003) that provided the data we have used in numerous earlier
examples analyzed the two count variables DocVis (visits to the doctor) and HospVis (visits
to the hospital). The authors were interested in the joint determination of these two count
variables. One of the issues considered in the study was whether the data contained evidence
of moral hazard, that is, whether health care utilization as measured by these two outcomes
was influenced by the subscription to health insurance. The data contain indicators of two
levels of insurance coverage, PUBLIC, which is the main source of insurance, and ADDON,
which is a secondary optional insurance. In the sample of 27,326 observations (family/years),
24,203 individuals held the public insurance. (There is quite a lot of within group variation in
this. Individuals did not routinely obtain the insurance for all periods.) Of these 24,203, 23,689
had only public insurance and 514 had both types. (One could not have only the ADDON
insurance.) To explore the issue, we have analyzed the DocVis variable with the count data
models described in this section. The exogenous variables in our model are

xit = (1, Age, Education, Income, Kids, Public) .

(Variables are described in Appendix Table F7.1.)
Table 18.14 presents the estimates of the several count models. In all specifications, the

coefficient on PUBLIC is positive, large, and highly statistically significant, which is consistent
with the results in the authors’ study. The various test statistics strongly reject the hypothesis
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TABLE 18.14 Estimated Models for DOCVIS (standard errors in parentheses)

Negbin 2
Variable Poisson Negbin 2 Heterogeneous Negbin 1 Negbin P

Constant 0.7162 0.7628 0.7928 0.6848 0.6517
(0.03287) (0.07247) (0.07459) (0.06807) (0.07759)

Age 0.01844 0.01803 0.01704 0.01585 0.01907
(0.0003316) (0.0007915) (0.0008146) (0.0007042) (0.0008078)

Education −0.03429 −0.03839 −0.03581 −0.02381 −0.03388
(0.001797) (0.003965) (0.004036) (0.003702) (0.004308)

Income −0.4751 −0.4206 −0.4108 −0.1892 −0.3337
(0.02198) (0.04700) (0.04752) (0.04452) (0.05161)

Kids −0.1582 −0.1513 −0.1568 −0.1342 −0.1622
(0.007956) (0.01738) (0.01773) (0.01647) (0.01856)

Public 0.2364 0.2324 0.2411 0.1616 0.2195
(0.01328) (0.02900) (0.03006) (0.02678) (0.03155)

P 0.0000 2.0000 2.0000 1.0000 1.5473
(0.0000) (0.0000) (0.0000) (0.0000) (0.03444)

θ 0.0000 1.9242 2.6060 6.1865 3.2470
(0.0000) (0.02008) (0.05954) (0.06861) (0.1346)

δ (Female) 0.0000 0.0000 −0.3838 0.0000 0.0000
(0.0000) (0.0000) (0.02046) (0.0000) (0.0000)

δ (Married) 0.0000 0.0000 −0.1359 0.0000 0.0000
(0.0000) (0.0000) (0.02307) (0.0000) (0.0000)

ln L −104440.3 −60265.49 −60121.77 −60260.68 −60197.15

of equidispersion. Cameron and Trivedi’s (1990) semiparametric tests from the Poisson model
(see Section 18.4.3 have t statistics of 22.147 for gi = μi and 22.504 for gi = μ2

i . Both of
these are far larger than the critical value of 1.96. The LM statistic is 972,714.48, which is
also larger than the (any) critical value. On these bases, we would reject the hypothesis of
equidispersion. The Wald and likelihood ratio tests based on the negative binomial models
produce the same conclusion. For comparing the different negative binomial models, note
that Negbin 2 is the worst of the three by the likelihood function, although NB1 and NB2
are not directly comparable. On the other hand, note that in the NBP model, the estimate
of P is more than 10 standard errors from 1.0000 or 2.000, so both NB1 and NB2 are
rejected in favor of the unrestricted NBP form of the model. The NBP and the heterogeneous
NB2 model are not nested either, but comparing the log-likelihoods, it does appear that the
heterogeneous model is substantially superior. We computed the Vuong statistic based on
the individual contributions to the log-likelihoods, with vi = ln Li (NBP) − ln Li (NB2-H) . (See
Section 14.6.6). The value of the statistic is −3.27. On this basis, we would reject NBP in
favor of NB2-H. Finally, with regard to the original question, the coefficient on PUBLIC is
larger than 10 times the estimated standard error in every specification. We would conclude
that the results are consistent with the proposition that there is evidence of moral hazard.

18.4.6 TRUNCATION AND CENSORING IN MODELS FOR COUNTS

Truncation and censoring are relatively common in applications of models for counts.
Truncation arises as a consequence of discarding what appear to be unusable data,
such as the zero values in survey data on the number of uses of recreation facilities
[Shaw (1988), Bockstael et al. (1990)]. In this setting, a more common case which also
gives rise to truncation is on-site sampling. When one is interested in visitation by the
entire population, which will naturally include zero visits, but one draws their sample
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FIGURE 18.6 Number of Doctor Visits. 1988 Wave of GSOEP
Data.

“on-site,” the distribution of visits is truncated at zero by construction. Every visitor has
visited at least once. Shaw (1988), Englin and Shonkwiler (1995), Grogger and Carson
(1991), Creel and Loomis (1990), Egan and Herriges (2006) and Martinez-Espinera and
Amoako-Tuffour (2008) are among a number of studies that have treated truncation
due to on-site sampling in environmental and recreation applications. Truncation will
also arise when data are trimmed to remove what appear to be unusual values. Fig-
ure 18.6 displays a histogram for the number of doctor visits in the 1988 wave of the
GSOEP data that we have used in several examples. There is a suspiciously large spike
at zero and an extremely long right tail of what might seem to be atypical observations.
For modeling purposes, it might be tempting to remove these “non-Poisson” appearing
observations in these tails. (Other models might be a better solution.) The distribution
that characterizes what remains in the sample is a truncated distribution. Truncation is
not innocent. If the entire population is of interest, then conventional statistical infer-
ence (such as estimation) on the truncated sample produces a systematic bias known
as (of course) “truncation bias.” This would arise, for example, if an ordinary Poisson
model intended to characterize the full population is fit to the sample from a truncated
population.

Censoring, in contrast, is generally a feature of the sampling design. In the applica-
tion in Example 18.9, the dependent variable is the self-reported number of extramarital
affairs in a survey taken by the magazine Psychology Today. The possible answers are
0, 1, 2, 3, 4–10 (coded as 7) and “monthly, weekly or daily” coded as 12. The two upper
categories are censored. Similarly, in the doctor visits data in the previous paragraph,
recognizing the possibility of truncation bias due to data trimming, we might, instead,
simply censor the distribution of values at 15. The resulting variable would take values
0, . . . , 14, “15 or more.” In both cases, applying conventional estimation methods leads to
predictable biases. However, it is also possible to reconstruct the estimators specifically
to account for the truncation or censoring in the data.
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Truncation and censoring produce similar effects on the distribution of the random
variable and on the features of the population such as the mean. For the truncation case,
suppose that the original random variable has a Poisson distribution (all these results
can be directly extended to the negative binomial or any of the other models considered
earlier),

P(yi = j | xi ) = exp(−λi )λ
j
i /j! = Pi, j .

If the distribution is truncated at value C—that is, only values C + 1, . . . are observed—
then the resulting random variable has probability distribution

P(yi = j | xi , yi > C) = P(yi = j | xi )

P(yi > C | xi )
= P(yi = j | xi )

1 − P(yi ≤ C | xi )
.

The original distribution must be scaled up so that it sums to one for the cells that
remain in the truncated distribution. The leading case is truncation at zero, that is, “left
truncation,” which, for the Poisson model produces

P(yi = j | xi , yi > 0) = exp(−λi )λ
j
i

j![1 − exp(−λi )]
= Pi, j

1 − Pi,0
, j = 1, . . . .

[See, e.g., Mullahy (1986), Shaw (1988), Grogger and Carson (1991), Greene (1998),
and Winkelmann (1987).] The conditional mean function is

E(yi | xi , yi > 0) = 1
[1 − exp(−λi )]

∞∑
j=1

j exp(−λi )λ
j
i

j!
= λi

[1 − exp(−λi )]
> λi .

The second equality results because the sum can be started at zero—the first term
is zero—and this produces the expected value of the original variable. As might be
expected, truncation “from below” has the effect of increasing the expected value. It
can be shown that it decreases the conditional variance however. The partial effects are

δi = ∂ E[yi | xi , yi > 0]
∂xi

=
[

1 − Pi,0 − λi Pi,0(
1 − Pi,0

)2

]
λiβ. (18-23)

The term outside the brackets is the partial effects in the absence of the truncation while
the bracketed term rises from slighter greater than 0.5 to 1.0 as λi increases from just
above zero.

Example 18.8 Major Derogatory Reports
In Section 17.5.6 and Examples 17.9 and 17.22, we examined a binary choice model for the
accept/reject decision for a sample of applicants for a major credit card. Among the variables
in that model is “Major Derogatory Reports” (MDRs). This is an interesting behavioral variable
in its own right that should be appropriately modeled using the count data specifications in
this chapter. In the sample of 13,444 individuals, 10,833 had zero MDRs while the values for
the remaining 2561 ranged from 1 to 22. This preponderance of zeros exceeds by far what one
would anticipate in a Poisson model that was dispersed enough to produce the distribution
of remaining individuals. As we will pursue an Example 18.11, a natural approach for these
data is to treat the extremely large block of zeros explicitly in an extended model. For present
purposes, we will consider the nonzero observations apart from the zeros and examine the
effect of accounting for left truncation at zero on the estimated models. Estimation results
are shown in Table 18.15. The first column of results compared to the second shows the
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TABLE 18.15 Estimated Truncated Poison Regression Model (t ratios in
parentheses)

Poisson Full Sample Poisson Truncated Poisson

Constant 0.8756 (17.10) 0.8698 (16.78) 0.7400 (11.99)
Age 0.0036 (2.38) 0.0035 (2.32) 0.0049 (2.75)
Income −0.0039 (−4.78) −0.0036 (−3.83) −0.0051 (−4.51)
OwnRent −0.1005 (−3.52) −0.1020 (−3.56) −0.1415 (−4.18)
Self Employed −0.0325 (−0.62) −0.0345 (−0.66) −0.0515 (−0.82)
Dependents 0.0445 (4.69) 0.0440 (4.62) 0.0606 (5.48)
MthsCurAdr 0.00004 (0.23) 0.00005 (0.25) 0.00007 (0.30)
ln L −5379.30 −5378.79 −5097.08

Average Partial Effects
Age 0.0017 0.0085 0.0084
Income −0.0018 −0.0087 −0.0089
OwnRent −0.0465 −0.2477 −0.2460
Self Employed −0.0150 −0.0837 −0.0895
Dependents 0.0206 0.1068 0.1054
MthsCurAdr 0.00002 0.00012 0.00013
Cond’l. Mean 0.4628 2.4295 2.4295
Scale factor 0.4628 2.4295 1.7381

suspected impact of incorrectly including the zero observations. The coefficients change only
slightly, but the partial effects are far smaller when the zeros are included in the estimation.
It was not possible to fit the truncated negative binomial with these data.

Censoring is handled similarly. The usual case is “right censoring,” in which realized
values greater than or equal to C are all given the value C. In this case, we have a two-
part distribution [see Terza (1985b)]. The observed random variable, yi is constructed
from an underlying random variable, y∗

i by

yi = Min(y∗
i , C).

Probabilities are constructed using the axioms of probability. This produces

Prob(yi = j | xi ) = Pi, j , j = 0, 1, . . . , C − 1,

Prob(yi = C | xi ) =
∞∑

j=C

Pi, j = 1 −
C−1∑
j=0

Pi, j .

In this case, the conditional mean function is

E[yi | xi ] =
C−1∑
j=0

j Pi, j +
∞∑

j=C

CPi, j

=
∞∑
j=0

j Pi, j −
∞∑

j=C

( j − C)Pi, j

= λi −
∞∑

j=C

( j − C)Pi, j < λi .



Greene-2140242 book November 26, 2010 23:29

814 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

The infinite sum is computed by using the complement. Thus,

E[yi |xi ] = λi −
⎡⎣ ∞∑

j=0

( j − C)Pi, j −
C−1∑
j=0

( j − C)Pi, j

⎤⎦
= λi − (λi − C) +

C−1∑
j=0

( j − C)Pi, j

= C −
C−1∑
j=0

(C − j)Pi, j .

Example 18.9 Extramarital Affairs
In 1969, the popular magazine Psychology Today published a 101-question survey on sex
and asked its readers to mail in their answers. The results of the survey were discussed in
the July 1970 issue. From the approximately 2,000 replies that were collected in electronic
form (of about 20,000 received), Professor Ray Fair (1978) extracted a sample of 601 ob-
servations on men and women then currently married for the first time and analyzed their
responses to a question about extramarital affairs. Fair’s analysis in this frequently cited study
suggests several interesting econometric questions. [In addition, his 1977 companion paper
in Econometrica on estimation of the tobit model contributed to the development of the EM
algorithm, which was published by and is usually associated with Dempster, Laird, and Rubin
(1977).]

Fair used the tobit model that we discuss in Chapter 19 as a platform The nonexperimental
nature of the data (which can be downloaded from the Internet at http://fairmodel.econ.yale.
edu/rayfair/work.ss.htm and are given in Appendix Table F18.1). provides a laboratory case
that we can use to examine the relationships among the tobit, truncated regression, and
probit models. Although the tobit model seems to be a natural choice for the model for these
data, given the cluster of zeros, the fact that the behavioral outcome variable is a count that
typically takes a small value suggests that the models for counts that we have examined in
this chapter might be yet a better choice. Finally, the preponderance of zeros in the data that
initially motivated the tobit model suggests that even the standard Poisson model, although
an improvement, might still be inadequate. We will pursue that aspect of the data later. In this
example, we will focus on just the censoring issue. Other features of the models and data
are reconsidered in the exercises.

The study was based on 601 observations on the following variables (full details on data
coding are given in the data file and Appendix Table F18.1):

y = number of affairs in the past year, 0, 1, 2, 3, 4–10 coded as 7
“monthly, weekly, or daily,” coded as 12. Sample mean = 1.46
Frequencies = (451, 34, 17, 19, 42, 38)

z1 = sex = 0 for female, 1 for male. Sample mean = 0.476
z2 = age. Sample mean = 32.5
z3 = number of years married. Sample mean = 8.18
z4 = children, 0 = no, 1 = yes. Sample mean = 0.715
z5 = religiousness, 1 = anti, . . . , 5 = very. Sample mean = 3.12
z6= education, years, 9 = grade school, 12 = high school, . . . , 20 = Ph.D or other Sample

mean = 16.2
z7 = occupation, “Hollingshead scale,” 1–7. Sample mean = 4.19
z8 = self-rating of marriage, 1 = very unhappy, . . . , 5 = very happy. Sample mean = 3.93
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TABLE 18.16 Censored Poisson and Negative Binomial Distributions

Poisson Regression Negative Binomial Regression

Standard Marginal Standard Marginal
Variable Estimate Error Effect Estimate Error Effect

Based on Uncensored Poisson Distribution

Constant 2.53 0.197 — 2.19 0.664 —
z2 −0.0322 0.00585 −0.0470 −0.0262 0.0192 −0.00393
z3 0.116 0.00991 0.168 0.0848 0.0350 0.127
z5 −0.354 0.0309 −0.515 −0.422 0.111 −0.632
z7 0.0798 0.0194 0.116 0.0604 0.0702 0.0906
z8 −0.409 0.0274 −0.0596 −0.431 0.111 −0.646
α 7.01 0.786
ln L −1427.037 −728.2441

Based on Poisson Distribution Right Censored at y = 4

Constant 1.90 0.283 — 4.79 1.16 —
z2 −0.0328 0.00838 −0.0235 −0.0166 0.0250 −0.00428
z3 0.105 0.0140 0.0754 0.174 0.0568 0.045
z5 −0.323 0.0437 −0.232 −0.723 0.198 −0.186
z7 0.0798 0.0275 0.0521 0.0900 0.116 0.0232
z8 −0.390 0.0391 −0.279 −0.854 0.216 −0.220
α 9.40 1.35
ln L −747.7541 −482.0505

The tobit model was fit to y using a constant term and all eight variables. A restricted model
was fit by excluding z1, z4, and z6, none of which was individually statistically significant in
the model. We are able to match exactly Fair’s results for both equations. The tobit model
should only be viewed as an approximation for these data. The dependent variable is a
count, not a continuous measurement. The Poisson regression model, or perhaps one of
the many variants of it, should be a preferable modeling framework. Table 18.16 presents
estimates of the Poisson and negative binomial regression models. There is ample evidence
of overdispersion in these data; the t ratio on the estimated overdispersion parameter is
7.014/0.945 = 7.42, which is strongly suggestive. The large absolute value of the coefficient
is likewise suggestive.

Responses of 7 and 12 do not represent the actual counts. It is unclear what the effect
of the first recoding would be, because it might well be the mean of the observations in this
group. But the second is clearly a censored observation. To remove both of these effects,
we have recoded both the values 7 and 12 as 4 and treated this observation (appropriately)
as a censored observation, with 4 denoting “4 or more.” As shown in the third and fourth
sets of results in Table 18.16, the effect of this treatment of the data is greatly to reduce
the measured effects. Although this step does remove a deficiency in the data, it does not
remove the overdispersion; at this point, the negative binomial model is still the preferred
specification.

18.4.7 PANEL DATA MODELS

The familiar approaches to accommodating heterogeneity in panel data have fairly
straightforward extensions in the count data setting. [Hausman, Hall, and Griliches
(1984) give full details for these models.] We will examine them for the Poisson model.
The authors [and Allison (2000)] also give results for the negative binomial model.
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18.4.7.a Robust Covariance Matrices for Pooled Estimators

The standard asymptotic covariance matrix estimator for the Poisson model is

Est. Asy. Var[β̂] =
[
−∂2 ln L

∂β̂∂β̂ ′

]−1

=
[

n∑
i=1

λ̂i xi x′
i

]−1

= [X′�̂X]−1,

where �̂ is a diagonal matrix of predicted values. The BHHH estimator is

Est. Asy. Var[β̂] =
[

n∑
i=1

(
∂ ln Pi

∂β̂

) (
∂ ln Pi

∂β̂

)′]−1

=
[

n∑
i=1

(
yi − λ̂′

i

)2xi x′
i

]−1

= [X′Ê2X]−1,

where Ê is a diagonal matrix of residuals. The Poisson model is one in which the MLE is
robust to certain misspecifications of the model, such as the failure to incorporate latent
heterogeneity in the mean (i.e., one fits the Poisson model when the negative binomial
is appropriate). In this case, a robust covariance matrix is the “sandwich” estimator,

Robust Est. Asy. Var[β̂] = [X′�̂X]−1[X′Ê2X][X′�̂X]−1,

which is appropriate to accommodate this failure of the model. It has become common
to employ this estimator with all specifications, including the negative binomial. One
might question the virtue of this. Because the negative binomial model already accounts
for the latent heterogeneity, it is unclear what additional failure of the assumptions of
the model this estimator would be robust to. The questions raised in Section 14.8.3 and
14.8.4 about robust covariance matrices would be relevant here.

A related calculation is used when observations occur in groups that may be corre-
lated. This would include a random effects setting in a panel in which observations have
a common latent heterogeneity as well as more general, stratified, and clustered data
sets. The parameter estimator is unchanged in this case (and an assumption is made
that the estimator is still consistent), but an adjustment is made to the estimated asymp-
totic covariance matrix. The calculation is done as follows: Suppose the n observations
are assembled in G clusters of observations, in which the number of observations in
the ith cluster is ni . Thus,

∑G
i=1ni = n. Denote by β the full set of model parameters

in whatever variant of the model is being estimated. Let the observation-specific gra-
dients and Hessians be gij = ∂ ln Lij/∂β = (yij − λij)xij and Hij = ∂2 ln Lij/∂β∂β ′ =
−λijxijx′

ij. The uncorrected estimator of the asymptotic covariance matrix based on the
Hessian is

VH = −H−1 =
⎛⎝−

G∑
i=1

ni∑
j=1

Hij

⎞⎠−1

.

The corrected asymptotic covariance matrix is

Est. Asy. Var[β̂] = VH

(
G

G − 1

) ⎡⎣ G∑
i=1

⎛⎝ ni∑
j=1

gij

⎞⎠ ⎛⎝ ni∑
j=1

gij

⎞⎠′⎤⎦ VH.
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Note that if there is exactly one observation per cluster, then this is G/(G − 1) times
the sandwich (robust) estimator.

18.4.7.b Fixed Effects

Consider first a fixed effects approach. The Poisson distribution is assumed to have
conditional mean

log λit = β ′xit + αi , (18-24)

where now, xit has been redefined to exclude the constant term. The approach used
in the linear model of transforming yit to group mean deviations does not remove the
heterogeneity, nor does it leave a Poisson distribution for the transformed variable.
However, the Poisson model with fixed effects can be fit using the methods described
for the probit model in Section 17.4.3. The extension to the Poisson model requires only
the minor modifications, git = (yit − λit) and hit = − λit. Everything else in that deriva-
tion applies with only a simple change in the notation. The first-order conditions for
maximizing the log-likelihood function for the Poisson model will include

∂ ln L
∂αi

=
Ti∑

t=1

(yit − eαi μit) = 0 where μit = ex′
itβ .

This implies an explicit solution for αi in terms of β in this model,

α̂i = ln
(

(1/Ti )
∑Ti

t=1 yit

(1/Ti )
∑Ti

t=1 μ̂it

)
= ln

(
ȳi

¯̂μi

)
. (18-25)

Unlike the regression or the probit model, this does not require that there be within-
group variation in yit—all the values can be the same. It does require that at least one
observation for individual i be nonzero, however. The rest of the solution for the fixed
effects estimator follows the same lines as that for the probit model. An alternative
approach, albeit with little practical gain, would be to concentrate the log-likelihood
function by inserting this solution for αi back into the original log-likelihood, and then
maximizing the resulting function of β. While logically this makes sense, the approach
suggested earlier for the probit model is simpler to implement.

An estimator that is not a function of the fixed effects is found by obtaining the
joint distribution of (yi1, . . . , yiTi ) conditional on their sum. For the Poisson model, a
close cousin to the multinomial logit model discussed earlier is produced:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

i=1

yit

)
=

(∑Ti
t=1 yit

)
!(∏Ti

t=1 yit!
) Ti∏

t=1

pyit
it , (18-26)

where

pit = ex′
itβ+αi∑Ti

t=1 ex′
itβ+αi

= ex′
itβ∑Ti

t=1 ex′
itβ

. (18-27)

The contribution of group i to the conditional log-likelihood is

ln Li =
Ti∑

t=1

yit ln pit.
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Note, once again, that the contribution to ln L of a group in which yit = 0 in every
period is zero. Cameron and Trivedi (1998) have shown that these two approaches give
identical results.

Hausman, Hall, and Griliches (1984) (HHG) report the following conditional den-
sity for the fixed effects negative binomial (FENB) model:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
=

�
(

1 + ∑Ti
t=1 yit

)
�

(∑Ti
t=1 λit

)
�

(∑Ti
t=1 yit + ∑Ti

t=1 λit

) Ti∏
t=1

�(yit + λit)

�(1 + yit)�(λit)
,

which is free of the fixed effects. This is the default FENB formulation used in popular
software packages such as SAS, Stata, and LIMDEP. Researchers accustomed to the
admonishments that fixed effects models cannot contain overall constants or time-
invariant covariates are sometimes surprised to find (perhaps accidentally) that this
fixed effects model allows both. [This issue is explored at length in Allison (2000) and
Allison and Waterman (2002).] The resolution of this apparent contradiction is that the
HHG FENB model is not obtained by shifting the conditional mean function by the
fixed effect, ln λit = x′

itβ + αi , as it is in the Poisson model. Rather, the HHG model is
obtained by building the fixed effect into the model as an individual specific θi in the
Negbin 1 form in (18-22). The conditional mean functions in the models are as follows
(we have changed the notation slightly to conform to our earlier formulation):

NB1(HHG): E[yit | xit] = θiφit = θi exp(x′
itβ),

NB2: E[yit | xit] = exp(αi )φit = λit = exp(x′
itβ + αi ).

The conditional variances are

NB1(HHG): Var[yit | xit] = θiφit[1 + θi ],

NB2: Var[yit | xit] = λit[1 + θλit].

Letting μi = ln θi , it appears that the HHG formulation does provide a fixed effect in
the mean, as now, E[yit | xit] = exp(x′

itβ+μi ). Indeed, by this construction, it appears (as
the authors suggest) that there are separate effects in both the mean and the variance.
They make this explicit by writing θi = exp(μi )γi so that in their model,

E[yit | xit] = γi exp(x′
itβ + μi ),

Var[yit | xit] = γi exp(x′
itβ + μi )/[1 + γi exp(μi )].

The contradiction arises because the authors assert that μi and γi are separate parame-
ters. In fact, they cannot vary separately only θi can vary autonomously. The firm-specific
effect in the HHG model is still isolated in the scaling parameter, which falls out of the
conditional density. The mean is homogeneous, which explains why a separate constant,
or a time-invariant regressor (or another set of firm-specific effects) can reside there.
[See Greene (2007d) and Allison and Waterman (2002) for further discussion.]

18.4.7.c Random Effects

The fixed effects approach has the same flaws and virtues in this setting as in the
probit case. It is not necessary to assume that the heterogeneity is uncorrelated with
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the included exogenous variables. If the uncorrelatedness of the regressors and the
heterogeneity can be maintained, then the random effects model is an attractive al-
ternative model. Once again, the approach used in the linear regression model, partial
deviations from the group means followed by generalized least squares (see Chapter 11),
is not usable here. The approach used is to formulate the joint probability conditioned
upon the heterogeneity, then integrate it out of the joint distribution. Thus, we form

p(yi1, . . . , yiTi | ui ) =
Ti∏

t=1

p(yit | ui ).

Then the random effect is swept out by obtaining

p(yi1, . . . , yiTi ) =
∫

ui

p(yi1, . . . , yiTi , ui ) dui

=
∫

ui

p(yi1, . . . , yiTi | ui )g(ui ) dui

= Eui [p(yi1, . . . , yiTi | ui )].

This is exactly the approach used earlier to condition the heterogeneity out of the
Poisson model to produce the negative binomial model. If, as before, we take p(yit | ui )

to be Poisson with mean λit = exp(x′
itβ + ui ) in which exp(ui ) is distributed as gamma

with mean 1.0 and variance 1/α, then the preceding steps produce a negative binomial
distribution,

p(yi1, . . . , yiTi ) =
[∏Ti

t=1 λ
yit
it

]
�

(
θ + ∑Ti

t=1 yit

)
[
�(θ)

∏Ti
t=1 yit!

] [(∑Ti
t=1 λit

)∑Ti
t=1

yit

] Qθ
i (1 − Qi )

∑Ti
t=1

yit , (18-28)

where

Qi = θ

θ + ∑Ti
t=1 λit

.

For estimation purposes, we have a negative binomial distribution for Yi = �t yit with
mean �i = �tλit.

Like the fixed effects model, introducing random effects into the negative bino-
mial model adds some additional complexity. We do note, because the negative bi-
nomial model derives from the Poisson model by adding latent heterogeneity to the
conditional mean, adding a random effect to the negative binomial model might well
amount to introducing the heterogeneity a second time. However, one might prefer
to interpret the negative binomial as the density for yit in its own right and treat the
common effects in the familiar fashion. Hausman et al.’s (1984) random effects nega-
tive binomial (RENB) model is a hierarchical model that is constructed as follows. The
heterogeneity is assumed to enter λit additively with a gamma distribution with mean 1,
�(θi , θi ). Then, θi/(1+θi ) is assumed to have a beta distribution with parameters a and b
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[see Appendix B.4.6)]. The resulting unconditional density after the heterogeneity is
integrated out is

p(yi1, yi2, . . . , yiTi ) =
�(a + b)�

(
a + ∑Ti

t=1 λit

)
�

(
b + ∑Ti

t=1 yit

)
�(a)�(b)�

(
a + ∑Ti

t=1 λit + b + ∑Ti
t=1 yit

) .

As before, the relationship between the heterogeneity and the conditional mean func-
tion is unclear, because the random effect impacts the parameter of the scedastic
function. An alternative approach that maintains the essential flavor of the Poisson
model (and other random effects models) is to augment the NB2 form with the random
effect,

Prob(Y = yit | xit, εi ) = �(θ + yit)

�(yit + 1)�(θ)
r yit

it (1 − rit)
θ ,

λit = exp(x′
itβ + εi ),

rit = λit/(θ + λit).

We then estimate the parameters by forming the conditional (on εi ) log-likelihood and
integrating εi out either by quadrature or simulation. The parameters are simpler to
interpret by this construction. Estimates of the two forms of the random effects model
are presented in Example 18.10.2 for a comparison.

There is a mild preference in the received literature for the fixed effects estimators
over the random effects estimators. The virtue of dispensing with the assumption of
uncorrelatedness of the regressors and the group specific effects is substantial. On the
other hand, the assumption does come at a cost. To compute the probabilities or the
marginal effects, it is necessary to estimate the constants, αi . The unscaled coefficients
in these models are of limited usefulness because of the nonlinearity of the conditional
mean functions.

Other approaches to the random effects model have been proposed. Greene (1994,
1995a), Riphahn et al. (2003), and Terza (1995) specify a normally distributed hetero-
geneity, on the assumption that this is a more natural distribution for the aggregate of
small independent effects. Brannas and Johanssen (1994) have suggested a semipara-
metric approach based on the GMM estimator by superimposing a very general form of
heterogeneity on the Poisson model. They assume that conditioned on a random effect
εit, yit is distributed as Poisson with mean εitλit. The covariance structure of εit is allowed
to be fully general. For t, s = 1, . . . , T, Var[εit] = σ 2

i , Cov[εit, ε js] = γij(|t − s|). For a
long time series, this model is likely to have far too many parameters to be identified
without some restrictions, such as first-order homogeneity (β i = β ∀ i), uncorrelated-
ness across groups, [γij(.) = 0 for i �= j], groupwise homoscedasticity (σ 2

i = σ 2 ∀ i), and
nonautocorrelatedness [γ (r) = 0 ∀ r �= 0]. With these assumptions, the estimation pro-
cedure they propose is similar to the procedures suggested earlier. If the model imposes
enough restrictions, then the parameters can be estimated by the method of moments.
The authors discuss estimation of the model in its full generality. Finally, the latent class
model discussed in Section 14.10 and the random parameters model in Section 15.9.5
extend naturally to the Poisson model. Indeed, most of the received applications of
the latent class structure have been in the Poisson regression framework. [See Greene
(2001) for a survey.]
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Example 18.10 Panel Data Models for Doctor Visits
The German health care panel data set contains 7,293 individuals with group sizes ranging
from 1 to 7. Table 18.17 presents the fixed and random effects estimates of the equation
for DocVis. The pooled estimates are also shown for comparison. Overall, the panel data
treatments bring large changes in the estimates compared to the pooled estimates. There
is also a considerable amount of variation across the specifications. With respect to the
parameter of interest, Public, we find that the size of the coefficient falls substantially with
all panel data treatments. Whether using the pooled, fixed, or random effects specifications,
the test statistics (Wald, LR) all reject the Poisson model in favor of the negative binomial.
Similarly, either common effects specification is preferred to the pooled estimator. There is no
simple basis for choosing between the fixed and random effects models, and we have further
blurred the distinction by suggesting two formulations of each of them. We do note that the
two random effects estimators are producing similar results, which one might hope for. But,
the two fixed effects estimators are producing very different estimates. The NB1 estimates
include two coefficients, Income and Education, which are positive, but negative in every
other case. Moreover, the coefficient on Public, which is large and significant throughout the
table, has become small and less significant with the fixed effects estimators.

We also fit a three-class latent class model for these data. (See Section 14.10.) The three
class probabilities were modeled as functions of Married and Female, which appear from
the results to be significant determinants of the class sorting. The average prior probabili-
ties for the three classes are 0.09212, 0.49361, and 0.41427. The coefficients on Public in
the three classes, with associated t ratios are 0.3388 (11.541), 0.1907 (3.987), and 0.1084
(4.282). The qualitative result concerning evidence of moral hazard suggested at the outset
of Example 18.7 appears to be supported in a variety of specifications (with FE-NB1 the sole
exception).

18.4.8 TWO-PART MODELS: ZERO INFLATION AND HURDLE
MODELS

Mullahy (1986), Heilbron (1989), Lambert (1992), Johnson and Kotz (1993), and Greene
(1994) have analyzed an extension of the hurdle model in which the zero outcome can
arise from one of two regimes.15 In one regime, the outcome is always zero. In the other,
the usual Poisson process is at work, which can produce the zero outcome or some
other. In Lambert’s application, she analyzes the number of defective items produced
by a manufacturing process in a given time interval. If the process is under control, then
the outcome is always zero (by definition). If it is not under control, then the number
of defective items is distributed as Poisson and may be zero or positive in any period.
The model at work is therefore

Prob(yi = 0|xi ) = Prob(regime 1) + Prob(yi = 0|xi , regime 2)Prob(regime 2),

Prob(yi = j |xi ) = Prob(yi = j |xi , regime 2)Prob(regime 2), j = 1, 2, . . . .

Let z denote a binary indicator of regime 1(z = 0) or regime 2 (z = 1), and let y∗ denote
the outcome of the Poisson process in regime 2. Then the observed y is z× y∗. A natural
extension of the splitting model is to allow zto be determined by a set of covariates. These
covariates need not be the same as those that determine the conditional probabilities
in the Poisson process. Thus, the model is

Prob(zi = 0 | wi ) = F(wi , γ ), (Regime 1 : y will equal zero.)

Prob(yi = j | xi , zi = 1) = exp(−λi )λ
j
i

j!
.(Regime 2 : y will be a count outcome.)

15The model is variously labeled the “with zeros,” or WZ, model [Mullahy (1986)], the zero inflated Poisson,
or ZIP, model [Lambert (1992)], and “zero-altered poisson,” or ZAP, model [Greene (1994)]
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The zero inflation model can also be viewed as a type of latent class model. The two
class probabilities are F(wi , γ ) and 1 − F(wi , γ ), and the two regimes are y = 0 and
the Poisson or negative binomial data generating process.16 The extension of the ZIP
formulation to the negative binomial model is widely labeled the ZINB model.17 [See
Zaninotti and Falischetti (2010) for an application.]

The mean of this random variable in the Poisson case is

E[yi |xi , wi ] = Fi × 0 + (1 − Fi ) × E[y∗
i |xi , zi = 1] = (1 − Fi )λi .

Lambert (1992) and Greene (1994) consider a number of alternative formulations,
including logit and probit models discussed in Sections 17.2 and 17.3, for the probability
of the two regimes.

It might be of interest to test simply whether there is a regime splitting mechanism at
work or not. Unfortunately, the basic model and the zero-inflated model are not nested.
Setting the parameters of the splitting model to zero, for example, does not produce
Prob[z = 0] = 0. In the probit case, this probability becomes 0.5, which maintains the
regime split. The preceding tests for over- or underdispersion would be rather indirect.
What is desired is a test of non-Poissonness. An alternative distribution may (but need
not) produce a systematically different proportion of zeros than the Poisson. Testing
for a different distribution, as opposed to a different set of parameters, is a difficult
procedure. Because the hypotheses are necessarily nonnested, the power of any test is a
function of the alternative hypothesis and may, under some, be small. Vuong (1989) has
proposed a test statistic for nonnested models that is well suited for this setting when
the alternative distribution can be specified. (See Section 14.6.6.) Let f j (yi |xi ) denote
the predicted probability that the random variable Y equals yi under the assumption
that the distribution is f j (yi |xi ), for j = 1, 2, and let

mi = ln
(

f1(yi |xi )

f2(yi |xi )

)
.

Then Vuong’s statistic for testing the nonnested hypothesis of model 1 versus model 2 is

v =
√

n
[ 1

n�n
i=1mi

]√
1
n�n

i=1 (mi − m̄)2
=

√
nm̄

sm
.

This is the standard statistic for testing the hypothesis that E[mi ] equals zero. Vuong
shows that v has a limiting standard normal distribution. As he notes, the statistic is
bidirectional. If |v| is less than two, then the test does not favor one model or the other.
Otherwise, large values favor model 1 whereas small (negative) values favor model 2.
Carrying out the test requires estimation of both models and computation of both sets
of predicted probabilities. In Greene (1994), it is shown that the Vuong test has some
power to discern the zero inflation phenomenon. The logic of the testing procedure is to
allow for overdispersion by specifying a negative binomial count data process and then
examine whether, even allowing for the overdispersion, there still appear to be excess
zeros. In his application, that appears to be the case.

16Harris and Zhao (2007) applied this approach to a survey of teenage smokers and nonsmokers in Australia,
using an ordered probit model. (See Section 18.3.)
17Greene (2005) presents a survey of two-part models, including the zero inflation models.
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TABLE 18.18 Estimated Zero Inflated Count Models

Poisson Negative Binomial

Zero Inflation Zero Inflation

Poisson Zero Negative Zero
Regression Regression Regime Binomial Regression Regime

Constant −1.33276 0.75483 2.06919 −1.54536 −0.39628 4.18910
Age 0.01286 0.00358 −0.01741 0.01807 −0.00280 −0.14339
Income −0.02577 −0.05127 −0.03023 −0.02482 −0.05502 −0.33903
OwnRent −0.17801 −0.15593 −0.01738 −0.18985 −0.28591 −0.50026
Self Employment 0.04691 −0.01257 0.07920 0.06817
Dependents 0.13760 0.06038 −0.09098 0.14054 0.08599 −0.32897
Cur. Add. 0.00195 0.00046 0.00245 0.00257
α 6.41435 4.85653
ln L −15467.71 −11569.74 −10582.88 −10516.46
Vuong 20.6981 4.5943

Example 18.11 Zero Inflation Models for Major Derogatory Reports
In Example 18.8, we examined the counts of major derogatory reports for a sample of 13,444
credit card applicants. It was noted that there are over 10,800 zeros in the counts. One
might guess that among credit card users, there is a certain (probably large) proportion
of individuals who would never generate an MDR, and some other proportion who might or
might not, depending on circumstances. We propose to extend the count models in Example
10.8 to accommodate the zeros. The extensions to the ZIP and ZINB models are shown
in Table 18.18. Only the coefficients are shown for purpose of the comparisons. Vuong’s
diagnostic statistic appears to confirm intuition that the Poisson model does not adequately
describe the data; the value is 20.6981. Using the model parameters to compute a prediction
of the number of zeros, it is clear that the splitting model does perform better than the basic
Poisson regression. For the simple Poisson model, the average probability of zero times the
sample size gives a prediction of 8609. For the ZIP model, the value is 10914.8, which is a
dramatic improvement. By the likelihood ratio test, the negative binomial is clearly preferred;
comparing the two zero inflation models, the difference in the log-likelihood functions is over
1,000. As might be expected, the Vuong statistic falls considerably, to 4.5943. However, the
simple model with no zero inflation is still rejected by the test.

In some settings, the zero outcome of the data generating process is qualitatively
different from the positive ones. The zero or nonzero value of the outcome is the
result of a separate decision whether or not to “participate” in the activity. On deciding
to participate, the individual decides separately how much, that is, how intensively.
Mullahy (1986) argues that this fact constitutes a shortcoming of the Poisson (or negative
binomial) model and suggests a hurdle model as an alternative.18 In his formulation,
a binary probability model determines whether a zero or a nonzero outcome occurs
and then, in the latter case, a (truncated) Poisson distribution describes the positive
outcomes. The model is

Prob(yi = 0|xi ) = e−θ

Prob(yi = j |xi ) = (1 − e−θ )
exp(−λi )λ

j
i

j![1 − exp(−λi )]
, j = 1, 2, . . . .

18For a similar treatment in continuous data application, see Cragg (1971).
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This formulation changes the probability of the zero outcome and scales the remaining
probabilities so that they sum to one. Mullahy suggests some formulations and applies
they model to a sample of observations on daily beverage consumption. Mullahy’s
formulation adds a new restriction that Prob(yi = 0|xi ) no longer depends on the
covariates, however. The natural next step is to parameterize this probability. This
extension of the hurdle model would combine a binary choice model like those in
Section 17.2 and 17.3 with a truncated count model as shown in Section 18.4.6. This would
produce, for example, for a logit participation equation and a Poisson intensity equation,

Prob(yi = 0|wi ) = �(w′
iγ )

Prob(yi = j |xi , wi , yi > 0) = [1 − �(w′
iγ )] exp(−λi )λ

j
i

j![1 − exp(−λi )]
.

The conditional mean function in the hurdle model is

E[yi |xi , wi ] = [1 − F(w′
iγ )]λi

[1 − exp(−λi )]
, λi = exp(x′

iβ),

where F(.) is the probability model used for the participation equation (probit or logit).
The partial effects are obtained by differentiating with respect to the two sets of variables
separately,

∂ E[yi |xi , wi ]
∂xi

= [1 − F(w′
iγ )]δi ,

∂ E[yi |xi , wi ]
∂wi

=
{ − f (w′

iγ )λi

[1 − exp(−λi )]

}
γ,

where δi is defined in (18-23) and f (.) is the density corresponding to F(.). For variables
that appear in both xi and wi , the effects are added. For dummy variables, the preceding
would be an approximation; the appropriate result would be obtained by taking the
difference of the conditional mean with the variable fixed at one and zero.

It might be of interest to test for hurdle effects. The hurdle model is similar to
the zero inflation model in that a model without hurdle effects is not nested within the
hurdle model; setting γ = 0 produces either F = α, a constant, or F = 1/2 if the constant
term is also set to zero. Neither serves the purpose. Nor does forcing γ = β in a model
with wi = xi and F = � with a Poisson intensity equation, which might be intuitively
appealing. A complementary log log model with

Prob(yi = 0|wi ) = exp[− exp(w′
iγ )]

does produce the desired result if wi = xi . In this case, “hurdle effects” are absent
if γ = β. The strategy in this case, then, would be a test of this restriction. But, this
formulation is otherwise restrictive, first in the choice of variables and second in its
unconventional functional form. The more general approach to this test would be the
Vuong test used earlier to test the zero inflation model against the simpler Poisson or
negative binomial model.

The hurdle model bears some similarity to the zero inflation model; however, the
behavioral implications are different. The zero inflation model can usefully be viewed
as a latent class model. The splitting probability defines a regime determination. In
the hurdle model, the splitting equation represents a behavioral outcome on the same
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TABLE 18.19 Estimated Hurdle Model for Doctor Visits

Participation Equation Intensity Equation

Parameter Partial Effect Parameter Partial Effect
Total Partial Effect

(Poisson Model)

Constant −0.0598 1.1203
Age 0.0221 0.0244 0.0113 0.0538 0.0782 ( 0.0625)
Income 0.0725 0.0800 −0.5152 −2.4470 −2.3670 (−1.8130)
Kids −0.0842 −0.4000 −0.4000 (−0.4836)
Public 0.2411 0.2663 0.1966 0.9338 1.2001 ( 0.9744)
Education −0.0291 −0.0321 −0.0321
Married −0.0233 −0.0258 −0.0258
Working −0.3624 −0.4003 −0.4003

level as the intensity (count) equation. Both of these modifications substantially alter
the Poisson formulation. First, note that the equality of the mean and variance of the
distribution no longer follows; both modifications induce overdispersion. On the other
hand, the overdispersion does not arise from heterogeneity; it arises from the nature of
the process generating the zeros. As such, an interesting identification problem arises
in this model. If the data do appear to be characterized by overdispersion, then it seems
less than obvious whether it should be attributed to heterogeneity or to the regime
splitting mechanism. Mullahy (1986) argues the point more strongly. He demonstrates
that overdispersion will always induce excess zeros. As such, in a splitting model, we may
misinterpret the excess zeros as due to the splitting process instead of the heterogeneity.

Example 18.12 Hurdle Model for Doctor Visits
The hurdle model is a natural specification for models of utilization of the health care system,
and has been used in a number of studies. Table 18.19 shows the parameter estimates for
a hurdle model for doctor visits based on the entire pooled sample of 27,326 observations.
The decomposition of the partial effects shows that the participation and intensity decisions
each contribute substantively to the effects of Age, Income, and Public insurance. The value
of the Vuong statistic is 51.16, strongly in favor of the hurdle model compared to the pooled
Poisson model with no hurdle effects. The effect of the hurdle model on the partial effects is
shown in the last column where the results for the Poisson model are shown in parentheses.

18.4.9 ENDOGENOUS VARIABLES AND ENDOGENOUS
PARTICIPATION

As in other situations, one would expect to find endogenous variables in models for
counts. For example, in the study on which we have relied for our examples of health care
utilization, Riphahn, Wambach, and Million (RWM, 2003), the authors were interested
in the role of insurance (specifically the Add-On insurance) in the usage variable. One
might expect the choice to buy insurance to be at least partly influenced by some of the
same factors that motivate usage of the health care system. Insurance purchase might
well be endogenous in a model such as the hurdle model in Example 18.12.

The Poisson model presents a complication for modeling endogeneity that arises in
some other cases as well. For simplicity, consider a continuous variable, such as Income,
to continue our ongoing example. A model of income determination and doctor visits
might appear

Income = z′
iγ + ui ,

Prob(DocVisi = j |xi , Incomei ) = exp(−λi ), λ
j
i /j!, λi = exp(x′

iβ + δ Incomei ).



Greene-2140242 book November 26, 2010 23:29

CHAPTER 18 ✦ Discrete Choices and Event Counts 827

Endogeneity as we have analyzed it, for example, in Chapter 8 and Sections 17.3.5 and
17.5.5, arises through correlation between the endogenous variable and the unobserved
omitted factors in the main equation. But, the Poisson model does not contain any
unobservables. This is a major shortcoming of the specification as a “regression” model;
all of the regression variation of the dependent variable arises through variation of
the observables. There is no accommodation for unobserved heterogeneity or omitted
factors. This is the compelling motivation for the negative binomial model or, in RWM’s
case, the Poisson-normal mixture model. [See Terza (2010, pp. 555–556) for discussion
of this issue.] If the model is reformulated to accommodate heterogeneity, as in

λi = exp(x′
iβ + δ Incomei + εi ),

then Incomei will be endogenous if ui and εi are correlated.
A bivariate normal model for (ui , εi ) with zero means, variances σ 2

u and σ 2
ε and

correlation ρ provides a convenient (and the usual) platform to operationalize this
idea. By projecting εi on ui , we have

εi = (ρσε/σu)ui + vi ,

where vi is normally distributed with mean zero and variance σ 2
ε (1 − ρ2). It will prove

convenient to parameterize these based on the regression and the specific parameters
as follows:

εi = ρσε(Incomei − z′
iγ )/σu + vi ,

= τ [(Incomei − z′
iγ )/σu] + θwi .

where wi will be normally distributed with mean zero and variance one while τ = ρσε

and θ2 = σ 2
ε (1 − ρ2). Then, combining terms,

εi = τ u∗
i + θwi .

With this parameterization, the conditional mean function in the Poisson regression
model is

λi = exp(x′
iβ + δ Incomei + τu∗

i + θwi ).

The parameters to be estimated are β, γ , δ, σε, σu, and ρ. There are two ways to proceed.
A two-step method can be based on the fact that γ and σu can consistently be estimated
by linear regression of Income on z. After this first step, we can compute values of u∗

i
and formulate the Poisson regression model in terms of

λ̂i (wi ) = exp[xi
′β + δ Incomei + τ ûi + θwi ].

The log-likelihood to be maximized at the second step is

ln L(β, δ, τ, θ |w) =
n∑

i=1

−λ̂i (wi ) + yi ln λ̂i (wi ) − ln yi !.

A remaining complication is that the unobserved heterogeneity, wi remains in the equa-
tion so it must be integrated out of the log-likelihood function. The unconditional log-
likelihood function is obtained by integrating the standard normally distributed wi out
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of the conditional densities.

ln L(β, γ , τ, θ) =
n∑

i=1

ln

{∫ ∞

−∞

[
exp

(−λ̂i (wi )
) (

λ̂i (wi )
)yi

yi !

]
φ(wi )dwi

}
.

The method of Butler and Moffitt or maximum simulated likelihood that we used to fit
a probit model in Section 17.4.2 can be used to estimate β, δ, τ , and θ . Estimates of ρ

and σε can be deduced from the last two of these; σ 2
ε = θ2 + τ 2 and ρ = τ/σε. This is the

control function method discussed in Section 17.3.5 and is also the “residual inclusion”
method discussed by Terza, Basu, and Rathouz (2008).

The full set of parameters can be estimated in a single step using full information
maximum likelihood. To estimate all parameters simultaneously and efficiently, we
would form the log-likelihood from joint density of DocVis and Income as P(DocVis|
Income) f (Income). Thus,

f (DocVis, Income) = exp [−λi (wi )] [λi (wi )]
yi

yi !
1
σu

φ

(
Income − z′

iγ

σu

)
λi (wi ) = exp

(
x′

iβ + δ Incomei + τ(Incomei − z′
iγ )/σu + θwi

)
As before, the unobserved wi must be integrated out of the log-likelihood function.
Either quadrature or simulation can be used. The parameters to be estimated by maxi-
mizing the full log-likelihood are (β, γ , δ, σu, σε, ρ). The invariance principle has been
used to simplify the estimation a bit by parameterizing the log-likelihood function in
terms of τ and θ . Some additional simplification can also be obtained by using the Olsen
(1978) [and Tobin (1958)] transformations, η = 1/σu and α = (1/σu)γ .

An endogenous binary variable, such as Public or AddOn in our DocVis example
is handled similarly but is a bit simpler. The structural equations of the model are

T∗ = z′
iγ + ui , u ∼ N[0, 1],

T = 1(T∗ > 0),

λ = exp(x′β + δT + ε) ε ∼ N[0, σ 2
ε ],

with Cov(u, ε) = ρσε. The endogeneity of T is implied by a nonzero ρ. We use the
bivariate normal result

u = (ρ/σε)ε + v

where v is normally distributed with mean zero and variance 1 – ρ2. Then, using our
earlier results for the probit model (Section 17.2),

P(T|ε) = �

[
(2T − 1)

(
z′γ + (ρ/σε)ε√

1 − ρ2

)]
, T = 0, 1.

It will be convenient once again to write ε = σεw where w ∼ N[0, 1]. Making the
substitution, we have

P(T|w) = �

[
(2T − 1)

(
z′γ + ρw√

1 − ρ2

)]
, T = 0, 1.
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The probability density function for y|T, w is Poisson with λ(w) = exp(x′β +δT +σεw).
Combining terms,

P(y, T|w) = exp [−λ(w)] [λ(w)]y

y!
�

[
(2T − 1)

(
z′γ + ρw√

1 − ρ2

)]
.

This last result provides the terms that enter the log-likelihood for (β, γ , δ, ρ, σε). As
before, the unobserved heterogeneity, w, must be integrated out of the log-likelihood,
so either the quadrature or simulation method discussed in Chapter 17 is used to obtain
the parameter estimates. Note that this model may also be estimated in two steps, with
γ obtained in the first-step probit. The two-step method will not be appreciably simpler,
since the second term in the density must remain to identify ρ. The residual inclusion
method is not fesible here since T∗ is not observed.

This same set of methods is used to allow for endogeneity of the participation
equation in the hurdle model in Section 18.4.8. Mechanically, the hurdle model with
endogenous participation is essentially the same as the endogenous binary variable.
[See Greene (2005, 2007).]

18.5 SUMMARY AND CONCLUSIONS

The analysis of individual decisions in microeconometrics is largely about discrete de-
cisions such as whether to participate in an activity or not, whether to make a purchase
or not, or what brand of product to buy. This chapter and Chapter 17 have developed
the four essential models used in that type of analysis. Random utility, the binary choice
model, and regression-style modeling of probabilities developed in Chapter 17 are the
three fundamental building blocks of discrete choice modeling. This chapter extended
those tools into the three primary areas of choice modeling, unordered choice mod-
els, ordered choice models, and models for counts. In each case, we developed a core
modeling framework that provides the broad platform and then developed a variety of
extensions.

In the analysis of unordered choice models, such as brand or location, the multino-
mial logit (MNL) model has provided the essential starting point. The MNL works well
to provide a basic framework, but as a behavioral model in its own right, it has some
important shortcomings. Much of the recent research in this area has focused on relax-
ing these behavioral assumptions. The most recent research in this area, on the mixed
logit model, has produced broadly flexible functional forms that can match behavioral
modeling to empirical specification and estimation.

The ordered choice model is a natural extension of the binary choice setting and
also a convenient bridge between models of choice between two alternatives and more
complex models of choice among multiple alternatives. We began this analysis with the
ordered probit and logit model pioneered by Zavoina and McKelvey (1975). Recent
developments of this model have produced the same sorts of extensions to panel data
and modeling heterogeneity that we considered in Chapter 17 for binary choice. We
also examined some multiple-equation specifications. For all its versatility, the famil-
iar ordered choice models have an important shortcoming in the assumed constancy
underlying preference behind the rating scale. The current work on differential item



Greene-2140242 book November 26, 2010 23:29

830 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

functioning, such as King et al. (2004), has produced significant progress on filling this
gap in the theory.

Finally, we examined probability models for counts of events. Here, the Poisson
regression model provides the broad framework for the analysis. The Poisson model
has two shortcomings that have motivated the current stream of research. The functional
form binds the mean of the random variable to its variance, producing an unrealistic
regression specification. Second, the basic model has no component that accommodates
unmeasured heterogeneity. (This second feature is what produces the first.) Current
research has produced a rich variety of models for counts, such as two-part behavioral
models that account for many different aspects of the decision-making process and the
mechanisms that generate the observed data.

Key Terms and Concepts

• Bivariate ordered probit
• Censoring
• Choice based sample
• Conditional logit

model
• Count data
• Deviance
• Differential item

functioning (DIF)
• Event count
• Exposure
• Full information maximum

likelihood (FIML)
• Heterogeneity
• Hurdle model
• Identification through

functional form
• Inclusive value

• Independence from
irrelevant alternatives (IIA)

• Lagrange multiplier test
• Limited information
• Log-odds
• Loglinear model
• Method of simulated

moments
• Mixed logit model
• Multinomial choice
• Multinomial logit model
• Multinomial probit model

(MNP)
• Negative binomial model
• Negbin 1 (NB1) form
• Negbin 2 (NB2) form
• Negbin P(NBP) model
• Nested logit model

• Nonnested models
• Ordered choice model
• Overdispersion
• Parallel regression

assumption
• Poisson regression model
• Random coefficients
• Random parameters logit

model (RPL)
• Revealed preference data
• Specification error
• Stated choice experiment
• Subjective well-being
• Unordered choice model
• Willingness to pay space
• Zero inflated Poisson model

(ZIP)

Exercises

1. We are interested in the ordered probit model. Our data consist of 250 observations,
of which the responses are

y 0 1 2 3 4
| − − − − − − − − − − − − −

n 50 40 45 80 35

Using the preceding data, obtain maximum likelihood estimates of the unknown
parameters of the model. (Hint: Consider the probabilities as the unknown param-
eters.)

2. For the zero-inflated Poisson (ZIP) model in Section 18.4.8, we derived the condi-
tional mean function, E[yi |xi , wi ] = (1 − Fi )λi .

a. For the same model, now obtain Var[yi |xi , wi ]. Then, obtain τi = Var[yi |xi ,
wi ]/E[yi |xi , wi ]. Does the zero inflation produce overdispersion? (That is, is the
ratio greater than one?)

b. Obtain the partial effect for a variable zi that appears in both wi and xi .
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3. Consider estimation of a Poisson regression model for yi |xi . The data are truncated
on the left—these are on-site observations at a recreasion site, so zeros do not
appear in the data set. The data are censored on the right—any response greater
than 5 is recorded as a 5. Construct the log-likelihood for a data set drawn under
this sampling scheme.

Applications

1. Appendix Table F18.1 provides Fair’s (1978) Redbook Magazine survey on extra-
marital affairs. The variables in the data set are as follows:

id = an identification number
C = constant, value = 1
yrb = a constructed measure of time spent in extramarital affairs
v1 = a rating of the marriage, coded 1 to 5
v2 = age, in years, aggregated
v3 = number of years married
v4 = number of children, top coded at 5
v5 = religiosity, 1 to 4, 1 = not, 4 = very
v6 = education, coded 9, 12, 14, 16, 17, 20
v7 = occupation
v8 = husband’s occupation

and three other variables that are not used. The sample contains a survey of 6,366
married women. For this exercise,we will analyze, first, the binary variable A= 1 if
yrb > 0,0 otherwise. The regressors of interest are v1 to v8; however, not necessarily
all of them belong in your model. Use these data to build a binary choice model for
A. Report all computed results for the model. Compute the marginal effects for the
variables you choose. Compare the results you obtain for a probit model to those
for a logit model. Are there any substantial differences in the results for the two
models?

2. Continuing the analysis of the first application, we now consider the self-reported
rating, v1. This is a natural candidate for an ordered choice model, because the
simple four-item coding is a censored version of what would be a continuous scale on
some subjective satisfaction variable. Analyze this variable using an ordered probit
model. What variables appear to explain the response to this survey question? (Note:
The variable is coded 1, 2, 3, 4, 5. Some programs accept data for ordered choice
modeling in this form, for example, Stata, while others require the variable to be
coded 0, 1, 2, 3, 4, for example, LIMDEP. Be sure to determine which is appropriate
for the program you are using and transform the data if necessary.) Can you obtain
the partial effects for your model? Report them as well. What do they suggest about
the impact of the different independent variables on the reported ratings?

3. Several applications in the preceding chapters using the German health care data
have examined the variable Doc Vis, the reported number of visits to the doctor.
The data are described in Appendix Table F7.1. A second count variable in that
data set that we have not examined is Hosp Vis, the number of visits to hospital. For
this application, we will examine this variable. To begin, we treat the full sample
(27,326) observations as a cross section.
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a. Begin by fitting a Poisson regression model to this variable. The exogenous vari-
ables are listed in Appendix Table F7.1. Determine an appropriate specification
for the right-hand side of your model. Report the regression results and the
partial effects.

b. Estimate the model using ordinary least squares and compare your least squares
results to the partial effects you computed in part a. What do you find?

c. Is there evidence of over dispersion in the data? Test for overdispersion. Now,
reestimate the model using a negative binomial specification.What is the result?
Do your results change? Use a likelihood ratio test to test the hypothesis of the
negative binomial model against the Poisson.

4. The GSOEP data are an unbalanced panel, with 7,293 groups. Continue your anal-
ysis in Application 3 by fitting the Poisson model with fixed and with random effects
and compare your results. (Recall, like the linear model, the Poisson fixed effects
model may not contain any time-invariant variables.) How do the panel data results
compare to the pooled results?

5. Appendix Table F18.2 contains data on ship accidents reported in McCullagh and
Nelder (1983). The data set contains 40 observations on the number of incidents of
wave damage for oceangoing ships. Regressors include “aggregate months of ser-
vice”, and three sets of dummy variables, Type (1, . . . , 5), operation period (1960–
1974 or 1975–1979), and construction period (1960–1964, 1965–1969, or 1970–1974).
There are six missing values on the dependent variable, leaving 34 usable observa-
tions.
a. Fit a Poisson model for these data, using the log of service months, four types of

dummy variables, two construction period variables, and one operation period
dummy variable. Report your results.

b. The authors note that the rate of accidents is supposed to be per period, but the
exposure (aggregate months) differs by ship. Reestimate your model constrain-
ing the coefficient on log of service months to equal one.

c. The authors take overdispersion as a given in these data. Do you find evidence
of over dispersion? Show your results.




