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Abstract

In this paper we merge techniques from the efficiency literature with spatial
econometric techniques. In particular, we combine calculation of efficiency from
the unit specific effects with the spatial autoregressive model to develop a spatial
autoregressive frontier model for panel data. Features of the modeling include
time-varying efficiency and estimation of own and spillover returns to scale. The
model is applied to aggregate production in European countries over the period
1995 — 2008. Among other things, we find that production in the sample average
country is characterized by increasing returns to scale when we allow for returns
to scale spillovers from other countries, and constant returns when these spillovers
are ignored.
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1 Introduction

The omitted variable bias from overlooking the spatial autoregression between neighbors
has long since been recognized. This motivated the development of the spatial autore-
gressive model in the seminal contributions by Cliff and Ord (1973; 1981). Other spatial
models with a spatial autoregressive variable which have since been proposed include the
spatial Durbin model which also includes spatially lagged independent variables (Anselin,
1988) and a model which also includes a spatial autocorrelation term (Drukker et al.,
2012; Kapoor et al., 2007; Kelejian and Prucha, 1998; 1999; 2010). In the context of
frontier models, biased parameter estimates because the spatial autoregression between
neighboring cross-sectional units is overlooked can also have implications for the efficiency
scores. We therefore blend techniques used in parametric frontier modeling with applied
spatial econometric techniques to develop a spatial autoregressive production frontier
model for panel data where technical efficiency is time-variant. The model is then ap-
plied to a classic case of aggregate production for 40 European countries over the period
1995 — 2008.

To date there is one key study by Druska and Horrace (2004) in the fledgling literature
on spatial frontier modeling. In this key study the authors develop a GMM frontier model
which they estimate using panel data on production for a sample of Indonesian rice farms.
Specifically, they develop a spatial error production frontier model by including the spatial
autocorrelation term as an exogenous variable which shifts the frontier technology. They
then calculate time-invariant inefficiencies from the random effects using the approach
proposed by Schmidt and Sickles (1984) (SS from hereon). The marginal effect of an
explanatory variable from such a model is not a function of the spatial autocorrelation
term so the coefficients on the inputs and the exogenous variables can be interpreted
as elasticities in the usual way. The spillover marginal effect from such a model relates
to the disturbance. This spillover marginal effect, however, is not as informative as the
spillover effects for the explanatory variables which we report in the application section
of this paper.

LeSage and Pace (2009) demonstrate that the coefficients on the explanatory variables
from a fitted spatial autoregressive model cannot be interpreted as elasticities. This
is because the marginal effect of an explanatory variable is a function of the spatial
autoregressive variable. LeSage and Pace (2009) therefore propose Bayesian Markov
Chain Monte Carlo (MCMC) simulation of the own (i.e. direct), spillover (i.e. indirect)

1Schmidt et al. (2009) also incorporate spatial dependence into their parametric frontier analysis
of Brazilian farm production. However, they account for the spatial dependence by allowing spatially
lagged latent regional effects (i.e. not farm effects) to affect the inefficiency distribution or shift the
frontier technology. In contrast, in the spatial error frontier model in Druska and Horrace (2004) and
also in the spatial autoregressive frontier model which we present, the spatial dependence is explicitly
modeled.



2 Using the direct, indirect and

and total marginal effects of the explanatory variables.
total marginal effects from a fitted production frontier model with a spatial autoregressive
exogenous variable we develop a new line of enquiry for parametric productivity analysis.
In particular, we calculate direct, indirect and total returns to scale.

The direct marginal effect estimates the effect of changing an explanatory variable in
a particular cross-sectional unit on that unit’s dependent variable and includes feedback
effects i.e. effects which pass through first order and higher order neighbors via the spatial
multiplier matrix and back to the unit which initiated the change. The indirect marginal
effect can be interpreted in two ways. The first interpretation estimates the impact
of changing an explanatory variable in a particular unit on the dependent variables of
all the other units in the sample. The second interpretation estimates the change in the
dependent variable for one particular unit following a change in an explanatory variable in
all the other units. Further in the paper we explain why numerically both interpretations
of the indirect marginal effect are the same. To estimate indirect and total returns to scale
in the application of our spatial autoregressive frontier model to aggregate production
in 40 European countries we must use the second interpretation of the indirect marginal
effect.

Two features of the application are firstly, rather than assume that efficiency is time-
invariant a la Druska and Horrace (2004), we allow efficiency to be time-variant using the
Cornwell et al. (1990) (CSS from hereon) estimator. Secondly, we use ten specifications
of the spatial weights matrix, where the specifications are weighted by various proxies
for economic distance or various proxies for composite geographical-economic distance.
Economic distance between two countries will differ depending on the direction so we
choose a direction. Specifically, our proxies for economic distance are a country’s biggest
3—7 import flows. And our proxies for geographical and economic distance are a country’s
nearest 3 — 7 import flows. The range 3 — 7 is chosen to capture the effect of assuming
that the spatial dependence is highly concentrated around production in a small number
of near/big import partners and then is assumed to be progressively less concentrated.
Further in the paper we discuss the specifications of the spatial weights matrices in detail.

To provide an insight into the type of conclusions which can be made from the spatial
autroregressive frontier model which we develop, two of the key empirical findings from
the application are as follows. Firstly, we find that production in the sample average
country is characterized by constant own returns to scale, but when returns to scale
spillovers from other countries are taken into account they are sufficient for production
in the sample average country to exhibit increasing total returns to scale. Secondly, we
find that over the entire sample the mean annual efficiency score when the spatial weights

matrix is weighted by a country’s biggest 3 — 7 import flows is smaller than the mean

2The total marginal effect of an explanatory variable is the sum of the corresponding direct and
indirect marginal effects.



annual score when the matrix is weighted by a country’s nearest 3 — 7 import flows.
The remainder of this paper is organized as follows. In section 2 we formally present
a Cliff-Ord type production function. In section 3 we follow CSS by firstly, showing
how we move from the Cliff-Ord type production function in section 2 to the associated
frontier model. Secondly, we explain how we use the fixed effects to calculate time-varying
efficiency. The steps involved in the estimation of the frontier model are set out in section
4. Section 5 discusses how we estimate the direct, indirect and total elasticities for the
inputs and exogenous variables, and also how these estimates for the inputs are used to
calculate direct, indirect and total returns to scale. In section 6, we apply the frontier
model to aggregate production in 40 European countries. In section 7 we conclude with
a summary of the main contributions of the paper and suggest a worthwhile area for

further work.

2 Cliff-Ord Type Production Function

Consider the following Cliff-Ord type production function for panel data:

N
Y = XuB+A Z Wi Yt + Eit (1)

j=1

i = 1,.,N;t=1,..,T,

where N is a cross-section of economic units operating over a fixed time dimension 7T
yit is a positive observation for the output of the i—th unit at time ¢; X is a (1 x K)
vector of positive observations for the K inputs of the i—th unit at time ¢; w;; is a known
non-negative element of the (N x N) spatial weights matrix, W; /3 is the (K x 1) vector
of fixed parameters to be estimated; A is the spatial autoregressive parameter; ¢;; is an
i.i.d. disturbance for i and ¢ with zero mean and variance o2.

Z;VZI w;;Yjt, which is an exogenous variable in (1) and therefore shifts the production
technology, is typically referred to as the spatial lag of y;. W captures the spatial
interaction of y;; in the cross-section and must be specified prior to estimation according
to some measure of proximity e.g. contiguity or physical, economic or climatic distance
between the units. If a cross-sectional unit j is related to ¢, the pre-specified spatial
weight w;; will be non-zero and units ¢ and j are described as neighbors. We discuss in
detail the specification of the spatial weights matrices for the application to aggregate
production in 40 European countries further in the paper.

For our asymptotic analysis of the estimator which we employ, the following underlying

assumptions with regards to the Cliff-Ord type production function in (1) are made.

3Using the CSS estimator we transform the Cliff-Ord type production function in (1) into the asso-
ciated frontier model by introducing unit specific effects to (1). For the moment, however, we postpone
the introduction of unit specific effects.



Assumption 1. All the diagonal elements of the non-stochastic spatial weights ma-
trix, W, are zero.

The zero diagonal assumption is a normalization of the model. It implies that no
cross-sectional unit is described as its own neighbor. In other words, spatial self-influence

of the units is excluded.

Assumption 2. The matriz (Iy — A\W) is non-singular for all values of A, where
Iy is the identity matriz of dimension N and the parameter space of \ is taken to be
1/rmm < A < 1.

Tmin denotes the most negative real characteristic root of W and, as is common in
spatial econometrics, we use a row-normalized W so 1 is the largest real characteristic
root of W. It is also assumed that the parameter space of A does not depend on the
sample size, which is also a common assumption in the spatial econometrics literature.*
As a result of Assumption 2, y;; is complete and uniquely defined by (1), and (1) has the
following reduced form, where the subscript i’s are dropped to denote successive stacking

of cross-sections.

y= Iy — )\W>_1Xt5 + (Iy — )\W)_lgta (2)

where y; is an (IV x 1) vector; X; is an (N x K) matrix of positive observations for the

inputs; and ¢; is an (N x 1) vector

Assumption 3. The row and column sums of W and (Iy — AW) are bounded
uniformly in absolute value.

Assumption 3 limits the spatial correlation of the cross-sectional observations for the
dependent variable to a manageable degree. As a result, the spatial correlation has
a ‘fading’” memory (Kelejian and Prucha, 1998; 1999; 2010). Assumption 3 therefore
plays an important role in the asymptotic properties of the estimators for spatial models
because if row and column sums are bounded uniformly in absolute value then the row
and column sums of products of matrices have the same property (Kelejian and Prucha,
2004; Lee, 2004). Hence, the row and column sums of the variance-covariance matrix are

bounded uniformly as N goes to infinity.

3 Fixed Effects and Technical Efficiency

The Cliff-Ord type production function in (1) can be transformed into the associated
frontier model by introducing unit specific time-invariant effects. This is because the SS

and CSS estimators use these effects to calculate unit specific technical inefficiencies. We

4See Kelejian and Prucha (2010) for a detailed discussion of the parameter space for spatial autore-
gressive parameter.



proceed along these lines by introducing fixed effects to (1).

N
Y = o+ Xyl + A Z WiYjt + Eit; (3)
j=1

i = 1,.,N;t=1,..,T,

where «; is a dummy variable for each unit.
Following SS, the N estimated unit specific effects can be used to calculate time-

invariant technical efficiency for each unit, T'F; , as follows:

TE; :&i—mlax(ai), i=1,...,N. (4)
Rather than estimate the technical efficiencies of the units relative to an absolute stan-
dard, (4) estimates the efficiencies relative to the most efficient unit in the sample. Ac-
cordingly, the unit with largest unit specific effect is assumed to lie on the frontier.
Estimating the efficiencies from the unit specific effects ensures that the efficiencies are
not correlated with the input levels, and an a prior: assumption does not need to be
made about the inefficiency distribution.

CSS extend the SS approach by using the unit specific effects in conjunction with a
unit specific flexibly parameterized function of time to calculate time-varying efficiencies.’

We follow this approach by replacing «; in (3) with d; from (5) to obtain (6):

Sy = oy +mit +pt*  i=1,...,N. (5)

N
Yie = Oy + Xy + )\Zwijyjt + Eit
j=1
N
= a;+nt+ Pit2 + XS+ A Z WiYjt + Eit

J=1

N
= o, +XuB+ A Z Wi Yt + Vit (6)

j=1

where (6) is the specification of the frontier model which we estimate in the application
and vy = n,;t + p;t* +e;;. We obtain the estimates of 7, and p; as in CSS by regressing

the residuals from the estimate of (6), vy, on time and time-squared for each unit.® The

5Recently, Kniep, Sickles and Song (2012) have showed that the CSS and many other common spec-
ifications of temporal heterogeneity can be considered special cases of their general factor model. Thus
one could view our model set up here as providing a link between the factor model literature and the
spatial correlation literature.

6In the next section we describe how we obtain the fixed effects from the fitted frontier model.



three components in (5) are then summed to obtain d;,. Finally, the estimates of 0;; are

used to calculate time-varying technical efficiency as follows:

TE; = 8 — max (3},:) i=1,..,N. (7)

The time-varying efficiencies are calculated relative to the most efficient unit in the sample
in each time period. The most efficient unit in the sample in each time period can of

course change across time periods.

4 Estimation of the Frontier Model

Models with spatial interaction effects can be estimated using maximum likelihood (ML),
instrumental variables or generalized method of moments (IV/GMM), or the Bayesian
MCMC approach. In this paper (6) is estimated using ML. Assuming that the panel is

balanced, the log-likelihood function associated with (6) is as follows:

2
NT
LogL = ——— 10g(27m )+Tlog |[In — AW |— Z Z (yzt - )\Zwmy]t Xt — ai) . (8)

zlt

Since the spatial autoregressive variable in (6) is endogenous the assumption of the stan-
dard regression, E[(Z;\le wijyjt> vit] = 0, is violated. We ensure that A\ lies within its
parameter space, adjust for the endogeneity of the spatial autoregressive variable and also
the fact that v; is not observed in the usual way by including the scaled logged determi-
nant of the Jacobian transformation of v, to y; (i.e. T'log|Iy — AW) in the log-likelihood
function (see Anselin, 1988, and Elhorst, 2009). Solving the partial derivatives of (8) with
respect to a; for o yields (9)

;= Tt (ylt - )‘sz]y]t ztﬁ) 1= 1, ceey N. (9)

As Elhorst (2009) notes, it is evident from (9) that the fixed effects adjust for the spatial
dependence in the cross-section at each point in time. Therefore no further adjustment

to account for the spatial interaction in the cross-section in each time period is necessary.
The concentrated log-likelihood function with respect to 3, A and o2 in (10) is obtained
by substituting (9) into (8), and to circumvent the incidental parameter problem when

estimating (6) y;; and X;; are demeaned.



« 2

NT AR I > *
LogL = - log(2mo?)+T log | Iy — )\W|—@Z Sy — A Zwijyjt - X} , (10)
j=1

i=1t=1

where vy, = yir — % Zthl yir and X7 = X — %23:1 X;;. By demeaning y;; and X;; the
intercept and the fixed effects drop out of the fitted models. Usually interest does not
center on the fixed effects so removing them from the fitted model does not pose a problem.
This is not the case, however, when SS and CSS type frontier models are estimated
because the fixed effects are needed to calculate the efficiencies. Having estimated (6)
the fixed effects are retrieved using (9).

Dropping the subscript ’s and t’s from y}; and X}, to denote an (N7 x 1) vector and
an (NT x K) matrix, respectively, of stacked cross-sectional observations for ¢t = 1, ..., 7.
The estimate of A is obtained by maximizing the concentrated log-likelihood function in
(11) and then A is used in (12) and (13) to obtain the estimates of 5 and o?.

NT
LogL = C — TS log [(e5 — Aeb) (e — Aep)] + T'log | Iy — AW, (11)
B =bo— Moy = (X'X7) X [y = A(Ir @ W)y'], (12)
2 1 * *\/ [ % *\/
o = W(eo — Aei)'(eg — Aeq)’, (13)

where [ is the identity matrix of dimension 7; ® is the Kronecker product; C' is a
constant which does not depend on A; by and b; are the OLS parameters from successively
regressing y* and (It ® W)y* on X*; and ef and e] are the residuals from these OLS

regressions, respectively.”

The asymptotic variance-covariance matrix for the estimates of 3, A and o2, which
Elhorst and Freret (2009) show has following form, is computed to obtain the associated
standard errors and {—values.

Asy.Var(B,\,0%) =
-1

L X+ X~ - -
LXx* (Ir @ W)X*'p T*tr(WW + W'W) + 5 8'X* (Ir e W W) X* 3 - ,
0 T __ NT

o2tr(W) 201
(14)

where W = W (Iy — AW)~! and tr denotes the trace of the relevant matrix. Because (14)

"The maximization problem in (11) can only be solved numerically as a closed form solution for A
does not exist. See Elhorst (2009) for details of the numerical approach which is used to maximize (11).



is a symmetric matrix we omit the upper diagonal elements. Lee and Yu (2010), however,
show that using the demeaning procedure to estimate a spatial model with fixed effects
such as (6) results in a biased estimate of o2 if N is large and T is fixed. Following Lee
and Yu (2010) and Elhorst (2011) we correct for this bias by replacing the biased 02 in
(14) with the bias corrected estimate of 02, 0%, = T'o?/(T — 1), which will change the

standard errors and t—values.

5 Direct, Indirect and Total Returns to Scale

As we noted above, the coefficients on the inputs and exogenous variables from a fitted
Cliff-Ord type production frontier cannot be interpreted as elasticities. This is because
the marginal effect of an independent variable is a function of the spatial autoregressive
variable. LeSage and Pace (2009) therefore suggest the following approach to calculate the
direct, indirect and total marginal effects of the independent variables and the associated
significance levels having estimated a model such as (6). Using estimates of the direct,
indirect and total marginal effects for the inputs we calculate direct, indirect and total
returns to scale.

Differentiating (2) with respect to the k—th input, x; ., yields the following vector of

partial derivatives:

Oy 9y
815]6’1 : 8mk,N
_Oy _Oy _
[ Ork1 =~ Org,nN :|t -
Oyn_ Oyn_
6mk,1 : sz,N t
B, 0 . 0
0 .0
= (Iy = 2W)7! O : (15)
0 0 . B,

where the right-hand side of (15) is independent of the time index. (15) will yield different
direct and indirect marginal effects on each unit so to facilitate interpretation LeSage
and Pace (2009) suggest reporting a mean direct marginal effect (average of the diagonal
elements on the right-hand side of (15)) and a mean indirect marginal effect (average
column or row sum of the non-diagonal elements on the right-hand side of (15) since the
magnitude of these two calculations are the same). The average column and row sums
on the right-hand side of (15) relate to the first and second interpretations of the indirect
marginal effect, respectively, as defined in the opening section of this paper. The mean
total marginal effect is simply the sum of the mean direct and indirect marginal effects.

To compute t—statistics for the average direct, indirect and total marginal effects,
LeSage and Pace (2009) propose Bayesian MCMC simulation of the distributions of the



effects using the variance-covariance matrix associated with the ML estimates. 1,000
parameter combinations of the 3, A and 0% estimates are drawn from the variance-
covariance matrix such that each combination is a vector of length 2 + K (number of
parameters estimated excluding the intercept and the fixed effects) consisting of random
values drawn from a normal distribution with mean zero and standard deviation one.
Mean direct, indirect and total marginal effects are calculated for each parameter com-
bination. The mean direct, indirect and total marginal effects which we report are the
averages over the 1,000 draws. The associated {—statistics are obtained by dividing the
reported mean direct, indirect and total marginal effects by the standard deviation across
the corresponding 1,000 mean marginal effects.

For the i—th unit at time ¢ which uses inputs to produce a single output, own (i.e.
direct) returns to scale is the percentage change in in the i—th unit’s output due to a
one percent increase in all the ¢—th unit’s inputs. The estimates of direct returns to
scale also include feedback effects i.e. effects which pass through first order neighbors
and higher order neighbors via the spatial multiplier matrix and back to the :—th unit
which initiated the change. Spillover (i.e. indirect) returns to scale for the i—th unit at
time t is the percentage change in the :—th unit’s output due to a one percent increase
in the inputs for all the other J units. Total returns to scale is the sum of the direct and
indirect returns to scale. Total returns to scale for the ¢—th unit at time ¢ is therefore the
percentage change in the —th unit’s output due to a one percent increase in the inputs
for all N units in the sample. Direct, indirect and total returns to scale for the :—th unit
at time ¢, which are denoted RT'SDet RTSirdirect and RTSL" respectively, can be

calculated as follows:

RTngrect + RTSil;ndzrect — RTS%OM (16)
k=K k=K k=K
Direct Indirect __ Total
E :6xk,it + E €Ty it = E €Tk it > (17)
k=1 k=1 k=1
where exPirect eglndirect and exTotl are column vectors of direct, indirect and total elas-

ticities for the k—th input, respectively. Production in the i—th unit is characterized
by total decreasing returns to scale if RT'SL" < 1, total increasing returns to scale if
RTSLe > 1 and total constant returns to scale if RT'S.° = 1. Using the estimates of
RTSEreet and RTSIdirect direct and indirect returns to scale are classified in the same

way.
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6 An Application to Aggregate Production in 40 Eu-

ropean Countries

In this section we use data for 40 European countries for the period 1995 — 2008 and ten
specifications of W. Specifically, in this application the production structure takes the
form of a single output translog function and so the specification of the Cliff-Ord type

production frontier which we estimate is as follows.

N

Yir = T + a; + TL (X, t)it + Zith + A Z wijyjt —+ Vit (18)
j=1

Uit — nlt + ,O,Ltz + git, (19)

where 7 is the intercept; T'L (X, t),, represents the technology as the non-constant returns
to scale translog approximation of the log of the production function; X;; is a (1 x 2)
vector of input levels where the elements are denoted xy,; and a3 2z is a (1 X 3)
vector of country specific exogenous characteristics for 7, where the elements are denoted
214ty .- 235 @ is the associated vector of parameters to be estimated. All the other

variables, matrices and parameters in (18) and (19) are as described in previous sections.

6.1 Data and Specification of the Spatial Weights Matrix

The data is a balanced panel of macroeconomic variables which are logged where it
is appropriate. All the variables with the exception of the dummy variables are then
normalized around their mean values so the first order input and time parameters can be
interpreted as elasticities at the sample mean.

The output is real GDP in 2005 international dollars, y. The inputs are number of
workers, x1, and real capital stock in 2005 international dollars, x5. Data was extracted
from the Penn World Table Version 7.0, PWT7 (Heston et al., 2011), to calculate y, x;
and xy. The variables which we extracted are as follows: real GDP per capita calculated
using the Laspeyres index and the chain method, denoted as rgdpl and rgdpch in PWT7
(both of which are in 2005 international dollars); population, pop; real GDP per worker
calculated using the chain method, rgdpwok; and investment as a share of rgdpl, k.

x1 = (rgdpch = pop)/rgdpwok, y = x1 x rgdpwok and we calculate x5 in two steps.
Firstly, we calculate real aggregate investment which is rgdpl * pop * ki. Secondly, real
capital stock in 1995 is assumed to be depreciated real aggregate investment in 1994
because of concerns about the number of observations in the sample, and we follow much

of the literature on estimating capital stock and use a 6% depreciation rate.® Observations

8We thank Joe Pearlman for suggesting this approach to obtain a starting value for real capital stock.
Although this is not the usual approach to obtain a starting value for capital stock it will become apparent
that the capital elasticities using this approach are sensible. A more conventional approach to obtain the

11



for real capital stock for the remainder of the sample are estimated using the perpetual
inventory method. z; is trade openness the data for which was taken from PWT7, 25 is
government spending as a share of rgdpl where the data is again from PWT'7 and z3 is
a dummy variable for EU membership.

(18) is estimated using ten specifications of W. The weights in all ten specifications
are calculated using data from the IMF Direction of Trade Statistics database on im-
port flows in 2000 US dollars for the period 2000 — 2008. The proxies for composite
geographical distance and economic distance are a country’s average real imports over
period 2000 — 2008 from the nearest 3 —7 countries according to distances between capital
cities. These proxies are used to weight and row normalize the first five specifications of
W (denoted Winear, ---s Wrnear). The proxies for economic distance are a country’s aver-
age real imports over the period 2000 — 2008 on its biggest 3 — 7 real import flows. These
proxies are used to weight and row normalize the remaining specifications of W (denoted
WiBig, ---» Wrnig). The descriptive statistics for the continuous variables are presented in

Table 1 and are for the raw data.

[Insert Table 1]

6.2 Estimation Results

We estimate (18) using all ten specification of W with and without fixed effects. To test
the null hypothesis that the fixed effects are not jointly significant (i.e. a; = ... = ay = 7)
we perform a likelihood ratio (LR) test on each of the ten fitted Cliff-Ord type frontier
models against the corresponding pooled model. The associated test statistic is chi-
squared distributed with degrees of freedom equal to the number of restrictions which
must be imposed on the unrestricted model to obtain the restricted model, which in this
case is N — 1. On each occasion we reject the null hypothesis at the 1% level, thereby
justifying the inclusion of fixed effects in (18) for all ten specifications of W.? The fixed ef-
fects from the ten Cliff-Ord type frontier models are then used to compute the efficiencies.
To enable comparisons we also use the same approach to calculate the efficiencies from
the non-spatial frontier model which CSS fit. This simply involves omitting A Z;VZI Wi Yt
from (18) and fitting the standard fixed effects model using the Within estimator.

In Tables 2 and 3 we present the estimation results for the non-spatial frontier model
and selected Cliff-Ord type frontier models. Before we discuss the estimation results we

once again define direct, indirect and total elasticities in the context of our results. The

starting value is to use fully depreciated GDP but this would require several years of additional data,
which was not available for all the countries in the sample.

9The test statistics range from 1174.29 — 1185.53 for model specifications using Wanear — WrNear
and from 1207.35 — 1227.26 for model specifications using Wspi; — Wrnig- Wanear (W3Big) and Wrnear
(WrBig) do no relate to the lower and upper limits of these ranges, respectively, or any other ranges
which we report in this application.

12



81— Bg and ¢, — ¢35 parameters are the usual own elasticities from the non-spatial frontier
model. et — 5 ireet and pPirect — qb? rect are also own elasticities from the Cliff-Ord
type frontier models but different notation is used to denote an own elasticity from the
non-spatial frontier model and an own elasticity from a Cliff-Ord type frontier model.
We refer to own elasticities from a Cliff-Ord type frontier model as direct elasticities
because they take into account feedback effects to the i—th unit (i.e. the effect of a
change in an explanatory variable in the ¢—th unit which affects a neighboring unit’s
dependent variable which in turn affects the i—th unit’s dependent variable), whereas by
construction the own elasticities from the non-spatial frontier model ignore such effects.

Indirect _ pIndirect apq gindirect _ gindireet qenote the spillover elasticities from a Cliff-Ord
type frontier model which, using what we earlier described as the second interpretation

of a spillover elasticity, refers to the effect on the dependent variable of the ¢—th unit

following a change in an explanatory variable in all the other .J units. 5] — 53" and
Total _ ¢3T0t“l denote the sum of the direct and indirect elasticities from a Cliff-Ord type

frontier model and therefore refer to the effect on the dependent variable in the ¢—th unit

following a change in an explanatory variable in all units in the sample.
[Insert Tables 2 and 3]

Since A is assumed to lie in the parameter space (1/rmi, 1) it cannot be interpreted
as an elasticity. However, the estimates of A\ indicate how the spatial dependence of ¥ is
affected by the specification of W. All the estimates of A are positive and significant at the
1% level or lower and when W is weighted by the i—th country’s nearest (biggest) 3 —7
import flows the estimates range from 0.122 —0.287 (0.472 —0.579). These ranges suggest
that the output of the i—th country depends much more on the output of its biggest 3—7
import partners than the output of its nearest 3 — 7 import partners. Moreover, we find
that A tends to increase as W is weighted by more big and, in particular, more near
import flows (see Table 2).

A production function assumes that the :—th unit’s output is monotonically increasing
in the ¢—th unit’s inputs. A new line of enquiry which follows from our spatial autore-
gressive production function is whether the ¢—th unit’s output is monotonically increas-
ing/decreasing in the inputs of the other J units and monotonically increasing/decreasing
in the inputs of all N units in the sample. The own labor and capital elasticities from the
non-spatial frontier model, and the direct, indirect and total labor and capital elasticities
from the Cliff-Ord type frontier models are all positive and significant at the 1% level or
lower. This indicates that at the sample mean the i—th unit’s output is monotonically
increasing in the :—th unit’s inputs, the inputs of the other J units and the inputs of

all NV units in the sample.!® Furthermore, the own labor and capital elasticities from the

10Ty Tables 2 and 3 §,, gPirect | glndirect yng gTotel correspond to labor and f,, f27ect, ghndirect anq

Total relate to capital.
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non-spatial frontier model indicate that, on average, a country’s output is monotonically
increasing in its own labor and capital for 100% of the sample. For the ten Cliff-Ord type
frontier models, the direct, indirect and total labor and capital elasticities suggest that
the ¢—th unit’s output is: monotonically increasing in the i—th unit’s labor and capital,
monotonically increasing in the labor and capital of the other J units and monotonically
increasing in the labor and capital of all N units for 100% of the sample.

Furthermore, a production function assumes that the i—th unit’s output is concave
in the i—th unit’s inputs. From our spatial autoregressive production function there is
the added issues of whether the i—th unit’s output is concave/convex in the inputs of
the other J units and concave/convex in the inputs of all N units in the sample. If a
fitted production function is concave we will observe a particular sign pattern for the
principal minors in the Hessian matrix: all the odd numbered principal minors must be
non-positive and all the even numbered principal minors must be non-negative. Applying
this test to the non-spatial production frontier model reveals that for 47.9% of the sample
the ¢-th unit’s output is concave in the ¢-th unit’s inputs. When we apply this test to
the ten Cliff-Ord type production frontier models, on average, we observe concavity of
the i-th unit’s output in the ¢-th unit’s inputs for a larger percentage of the sample than
is the case for the non-spatial frontier model. Specifically, we find that, on average, the
i-th unit’s output is: concave in the i-th unit’s inputs for 59.7% of the sample; concave
in the inputs of the other J units for 77.3% of the sample; and concave in the inputs of
all N units for 59.2% of the sample.

Despite the own elasticities from the non-spatial frontier model ignoring feedback
effects, whereas the direct elasticities from the Cliff-Ord type frontier models take account
of these effects, the own and direct labor/capital elasticities are similar. With respect
to labor we observe an estimate of (5, of 0.669 and the estimates of 577" are of the
order 0.630 — 0.703. These estimates of 3, and SY“ are therefore robust to model
specification and are also in line with evidence on the labor income share of GDP for the
EU—15 member states (for verification see Table 1 in Arpaia et al., 2009). Moreover, with
respect to capital the estimates of 3, and 557 are essentially the same (0.261 — 0.280)
and are therefore also robust to model specification.

All the indirect labor and capital elasticities from the Cliff-Ord type frontier models
are positive and significant. This indicates that the evidence of positive labor and capital
spillovers across Europe is robust across the ten specifications of W. Moreover, since all
the direct and indirect labor and capital elasticities are positive and significant it follows
that all the total labor and capital elasticities are positive and significant. Turning our
attention now to the magnitude of the indirect labor and capital elasticities. Interestingly,

Indirect when W is specified according to the i—th country’s 3—7

the average estimate of 3
biggest import flows (0.710) is much larger than the corresponding average estimate when

the specification of W' is Wanear — Winear (0.201). Furthermore, the average estimate of
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énd"“t when the specification of W is Wsp;; — Wrp,, (0.287) is greater than the average
estimate of B4"% ! when W is weighted by the i—th country’s 3 — 7 nearest import flows

(0.078). This evidence suggests that, on average, there are greater labor and capital
spillovers across Europe over economic distance than there are over a combination of
geographical distance and economic distance.

Comparing the direct labor and capital elasticities with the corresponding indirect
elasticities when the specification of W is W3near — Wrnear, We find that the direct labor
and capital elasticities are always greater than the corresponding indirect elasticity. When
the specification of W is Wanear — Wrnear, On average, the direct labor (capital) elasticity
is 0.484 (0.191) larger than the corresponding indirect elasticity. In contrast, when the
specification of the spatial interaction is Wsp,; — Wrpig, we find that, in general, the
indirect labor and capital elasticities are as least as large as the corresponding direct
elasticity. For example, it is evident from Table 3 that the direct and indirect labor
elasticities from Model 5 (W3p,,) are very similar, whereas in Model 6 (W5p,,) the indirect
labor elasticity is noticeably greater than the direct labor elasticity.

Considering now the average direct, indirect and total labor and capital elasticities
outside the sample mean from firstly, models where the specification of W is Winear —
Wrnear and secondly, models when the spatial interaction is Wsg;, — Wrpi, (See Panels
A and B in Figure 1, respectively).!! From Panel A in Figure 1 it is evident that over
the entire sample period the average direct labor (capital) elasticity across the Wineqr —
WinNear models is a lot larger than the corresponding average indirect labor (capital)
elasticity, which also what we observed at the sample mean from the individual W3y eqr —
WiNear models. Interestingly Panel B in Figure 1 indicates that over the entire sample
period the average direct labor (capital) elasticity across the Wsp,, — Wrpi, models is
approximately the same as the corresponding average indirect labor (capital) elasticity.
As we noted above this is also the case at the sample mean for some of the individual
Wiy — Wrpig models. Moreover, we can see from Panels A and B in Figure 1 that over
the entire sample period, the non-spatial frontier model yields, on average, own labor
and capital elasticities which are a good approximation of the average direct labor and

capital elasticities.
[Insert Figure 1]

The parameter on time from the non-spatial frontier model (34) and the direct, indi-
rect and total time parameters from the Cliff-Ord type frontier models ( éj irect é"d"m
and BGTOW) are all negative and significant at the 5% level or lower. Our total time para-
meters may appear large but this is because they are the sum of the direct and indirect

time elasticities (see Tables 2 and 3). Moreover, negative own and direct time effects

1To enable comparisons we also include in Panels A and B in Figure 1 the labor and capital elasticities
outside the sample mean from the non-spatial frontier model.
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is in line with the negative and significant own time parameter from Kumbhakar and
Wang’s (2005) stochastic production frontier analysis for a sample of 87 countries over
the period 1960 — 1987. In our case we almost certainly observe negative time effects for
the hypothetical sample average country because our sample contains a relatively large
number of Eastern European countries which were in the early stages of their transition
to market economies at the beginning of the study period.

Finally, we examine the findings for the exogenous z—variables (i.e. the ¢ parameters).
The only exogenous z—variable where the parameter is significant in the non-spatial
frontier model, and the direct and indirect parameters from the Cliff-Ord type models
are significant is the public sector size variable, z,. We find that the own public sector
size parameters (¢, and ¢2"* in the non-spatial and Cliff-Ord type frontier models,

respectively) and the estimates of the spillover public sector size parameter (pim4"*)

are
all negative. A significant negative own public sector size parameter is consistent with the
robust negative relationship between government expenditure and growth which Folster
and Henrekson (2001) observe. When the specification of W is Wiyear — Winear, the
estimates of ¢&"*" and ¢i"¥"*! range from —1.479 — (—1.343) and —0.541 — (—0.202),
respectively. However, when the specification of the spatial interaction is Wsg,; — Wrpig,
the estimates of ¢2"" range from —1.532 —(—1.268) and the estimates of ¢2"¥"*" are of
the order —1.710 — (—1.112). This suggests firstly, that the estimates of ¢5“ are robust

Indirect very HlllCh

to the specification of W. Secondly, it is apparent that the estimates of ¢,
depend upon whether the spatial dependence in production is based on economic distance

or a combination of geographical distance and economic distance.

6.3 Estimates of Direct, Indirect and Total Returns to Scale

Before we report and discuss our returns to scale estimates we define direct, indirect
and total returns to scale in the context of our results. Using the own labor and capital
elasticities at the sample mean from the non-spatial frontier model (3, and [3,, respec-
tively) we compute own returns to scale in the usual way. For the i—th unit which uses
its own inputs to produce a single output at time ¢, own returns to scale at the sample
mean, RT'S, can be calculated as follows using the relevant parameters from a non-spatial

production function.

Jlny;
RTS,, — — 229t Zezvk it (20)
Zalnxk,zt k=1
=1

where exy;; denotes the k—th input elasticity at the sample mean. Using the direct,
indirect and total labor and capital elasticities at the sample mean from the Cliff-Ord

type frontier models ( 1Dzrect and 6Dzrect Indzrect and ﬁlndzrect and B{mfal nd 6Total
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respectively) using (20) we calculate direct, indirect and total returns to scale at the
sample mean, which we denote RT'SPect RT Sndirect and RT STt

RTSPreet from the Cliff-Ord type frontier models are also own returns to scale. We
distinguish between own returns to scale from the non-spatial frontier model, RT'S, and
own returns to scale from a Cliff-Ord type frontier model, RT'SP"*, because the latter
takes into account feedback returns to scale to the i—th unit (i.e. the effect of changing
the scale of inputs in the ¢—th unit which affects a neighboring unit’s output which in turn
affects the i—th unit’s output), whereas RT'S ignores these feedback effects. RT SIndirect
denotes the spillover returns to scale from a Cliff-Ord type frontier model which in this
application refers to the effect on the i—th unit’s output following a change in the scale
of inputs in the other J umits.'? RTS7°" denotes the sum of the direct and indirect
returns to scale from a Cliff-Ord type frontier model and therefore refers to the effect on
the output of the :—th unit following a change in the scale of inputs in all the units in
the sample.

For the sample average country the estimate of RT'S is 0.949 and the estimates of
RTSPirect range from 0.906 — 0.970. We perform one-sided t-tests of own, spillover and
total constant returns to scale.!® The null of the tests for constant own returns to scale is
RTS =1 or RT'SPe* = 1 and the alternative hypothesis since all our estimates indicate
decreasing own returns to scale is RT'S < 1 or RT'SPet < 1. The t-test results indicate
that at the 5% level RT'S and RT'SP“ are not significantly different from 1.

When the specification of W in the Cliff-Ord type frontier models is Wiyear — Wrnear
and Wsp; — Wrpig the estimates of RTS™direct for the sample average country range
from 0.131 — 0.369 and 0.788 — 1.213, respectively. The t-tests of constant spillover
returns to scale indicate that production in the sample average country is characterized
by decreasing spillover returns when the specification of W in the Cliff-Ord type frontier
models is Winear — Wrnear. The estimates of RTS™rect from the Winear — WiNear
models with the specification of spatial interaction in parentheses are: 0.131 (W3year);
0.252 (Wynear); 0.321 (Wsnear); 0.325 (Wenear); and 0.369 (Wqneqr). In contrast, the
t-test results when the specification of W' is Wsp;;, — Wrpi, all suggest that production in
the sample average country is characterized by constant spillover returns to scale.

The estimates of RT'ST° from the Cliff-Ord type frontier models for the sample
average country range from 1.090 — 1.316 when the specification of W is Winear — Wonear
and are of the order 1.702 — 2.135 when the spatial interaction is Wsp;; — Wrpis. A t-test
of constant total returns reveals that RT'ST°! from the Wjyeq, model is not significantly
different from 1. For all the other Cliff-Ord type frontier models the t-tests indicate that

production in the sample average country is characterized by increasing total returns. The

20ur interpretation of RTS'™¥rect and hence RTST' follows from what we referred to as the
second interpretation of the spillover elasticity from a Cliff-Ord type frontier model in the discussion of
the estimation results.

BOur test statistics are available from the corresponding author upon request.
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estimates of RT'ST°" which are significantly greater than 1 are: 1.222 (Wynear); 1.277
(Wsnear); 1.264 (Wenear); 1.316 (Wrnear); 1.784 (Wspig); 1.702 (Wapig); 2.135 (Wspig);
2.071 (Wepig); and 1.914 (Wrp,).

Summarizing our findings from the t-tests of own, spillover and total constant returns
to scale from the Cliff-Ord type frontier models for the sample average country. We find
robust evidence of constant own returns to scale. We also find that when the specifi-
cation of the spatial interaction is based on different measures of economic distance we
consistently observe constant spillover returns but when the spatial interaction is specified
according to various composite measures of geographical distance and economic distance
there is conclusive evidence of decreasing returns. From all but one of the ten Cliff-Ord
type frontier models we find evidence of increasing total returns. Where we find constant
spillover returns it follows that the estimates of increasing total returns are larger than
when we observe decreasing spillover returns.

In Appendix A.1 for each country we present various estimates of average returns to
scale outside the sample mean. For 26 of the 40 countries, the estimate of average own
returns to scale from the non-spatial frontier model is below unity indicating decreasing
returns. Average direct returns across the Wsyeqr — W7 neqr models and across the Wsp;, —
W+ Big models both suggest that there are 26 countries where production is characterized
by decreasing own returns. Considering jointly the average estimates of own and spillover
returns by turning our attention to the average total returns. Average total returns across
the W3near — Wirnear models indicate increasing total returns for 33 countries. The average
total returns across the Wineqr — Wrneqr models and across the Wsp;, — Wrp;, models
suggest that specifying W according to economic distance as opposed to a combination of
geographical distance and economic distance leads to a marked increase in average total
returns. In particular, average total returns across the Wsg,; — Wrp,, models indicate
increasing total returns for all 40 countries.

As a final point on the estimates of the average own, spillover and total returns to scale
outside the sample mean we discuss the findings for individual countries. The rankings of
the average returns in Appendix A.1 are extremely robust. This is evident because there
is perfect positive rank correlation for each pair of average returns in Appendix A.1. The
five countries at the top of the rankings for average RT SP"ec| average RT ST"¥rect and

average RT STl

are: 1. Malta; 2. Iceland; 3. Luxembourg; 4. Cyprus; 5. Estonia. And
the five countries at the bottom of the three rankings are: 40. Russia; 39. Germany; 38.
UK, 37. France; 36. Italy. We also note that the correlation between mean real GDP for
a country over the sample period and average RT'SP"e average RTST%rect or average
RT STl i5 —0.76. What may be reason for this finding? One possible explanation is a
negative relationship between the size of an economy and the magnitude of the dynamic

gains from trade (Alesina and Wacziarg, 1998, and Alesina et al., 2000).
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6.4 Efficiency Results

An efficiency score of 100% would indicate that a country’s output is as high as possible
given its inputs, relative to the other countries in the sample. In Appendix A.2 we
present various average efficiency scores and average efficiency rankings for each country
over the sample period. For each country we also present the minimum and maximum
efficiency score and efficiency ranking across the Wiyear — Wrnear models and across the
Wspig — Wrpig models. Selected average annual efficiency scores are plotted in Figure 2

and selected efficiency distributions are presented in Figure 3.4
[Insert Figures 2 and 3|

To facilitate the discussion the efficiencies from the Cliff-Ord type frontier models are
compared to the base set of efficiencies from the non-spatial frontier model (Model 1 in
Table 2). The mean efficiency score from the non-spatial frontier model over the sample
period and across the 40 countries is 49%. The corresponding average efficiency scores
from the Cliff-Ord type frontier models when the spatial interaction is Wiyear — Wrnear
and Wspi, — Wrp,, are 47% and 40%, respectively. From Figure 2 we can see that the
average annual efficiency from the non-spatial frontier model is, in general, larger than the
average annual efficiencies across the Wsneqr — W7 neqr models and across the Wsg,—Wrpig
models. We can therefore conclude that, in general, the average annual efficiency score
is upwardly biased when spatial spillovers are not taken into account in the production
frontier modeling. In addition, we can see from Figure 2 that over the entire sample
period the average annual efficiency across the Wsp,, — W7piy models is lower than the
average annual efficiency across the Wiyeor — Wrnear models. This suggests that mean
annual efficiency is lower when W is weighted by economic distance as opposed to a
combination of geographical distance and economic distance.

The correlation between any pair of the following efficiencies is at least 0.90: efficien-
cies from Model 1, the average efficiencies across the Wiyear — Wrnear models and the
average efficiencies across the Wsp,, — W7p;, models. However, it is apparent from Figure
3 that the distributions of these three sets of efficiencies differ. The distributions of the
average efficiencies across the Wineqr — Wrneqr models and across the Wipis — Wrpyg
models are characterized by moderate multi-modality. In contrast, the distribution of
the efficiency scores from Model 1 is more typical of unimodality.

We conducted ten Kruskal-Wallis tests of the null that the base efficiencies from
Model 1 do not differ from the efficiencies from a Cliff-Ord type frontier model. The null

is rejected at the 1% level when the efficiencies from Model 1 are tested against any of

14To plot the kernel densities in Figure 3 we use the Gaussian density and obtain the bandwidth A
using the Sheather and Jones (1991) solve-the-equation plug-in-approach. To avoid bias problems near
the boundary when estimating the kernel densities the reflection method is used (see Silverman, 1986,
and Scott, 1992).
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the five sets of efficiencies when the spatial interaction is Wsp;; — Wrpi,. In general, the
null is accepted at a reasonable level of significance when the efficiencies from Model 1
are tested against a set of efficiencies from the Wineowr — Wrnear models. The only case
where the null is rejected at a reasonable level of significance is when the efficiencies from
Model 1 are tested against the efficiencies from the Wegneq, model.

The null of the Kruskal-Wallis test is accepted at a reasonable level of significance
when the efficiencies from the Wsp;; — Wi, models are tested against one another. This
is also the case for a Kruskal-Wallis test of any pairwise combination of efficiencies from
the Winear — Wrnear models. However, the null of the Kruskal-Wallis test is rejected
at a reasonable level of significance when any of the five sets of efficiencies from the
Wspig — Wrpig models is tested against the efficiencies from one of the Wsnear — Wrnear
models.

Univariate efficiency distributions such as those in Figure 3 do not provide any in-
formation about the relative performance of the countries. To shed some light on the
relative performance of the countries we use the contour plots in Figure 4 which relate to
pairwise combinations of: the normalized efficiencies from Model 1; the normalized aver-
age efficiencies across the W3 near — Wrnear models; and the normalized average efficiencies
across the Wspig — Wrpig models.'® In all three contour plots the countries are highly
concentrated on the diagonal line. This indicates that each set of normalized efficiency
scores is no better or worse than either of the other two sets. We can therefore conclude
that whether /how spatial spillovers are taken into account in the production frontier
modeling has no implications for the relative performance of the countries. We docu-
mented above, however, the implications for the absolute performance of the countries

when spatial dependence is ignored (see the above discussion of Figures 2 and 3).
[Insert Figure 4]

Turning to the average efficiency rankings over the sample period for individual coun-
tries. The non-spatial frontier model and the Cliff-Ord type frontier models yield a robust
set of average efficiency rankings. For instance, just seven countries are in the bottom
five of the average efficiency rankings (Albania; Armenia; Azerbaijan; Belarus; Moldova;
Romania; Ukraine). There is slightly less agreement across the models with regard to
the most efficient countries with ten countries featuring in the top five of the average
efficiency rankings (Austria; France; Germany; Greece; Iceland; Italy; Luxembourg; Nor-

way; Sweden; UK). Finding a lot of similarity between the average efficiency rankings

15The contour plots are configured using bivariate Gaussian kernels where the bandwidths are calcu-
lated using the solve-the-equation plug-in approach for a bivariate Gaussian kernel a la Wand and Jones
(1994). Prior to the configuration of the contour plots, the efficiency scores are normalized relative to
the mean. The contour plots of the efficiency scores from Model 1 against the scores from the individual
Cliff-Ord type frontier models are very similar to one another. Hence why Figure 4 relates to two sets
of average efficiencies from the Cliff-Ord type frontier models.
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from the non-spatial frontier model and the Cliff-Ord type frontier models is consistent
with the above discussion of Figure 4 (i.e. ignoring spatial dependence has very little
impact on the relative performance of the countries). Finally, we note that the average
efficiency rankings from the non-spatial frontier model and the Cliff-Ord type frontier
models are to a large extent in line with what we expected. In particular, we would
expect the majority of the above countries to be at the top and bottom of the average ef-
ficiency rankings because of their geographical location and their tendency to have mean

real income per capita in the top and bottom thirds of the sample.

7 Concluding Remarks and Further Work

In this paper we have blended seminal early work in spatial econometrics with a notable
contribution on parametric efficiency estimation using panel data. Specifically, we in-
troduce a spatial autoregressive frontier model by combining the spatial autoregressive
model (Cliff and Ord, 1973; 1981) and the CSS approach to estimate time-varying effi-
ciency from the unit specific effects. For some time Druska and Horrace’s (2004) analysis
of Indonesian rice farm production using a GMM spatial error frontier model has been
the only major contribution to the literature on spatial frontier modeling. Our study
represents a further contribution to this literature.

We applied our model to a classic case of aggregate country production in Europe for
the period 1995 — 2008. The efficiency rankings from our fitted Cliff-Ord type frontier
models are plausible because they are broadly in line with our expectations, with the best
performing countries tending to be from Northern and Western Europe and the worst
performing countries are predominantly Eastern European.

The fitted Cliff-Ord type frontier models were used in a Bayesian MCMC experiment
to simulate the average own, spillover and total marginal effects, and the associated
t—statistics. Using these average marginal effects we explored a new line of enquiry for
productivity analysis. In particular, we calculate three new measures of returns to scale
(own, spillover and total returns). There are other new lines of enquiry for productivity
analysis using the own, spillover and total marginal effects. For instance, a logical piece of
further work would be to extend the parametric Malmquist TFP growth decomposition

to include own and spillover components (e.g. own and spillover scale effects).
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Table 1: Summary statistics

Variable Mean St.Dev. Min Max
Real GDP (millions) y 391,000 618,000 5,877 2,800,000
Labor (000s) 1 9,338 14,212 139 75,730
Real capital stock (billions) Dep Rate=6% T 48,100 85,000 179 513,000
Sum of exports and imports as a share 21 0.92 0.44 0.29 3.24
of GDP i.e. trade openness
Government spending as a share of GDP 22 0.09 0.03 0.05 0.16
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Table 2: Base Non-Spatial Frontier Model and Selected W Near Frontier Models

Model 1—

Variable Parameter No Spatial Model 2 Model 3 Model 4
Dependence Wanear Wonear Wrnear
Coef t-stat Coef t-stat Coef t-stat Coef t-stat
Inz; B, 0.669%%*  9.10
ppirect 0.686***  9.04 0.685***  9.71 0.680%**  9.69
Indirect 0.094%* 2.74 0.230%F*  4.29 0.266%**  4.13
pgTotal 0.781%¥* 815 0.916%**  8.50 0.945%%% 8,03
In x2 Ba 0.280***  11.81
By irect 0.272%%%  11.21 0.271%%%  11.13 0.267%%*  11.46
phndirect 0.037%* 3.12 0.091%**  4.83 0.103*** 505
Baotal 0.309%** 1154 0.361%%*  10.68 0.370%%%  11.34
(Inzq1)? B3 -0.003 -0.11
pDirect -0.001 -0.02 -0.010 -0.45 -0.011 -0.47
plndirect 0.000 0.00 -0.004 -0.44 -0.004 -0.45
pTotal -0.001 -0.02 -0.014 -0.45 -0.015 -0.47
(Inz2)? Ba 0.035%%% 4,13
pghirect 0.030%*¥*  3.50 0.026%* 2.82 0.022%* 2.51
Indirect 0.004* 2.38 0.009* 2.57 0.008* 2.35
g1 okt 0.034%%% 352 0.034%* 285 0.030* 2.54
Inzilnzs Bs -0.094*%*%*  _4.70
Direct -0.079%*%*  -3.90 -0.067%*  -3.25 -0.060%*  -2.98
Indirect -0.011% -2.50 -0.022%*  -2.85 -0.023%F 271
pglotal -0.090%*¥*  -3.93 -0.090%*  -3.27 -0.083%*  -3.02
¢ Be -0.008% 221
pghirect -0.011%%  -3.27 -0.015%¥*  _4.92 -0.015%%%  _4.47
Bgrdirect 20.001%  -2.09 0.005%*  -2.90 -0.006%*  -3.06
pglotal -0.012%%  -3.20 -0.020%%*  -3.96 -0.020%*¥*  -4.19
12 B, 0.006%%*  16.44
pgDirect 0.006%**  14.19 0.006%**  13.47 0.005%**  12.56
plndirect 0.001%* 3.19 0.002%%* 533 0.002%** 551
glotal 0.007*%*  15.22 0.007%%%  14.08 0.007*%*  13.95
Inxqt Bs 0.027*%* 8.63
pgDirect 0.024%%%  7.37 0.021%%*  6.60 0.020%%*  6.08
fndirect 0.003%* 3.02 0.007*%* 4,44 0.008*** 4,39
pletal 0.027%¥%  7.56 0.028%*%*  6.75 0.027%%%  6.31
In ot Bo -0.024%F%F 822
phirect -0.021%¥%  _7.34 -0.019%¥*  _6.44 -0.017%F% 590
Indirect -0.003%*  -2.96 -0.006%*¥*  -4.40 -0.007%¥*  _4.95
pTotal -0.024%%%  _7.45 -0.026%%*  -6.59 -0.024%*¥*  _6.06
z1 &, -0.018 -0.66
pDirect -0.008 -0.28 -0.011 -0.42 -0.011 -0.43
pindirect -0.001 -0.22 -0.003 -0.39 -0.004 -0.41
pTotal -0.008 -0.28 -0.014 -0.42 -0.015 -0.43
Z2 by S1.644%F% 425
gDirect -1.479%%% 3,93 -1.359%%% 367 -1.389%%%  _3.64
g direct 20.202%  -2.29 J0.455%*%  -2.96 20.541%%  -2.83
o3t J1.681%%*%  _3.86 J1.814%%*% 3,63 -1.930%%*%  -3.54
23 b3 0.021 1.63
Direct 0.021 1.66 0.023 1.87 0.026* 2.09
Indirect 0.003 1.41 0.008 1.67 0.010 1.84
pLotal 0.024 1.65 0.031 1.85 0.036* 2.05
SN wijyse A - - 0.121%* 3.27 0.258%%% (.33 0.287%%% (.78
Log-likelihood 814.87 822.55 824.13

Note: *, ** *** denote statistical significance at the 5%, 1% and 0.1% levels, respectively.
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Table 3: Selected W Big Frontier Models
Variable Parameter Model 5 Model 6 Model 7
W3Big WsBig WrBig
Coef t-stat Coef t-stat Coef t-stat
Inzy Direct 0.630%**  9.08 0.658%** 885 0.673%¥*  9.42
gindirect —( g12%¥** 543 0.867***  5.44 0.698***  5.10
gTotal 1.241%%%  7.42 1.524%%* 705 1.371%%%  7.29
In z2 prirect 0.276***  11.69 0.264%¥*  11.54 0.267%%*  11.30
Indirect () 9g7***  7.19 0.346%%*  7.33 0.276*** 6,70
B otal 0.543%%*  10.79 0.611%%*  10.40 0.543%%*  10.46
(Inz1)? pPirect -0.038 -1.60 -0.032 -1.41 -0.029 -1.31
Bindirect -0.037 -1.55 -0.043 -1.38 -0.030 -1.26
pLotal -0.074 -1.59 -0.075 -1.40 -0.060 -1.30
(Inz2)? pPirect 0.012 1.48 0.015 1.75 0.018* 2.11
pindirect 0.012 1.48 0.019 1.74 0.018%* 2.03
pTotal 0.024 1.49 0.033 1.76 0.036* 2.10
Inzy Inzo pDirect -0.048% -2.48 -0.049% -2.52 -0.057%% 22,94
Indirect -0.046* -2.44 -0.064* -2.46 -0.059%*  -2.71
pLotal -0.094* -2.50 -0.113* -2.53 -0.116%*  -2.90
t Direct -0.019%%*  26.00 -0.020%%*  _6.38 -0.019%%*  26.09
Bhndirect 0 019%*¥* 441 -0.026**%*  -4.70 -0.020%*%*  -4.34
pLotal -0.038*** 538 -0.047**%* 562 -0.039%** 543
t? Direct 0.005%**  12.13 0.005%*%* 12,23 0.005***  12.35
Indirect () gp5*** .07 0.006***  8.09 0.005%**  7.22
plotal 0.009%*¥*  12.50 0.011%%*  11.91 0.010%**  12.01
Inwit pRirect 0.017%¥* 570 0.018%** 586 0.020%*%*  6.46
Bindirect . 017F%% 489 0.023%** 497 0.020%**  4.78
pLotal 0.034*** 564 0.041%** 569 0.040%**  6.01
In 2ot phirect -0.013%**  _4.63 -0.014***  _5.15 -0.016***  -5.83
pindirect -0.012%** 428 -0.019%** 456 -0.017%**  _4.55
pFotal -0.025%** 468 -0.033%** 507 -0.033%** 553
21 pPireet -0.020 -0.78 -0.008 -0.33 -0.008 -0.32
Indirect -0.019 -0.77 -0.011 -0.32 -0.008 -0.31
pTotal -0.039 -0.78 -0.019 -0.32 -0.016 -0.31
29 Direct S1.532%FF 423 -1.299%%% 344 S1.268%%F 341
gLndirect 1 491k¥x 350 -1.710%*  -3.08 -1.314%*%  -2.98
plotal -3.023%*F* 3,97 -3.009%**  -3.31 -2.582%*F  _3.28
23 Direct 0.029* 2.42 0.025* 2.03 0.024 1.97
Indirect 0.028* 2.23 0.034 1.90 0.025 1.81
paotal 0.057* 2.36 0.059 1.98 0.049 1.91
Z?’:l wi Yt A 0.501%%*  14.01 0.579%%%  17.25 0.520%**  13.15
Log-likelihood 837.47 841.59 831.72

Note: *, ** *** denote statistical significance at the 5%, 1% and 0.1% levels, respectively.
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A Appendix

A.1 Average Returns to Scale (RTS): 1995-2008

Model 1—
. Average: Average:
No Spatial W W Wers — Wo
Dependence 3Near TNear 3Big 7TBig
Country Average RT'S Average RTS Average RTS
Total  Direct  Indirect Total  Direct  Indirect

Albania 1.098 1.393 1.078 0.315 2.254 1.085 1.170
Armenia 1.106 1.399 1.082 0.316 2.265 1.090 1.175
Austria 0.916 1.203 0.931 0.272 1.855 0.892 0.963
Azerbaijan 0.993 1.277 0.988 0.289 2.006 0.965 1.041
Belarus 0.938 1.220 0.944 0.276 1.886 0.907 0.979
Belgium 0.899 1.185 0.917 0.268 1.815 0.873 0.942
Bulgaria 0.983 1.269 0.982 0.287 1.989 0.957 1.032
Croatia 1.026 1.318 1.020 0.298 2.098 1.009 1.089
Cyprus 1.200 1.507 1.166 0.341 2.503 1.204 1.298
Czech Republic 0.899 1.183 0.915 0.268 1.809 0.870 0.939
Denmark 0.960 1.250 0.967 0.283 1.954 0.940 1.014
Estonia 1.159 1.462 1.131 0.331 2.405 1.157 1.248
Finland 0.976 1.267 0.980 0.287 1.990 0.957 1.033
France 0.683 0.950 0.735 0.215 1.313 0.630 0.682
Germany 0.637 0.901 0.697 0.204 1.208 0.580 0.628
Greece 0.910 1.195 0.925 0.271 1.837 0.883 0.954
Hungary 0.932 1.218 0.942 0.276 1.883 0.906 0.978
Iceland 1.312 1.630 1.261 0.369 2.767 1.332 1.435
Ireland 1.015 1.309 1.013 0.296 2.081 1.001 1.080
Italy 0.695 0.964 0.746 0.218 1.343 0.645 0.698
Latvia 1.106 1.403 1.086 0.317 2.278 1.096 1.182
Lithuania 1.058 1.351 1.045 0.306 2.165 1.042 1.124
Luxembourg 1.233 1.546 1.196 0.350 2.588 1.246 1.342
Macedonia 1.145 1.445 1.118 0.327 2.366 1.139 1.228
Malta 1.319 1.637 1.267 0.370 2.781 1.339 1.442
Moldova 1.077 1.367 1.058 0.309 2.198 1.057 1.140
Netherlands 0.833 1.112 0.860 0.252 1.659 0.798 0.862
Norway 0.977 1.269 0.982 0.287 1.996 0.960 1.036
Poland 0.765 1.036 0.801 0.234 1.493 0.718 0.776
Portugal 0.891 1.174 0.908 0.266 1.791 0.861 0.930
Romania 0.832 1.106 0.856 0.250 1.643 0.790 0.854
Russian Fed 0.597 0.853 0.660 0.193 1.103 0.529 0.574
Slovakia 0.990 1.280 0.990 0.290 2.016 0.970 1.046
Slovenia 1.096 1.396 1.080 0.316 2.266 1.090 1.176
Spain 0.728 1.000 0.773 0.226 1.419 0.682 0.737
Sweden 0.910 1.195 0.925 0.270 1.836 0.883 0.953
Switzerland 0.904 1.191 0.921 0.269 1.828 0.879 0.949
Turkey 0.722 0.989 0.765 0.224 1.393 0.669 0.724
Ukraine 0.754 1.020 0.789 0.231 1.457 0.700 0.757
UK 0.682 0.949 0.734 0.215 1.310 0.629 0.681
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A.2 Average Efficiency Scores: 1995-2008

Model 1—
y R Average: Average:

No Spatial W —w Warns — Wors

Dependence 3Near TNear 3Big TBig
Country Av. Eff. ank Av. Eff. Score (%) Rank Av. Eff. Score (%) Rank

Score (%) Mean Min. Max. Mean Min Max. Mean Min. Max. Mean Min. Max.

Albania 14.9 37 14.2 11.7 18.2 37 37 38 13.0 12.4 14.1 37 37 37
Armenia 11.8 39 12.0 11.1 13.8 38 37 39 10.3 9.9 11.0 39 38 40
Austria 59.9 13 61.1 39.7 79.2 13 4 21 39.3 37.6 40.8 17 17 18
Azerbaijan 13.4 38 11.8 10.2 12.8 38 37 39 10.5 9.6 11.1 38 38 39
Belarus 23.1 35 21.9 15.9 26.3 35 34 35 16.7 16.0 17.6 35 34 36
Belgium 63.3 12 49.0 42.8 55.6 16 13 18 49.3 45.2 52.4 11 11 12
Bulgaria 27.7 32 32.5 31.0 34.9 29 27 31 19.5 17.7 21.7 33 33 33
Croatia 30.4 30 34.2 26.9 40.9 30 27 33 23.4 18.4 25.9 31 30 32
Cyprus 46.2 20 47.9 44.7 51.4 16 14 19 36.9 35.4 42.3 19 15 21
Czech Republic 43.4 21 33.0 30.1 36.0 29 28 30 32.6 31.3 33.8 24 21 25
Denmark 56.3 15 46.7 43.0 49.9 18 17 20 47.8 44.2 51.6 13 12 14
Estonia 35.2 28 42.7 37.8 45.7 22 19 26 42.2 34.4 50.6 16 11 20
Finland 55.1 16 64.5 59.3 68.6 10 9 12 45.8 44.6 48.4 14 12 15
France 90.9 4 76.0 67.5 79.8 6 3 10 7.7 74.5 82.4 4 2 5
Germany 99.1 1 96.1 90.3 100.0 2 1 2 100.0 100.0 100.0 1 1 1
Greece 53.2 18 68.9 61.1 80.1 9 5 12 33.9 32.5 35.1 22 21 23
Hungary 41.4 23 46.6 43.3 49.8 18 16 21 27.3 26.7 28.4 27 27 28
Iceland 81.5 6 72.4 66.6 77.2 7 4 10 82.4 79.3 84.6 3 2 5
Ireland 58.4 14 42.2 37.5 48.4 24 18 26 36.9 35.9 37.3 19 18 20
Ttaly 83.3 5 98.7 96.8 100.0 1 1 2 63.3 60.8 67.5 7 7 8
Latvia 30.1 31 42.4 37.6 47.4 22 20 27 42.4 33.9 47.0 16 14 20
Lithuania 31.9 29 39.2 34.2 42.0 26 22 30 24.4 22.2 25.2 30 29 31
Luxembourg 93.9 2 77.5 64.2 90.8 5 3 8 78.7 76.0 80.1 4 3 4
Macedonia 24.1 33 29.6 27.7 32.8 32 28 34 22.6 18.9 25.3 31 29 32
Malta 68.2 9 44.5 38.5 51.7 21 15 25 39.4 37.8 41.1 17 16 18
Moldova 7.6 40 8.9 8.1 9.5 40 40 40 9.4 8.7 11.4 40 38 40
Netherlands 80.0 7 60.3 53.4 70.8 11 8 13 58.5 56.5 63.2 9 9 10
Norway 69.9 8 69.8 61.4 83.5 8 4 11 73.0 68.0 79.7 6 4 6
Poland 41.4 22 31.8 27.8 43.2 30 22 33 27.3 26.1 28.4 27 26 28
Portugal 35.3 27 27.0 25.0 29.6 34 32 35 25.3 24.6 26.0 30 29 31
Romania 23.5 34 31.9 29.4 38.3 31 29 33 16.6 15.0 17.6 35 34 36
Russian Fed 54.7 17 62.6 51.6 69.8 11 6 16 59.4 56.0 61.8 9 8 10
Slovakia 37.7 26 39.5 32.6 43.9 25 21 29 34.5 32.3 37.7 21 19 23
Slovenia 40.7 24 43.1 34.6 51.0 21 15 27 31.2 27.5 34.0 24 23 26
Spain 67.6 10 50.3 47.1 54.7 15 14 19 47.1 44.4 49.2 13 12 15
Sweden 64.2 11 76.3 69.1 80.6 6 3 9 62.9 57.0 67.7 8 7 10
Switzerland 50.2 19 40.5 38.3 43.2 25 23 28 32.1 30.8 33.9 24 22 25
Turkey 40.0 25 48.3 39.9 54.6 17 13 24 28.1 27.4 29.8 26 25 27
Ukraine 19.9 36 20.0 15.1 23.2 36 36 36 16.3 15.5 17.2 35 35 36
UK 92.5 3 76.4 69.4 81.2 5 4 7 79.5 74.9 85.8 4 2 6
Av Eff Sc 49.0 47.3 40.4
St Dev Eff Sc 24.7 22.4 22.8
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