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Abstract

In this paper we merge techniques from the e¢ ciency literature with spatial

econometric techniques. In particular, we combine calculation of e¢ ciency from

the unit speci�c e¤ects with the spatial autoregressive model to develop a spatial

autoregressive frontier model for panel data. Features of the modeling include

time-varying e¢ ciency and estimation of own and spillover returns to scale. The

model is applied to aggregate production in European countries over the period

1995 � 2008. Among other things, we �nd that production in the sample average
country is characterized by increasing returns to scale when we allow for returns

to scale spillovers from other countries, and constant returns when these spillovers

are ignored.

Keywords: Spatial Autoregression; Panel Data; Time-varying E¢ ciency; Returns

to Scale

JEL Classi�cation: C23; C51

�School of Business and Economics, Loughborough University, Leics, UK, LE11 3TU. Email:
A.J.Glass@lboro.ac.uk.

ySchool of Business and Economics, Loughborough University, Leics, UK, LE11 3TU. Email:
K.A.Kenjegalieva@lboro.ac.uk.

zCorresponding author
xDepartment of Economics, Rice University, Houston, U.S. Email: rsickles@rice.edu

1



1 Introduction

The omitted variable bias from overlooking the spatial autoregression between neighbors

has long since been recognized. This motivated the development of the spatial autore-

gressive model in the seminal contributions by Cli¤ and Ord (1973; 1981). Other spatial

models with a spatial autoregressive variable which have since been proposed include the

spatial Durbin model which also includes spatially lagged independent variables (Anselin,

1988) and a model which also includes a spatial autocorrelation term (Drukker et al.,

2012; Kapoor et al., 2007; Kelejian and Prucha, 1998; 1999; 2010). In the context of

frontier models, biased parameter estimates because the spatial autoregression between

neighboring cross-sectional units is overlooked can also have implications for the e¢ ciency

scores. We therefore blend techniques used in parametric frontier modeling with applied

spatial econometric techniques to develop a spatial autoregressive production frontier

model for panel data where technical e¢ ciency is time-variant. The model is then ap-

plied to a classic case of aggregate production for 40 European countries over the period

1995� 2008.
To date there is one key study by Druska and Horrace (2004) in the �edgling literature

on spatial frontier modeling. In this key study the authors develop a GMM frontier model

which they estimate using panel data on production for a sample of Indonesian rice farms.

Speci�cally, they develop a spatial error production frontier model by including the spatial

autocorrelation term as an exogenous variable which shifts the frontier technology. They

then calculate time-invariant ine¢ ciencies from the random e¤ects using the approach

proposed by Schmidt and Sickles (1984) (SS from hereon). The marginal e¤ect of an

explanatory variable from such a model is not a function of the spatial autocorrelation

term so the coe¢ cients on the inputs and the exogenous variables can be interpreted

as elasticities in the usual way. The spillover marginal e¤ect from such a model relates

to the disturbance. This spillover marginal e¤ect, however, is not as informative as the

spillover e¤ects for the explanatory variables which we report in the application section

of this paper.1

LeSage and Pace (2009) demonstrate that the coe¢ cients on the explanatory variables

from a �tted spatial autoregressive model cannot be interpreted as elasticities. This

is because the marginal e¤ect of an explanatory variable is a function of the spatial

autoregressive variable. LeSage and Pace (2009) therefore propose Bayesian Markov

Chain Monte Carlo (MCMC) simulation of the own (i.e. direct), spillover (i.e. indirect)

1Schmidt et al. (2009) also incorporate spatial dependence into their parametric frontier analysis
of Brazilian farm production. However, they account for the spatial dependence by allowing spatially
lagged latent regional e¤ects (i.e. not farm e¤ects) to a¤ect the ine¢ ciency distribution or shift the
frontier technology. In contrast, in the spatial error frontier model in Druska and Horrace (2004) and
also in the spatial autoregressive frontier model which we present, the spatial dependence is explicitly
modeled.
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and total marginal e¤ects of the explanatory variables.2 Using the direct, indirect and

total marginal e¤ects from a �tted production frontier model with a spatial autoregressive

exogenous variable we develop a new line of enquiry for parametric productivity analysis.

In particular, we calculate direct, indirect and total returns to scale.

The direct marginal e¤ect estimates the e¤ect of changing an explanatory variable in

a particular cross-sectional unit on that unit�s dependent variable and includes feedback

e¤ects i.e. e¤ects which pass through �rst order and higher order neighbors via the spatial

multiplier matrix and back to the unit which initiated the change. The indirect marginal

e¤ect can be interpreted in two ways. The �rst interpretation estimates the impact

of changing an explanatory variable in a particular unit on the dependent variables of

all the other units in the sample. The second interpretation estimates the change in the

dependent variable for one particular unit following a change in an explanatory variable in

all the other units. Further in the paper we explain why numerically both interpretations

of the indirect marginal e¤ect are the same. To estimate indirect and total returns to scale

in the application of our spatial autoregressive frontier model to aggregate production

in 40 European countries we must use the second interpretation of the indirect marginal

e¤ect.

Two features of the application are �rstly, rather than assume that e¢ ciency is time-

invariant à la Druska and Horrace (2004), we allow e¢ ciency to be time-variant using the

Cornwell et al. (1990) (CSS from hereon) estimator. Secondly, we use ten speci�cations

of the spatial weights matrix, where the speci�cations are weighted by various proxies

for economic distance or various proxies for composite geographical-economic distance.

Economic distance between two countries will di¤er depending on the direction so we

choose a direction. Speci�cally, our proxies for economic distance are a country�s biggest

3�7 import �ows. And our proxies for geographical and economic distance are a country�s
nearest 3 � 7 import �ows. The range 3 � 7 is chosen to capture the e¤ect of assuming
that the spatial dependence is highly concentrated around production in a small number

of near/big import partners and then is assumed to be progressively less concentrated.

Further in the paper we discuss the speci�cations of the spatial weights matrices in detail.

To provide an insight into the type of conclusions which can be made from the spatial

autroregressive frontier model which we develop, two of the key empirical �ndings from

the application are as follows. Firstly, we �nd that production in the sample average

country is characterized by constant own returns to scale, but when returns to scale

spillovers from other countries are taken into account they are su¢ cient for production

in the sample average country to exhibit increasing total returns to scale. Secondly, we

�nd that over the entire sample the mean annual e¢ ciency score when the spatial weights

matrix is weighted by a country�s biggest 3 � 7 import �ows is smaller than the mean
2The total marginal e¤ect of an explanatory variable is the sum of the corresponding direct and

indirect marginal e¤ects.
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annual score when the matrix is weighted by a country�s nearest 3� 7 import �ows.
The remainder of this paper is organized as follows. In section 2 we formally present

a Cli¤-Ord type production function. In section 3 we follow CSS by �rstly, showing

how we move from the Cli¤-Ord type production function in section 2 to the associated

frontier model. Secondly, we explain how we use the �xed e¤ects to calculate time-varying

e¢ ciency. The steps involved in the estimation of the frontier model are set out in section

4. Section 5 discusses how we estimate the direct, indirect and total elasticities for the

inputs and exogenous variables, and also how these estimates for the inputs are used to

calculate direct, indirect and total returns to scale. In section 6, we apply the frontier

model to aggregate production in 40 European countries. In section 7 we conclude with

a summary of the main contributions of the paper and suggest a worthwhile area for

further work.

2 Cli¤-Ord Type Production Function

Consider the following Cli¤-Ord type production function for panel data:

yit = Xit� + �
NX
j=1

wijyjt + "it (1)

i = 1; :::; N ; t = 1; :::; T;

where N is a cross-section of economic units operating over a �xed time dimension T ;

yit is a positive observation for the output of the i�th unit at time t; Xit is a (1 � K)
vector of positive observations for the K inputs of the i�th unit at time t; wij is a known
non-negative element of the (N �N) spatial weights matrix, W ; � is the (K � 1) vector
of �xed parameters to be estimated; � is the spatial autoregressive parameter; "it is an

i.i.d. disturbance for i and t with zero mean and variance �2.3PN
j=1wijyjt, which is an exogenous variable in (1) and therefore shifts the production

technology, is typically referred to as the spatial lag of yit. W captures the spatial

interaction of yit in the cross-section and must be speci�ed prior to estimation according

to some measure of proximity e.g. contiguity or physical, economic or climatic distance

between the units. If a cross-sectional unit j is related to i, the pre-speci�ed spatial

weight wij will be non-zero and units i and j are described as neighbors. We discuss in

detail the speci�cation of the spatial weights matrices for the application to aggregate

production in 40 European countries further in the paper.

For our asymptotic analysis of the estimator which we employ, the following underlying

assumptions with regards to the Cli¤-Ord type production function in (1) are made.
3Using the CSS estimator we transform the Cli¤-Ord type production function in (1) into the asso-

ciated frontier model by introducing unit speci�c e¤ects to (1). For the moment, however, we postpone
the introduction of unit speci�c e¤ects.
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Assumption 1. All the diagonal elements of the non-stochastic spatial weights ma-
trix, W , are zero.

The zero diagonal assumption is a normalization of the model. It implies that no

cross-sectional unit is described as its own neighbor. In other words, spatial self-in�uence

of the units is excluded.

Assumption 2. The matrix (IN � �W ) is non-singular for all values of �, where
IN is the identity matrix of dimension N and the parameter space of � is taken to be

1=rmin < � < 1.

rmin denotes the most negative real characteristic root of W and, as is common in

spatial econometrics, we use a row-normalized W so 1 is the largest real characteristic

root of W . It is also assumed that the parameter space of � does not depend on the

sample size, which is also a common assumption in the spatial econometrics literature.4

As a result of Assumption 2, yit is complete and uniquely de�ned by (1), and (1) has the

following reduced form, where the subscript i�s are dropped to denote successive stacking

of cross-sections.

yt = (IN � �W )�1Xt� + (IN � �W )�1"t; (2)

where yt is an (N � 1) vector; Xt is an (N �K) matrix of positive observations for the
inputs; and "t is an (N � 1) vector

Assumption 3. The row and column sums of W and (IN � �W ) are bounded
uniformly in absolute value.

Assumption 3 limits the spatial correlation of the cross-sectional observations for the

dependent variable to a manageable degree. As a result, the spatial correlation has

a �fading�memory (Kelejian and Prucha, 1998; 1999; 2010). Assumption 3 therefore

plays an important role in the asymptotic properties of the estimators for spatial models

because if row and column sums are bounded uniformly in absolute value then the row

and column sums of products of matrices have the same property (Kelejian and Prucha,

2004; Lee, 2004). Hence, the row and column sums of the variance-covariance matrix are

bounded uniformly as N goes to in�nity.

3 Fixed E¤ects and Technical E¢ ciency

The Cli¤-Ord type production function in (1) can be transformed into the associated

frontier model by introducing unit speci�c time-invariant e¤ects. This is because the SS

and CSS estimators use these e¤ects to calculate unit speci�c technical ine¢ ciencies. We

4See Kelejian and Prucha (2010) for a detailed discussion of the parameter space for spatial autore-
gressive parameter.
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proceed along these lines by introducing �xed e¤ects to (1).

yit = �i +Xit� + �

NX
j=1

wijyjt + "it; (3)

i = 1; :::; N ; t = 1; :::; T;

where �i is a dummy variable for each unit.

Following SS, the N estimated unit speci�c e¤ects can be used to calculate time-

invariant technical e¢ ciency for each unit, TEi , as follows:

TEi = b�i �max
i
(b�i) ; i = 1; :::; N: (4)

Rather than estimate the technical e¢ ciencies of the units relative to an absolute stan-

dard, (4) estimates the e¢ ciencies relative to the most e¢ cient unit in the sample. Ac-

cordingly, the unit with largest unit speci�c e¤ect is assumed to lie on the frontier.

Estimating the e¢ ciencies from the unit speci�c e¤ects ensures that the e¢ ciencies are

not correlated with the input levels, and an a priori assumption does not need to be

made about the ine¢ ciency distribution.

CSS extend the SS approach by using the unit speci�c e¤ects in conjunction with a

unit speci�c �exibly parameterized function of time to calculate time-varying e¢ ciencies.5

We follow this approach by replacing �i in (3) with �it from (5) to obtain (6):

�it = �i + �it+ �it
2 i = 1; :::; N: (5)

yit = �it +Xit� + �
NX
j=1

wijyjt + "it

= �i + �it+ �it
2 +Xit� + �

NX
j=1

wijyjt + "it

= �i +Xit� + �
NX
j=1

wijyjt + vit; (6)

where (6) is the speci�cation of the frontier model which we estimate in the application

and vit = �it + �it
2 +"it. We obtain the estimates of �i and �i as in CSS by regressing

the residuals from the estimate of (6), vit, on time and time-squared for each unit.6 The

5Recently, Kniep, Sickles and Song (2012) have showed that the CSS and many other common spec-
i�cations of temporal heterogeneity can be considered special cases of their general factor model. Thus
one could view our model set up here as providing a link between the factor model literature and the
spatial correlation literature.

6In the next section we describe how we obtain the �xed e¤ects from the �tted frontier model.
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three components in (5) are then summed to obtain �it. Finally, the estimates of �it are

used to calculate time-varying technical e¢ ciency as follows:

TEit = b�it �max
i

�b�it� i = 1; :::; N: (7)

The time-varying e¢ ciencies are calculated relative to the most e¢ cient unit in the sample

in each time period. The most e¢ cient unit in the sample in each time period can of

course change across time periods.

4 Estimation of the Frontier Model

Models with spatial interaction e¤ects can be estimated using maximum likelihood (ML),

instrumental variables or generalized method of moments (IV/GMM), or the Bayesian

MCMC approach. In this paper (6) is estimated using ML. Assuming that the panel is

balanced, the log-likelihood function associated with (6) is as follows:

LogL = �NT
2
log(2��2)+T log jIN � �W j�

1

2�2

NP
i=1

TP
t=1

0@yit � � NX
j=1

wijyjt �Xit� � �i

1A2 : (8)
Since the spatial autoregressive variable in (6) is endogenous the assumption of the stan-

dard regression, E
h�PN

j=1wijyjt

�
vit

i
= 0, is violated. We ensure that � lies within its

parameter space, adjust for the endogeneity of the spatial autoregressive variable and also

the fact that vt is not observed in the usual way by including the scaled logged determi-

nant of the Jacobian transformation of vt to yt (i.e. T log jIN � �W j) in the log-likelihood
function (see Anselin, 1988, and Elhorst, 2009). Solving the partial derivatives of (8) with

respect to �i for �i yields (9)

�i =
1

T

TP
t=1

 
yit � �

NX
j=1

wijyjt �Xit�

!
i = 1; :::; N: (9)

As Elhorst (2009) notes, it is evident from (9) that the �xed e¤ects adjust for the spatial

dependence in the cross-section at each point in time. Therefore no further adjustment

to account for the spatial interaction in the cross-section in each time period is necessary.

The concentrated log-likelihood function with respect to �, � and �2 in (10) is obtained

by substituting (9) into (8), and to circumvent the incidental parameter problem when

estimating (6) yit and Xit are demeaned.
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LogL = �NT
2
log(2��2)+T log jIN � �W j�

1

2�2

NP
i=1

TP
t=1

24y�it � �
0@ NX
j=1

wijyjt

1A� �X�
it�

352 ; (10)
where y�it = yit � 1

T

PT
t=1 yit and X

�
it = Xit � 1

T

PT
t=1Xit. By demeaning yit and Xit the

intercept and the �xed e¤ects drop out of the �tted models. Usually interest does not

center on the �xed e¤ects so removing them from the �tted model does not pose a problem.

This is not the case, however, when SS and CSS type frontier models are estimated

because the �xed e¤ects are needed to calculate the e¢ ciencies. Having estimated (6)

the �xed e¤ects are retrieved using (9).

Dropping the subscript i�s and t�s from y�it and X
�
it to denote an (NT � 1) vector and

an (NT �K) matrix, respectively, of stacked cross-sectional observations for t = 1; :::; T .
The estimate of � is obtained by maximizing the concentrated log-likelihood function in

(11) and then � is used in (12) and (13) to obtain the estimates of � and �2.

LogL = C � NT
2
log [(e�0 � �e�1)0(e�0 � �e�1)] + T log jIN � �W j ; (11)

� = b0 � �b1 = (X�0X�)�1X�0 [y� � �(IT 
W )y�] ; (12)

�2 =
1

NT
(e�0 � �e�1)0(e�0 � �e�1)0; (13)

where IT is the identity matrix of dimension T ; 
 is the Kronecker product; C is a

constant which does not depend on �; b0 and b1 are the OLS parameters from successively

regressing y� and (IT 
W )y� on X�; and e�0 and e�1 are the residuals from these OLS

regressions, respectively.7

The asymptotic variance-covariance matrix for the estimates of �, � and �2, which
Elhorst and Freret (2009) show has following form, is computed to obtain the associated
standard errors and t�values.

Asy:V ar(�; �; �2) = 266664
1
�2
X�0X� � �

1
�2
X�0 (IT 
fW )X�0� T �tr(fWfW +fW 0fW ) + 1

�2
�0X�0 (IT 
fW 0fW )X�0� �

0 T

�2tr(fW )

NT
2�4

377775
�1

;

(14)

wherefW = W (IN��W )�1 and tr denotes the trace of the relevant matrix. Because (14)
7The maximization problem in (11) can only be solved numerically as a closed form solution for �

does not exist. See Elhorst (2009) for details of the numerical approach which is used to maximize (11).
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is a symmetric matrix we omit the upper diagonal elements. Lee and Yu (2010), however,

show that using the demeaning procedure to estimate a spatial model with �xed e¤ects

such as (6) results in a biased estimate of �2 if N is large and T is �xed. Following Lee

and Yu (2010) and Elhorst (2011) we correct for this bias by replacing the biased �2 in

(14) with the bias corrected estimate of �2, �2BC = T�
2=(T � 1), which will change the

standard errors and t�values.

5 Direct, Indirect and Total Returns to Scale

As we noted above, the coe¢ cients on the inputs and exogenous variables from a �tted

Cli¤-Ord type production frontier cannot be interpreted as elasticities. This is because

the marginal e¤ect of an independent variable is a function of the spatial autoregressive

variable. LeSage and Pace (2009) therefore suggest the following approach to calculate the

direct, indirect and total marginal e¤ects of the independent variables and the associated

signi�cance levels having estimated a model such as (6). Using estimates of the direct,

indirect and total marginal e¤ects for the inputs we calculate direct, indirect and total

returns to scale.

Di¤erentiating (2) with respect to the k�th input, xk;t, yields the following vector of
partial derivatives:

h
@y
@xk;1

: @y
@xk;N

i
t
=

2664
@y1
@xk;1

: @y1
@xk;N

: : :
@yN
@xk;1

: @yN
@xk;N

3775
t

= (IN � �W )�1

266664
�k 0 : 0

0 �k : 0

: : : :

0 0 : �k

377775 ; (15)

where the right-hand side of (15) is independent of the time index. (15) will yield di¤erent

direct and indirect marginal e¤ects on each unit so to facilitate interpretation LeSage

and Pace (2009) suggest reporting a mean direct marginal e¤ect (average of the diagonal

elements on the right-hand side of (15)) and a mean indirect marginal e¤ect (average

column or row sum of the non-diagonal elements on the right-hand side of (15) since the

magnitude of these two calculations are the same). The average column and row sums

on the right-hand side of (15) relate to the �rst and second interpretations of the indirect

marginal e¤ect, respectively, as de�ned in the opening section of this paper. The mean

total marginal e¤ect is simply the sum of the mean direct and indirect marginal e¤ects.

To compute t�statistics for the average direct, indirect and total marginal e¤ects,
LeSage and Pace (2009) propose Bayesian MCMC simulation of the distributions of the
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e¤ects using the variance-covariance matrix associated with the ML estimates. 1; 000

parameter combinations of the �, � and �2BC estimates are drawn from the variance-

covariance matrix such that each combination is a vector of length 2 + K (number of

parameters estimated excluding the intercept and the �xed e¤ects) consisting of random

values drawn from a normal distribution with mean zero and standard deviation one.

Mean direct, indirect and total marginal e¤ects are calculated for each parameter com-

bination. The mean direct, indirect and total marginal e¤ects which we report are the

averages over the 1; 000 draws. The associated t�statistics are obtained by dividing the
reported mean direct, indirect and total marginal e¤ects by the standard deviation across

the corresponding 1; 000 mean marginal e¤ects.

For the i�th unit at time t which uses inputs to produce a single output, own (i.e.
direct) returns to scale is the percentage change in in the i�th unit�s output due to a
one percent increase in all the i�th unit�s inputs. The estimates of direct returns to
scale also include feedback e¤ects i.e. e¤ects which pass through �rst order neighbors

and higher order neighbors via the spatial multiplier matrix and back to the i�th unit
which initiated the change. Spillover (i.e. indirect) returns to scale for the i�th unit at
time t is the percentage change in the i�th unit�s output due to a one percent increase
in the inputs for all the other J units. Total returns to scale is the sum of the direct and

indirect returns to scale. Total returns to scale for the i�th unit at time t is therefore the
percentage change in the i�th unit�s output due to a one percent increase in the inputs
for all N units in the sample. Direct, indirect and total returns to scale for the i�th unit
at time t, which are denoted RTSDirectit , RTSIndirectit and RTSTotalit , respectively, can be

calculated as follows:

RTSDirectit +RTSIndirectit = RTSTotalit (16)
k=KX
k=1

exDirectk;it +
k=KX
k=1

exIndirectk;it =
k=KX
k=1

exTotalk;it ; (17)

where exDirectk;it , exIndirectk;it and exTotalk;it are column vectors of direct, indirect and total elas-

ticities for the k�th input, respectively. Production in the i�th unit is characterized
by total decreasing returns to scale if RTSTotalit < 1, total increasing returns to scale if

RTSTotalit > 1 and total constant returns to scale if RTSTotalit = 1. Using the estimates of

RTSDirectit and RTSIndirectit , direct and indirect returns to scale are classi�ed in the same

way.
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6 An Application to Aggregate Production in 40 Eu-

ropean Countries

In this section we use data for 40 European countries for the period 1995� 2008 and ten
speci�cations of W . Speci�cally, in this application the production structure takes the

form of a single output translog function and so the speci�cation of the Cli¤-Ord type

production frontier which we estimate is as follows.

yit = � + �i + TL (X; t)it + zit�+ �
NX
j=1

wijyjt + vit (18)

vit = �it+ �it
2 + "it; (19)

where � is the intercept; TL (X; t)it represents the technology as the non-constant returns

to scale translog approximation of the log of the production function; Xit is a (1 � 2)
vector of input levels where the elements are denoted x1;it and x2;it; zit is a (1 � 3)
vector of country speci�c exogenous characteristics for i, where the elements are denoted

z1;it; :::; z3;it; � is the associated vector of parameters to be estimated. All the other

variables, matrices and parameters in (18) and (19) are as described in previous sections.

6.1 Data and Speci�cation of the Spatial Weights Matrix

The data is a balanced panel of macroeconomic variables which are logged where it

is appropriate. All the variables with the exception of the dummy variables are then

normalized around their mean values so the �rst order input and time parameters can be

interpreted as elasticities at the sample mean.

The output is real GDP in 2005 international dollars, y. The inputs are number of

workers, x1, and real capital stock in 2005 international dollars, x2. Data was extracted

from the Penn World Table Version 7:0, PWT7 (Heston et al., 2011), to calculate y, x1
and x2. The variables which we extracted are as follows: real GDP per capita calculated

using the Laspeyres index and the chain method, denoted as rgdpl and rgdpch in PWT7

(both of which are in 2005 international dollars); population, pop; real GDP per worker

calculated using the chain method, rgdpwok; and investment as a share of rgdpl, ki.

x1 = (rgdpch � pop)=rgdpwok, y = x1 � rgdpwok and we calculate x2 in two steps.
Firstly, we calculate real aggregate investment which is rgdpl � pop � ki. Secondly, real
capital stock in 1995 is assumed to be depreciated real aggregate investment in 1994

because of concerns about the number of observations in the sample, and we follow much

of the literature on estimating capital stock and use a 6% depreciation rate.8 Observations

8We thank Joe Pearlman for suggesting this approach to obtain a starting value for real capital stock.
Although this is not the usual approach to obtain a starting value for capital stock it will become apparent
that the capital elasticities using this approach are sensible. A more conventional approach to obtain the
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for real capital stock for the remainder of the sample are estimated using the perpetual

inventory method. z1 is trade openness the data for which was taken from PWT7, z2 is

government spending as a share of rgdpl where the data is again from PWT7 and z3 is

a dummy variable for EU membership.

(18) is estimated using ten speci�cations of W . The weights in all ten speci�cations

are calculated using data from the IMF Direction of Trade Statistics database on im-

port �ows in 2000 US dollars for the period 2000 � 2008. The proxies for composite
geographical distance and economic distance are a country�s average real imports over

period 2000�2008 from the nearest 3�7 countries according to distances between capital
cities. These proxies are used to weight and row normalize the �rst �ve speci�cations of

W (denoted W3Near; :::;W7Near). The proxies for economic distance are a country�s aver-

age real imports over the period 2000�2008 on its biggest 3�7 real import �ows. These
proxies are used to weight and row normalize the remaining speci�cations of W (denoted

W3Big; :::;W7Big). The descriptive statistics for the continuous variables are presented in

Table 1 and are for the raw data.

[Insert Table 1]

6.2 Estimation Results

We estimate (18) using all ten speci�cation of W with and without �xed e¤ects. To test

the null hypothesis that the �xed e¤ects are not jointly signi�cant (i.e. �i = ::: = �N = �)

we perform a likelihood ratio (LR) test on each of the ten �tted Cli¤-Ord type frontier

models against the corresponding pooled model. The associated test statistic is chi-

squared distributed with degrees of freedom equal to the number of restrictions which

must be imposed on the unrestricted model to obtain the restricted model, which in this

case is N � 1. On each occasion we reject the null hypothesis at the 1% level, thereby

justifying the inclusion of �xed e¤ects in (18) for all ten speci�cations ofW .9 The �xed ef-

fects from the ten Cli¤-Ord type frontier models are then used to compute the e¢ ciencies.

To enable comparisons we also use the same approach to calculate the e¢ ciencies from

the non-spatial frontier model which CSS �t. This simply involves omitting �
PN

j=1wijyjt

from (18) and �tting the standard �xed e¤ects model using the Within estimator.

In Tables 2 and 3 we present the estimation results for the non-spatial frontier model

and selected Cli¤-Ord type frontier models. Before we discuss the estimation results we

once again de�ne direct, indirect and total elasticities in the context of our results. The

starting value is to use fully depreciated GDP but this would require several years of additional data,
which was not available for all the countries in the sample.

9The test statistics range from 1174:29 � 1185:53 for model speci�cations using W3Near �W7Near

and from 1207:35� 1227:26 for model speci�cations using W3Big �W7Big. W3Near (W3Big) and W7Near

(W7Big) do no relate to the lower and upper limits of these ranges, respectively, or any other ranges
which we report in this application.
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�1��9 and �1��3 parameters are the usual own elasticities from the non-spatial frontier
model. �Direct1 � �Direct9 and �Direct1 � �Direct3 are also own elasticities from the Cli¤-Ord

type frontier models but di¤erent notation is used to denote an own elasticity from the

non-spatial frontier model and an own elasticity from a Cli¤-Ord type frontier model.

We refer to own elasticities from a Cli¤-Ord type frontier model as direct elasticities

because they take into account feedback e¤ects to the i�th unit (i.e. the e¤ect of a
change in an explanatory variable in the i�th unit which a¤ects a neighboring unit�s
dependent variable which in turn a¤ects the i�th unit�s dependent variable), whereas by
construction the own elasticities from the non-spatial frontier model ignore such e¤ects.

�Indirect1 ��Indirect9 and �Indirect1 ��Indirect3 denote the spillover elasticities from a Cli¤-Ord

type frontier model which, using what we earlier described as the second interpretation

of a spillover elasticity, refers to the e¤ect on the dependent variable of the i�th unit
following a change in an explanatory variable in all the other J units. �Total1 � �Total9 and

�Total1 � �Total3 denote the sum of the direct and indirect elasticities from a Cli¤-Ord type

frontier model and therefore refer to the e¤ect on the dependent variable in the i�th unit
following a change in an explanatory variable in all units in the sample.

[Insert Tables 2 and 3]

Since � is assumed to lie in the parameter space (1=rmin; 1) it cannot be interpreted

as an elasticity. However, the estimates of � indicate how the spatial dependence of y is

a¤ected by the speci�cation ofW . All the estimates of � are positive and signi�cant at the

1% level or lower and when W is weighted by the i�th country�s nearest (biggest) 3� 7
import �ows the estimates range from 0:122�0:287 (0:472�0:579). These ranges suggest
that the output of the i�th country depends much more on the output of its biggest 3�7
import partners than the output of its nearest 3� 7 import partners. Moreover, we �nd
that � tends to increase as W is weighted by more big and, in particular, more near

import �ows (see Table 2).

A production function assumes that the i�th unit�s output is monotonically increasing
in the i�th unit�s inputs. A new line of enquiry which follows from our spatial autore-

gressive production function is whether the i�th unit�s output is monotonically increas-
ing/decreasing in the inputs of the other J units and monotonically increasing/decreasing

in the inputs of all N units in the sample. The own labor and capital elasticities from the

non-spatial frontier model, and the direct, indirect and total labor and capital elasticities

from the Cli¤-Ord type frontier models are all positive and signi�cant at the 1% level or

lower. This indicates that at the sample mean the i�th unit�s output is monotonically
increasing in the i�th unit�s inputs, the inputs of the other J units and the inputs of
all N units in the sample.10 Furthermore, the own labor and capital elasticities from the

10In Tables 2 and 3 �1, �
Direct
1 , �Indirect1 and �Total1 correspond to labor and �2, �

Direct
2 , �Indirect2 and

�Total2 relate to capital.
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non-spatial frontier model indicate that, on average, a country�s output is monotonically

increasing in its own labor and capital for 100% of the sample. For the ten Cli¤-Ord type

frontier models, the direct, indirect and total labor and capital elasticities suggest that

the i�th unit�s output is: monotonically increasing in the i�th unit�s labor and capital,
monotonically increasing in the labor and capital of the other J units and monotonically

increasing in the labor and capital of all N units for 100% of the sample.

Furthermore, a production function assumes that the i�th unit�s output is concave
in the i�th unit�s inputs. From our spatial autoregressive production function there is

the added issues of whether the i�th unit�s output is concave/convex in the inputs of
the other J units and concave/convex in the inputs of all N units in the sample. If a

�tted production function is concave we will observe a particular sign pattern for the

principal minors in the Hessian matrix: all the odd numbered principal minors must be

non-positive and all the even numbered principal minors must be non-negative. Applying

this test to the non-spatial production frontier model reveals that for 47:9% of the sample

the i-th unit�s output is concave in the i-th unit�s inputs. When we apply this test to

the ten Cli¤-Ord type production frontier models, on average, we observe concavity of

the i-th unit�s output in the i-th unit�s inputs for a larger percentage of the sample than

is the case for the non-spatial frontier model. Speci�cally, we �nd that, on average, the

i-th unit�s output is: concave in the i-th unit�s inputs for 59:7% of the sample; concave

in the inputs of the other J units for 77:3% of the sample; and concave in the inputs of

all N units for 59:2% of the sample.

Despite the own elasticities from the non-spatial frontier model ignoring feedback

e¤ects, whereas the direct elasticities from the Cli¤-Ord type frontier models take account

of these e¤ects, the own and direct labor/capital elasticities are similar. With respect

to labor we observe an estimate of �1 of 0:669 and the estimates of �
Direct
1 are of the

order 0:630 � 0:703. These estimates of �1 and �Direct1 are therefore robust to model

speci�cation and are also in line with evidence on the labor income share of GDP for the

EU�15member states (for veri�cation see Table 1 in Arpaia et al., 2009). Moreover, with
respect to capital the estimates of �2 and �

Direct
2 are essentially the same (0:261� 0:280)

and are therefore also robust to model speci�cation.

All the indirect labor and capital elasticities from the Cli¤-Ord type frontier models

are positive and signi�cant. This indicates that the evidence of positive labor and capital

spillovers across Europe is robust across the ten speci�cations of W . Moreover, since all

the direct and indirect labor and capital elasticities are positive and signi�cant it follows

that all the total labor and capital elasticities are positive and signi�cant. Turning our

attention now to the magnitude of the indirect labor and capital elasticities. Interestingly,

the average estimate of �Indirect1 whenW is speci�ed according to the i�th country�s 3�7
biggest import �ows (0:710) is much larger than the corresponding average estimate when

the speci�cation of W is W3Near �W7Near (0:201). Furthermore, the average estimate of
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�Indirect2 when the speci�cation of W is W3Big�W7Big (0:287) is greater than the average

estimate of �Indirect2 whenW is weighted by the i�th country�s 3�7 nearest import �ows
(0:078). This evidence suggests that, on average, there are greater labor and capital

spillovers across Europe over economic distance than there are over a combination of

geographical distance and economic distance.

Comparing the direct labor and capital elasticities with the corresponding indirect

elasticities when the speci�cation of W is W3Near �W7Near, we �nd that the direct labor

and capital elasticities are always greater than the corresponding indirect elasticity. When

the speci�cation ofW isW3Near�W7Near, on average, the direct labor (capital) elasticity

is 0:484 (0:191) larger than the corresponding indirect elasticity. In contrast, when the

speci�cation of the spatial interaction is W3Big � W7Big, we �nd that, in general, the

indirect labor and capital elasticities are as least as large as the corresponding direct

elasticity. For example, it is evident from Table 3 that the direct and indirect labor

elasticities fromModel 5 (W3Big) are very similar, whereas in Model 6 (W5Big) the indirect

labor elasticity is noticeably greater than the direct labor elasticity.

Considering now the average direct, indirect and total labor and capital elasticities

outside the sample mean from �rstly, models where the speci�cation of W is W3Near �
W7Near and secondly, models when the spatial interaction is W3Big �W7Big (See Panels

A and B in Figure 1, respectively).11 From Panel A in Figure 1 it is evident that over

the entire sample period the average direct labor (capital) elasticity across the W3Near �
W7Near models is a lot larger than the corresponding average indirect labor (capital)

elasticity, which also what we observed at the sample mean from the individual W3Near�
W7Near models. Interestingly Panel B in Figure 1 indicates that over the entire sample

period the average direct labor (capital) elasticity across the W3Big � W7Big models is

approximately the same as the corresponding average indirect labor (capital) elasticity.

As we noted above this is also the case at the sample mean for some of the individual

W3Big �W7Big models. Moreover, we can see from Panels A and B in Figure 1 that over

the entire sample period, the non-spatial frontier model yields, on average, own labor

and capital elasticities which are a good approximation of the average direct labor and

capital elasticities.

[Insert Figure 1]

The parameter on time from the non-spatial frontier model (�6) and the direct, indi-

rect and total time parameters from the Cli¤-Ord type frontier models (�Direct6 , �Indirect6

and �Total6 ) are all negative and signi�cant at the 5% level or lower. Our total time para-

meters may appear large but this is because they are the sum of the direct and indirect

time elasticities (see Tables 2 and 3). Moreover, negative own and direct time e¤ects

11To enable comparisons we also include in Panels A and B in Figure 1 the labor and capital elasticities
outside the sample mean from the non-spatial frontier model.
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is in line with the negative and signi�cant own time parameter from Kumbhakar and

Wang�s (2005) stochastic production frontier analysis for a sample of 87 countries over

the period 1960� 1987. In our case we almost certainly observe negative time e¤ects for
the hypothetical sample average country because our sample contains a relatively large

number of Eastern European countries which were in the early stages of their transition

to market economies at the beginning of the study period.

Finally, we examine the �ndings for the exogenous z�variables (i.e. the � parameters).
The only exogenous z�variable where the parameter is signi�cant in the non-spatial
frontier model, and the direct and indirect parameters from the Cli¤-Ord type models

are signi�cant is the public sector size variable, z2. We �nd that the own public sector

size parameters (�2 and �
Direct
2 in the non-spatial and Cli¤-Ord type frontier models,

respectively) and the estimates of the spillover public sector size parameter (�Indirect2 ) are

all negative. A signi�cant negative own public sector size parameter is consistent with the

robust negative relationship between government expenditure and growth which Folster

and Henrekson (2001) observe. When the speci�cation of W is W3Near � W7Near, the

estimates of �Direct2 and �Indirect2 range from �1:479 � (�1:343) and �0:541 � (�0:202),
respectively. However, when the speci�cation of the spatial interaction is W3Big �W7Big,

the estimates of �Direct2 range from �1:532 �(�1:268) and the estimates of �Indirect2 are of

the order �1:710�(�1:112). This suggests �rstly, that the estimates of �Direct2 are robust

to the speci�cation ofW . Secondly, it is apparent that the estimates of �Indirect2 very much

depend upon whether the spatial dependence in production is based on economic distance

or a combination of geographical distance and economic distance.

6.3 Estimates of Direct, Indirect and Total Returns to Scale

Before we report and discuss our returns to scale estimates we de�ne direct, indirect

and total returns to scale in the context of our results. Using the own labor and capital

elasticities at the sample mean from the non-spatial frontier model (�1 and �2, respec-

tively) we compute own returns to scale in the usual way. For the i�th unit which uses
its own inputs to produce a single output at time t, own returns to scale at the sample

mean, RTS, can be calculated as follows using the relevant parameters from a non-spatial

production function.

RTSit =
@ ln yit

KP
k=1

@ lnxk;it

�
k=KX
k=1

exk;it; (20)

where exk;it denotes the k�th input elasticity at the sample mean. Using the direct,
indirect and total labor and capital elasticities at the sample mean from the Cli¤-Ord

type frontier models (�Direct1 and �Direct2 , �Indirect1 and �Indirect2 , and �Total1 and �Total2 ,
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respectively) using (20) we calculate direct, indirect and total returns to scale at the

sample mean, which we denote RTSDirect, RTSIndirect and RTSTotal.

RTSDirect from the Cli¤-Ord type frontier models are also own returns to scale. We

distinguish between own returns to scale from the non-spatial frontier model, RTS, and

own returns to scale from a Cli¤-Ord type frontier model, RTSDirect, because the latter

takes into account feedback returns to scale to the i�th unit (i.e. the e¤ect of changing
the scale of inputs in the i�th unit which a¤ects a neighboring unit�s output which in turn
a¤ects the i�th unit�s output), whereas RTS ignores these feedback e¤ects. RTSIndirect

denotes the spillover returns to scale from a Cli¤-Ord type frontier model which in this

application refers to the e¤ect on the i�th unit�s output following a change in the scale
of inputs in the other J units.12 RTSTotal denotes the sum of the direct and indirect

returns to scale from a Cli¤-Ord type frontier model and therefore refers to the e¤ect on

the output of the i�th unit following a change in the scale of inputs in all the units in
the sample.

For the sample average country the estimate of RTS is 0:949 and the estimates of

RTSDirect range from 0:906 � 0:970. We perform one-sided t-tests of own, spillover and

total constant returns to scale.13 The null of the tests for constant own returns to scale is

RTS = 1 or RTSDirect = 1 and the alternative hypothesis since all our estimates indicate

decreasing own returns to scale is RTS < 1 or RTSDirect < 1. The t-test results indicate

that at the 5% level RTS and RTSDirect are not signi�cantly di¤erent from 1.

When the speci�cation of W in the Cli¤-Ord type frontier models is W3Near�W7Near

and W3Big � W7Big the estimates of RTSIndirect for the sample average country range

from 0:131 � 0:369 and 0:788 � 1:213, respectively. The t-tests of constant spillover

returns to scale indicate that production in the sample average country is characterized

by decreasing spillover returns when the speci�cation of W in the Cli¤-Ord type frontier

models is W3Near � W7Near. The estimates of RTSIndirect from the W3Near � W7Near

models with the speci�cation of spatial interaction in parentheses are: 0:131 (W3Near);

0:252 (W4Near); 0:321 (W5Near); 0:325 (W6Near); and 0:369 (W7Near). In contrast, the

t-test results when the speci�cation of W is W3Big�W7Big all suggest that production in

the sample average country is characterized by constant spillover returns to scale.

The estimates of RTSTotal from the Cli¤-Ord type frontier models for the sample

average country range from 1:090�1:316 when the speci�cation ofW isW3Near�W7Near

and are of the order 1:702� 2:135 when the spatial interaction is W3Big�W7Big. A t-test

of constant total returns reveals that RTSTotal from theW3Near model is not signi�cantly

di¤erent from 1. For all the other Cli¤-Ord type frontier models the t-tests indicate that

production in the sample average country is characterized by increasing total returns. The

12Our interpretation of RTSIndirect and hence RTSTotal follows from what we referred to as the
second interpretation of the spillover elasticity from a Cli¤-Ord type frontier model in the discussion of
the estimation results.
13Our test statistics are available from the corresponding author upon request.
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estimates of RTSTotal which are signi�cantly greater than 1 are: 1:222 (W4Near); 1:277

(W5Near); 1:264 (W6Near); 1:316 (W7Near); 1:784 (W3Big); 1:702 (W4Big); 2:135 (W5Big);

2:071 (W6Big); and 1:914 (W7Big):

Summarizing our �ndings from the t-tests of own, spillover and total constant returns

to scale from the Cli¤-Ord type frontier models for the sample average country. We �nd

robust evidence of constant own returns to scale. We also �nd that when the speci�-

cation of the spatial interaction is based on di¤erent measures of economic distance we

consistently observe constant spillover returns but when the spatial interaction is speci�ed

according to various composite measures of geographical distance and economic distance

there is conclusive evidence of decreasing returns. From all but one of the ten Cli¤-Ord

type frontier models we �nd evidence of increasing total returns. Where we �nd constant

spillover returns it follows that the estimates of increasing total returns are larger than

when we observe decreasing spillover returns.

In Appendix A:1 for each country we present various estimates of average returns to

scale outside the sample mean. For 26 of the 40 countries, the estimate of average own

returns to scale from the non-spatial frontier model is below unity indicating decreasing

returns. Average direct returns across theW3Near�W7Near models and across theW3Big�
W7Big models both suggest that there are 26 countries where production is characterized

by decreasing own returns. Considering jointly the average estimates of own and spillover

returns by turning our attention to the average total returns. Average total returns across

theW3Near�W7Near models indicate increasing total returns for 33 countries. The average

total returns across the W3Near �W7Near models and across the W3Big �W7Big models

suggest that specifyingW according to economic distance as opposed to a combination of

geographical distance and economic distance leads to a marked increase in average total

returns. In particular, average total returns across the W3Big �W7Big models indicate

increasing total returns for all 40 countries.

As a �nal point on the estimates of the average own, spillover and total returns to scale

outside the sample mean we discuss the �ndings for individual countries. The rankings of

the average returns in Appendix A.1 are extremely robust. This is evident because there

is perfect positive rank correlation for each pair of average returns in Appendix A.1. The

�ve countries at the top of the rankings for average RTSDirect, average RTSIndirect and

average RTSTotal are: 1: Malta; 2: Iceland; 3: Luxembourg; 4: Cyprus; 5: Estonia. And

the �ve countries at the bottom of the three rankings are: 40: Russia; 39: Germany; 38:

UK; 37: France; 36: Italy. We also note that the correlation between mean real GDP for

a country over the sample period and average RTSDirect, average RTSIndirect or average

RTSTotal is �0:76. What may be reason for this �nding? One possible explanation is a
negative relationship between the size of an economy and the magnitude of the dynamic

gains from trade (Alesina and Wacziarg, 1998, and Alesina et al., 2000).
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6.4 E¢ ciency Results

An e¢ ciency score of 100% would indicate that a country�s output is as high as possible

given its inputs, relative to the other countries in the sample. In Appendix A.2 we

present various average e¢ ciency scores and average e¢ ciency rankings for each country

over the sample period. For each country we also present the minimum and maximum

e¢ ciency score and e¢ ciency ranking across the W3Near �W7Near models and across the

W3Big �W7Big models. Selected average annual e¢ ciency scores are plotted in Figure 2

and selected e¢ ciency distributions are presented in Figure 3.14

[Insert Figures 2 and 3]

To facilitate the discussion the e¢ ciencies from the Cli¤-Ord type frontier models are

compared to the base set of e¢ ciencies from the non-spatial frontier model (Model 1 in

Table 2). The mean e¢ ciency score from the non-spatial frontier model over the sample

period and across the 40 countries is 49%. The corresponding average e¢ ciency scores

from the Cli¤-Ord type frontier models when the spatial interaction is W3Near �W7Near

and W3Big �W7Big are 47% and 40%, respectively. From Figure 2 we can see that the

average annual e¢ ciency from the non-spatial frontier model is, in general, larger than the

average annual e¢ ciencies across theW3Near�W7Near models and across theW3Big�W7Big

models. We can therefore conclude that, in general, the average annual e¢ ciency score

is upwardly biased when spatial spillovers are not taken into account in the production

frontier modeling. In addition, we can see from Figure 2 that over the entire sample

period the average annual e¢ ciency across the W3Big �W7Big models is lower than the

average annual e¢ ciency across the W3Near �W7Near models. This suggests that mean

annual e¢ ciency is lower when W is weighted by economic distance as opposed to a

combination of geographical distance and economic distance.

The correlation between any pair of the following e¢ ciencies is at least 0:90: e¢ cien-

cies from Model 1, the average e¢ ciencies across the W3Near �W7Near models and the

average e¢ ciencies across theW3Big�W7Big models. However, it is apparent from Figure

3 that the distributions of these three sets of e¢ ciencies di¤er. The distributions of the

average e¢ ciencies across the W3Near � W7Near models and across the W3Big � W7Big

models are characterized by moderate multi-modality. In contrast, the distribution of

the e¢ ciency scores from Model 1 is more typical of unimodality.

We conducted ten Kruskal-Wallis tests of the null that the base e¢ ciencies from

Model 1 do not di¤er from the e¢ ciencies from a Cli¤-Ord type frontier model. The null

is rejected at the 1% level when the e¢ ciencies from Model 1 are tested against any of

14To plot the kernel densities in Figure 3 we use the Gaussian density and obtain the bandwidth h
using the Sheather and Jones (1991) solve-the-equation plug-in-approach. To avoid bias problems near
the boundary when estimating the kernel densities the re�ection method is used (see Silverman, 1986,
and Scott, 1992).
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the �ve sets of e¢ ciencies when the spatial interaction is W3Big �W7Big. In general, the

null is accepted at a reasonable level of signi�cance when the e¢ ciencies from Model 1

are tested against a set of e¢ ciencies from the W3Near �W7Near models. The only case

where the null is rejected at a reasonable level of signi�cance is when the e¢ ciencies from

Model 1 are tested against the e¢ ciencies from the W6Near model.

The null of the Kruskal-Wallis test is accepted at a reasonable level of signi�cance

when the e¢ ciencies from theW3Big�W7Big models are tested against one another. This

is also the case for a Kruskal-Wallis test of any pairwise combination of e¢ ciencies from

the W3Near � W7Near models. However, the null of the Kruskal-Wallis test is rejected

at a reasonable level of signi�cance when any of the �ve sets of e¢ ciencies from the

W3Big �W7Big models is tested against the e¢ ciencies from one of the W3Near �W7Near

models.

Univariate e¢ ciency distributions such as those in Figure 3 do not provide any in-

formation about the relative performance of the countries. To shed some light on the

relative performance of the countries we use the contour plots in Figure 4 which relate to

pairwise combinations of: the normalized e¢ ciencies from Model 1; the normalized aver-

age e¢ ciencies across theW3Near�W7Near models; and the normalized average e¢ ciencies

across the W3Big �W7Big models.15 In all three contour plots the countries are highly

concentrated on the diagonal line. This indicates that each set of normalized e¢ ciency

scores is no better or worse than either of the other two sets. We can therefore conclude

that whether/how spatial spillovers are taken into account in the production frontier

modeling has no implications for the relative performance of the countries. We docu-

mented above, however, the implications for the absolute performance of the countries

when spatial dependence is ignored (see the above discussion of Figures 2 and 3).

[Insert Figure 4]

Turning to the average e¢ ciency rankings over the sample period for individual coun-

tries. The non-spatial frontier model and the Cli¤-Ord type frontier models yield a robust

set of average e¢ ciency rankings. For instance, just seven countries are in the bottom

�ve of the average e¢ ciency rankings (Albania; Armenia; Azerbaijan; Belarus; Moldova;

Romania; Ukraine). There is slightly less agreement across the models with regard to

the most e¢ cient countries with ten countries featuring in the top �ve of the average

e¢ ciency rankings (Austria; France; Germany; Greece; Iceland; Italy; Luxembourg; Nor-

way; Sweden; UK). Finding a lot of similarity between the average e¢ ciency rankings

15The contour plots are con�gured using bivariate Gaussian kernels where the bandwidths are calcu-
lated using the solve-the-equation plug-in approach for a bivariate Gaussian kernel à la Wand and Jones
(1994). Prior to the con�guration of the contour plots, the e¢ ciency scores are normalized relative to
the mean. The contour plots of the e¢ ciency scores from Model 1 against the scores from the individual
Cli¤-Ord type frontier models are very similar to one another. Hence why Figure 4 relates to two sets
of average e¢ ciencies from the Cli¤-Ord type frontier models.
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from the non-spatial frontier model and the Cli¤-Ord type frontier models is consistent

with the above discussion of Figure 4 (i.e. ignoring spatial dependence has very little

impact on the relative performance of the countries). Finally, we note that the average

e¢ ciency rankings from the non-spatial frontier model and the Cli¤-Ord type frontier

models are to a large extent in line with what we expected. In particular, we would

expect the majority of the above countries to be at the top and bottom of the average ef-

�ciency rankings because of their geographical location and their tendency to have mean

real income per capita in the top and bottom thirds of the sample.

7 Concluding Remarks and Further Work

In this paper we have blended seminal early work in spatial econometrics with a notable

contribution on parametric e¢ ciency estimation using panel data. Speci�cally, we in-

troduce a spatial autoregressive frontier model by combining the spatial autoregressive

model (Cli¤ and Ord, 1973; 1981) and the CSS approach to estimate time-varying e¢ -

ciency from the unit speci�c e¤ects. For some time Druska and Horrace�s (2004) analysis

of Indonesian rice farm production using a GMM spatial error frontier model has been

the only major contribution to the literature on spatial frontier modeling. Our study

represents a further contribution to this literature.

We applied our model to a classic case of aggregate country production in Europe for

the period 1995 � 2008. The e¢ ciency rankings from our �tted Cli¤-Ord type frontier

models are plausible because they are broadly in line with our expectations, with the best

performing countries tending to be from Northern and Western Europe and the worst

performing countries are predominantly Eastern European.

The �tted Cli¤-Ord type frontier models were used in a Bayesian MCMC experiment

to simulate the average own, spillover and total marginal e¤ects, and the associated

t�statistics. Using these average marginal e¤ects we explored a new line of enquiry for
productivity analysis. In particular, we calculate three new measures of returns to scale

(own, spillover and total returns). There are other new lines of enquiry for productivity

analysis using the own, spillover and total marginal e¤ects. For instance, a logical piece of

further work would be to extend the parametric Malmquist TFP growth decomposition

to include own and spillover components (e.g. own and spillover scale e¤ects).

Acknowledgements

The authors would like to thank Tom Weyman-Jones for constructive comments on an

earlier draft of this paper.

21



References
Alesina A, Spolaore E, Wacziarg R. 2000. Economic integration and political disintegration.

American Economic Review 90: 1276-1296.
Alesina A, Wacziarg R. 1998. Openness, country size and government. Journal of Public Eco-

nomics 69: 305-321.
Anselin L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer.
Arpaia A, Pérez E, Pichelmann K. 2009. Understanding labour income share dynamics in

Europe. European Economy Economic Paper 379, Directorate-General for Economic and Financial
A¤airs, European Commission.

Cliff A, Ord J. 1973. Spatial Autocorrelation. London: Pion.
Cliff A, Ord J. 1981. Spatial Processes, Models and Applications. London: Pion.
Cornwell C, Schmidt P, Sickles RC. 1990. Production frontiers with cross-sectional and time-

series variation. Journal of Econometrics 46:185-200.
Drukker D, Egger P, Prucha I. 2012. On two-step estimation of a spatial autoregressive model

with autoregressive disturbances and endogenous regressors. Forthcoming in Econometric Reviews.
Druska V, Horrace WC. 2004. Generalized moments estimation for spatial panel data: Indone-

sian rice farming. American Journal of Agricultural Economics 86: 185-198.
Elhorst JP. 2009. Spatial panel data models. In Handbook of Applied Spatial Analysis, Fischer

MM, Getis A (eds). Berlin/Heidelberg/New York: Springer.
Elhorst JP, Freret S. 2009. Evidence of political yardstick competition in France using a two-

regime spatial Durbin model with �xed e¤ects. Journal of Regional Science 49: 931-951.
Elhorst JP. 2010. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis 5:

9-28.
Elhorst JP. 2011. MATLAB software for spatial panels. Mimeo.
Folster S, Henrekson M. 2001. Growth e¤ects of government expenditure and taxation in rich

countries. European Economic Review 45:1501-1520.
Heston A, Summers R, Aten B. 2011. Penn World Table Version 7.0. Center for International

Comparisons of Production, Income and Prices, University of Pennsylvania.
Kapoor M, Kelejian H, Prucha I. 2007. Panel data models with spatially correlated error

components. Journal of Econometrics 140: 97-130.
Kelejian H, Prucha I. 1998. A generalized spatial two stage least squares procedure for estimating

a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and
Economics 17: 99-121.

Kelejian H, Prucha I. 1999. A generalized moments estimator for the autoregressive parameter
in a spatial model. International Economic Review 40: 509-533.

Kelejian H, Prucha I. 2004. Estimation of simultaneous systems of spatially interrelated cross
sectional equations. Journal of Econometrics 118: 27-50.

Kelejian H, Prucha I. 2010. Speci�cation and estimation of spatial autoregressive models with
autoregressive and heteroskedastic disturbances. Journal of Econometrics 157: 53-67.

Kneip, A, Sickles RC, Song, WH. 2012. A new panel data treatment for heterogeneity in time
trends. Econometric Theory 28: 590-628.

Kumbhakar SC, Wang H-J. 2005. Estimation of growth convergence using a stochastic production
frontier approach. Economics Letters 88: 300-305.

Lee L-F. 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial au-
toregressive models. Econometrica 72: 1899-1925.

Lee L-F, Yu J. 2010. Estimation of spatial autoregressive panel data models with �xed e¤ects.
Journal of Econometrics 154: 165-185.

LeSage J, Pace RK. 2009. Introduction to Spatial Econometrics. Boca Raton, Florida: CRC
Press, Taylor and Francis Group.

Schmidt AM, Moreira ARB, Helfand S, Fonseca TCO. 2009. Spatial stochastic frontier
models: Accounting for unobserved local determinants of ine¢ ciency. Journal of Productivity Analysis
31: 101-112.

Schmidt P, Sickles RC. 1984. Production frontiers and panel data. Journal of Business and
Economic Statistics 2: 367-374.

Scott DW. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. New
York: Wiley.

Sheather SJ, Jones MC. 1991. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society: Series B 53: 683�690.

22



Silverman BW. 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall:
London.

Wand MP, Jones MC. 1994. Multivariate plug-in bandwidth selection. Computational Statistics,
9: 97�116.

23



Figure 1: Average capital and labor elasticities (eK and eL) outisde the sample mean
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Figure 2: Average annual technical e¢ ciency scores

Figure 3: Kernel densities for three sets of e¢ ciency scores
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Figure 4: Contour plots of normalized e¢ ciency scores
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Table 1: Summary statistics
Variable Mean St.Dev. Min Max

Real GDP (millions) y 391; 000 618; 000 5; 877 2; 800; 000
Labor (000s) x1 9; 338 14; 212 139 75; 730
Real capital stock (billions) Dep Rate=6% x2 48; 100 85; 000 179 513; 000
Sum of exports and imports as a share z1 0:92 0:44 0:29 3:24
of GDP i.e. trade openness
Government spending as a share of GDP z2 0:09 0:03 0:05 0:16
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Table 2: Base Non-Spatial Frontier Model and Selected W Near Frontier Models

Variable Parameter
Model 1�
No Spatial
Dependence

Model 2
W3Near

Model 3
W5Near

Model 4
W7Near

Coef t-stat Coef t-stat Coef t-stat Coef t-stat
lnx1 �1 0.669*** 9.10

�Direct1 0.686*** 9.04 0.685*** 9.71 0.680*** 9.69
�Indirect1 0.094** 2.74 0.230*** 4.29 0.266*** 4.13
�Total1 0.781*** 8.15 0.916*** 8.50 0.945*** 8.03

lnx2 �2 0.280*** 11.81
�Direct2 0.272*** 11.21 0.271*** 11.13 0.267*** 11.46
�Indirect2 0.037** 3.12 0.091*** 4.83 0.103*** 5.05
�Total2 0.309*** 11.54 0.361*** 10.68 0.370*** 11.34

(lnx1)2 �3 -0.003 -0.11
�Direct3 -0.001 -0.02 -0.010 -0.45 -0.011 -0.47
�Indirect3 0.000 0.00 -0.004 -0.44 -0.004 -0.45
�Total3 -0.001 -0.02 -0.014 -0.45 -0.015 -0.47

(lnx2)2 �4 0.035*** 4.13
�Direct4 0.030*** 3.50 0.026** 2.82 0.022* 2.51
�Indirect4 0.004* 2.38 0.009* 2.57 0.008* 2.35
�Total4 0.034*** 3.52 0.034** 2.85 0.030* 2.54

lnx1 lnx2 �5 -0.094*** -4.70
�Direct5 -0.079*** -3.90 -0.067** -3.25 -0.060** -2.98
�Indirect5 -0.011* -2.50 -0.022** -2.85 -0.023** -2.71
�Total5 -0.090*** -3.93 -0.090** -3.27 -0.083** -3.02

t �6 -0.008* -2.21
�Direct6 -0.011** -3.27 -0.015*** -4.22 -0.015*** -4.47
�Indirect6 -0.001* -2.09 -0.005** -2.90 -0.006** -3.06
�Total6 -0.012** -3.20 -0.020*** -3.96 -0.020*** -4.19

t2 �7 0.006*** 16.44
�Direct7 0.006*** 14.19 0.006*** 13.47 0.005*** 12.56
�Indirect7 0.001** 3.19 0.002*** 5.33 0.002*** 5.51
�Total7 0.007*** 15.22 0.007*** 14.08 0.007*** 13.95

lnx1t �8 0.027*** 8.63
�Direct8 0.024*** 7.37 0.021*** 6.60 0.020*** 6.08
�Indirect8 0.003** 3.02 0.007*** 4.44 0.008*** 4.39
�Iotal8 0.027*** 7.56 0.028*** 6.75 0.027*** 6.31

lnx2t �9 -0.024*** -8.22
�Direct9 -0.021*** -7.34 -0.019*** -6.44 -0.017*** -5.90
�Indirect9 -0.003** -2.96 -0.006*** -4.40 -0.007*** -4.25
�Total9 -0.024*** -7.45 -0.026*** -6.59 -0.024*** -6.06

z1 �1 -0.018 -0.66
�Direct1 -0.008 -0.28 -0.011 -0.42 -0.011 -0.43
�Indirect1 -0.001 -0.22 -0.003 -0.39 -0.004 -0.41
�Total1 -0.008 -0.28 -0.014 -0.42 -0.015 -0.43

z2 �2 -1.644*** -4.25
�Direct2 -1.479*** -3.93 -1.359*** -3.67 -1.389*** -3.64
�Indirect2 -0.202* -2.29 -0.455** -2.96 -0.541** -2.83
�Total2 -1.681*** -3.86 -1.814*** -3.63 -1.930*** -3.54

z3 �3 0.021 1.63
�Direct3 0.021 1.66 0.023 1.87 0.026* 2.09
�Indirect3 0.003 1.41 0.008 1.67 0.010 1.84
�Total3 0.024 1.65 0.031 1.85 0.036* 2.05PN

j=1 wijyjt � - - 0.121** 3.27 0.258*** 6.33 0.287*** 6.78

Log-likelihood 814.87 822.55 824.13

Note: *, **, *** denote statistical signi�cance at the 5%, 1% and 0.1% levels, respectively.
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Table 3: Selected W Big Frontier Models

Variable Parameter
Model 5
W3Big

Model 6
W5Big

Model 7
W7Big

Coef t-stat Coef t-stat Coef t-stat
lnx1 �Direct1 0.630*** 9.08 0.658*** 8.85 0.673*** 9.42

�Indirect1 0.612*** 5.43 0.867*** 5.44 0.698*** 5.10
�Total1 1.241*** 7.42 1.524*** 7.05 1.371*** 7.29

lnx2 �Direct2 0.276*** 11.69 0.264*** 11.54 0.267*** 11.30
�Indirect2 0.267*** 7.19 0.346*** 7.33 0.276*** 6.70
�Total2 0.543*** 10.79 0.611*** 10.40 0.543*** 10.46

(lnx1)2 �Direct3 -0.038 -1.60 -0.032 -1.41 -0.029 -1.31
�Indirect3 -0.037 -1.55 -0.043 -1.38 -0.030 -1.26
�Total3 -0.074 -1.59 -0.075 -1.40 -0.060 -1.30

(lnx2)2 �Direct4 0.012 1.48 0.015 1.75 0.018* 2.11
�Indirect4 0.012 1.48 0.019 1.74 0.018* 2.03
�Total4 0.024 1.49 0.033 1.76 0.036* 2.10

lnx1 lnx2 �Direct5 -0.048* -2.48 -0.049* -2.52 -0.057** -2.94
�Indirect5 -0.046* -2.44 -0.064* -2.46 -0.059** -2.71
�Total5 -0.094* -2.50 -0.113* -2.53 -0.116** -2.90

t �Direct6 -0.019*** -6.00 -0.020*** -6.38 -0.019*** -6.09
�Indirect6 -0.019*** -4.41 -0.026*** -4.70 -0.020*** -4.34
�Total6 -0.038*** -5.38 -0.047*** -5.62 -0.039*** -5.43

t2 �Direct7 0.005*** 12.13 0.005*** 12.23 0.005*** 12.35
�Indirect7 0.005*** 8.07 0.006*** 8.09 0.005*** 7.22
�Total7 0.009*** 12.50 0.011*** 11.91 0.010*** 12.01

lnx1t �Direct8 0.017*** 5.70 0.018*** 5.86 0.020*** 6.46
�Indirect8 0.017*** 4.89 0.023*** 4.97 0.020*** 4.78
�Total8 0.034*** 5.64 0.041*** 5.69 0.040*** 6.01

lnx2t �Direct9 -0.013*** -4.63 -0.014*** -5.15 -0.016*** -5.83
�Indirect9 -0.012*** -4.28 -0.019*** -4.56 -0.017*** -4.55
�Total9 -0.025*** -4.68 -0.033*** -5.07 -0.033*** -5.53

z1 �Direct1 -0.020 -0.78 -0.008 -0.33 -0.008 -0.32
�Indirect1 -0.019 -0.77 -0.011 -0.32 -0.008 -0.31
�Total1 -0.039 -0.78 -0.019 -0.32 -0.016 -0.31

z2 �Direct2 -1.532*** -4.23 -1.299*** -3.44 -1.268*** -3.41
�Indirect2 -1.491*** -3.50 -1.710** -3.08 -1.314** -2.98
�Total2 -3.023*** -3.97 -3.009*** -3.31 -2.582** -3.28

z3 �Direct3 0.029* 2.42 0.025* 2.03 0.024 1.97
�Indirect3 0.028* 2.23 0.034 1.90 0.025 1.81
�Total3 0.057* 2.36 0.059 1.98 0.049 1.91PN

j=1 wijyjt � 0.501*** 14.01 0.579*** 17.25 0.520*** 13.15

Log-likelihood 837.47 841.59 831.72

Note: *, **, *** denote statistical signi�cance at the 5%, 1% and 0.1% levels, respectively.
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A Appendix

A.1 Average Returns to Scale (RTS): 1995-2008

Model 1�
No Spatial
Dependence

Average:
W3Near �W7Near

Average:
W3Big �W7Big

Country Average RTS Average RTS Average RTS
Total Direct Indirect Total Direct Indirect

Albania 1.098 1.393 1.078 0.315 2.254 1.085 1.170
Armenia 1.106 1.399 1.082 0.316 2.265 1.090 1.175
Austria 0.916 1.203 0.931 0.272 1.855 0.892 0.963
Azerbaijan 0.993 1.277 0.988 0.289 2.006 0.965 1.041
Belarus 0.938 1.220 0.944 0.276 1.886 0.907 0.979
Belgium 0.899 1.185 0.917 0.268 1.815 0.873 0.942
Bulgaria 0.983 1.269 0.982 0.287 1.989 0.957 1.032
Croatia 1.026 1.318 1.020 0.298 2.098 1.009 1.089
Cyprus 1.200 1.507 1.166 0.341 2.503 1.204 1.298
Czech Republic 0.899 1.183 0.915 0.268 1.809 0.870 0.939
Denmark 0.960 1.250 0.967 0.283 1.954 0.940 1.014
Estonia 1.159 1.462 1.131 0.331 2.405 1.157 1.248
Finland 0.976 1.267 0.980 0.287 1.990 0.957 1.033
France 0.683 0.950 0.735 0.215 1.313 0.630 0.682
Germany 0.637 0.901 0.697 0.204 1.208 0.580 0.628
Greece 0.910 1.195 0.925 0.271 1.837 0.883 0.954
Hungary 0.932 1.218 0.942 0.276 1.883 0.906 0.978
Iceland 1.312 1.630 1.261 0.369 2.767 1.332 1.435
Ireland 1.015 1.309 1.013 0.296 2.081 1.001 1.080
Italy 0.695 0.964 0.746 0.218 1.343 0.645 0.698
Latvia 1.106 1.403 1.086 0.317 2.278 1.096 1.182
Lithuania 1.058 1.351 1.045 0.306 2.165 1.042 1.124
Luxembourg 1.233 1.546 1.196 0.350 2.588 1.246 1.342
Macedonia 1.145 1.445 1.118 0.327 2.366 1.139 1.228
Malta 1.319 1.637 1.267 0.370 2.781 1.339 1.442
Moldova 1.077 1.367 1.058 0.309 2.198 1.057 1.140
Netherlands 0.833 1.112 0.860 0.252 1.659 0.798 0.862
Norway 0.977 1.269 0.982 0.287 1.996 0.960 1.036
Poland 0.765 1.036 0.801 0.234 1.493 0.718 0.776
Portugal 0.891 1.174 0.908 0.266 1.791 0.861 0.930
Romania 0.832 1.106 0.856 0.250 1.643 0.790 0.854
Russian Fed 0.597 0.853 0.660 0.193 1.103 0.529 0.574
Slovakia 0.990 1.280 0.990 0.290 2.016 0.970 1.046
Slovenia 1.096 1.396 1.080 0.316 2.266 1.090 1.176
Spain 0.728 1.000 0.773 0.226 1.419 0.682 0.737
Sweden 0.910 1.195 0.925 0.270 1.836 0.883 0.953
Switzerland 0.904 1.191 0.921 0.269 1.828 0.879 0.949
Turkey 0.722 0.989 0.765 0.224 1.393 0.669 0.724
Ukraine 0.754 1.020 0.789 0.231 1.457 0.700 0.757
UK 0.682 0.949 0.734 0.215 1.310 0.629 0.681
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A.2 Average E¢ ciency Scores: 1995-2008

Model 1�
No Spatia l
D ep endence

Average:
W3Near �W7Near

Average:
W3Big �W7Big

Country Av. E¤. Rank Av. E¤. Score (%) Rank Av. E¤. Score (%) Rank
Score (%) Mean M in. M ax. M ean M in. M ax. M ean M in. M ax. M ean M in. M ax.

A lban ia 14.9 37 14.2 11.7 18.2 37 37 38 13.0 12.4 14.1 37 37 37
Armenia 11.8 39 12.0 11.1 13.8 38 37 39 10.3 9.9 11.0 39 38 40
Austria 59.9 13 61.1 39.7 79.2 13 4 21 39.3 37.6 40.8 17 17 18
Azerbaijan 13.4 38 11.8 10.2 12.8 38 37 39 10.5 9.6 11.1 38 38 39
Belarus 23.1 35 21.9 15.9 26.3 35 34 35 16.7 16.0 17.6 35 34 36
Belg ium 63.3 12 49.0 42.8 55.6 16 13 18 49.3 45.2 52.4 11 11 12
Bulgaria 27.7 32 32.5 31.0 34.9 29 27 31 19.5 17.7 21.7 33 33 33
Croatia 30.4 30 34.2 26.9 40.9 30 27 33 23.4 18.4 25.9 31 30 32
Cyprus 46.2 20 47.9 44.7 51.4 16 14 19 36.9 35.4 42.3 19 15 21
Czech Republic 43.4 21 33.0 30.1 36.0 29 28 30 32.6 31.3 33.8 24 21 25
Denmark 56.3 15 46.7 43.0 49.9 18 17 20 47.8 44.2 51.6 13 12 14
Eston ia 35.2 28 42.7 37.8 45.7 22 19 26 42.2 34.4 50.6 16 11 20
F in land 55.1 16 64.5 59.3 68.6 10 9 12 45.8 44.6 48.4 14 12 15
France 90.9 4 76.0 67.5 79.8 6 3 10 77.7 74.5 82.4 4 2 5
Germany 99.1 1 96.1 90.3 100.0 2 1 2 100.0 100.0 100.0 1 1 1
G reece 53.2 18 68.9 61.1 80.1 9 5 12 33.9 32.5 35.1 22 21 23
Hungary 41.4 23 46.6 43.3 49.8 18 16 21 27.3 26.7 28.4 27 27 28
Iceland 81.5 6 72.4 66.6 77.2 7 4 10 82.4 79.3 84.6 3 2 5
Ireland 58.4 14 42.2 37.5 48.4 24 18 26 36.9 35.9 37.3 19 18 20
Ita ly 83.3 5 98.7 96.8 100.0 1 1 2 63.3 60.8 67.5 7 7 8
Latvia 30.1 31 42.4 37.6 47.4 22 20 27 42.4 33.9 47.0 16 14 20
L ithuania 31.9 29 39.2 34.2 42.0 26 22 30 24.4 22.2 25.2 30 29 31
Luxembourg 93.9 2 77.5 64.2 90.8 5 3 8 78.7 76.0 80.1 4 3 4
Macedonia 24.1 33 29.6 27.7 32.8 32 28 34 22.6 18.9 25.3 31 29 32
Malta 68.2 9 44.5 38.5 51.7 21 15 25 39.4 37.8 41.1 17 16 18
Moldova 7.6 40 8.9 8.1 9.5 40 40 40 9.4 8.7 11.4 40 38 40
Netherlands 80.0 7 60.3 53.4 70.8 11 8 13 58.5 56.5 63.2 9 9 10
Norway 69.9 8 69.8 61.4 83.5 8 4 11 73.0 68.0 79.7 6 4 6
Poland 41.4 22 31.8 27.8 43.2 30 22 33 27.3 26.1 28.4 27 26 28
Portugal 35.3 27 27.0 25.0 29.6 34 32 35 25.3 24.6 26.0 30 29 31
Romania 23.5 34 31.9 29.4 38.3 31 29 33 16.6 15.0 17.6 35 34 36
Russian Fed 54.7 17 62.6 51.6 69.8 11 6 16 59.4 56.0 61.8 9 8 10
S lovakia 37.7 26 39.5 32.6 43.9 25 21 29 34.5 32.3 37.7 21 19 23
S loven ia 40.7 24 43.1 34.6 51.0 21 15 27 31.2 27.5 34.0 24 23 26
Spain 67.6 10 50.3 47.1 54.7 15 14 19 47.1 44.4 49.2 13 12 15
Sweden 64.2 11 76.3 69.1 80.6 6 3 9 62.9 57.0 67.7 8 7 10
Sw itzerland 50.2 19 40.5 38.3 43.2 25 23 28 32.1 30.8 33.9 24 22 25
Turkey 40.0 25 48.3 39.9 54.6 17 13 24 28.1 27.4 29.8 26 25 27
Ukraine 19.9 36 20.0 15.1 23.2 36 36 36 16.3 15.5 17.2 35 35 36
UK 92.5 3 76.4 69.4 81.2 5 4 7 79.5 74.9 85.8 4 2 6
Av E¤ Sc 49.0 47.3 40.4
St Dev E¤ Sc 24.7 22.4 22.8
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