
Linearity-Generating Processes, Unspanned Stochastic Volatility,
and Interest-Rate Option Pricing

Peter Carr

Bloomberg LP and Courant Institute, New York University

Xavier Gabaix

Stern School of Business, New York University

Liuren Wu

Zicklin School of Business, Baruch College, CUNY

ABSTRACT

We propose to use the linearity-generating framework to accommodate the evidence of unspanned

stochastic volatility: Variations in implied volatilities on interest-rate options such as caps and swap-

tions are independent of the variations on the interest rateterm structure. Under this framework, bond

valuation depends only on the transition dynamics of interest-rate factors, but not on their volatilities.

Thus, interest-rate volatility is truly unspanned. Furthermore, this framework allows tractable pricing of

options on any bond portfolios, including both caps and swaptions. This feat is not possible under ex-

isting exponential-affine or quadratic frameworks. Finally, the framework allows sequential estimation

of the interest-rate term structure and the interest-rate option implied volatility surface, thus facilitating

joint empirical analysis. Within this framework, we perform specification analysis on interest-rate factor

transition dynamics and its relation to the interest-rate term structure; we also analyze the interest-rate

volatility dynamics and its impact on interest-rate optionpricing. We estimate several specifications for

the transition dynamics to ten years worth of U.S. dollar LIBOR and swap rates across 15 maturities. We

also estimate several interest-rate volatility dynamics specifications using ten years of swaption implied

volatilities across a matrix of ten option maturities and seven swap tenors. The estimation results show

that the volatility dynamics dictate the option implied volatility variation along the option maturity di-

mension, whereas the interest-rate transition dynamics dictate the implied volatility variation along the

underlying swap maturity dimension.
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Under classic one-factor interest-rate models such as Vasicek (1977) or Cox, Ingersoll, and Ross (1985),

the different parts of the interest-rate term structure aretightly linked to the short-term interest rate dynamics

under the so-called risk-neutral measure. The short rate level determines the short end of the yield curve,

the risk-neutral mean of the short rate determines the long end of the yield curve. The speed with which

shocks to the short rate transmit to long rates is controlledby the risk-neutral mean reversion speed of the

short rate. Finally, the curvature of the yield curve is determined by the short rate volatility.

During the past decade, term structure modeling with multi-dimensional risk structures has developed

rapidly. Prominent examples include the exponential affineclass of Duffie, Pan, and Singleton (2000), under

which zero-coupon bond prices are exponential affine in the state vector, and the exponential quadratic class

of Leippold and Wu (2003), where zero-coupon bond prices areexponential quadratic functions of the state

vector. Despite the rapid development and multi-dimensional extension, the simple intuition from the classic

one factor models remains as the guiding yardstick in designing or explaining the different roles played by

different interest-rate factors.

The intuition is challenged, however, when a few studies, e.g., Collin-Dufresne and Goldstein (2002)

and Heidari and Wu (2003), find that a large proportion of the movements in the interest-rate option implied

volatilities are independent of the factors identified fromthe yield curve, a phenomenon labeled as “un-

spanned stochastic volatility.” At-the-money option implied volatilities approximate well the risk-neutral

expected value of the underlying asset return volatility (Carr and Wu (2006)). Intuition from the classic

models suggests that interest-rate volatility variation should show up on the yield curve as variation in the

yield curve curvature. It is difficult to reconcile the independent movements with most existing modeling

approaches, except under specific parametric constraints (Collin-Dufresne and Goldstein (2002)). Probably

related to the unspanned volatility phenomenon, researchers have found that dynamic term structure models

that price the term structure well generate very poor performance in pricing and hedging interest-rate options

(Dai and Singleton (2003), Li and Zhao (2006), and Heidari and Wu (2008)).

Most recently, Gabaix (2007) develops a new class of asset pricing models, under which bond prices

are linear in a set of yield curve factors. This linearity feature has profound implications that are drastically

different from the above-discussed classic models. In particular, the linear relation between bond prices and

the yield curve factors dictates that only the risk-neutraldrift, or the transition dynamics, of the interest-rate
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factors enter the bond pricing equation but that neither volatilities of these factors nor the volatility dynamics

affect bond pricing. Therefore, if these factors show stochastic volatility, these stochastic volatilities are truly

unspanned and completely un-identified from the yield curve.

Another important implication of the linear structure is that both coupon bonds and swap rates are also

linear in the state vector. If one can price an option on a zero-coupon bond, pricing an option on a coupon

bond or a swap is equally tractable. This is not the case for the exponential affine or quadratic class. Re-

searchers often resort to different dynamics specifications for pricing caps and floors, which are essentially

options on zero-coupon bond, than for pricing swaptions; orone must resort to linear approximations to

retain tractability (Heidari, Hirsa, and Madan (2007) and Schrager and Pelsser (2006)). By starting with a

linearity-generating process, we remove the need for linear approximation on the pricing relation and cir-

cumvent the concern on internal consistency when differentdynamics or different approximations are used

to price different contracts.

Finally, the feature that interest-rate volatilities and their dynamics do not show up in bond pricing but

show up in interest-rate options leads naturally to a two-step sequential estimation procedure, under which

one can identify the interest-rate transition dynamics from the interest-rate term structure during the first

step and then identify the interest-rate volatility dynamics from the interest-rate options during a second

step. The sequential estimation breaks a large identification problem into smaller, manageable levels and

thus facilitates a joint analysis of both interest-rate term structure and interest-rate options.

In this paper, we work within the linearity-generating framework and perform specification analysis on

(i) the interest-rate factor transition dynamics and its relation to the interest-rate term structure, and (ii) the

interest-rate volatility dynamics and its impact on interest-rate option pricing. Then, we estimate several

specifications for the interest-rate factor transition dynamics using ten years worth of U.S. dollar LIBOR

and swap rates across 15 maturities, and we also estimate several interest-rate volatility dynamics specifi-

cations using ten years of swaption implied volatilities across a matrix of ten option maturities and seven

swap tenors. The sequential procedure and the large amount of data enables us to identify the transition

and volatility dynamics accurately. The estimation results show that the volatility dynamics dictate the op-

tion implied volatility variation along the swaption maturity dimension, whereas the interest-rate transition

dynamics dictate the implied volatility variation along the underlying swap maturity dimension.
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The remaining of the paper is organized as follows. The next section performs specification analysis

on the linearity-generating framework. We start with a one-factor example to illustrate the intuition and

the general ideas, and then proceed to define an(m+ n) factor structure that includes anm-dimensional

transition matrix to determine the interest-rate term structure and ann-dimensional stochastic volatility

dynamics to govern the swaption implied volatility surface. We clarify the identification conditions under

such a generic factor structure. Section 2 analyzes the dataon LIBOR, swap rates, and swaption implied

volatilities. Section 3 describes the two-step sequentialestimation procedure for identifying the transition

dynamics and volatility structures. Section 4 discusses the estimation results on the first-stage estimation and

the interest-rate term structure variation. Section 5 analyzes the option pricing estimation results. Section 6

concludes.

1. Linearity-generating processes and unspanned volatility

We fix a filtered complete probability space{Ω,F ,P,(Ft)0≤t≤T } satisfying the usual technical conditions

with T being some finite, fixed time. For any timet ∈ [0,∞) and an expiry dateT ≥ t, we useP(t,T) to

denote the time-t value of a zero-coupon bond with time-to-maturityτ = T − t. The instantaneous interest

rate, or the short rate,r, is defined by continuity:

rt ≡ lim
T↓t

− lnP(t,T)

T − t
. (1)

We assume no arbitrage in the economy. Then, under certain technical conditions, there exists at least one

strictly positive stochastic processMt , which we call thestate price deflator, such that the deflated gains

process associated with any admissible trading strategy isa martingale (Cochrane (2004), Duffie (1992),

Harrison and Kreps (1979)). In particular, time-t fair value of a claim to a terminal payoffΠT at timeT > t

can be written as

V(t,T) = Et

[
MT

Mt
ΠT

]
, (2)

whereEt [·] denotes the expectation operator conditional on filtrationFt and under measureP.
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This stochastic processMt is unique when the market is complete. The ratio ofM at two time horizons

Mt,T = MT/Mt is referred to as the stochastic discount factor or the pricing kernel. The state price deflator

is related to the instantaneous interest rate by

dMt/Mt = −rtdt− γ(Z)⊤dZt , (3)

whereZt represents the risk sources of the economy andγ(Zt) measures the market prices of these economic

risks. We can also write the state price deflator via the following multiplicative decomposition,

Mt = M0exp

(
−
∫ t

0
rsds

)
E

(
−
∫ t

0
γ(Zs)dZs

)
, (4)

whereE(·) denotes the stochastic exponential martingale operator (Jacod and Shiryaev (1987) and Rogers

and Williams (1987)). The exponential martingale defines the Radon-Nikodým derivative that transforms

the statistical measureP to the risk-neutral measureQ, under which the contingent claim valuation can be

written as,

V(t,T) = E
Q
t

[
exp

(
−
∫ T

t
rsds

)
ΠT

]
. (5)

In what follows, we first use a one-factor example to illustrate the intuition and the general idea behind

the linearity-generating framework. We then perform specification analysis on (i) the interest-rate transition

dynamics and the impact on bond pricing and (ii) the interest-rate volatility dynamics and the effect on

option pricing.

1.1. A one-factor example

Let rt = θr + xt , with θr being the long-run risk-neutral mean of the short rate andxt denoting a zero-

mean random process that captures the short rate gap from itslong-run mean. Gabaix (2007) proposes the

following Q-dynamics forxt ,

dxt = −xt (κ−xt)dt+dnt (6)
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wherent denotes the martingale component. Under this dynamics specification, the value of the zero-coupon

bondP(t,T) is affine inxt ,

P(t,T) = E
Q
t

[
exp

(
−
∫ T

t
rsds

)]
= e−θrτ

(
1− 1−e−κτ

κ
xt

)
, τ = T − t. (7)

The bond value depends on the long-run mean of the short rateθr , the drift coefficientκ that controls

the transition dynamics of the short rate, and the current level of short-rate gapxt . However, the pricing

equation does not depends on the specification of the martingale componentnt and hence does not depend

on the interest-rate volatility dynamics.

The linear pricing structure in equation (7) has important implications. First, even if the short rate shows

stochastic volatility, its variation will not show up in theterm structure of interest rates. In this sense, the

interest-rate volatility is truly unspanned by the interest-rate term structure, a phenomenon that has been

documented empirically by Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Li and Zhao

(2006), and Heidari and Wu (2008). Second, the linear structure also suggests that all simply compounded

rates and all coupon bonds are also linear in the short-rate gap factorxt .

It is also helpful to consider an alternative representation of the economy,

Yt =


1− xt

κ

xt
κ


Mt , (8)

whereMt denotes the state price deflator. Then, we can show (in Appendix A) that theP-dynamics ofYt is

governed by a diagonal transition matrixA,

Et [dYt ] = −AYtdt, with A =


θr 0

0 κ+ θr


 . (9)

Hence, we can solve the conditional expectations ofYT via the matrix exponential of the transition matrix,

Et [YT ] = e−AτYt = e−θr τ


1− xt

κ

e−κτ xt
κ


Mt . (10)
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Furthermore, we can write the state price deflator asMt = ν⊤Yt , with ν⊤ = (1,1). Thus, using the result

in (10), we can derive the zero-coupon bond prices directly by taking expectations on the pricing kernel

under the statistical measureP,

P(t,T) = Et

[
MT
Mt

]
= 1

Mt
Et [ν′YT ] = 1

Mt
ν′e−AτYt = e−θr τ

(
1− 1−e−κτ

κ xt

)
, (11)

which is identical to the bond pricing solution in (7).

Although the martingale component does not affect the bond pricing equation, it does affect the pricing

of interest-rate options. To price interest-rate options tractably, instead of directly specifying the martingale

component in the short rate dynamics, we start with specifications on the innovation of the transformed

vectorYt . One simple specification can be,

Yt = e−θrt


 α0 + β0Zt

e−κt (α1 + β1Zt)


 , (12)

where(α0,α1,β0,β1) are scaling coefficients andZt denotes a non-negative martingale starting atZ0 = 1.

With this specification, we have the state price deflator as,

Mt = ν′Yt = e−θrt
(
α0 + β0Zt +e−κt (α1 + β1Zt)

)
, (13)

and in the form of stochastic differential equation,

dMt/Mt = −rtdt− γ(Zt)dZt , (14)

where the market price ofZ risk is given by

γ(Z) = − (β0 +e−κtβ1)

(α0 + β0Zt)+e−κt (α1 + β1Zt)
. (15)

To guarantee the positivity of the deflator for allt, we constraintα0 > 0,β0 ≥ 0,β1 ≥ 0, α0+α1 ≥ 0. Hence,

the market price of risk is negative.
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From (13), we can derive the zero-coupon bond value as,

P(t,T) = Et

[
MT
Mt

]
= 1

Mt
e−θr T

(
α0 + β0Zt +e−κT(α1 + β1Zt)

)

= e−θrτ
(

1− 1−eκτ

κ
κe−κt (α1+β1Zt)

α0+β0Zt+e−κt(α1+β1Zt)

)
.

(16)

Comparing (7) with (16), we havext related toZt by

xt =
κe−κt(α1 + β1Zt)

α0 + β0Zt +e−κt(α1 + β1Zt)
. (17)

Appendix A shows that thext dynamics is consistent with the specification in equation (6) under the risk-

neutral measureQ, with the martingale component given by

dnt =
(xmax(t)−xt)(xt −xmin(t))

(xmax(t)−xmin (t))
dZt

Zt
, (18)

wherexmax andxmin define the maximum and minimum values forxt ,

xmax(t) =
κe−κtβ1

β0 +e−κtβ1
, xmin (t) =

κe−κtα1

α0 +e−κtα1
. (19)

Thus, the volatility ofxt is parabolic and goes to zero at the two boundaries,[xmin (t) ,xmax(t)].

Equation (16) derives the fair value of the zero-coupon bondas a function of the model parameters and

the single factorxt or Zt . Observed bond prices can deviate from the fair values either due to model mis-

specification or short-term market dislocations. Regardless the source, interest-rate options are written on

observed bond prices or interest-rate quotes, not on model values. Hence, we need to explicitly adjust for

the mismatch, if any, between the model values and observed market quotes. For this purpose, we follow

Heath, Jarrow, and Morton (1992) and Hull and White (1990) toaccommodate the currently observed yield

curve through a deterministic time function. Specifically,we adjust the fair value of the state price deflator

Mt by a multiplicative corrective termRt , defined as

Rt = e−
∫ t

0 ρudu. (20)
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Then, the observed zero-coupon bond prices can be written as

P̂(t,T) = Et

[
MTRT

MtRt

]
= P(t,T)e−

∫ T
t ρudu = P(t,T)R(t,T),

with R(t,T) ≡ e−
∫ T

t ρudu.

Now consider pricing European options on a portfolio of coupon bonds. The time-T observed price of a

portfolio of bonds that pays couponcs at s for a finite collection of datess≥ T can be written as,

P̂T = ∑
s

csP̂(T,s) =
1

MT
∑
s

csR(T,s)e−θrs
[
α0 + β0ZT +e−κs(α1 + β1ZT)

]
. (21)

We consider a European option with expiration dateT on the bond portfolio with the terminal payoffΠT =
(

DP̂T −K
)+

. Its time-t value can be written asVt = Et

[
MT

(
DP̂T −K

)+
]
/Mt . The following proposition

converts the European option on the bond portfolio to a European option on the non-negative martingaleZT .

Proposition 1 Under the linearity-generating dynamics specified in (12),we can write the present value of

a European option on a portfolio of bonds as the forward valueof a European option on the non-negative

martingale ZT . Specifically, the time-t value of an option with maturity T on a bond portfolio specified by

(21) can be written as,

Vt = Et

[
MT

Mt

(
DP̂T −K

)+
]

= Et
[
(Ft +GtZT)+

]
(22)

where the deterministic coefficients Ft and Gt are given by

Ft =
1

Mt
∑
s

ηsR(T,s)e−θrs
(
α0 +e−κsα1

)
, Gt =

1
Mt

∑
s

ηsR(T,s)e−θrs
(
β0 +e−κsβ1

)
, (23)

whereηT = DcT −K andηs = Dcs for s> T.

The proof follows readily by plugging in the expression forP̂T in (21) and collecting terms. The propo-

sition can be applied to a wide range of actively traded interest-rate derivatives such as caps, floors, and

swaptions, as they can all be written as European options on aportfolio of zero-coupon bonds.
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Corollary 1 If we assume that the innovation Zt follows a geometric Brownian motion Zt = exp
(
σWt −σ2t/2

)
,

we can represent the value of European options on a portfolioof bonds in the Black-Scholes formula,

Vt = VBS
Call

(
GtZt ,−Ft,σ

√
T − t

)
(24)

where VBS
Call

(
S,K,σ

√
T
)

is the Black-Scholes value of a call with initial value S, strike K, volatility σ,

maturity T , and interest rate 0.

Thus, tractable specifications on theZt dynamics generate tractable pricing of options on many actively

traded interest-rate derivatives. In particular, while the specification of the interest-rate transition dynamics

(κ) determines the bond pricing and hence the interest-rate term structure, it is the dynamics specification

on the innovationZt that determines the variation of the option value.

1.2. The general (m+n) factor structure

In a generate set up, we consider anm-dimensional interest-rate term structure andn-dimensional indepen-

dent interest-rate volatility factor structure, embeddedin the following specification,

Yt = e−At (α+ βZt) = MtXt , Mt = ν⊤Yt , (25)

where the transition matrixA∈R(m+1)×(m+1) and the loading vectorν∈R(m+1) determine them-dimensional

interest rate structure, withXt = Yt/Mt defines the vector of the interest-rate factors that bond prices are lin-

ear of. On the other hand, the specification of the innovationdynamics on(α+ βZt) ∈ R(m+1)×1 determines

the pricing of interest-rate options. In particular, the innovationZt can have ann-dimensional stochastic

volatility structure to capture the independent variationof interest-rate implied volatilities.

1.2.1. Specification analysis of interest-rate transitiondynamics and bond pricing

From equation (25), the fair values of zero-coupon bonds become,

P(t,T) = Et

[
MT

Mt

]
=

1
Mt

ν⊤e−AT (α+ βZt) = ν⊤e−AτXt , (26)
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where the time-homogeneous coefficientsν⊤e−Aτ determine the shape of the interest-rate term structure

and the loading on the transformed interest-rate factorsXt . While Xt have(m+ 1) elements, the constraint

Mt = ν⊤Yt reduces one degree of freedom, resulting in anm-dimensional term structure. In particular, for

P(t, t) = 1, we needν⊤Xt = 1.

The bond pricing equation in (26) involves evaluating a matrix exponentiale−Aτ at each maturity. The

following proposition diagonalizes the matrix to enhance identification and computation.

Proposition 2 If the transition matrix A has distinct real eigenvalues, one can diagonalize the transition

matrix Ad while settingνd = (1, · · · ,1)⊤ without losing any generality. Specifically, let D denote the diagonal

matrix made of the eigenvalues of A and V denote the matrix made of the eigenvectors, the diagonalized

transition matrix is simply Ad = D and the ith element of the transformed interest-rate factors become

{Xd
t }i = {V−1Xt}i/{V⊤ν}i . To guarantee P(t, t) = 1, we ask∑m

i=0{Xd
t }i = 1 for all t.

Proof. With V andD being the two matrices made of the eigenvectors and eigenvalues of matrixA, we

haveA = VDV−1 and thuse−Aτ = Ve−DτV−1. The bond pricing equation becomes,

P(t,T) = ν⊤e−AτXt = ν⊤Ve−DτV−1Xt = ν̃⊤e−DτX̃t, (27)

with ν̃ = V⊤ν and X̃t = V−1Xt. The above transformation converts the transition matrix into a diagonal

matrix made of the eigenvalues of the original matrixAd = D. To transform the loading to be a vector of

ones, we have

P(t,T) = ν̃⊤e−DτX̃t = ∑
i

ν̃ie
−Dii τX̃i

t = ∑
i

e−Dii τ(ν̃iX̃
i
t ) = ν⊤d e−AdτXd

t , (28)

with νd = (1, · · · ,1)⊤, Ad = D, and{Xd
t }i = {V−1Xt}i/{V⊤ν}i .

We can represent the diagonalized transition matrix asA= θr Im+1+〈κ0,κ1, · · · ,κm〉 with 0= κ0 < κ1 <

... < κm, Im+1 being an(m+ 1)-dimensional identity matrix, and〈·〉 denoting a diagonal matrix with the

diagonal elements given in the brackets. With this representation, we can setX0
t = 1−∑m

i=1Xi
t , so that the

bond pricing can be written as

P(t,T) = ν⊤e−AτXt = e−θrτ
m+1

∑
i=0

e−κ j τXi
t = e−θrτ

(
1−

m

∑
i=1

(1−e−κiτ)Xi
t

)
. (29)
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In our one-factor example in section 1.1, we can set

ν =


1

0


 , A = θr I2 +


0 1

0 κ


 , Xt =


1

xt


 , (30)

or equivalently we can use the following diagonal representation:

ν =


1

1


 , A = θr I2 +


0 0

0 κ


 , Xt =


1− xt

κ

xt
κ


 . (31)

1.2.2. Specification analysis of interest-rate volatilitydynamics and option pricing

To price options, we retain the(α + βZt) innovation specification. With the diagonalized representation of

the interest-rate factors, thejth element ofYt becomesYi
t = e−(θr+κi)t{α + βZt}i , and the time-T price on

the bond portfolio becomes,

P̂T =
1

MT

m

∑
i=0

(
N

∑
s=1

cse
−(θr+κi)sR(T,s)

)
{α+ βZT}i . (32)

Option valuation on this bond portfolio is analogous to the one-factor example.

Proposition 3 The time-t value Vt of an European option on the bond portfolio that pays offΠT = (DP̂T −

K)+ is given by

Vt = Et

[
MT

Mt

(
DP̂T −K

)+
]

= Et
[
(Ft +GtZT)+

]
(33)

where the deterministic coefficients Ft and Gt are given by

Ft =
ν⊤
(
∑se−AsηsR(T,s)

)
α

ν⊤e−At (α+ βZt)
, Gt =

ν⊤
(
∑se−AsηsR(T,s)

)
β

ν⊤e−At (α+ βZt)
(34)

with ηs = Dcs for s> T andηT = DcT −K.
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Proof. The bond portfolio with cash-flowsηs has timeT priceP̃T = DP̂T−K. RecallMt = ν⊤e−At (α+ βZt),

and calculate

MtVt = Et

[
MT

(
P̃T

)+
]

= Et

[(
ν⊤
(

∑
s

e−AsηsR(T,s)

)
(α+ βZT)

)+
]

= Et

[(
F̃t + G̃tZT

)+
]
,

with

F̃ = ν⊤
(

∑
s

e−AsηsR(T,s)

)
α, G̃t = ν⊤

(
∑
s

e−AsηsR(T,s)

)
β

andFt = F̃t/Mt , Gt = G̃t/Mt .

The pricing of interest-rate options depends on the specification of theZt dynamics. For tractability, we

let (α,β) be (m+ 1)-dimensional vectors{αi ,βi}m
i=0 and specifyZt as an exponential martingale. Then, if

Zt follows a geometric Brownian motion, the Black-Scholes formula in (24) still holds. More generally, to

capture the time variation of the interest rate volatility,we propose the following generic model structure for

theZt dynamics to accommodate multiple sources of stochastic volatility,

dZt/Zt = ∑n
j=1

√
v j

t dW j
t ,

dvj
t = κv j

(
θv j −v j

t

)
dt+ σv j

√
v j

t dWv j
t ,

(35)

where we model the instantaneous return onZt as driven by multiple Brownian motion components, each

driven by stochastic volatility. Furthermore, we allow correlation between each Brownian innovation in

Zt and the corresponding Brownian innovation in its stochastic variance rate,ρ jdt = E[dW j
t dWv j

t ]. All

other pairs of Brownian motions are assumed to be independent of each another. This specification can

capture the term structure variation through different mean reversion speedsκv j. For identification, we rank

the mean-reversion speeds asκ1 < · · · < κn. Furthermore, through multiple innovation components onZt ,

the specification also has the potential to generate variations in the implied volatility skew along the strike

dimension. We can easily incorporate discontinuous movements in theZt dynamics and in the stochastic

variance rates while maintaining pricing tractability. One approach to do this is to follow the time-changed

Lévy process specification of Carr and Wu (2004). Incorporating jumps has been proven helpful in more

accurately capturing the pricing behavior of short-term far out-of-the-money options. Nevertheless, for
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model estimation, we only obtain at-the-money swaptions data. Hence, we focus on purely continuous

specifications for parsimony.

Under this specification, the log return onZt can be written as a linear combination ofn time-changed

Brownian motions,

lnZT/Zt =
n

∑
j=1

W j

T
j

t,T
− 1

2
T

j
t,T , (36)

where the stochastic time changes are defined by the instantaneous variance rates,

T
j

t,T ≡
∫ T

t
v j

sds. (37)

With this representation, we can derive its Fourier transform as exponential affine functions of the variance

rates,

φ(u) ≡ Et

[
eiu lnZT/Zt

]
= exp

(
−

n

∑
j=1

(
a j (τ)−b j (τ)⊤ v j

t

))
, (38)

where the time-homogeneous coefficients can be solved analytically,

b j(t) =
2ψ(u)

(
1−e−ξ j τ

)

2ξ j−(ξ j−κM
v j)
(

1−e−ξ j τ
) , ξ j =

√(
κM

v j

)2
+2σ2

v jψ(u),

a j(t) =
κv jθv j

σ2
v j

[
2ln

(
1− ξ j−κM

v j

2ξ j

(
1−e−ξ j τ

))
+(ξ j −κM

v j)τ
]
,

(39)

with κM
v j = κv j − iuσv jρ j andψ(u) = 1

2(iu+u2). Once we have the Fourier transformφ(u), we can solve the

option value defined in (33) numerically through various methods of fast Fourier inversions (Wu (2008)).

The interest-rate factorsXt and the diagonalized transition matrixA can be estimated from the interest

rate term structure. To map the identified interest rate factorsXt to the(α+ βZt) representation, we note that

Xt = Yt/Mt =
e−At (α+ βZt)

ν⊤e−At (α+ βZt)
.

The relation is time-inhomogeneous. In particular, it has the undesirable behavior that as calendar time goes

to infinity t → ∞, Xj → 0 for j = 1, · · · ,m. To avoid this undesirable behavior, we normalize the calendar

time to zero at each time and further normalizeM0 = 1 andZ0 = 1. Then, we map the loading coefficients

(α,β) to the estimated interest-rate factorsX on that date.
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In the one-factor case, equation (19) shows that the upper bound of xt declines with increasingβ0.

Settingβ0 = 0 generates the highest upper bound atκ. We henceforth apply this constraint ofβ0 = 0. To

make the lower bound lower than the upper bound, we needα0 > 0. With a strictly positiveα0, the lower

bound declines asα1 decreases. To guarantee positive rates, we setxmin(0)+ θr = 0, from which we have

α1 = −α0

(
θr

θr+κ

)
. Combining these conditions with the normalizationM0 = α0 + β0+ α1 + β1 = 1 further

pins downβ1 = 1−α0
κ

θr+κ . To guarantee positivity onβ1, we need 0< α0 < θr+κ
κ . Thus, we achieve full

identification withX = 1−α0, from which we can represent all loading coefficients (α,β) as a function of

X and the model parameters (θr ,κ). In the multifactor case, we analogously setβ0 = 0, and

α j = −zj
θr

θr + κ j
, β j = 1−zj

κ j

θr + κ j
, j ≥ 1. (40)

Then, we can solvezj = 1−Xj andα0 = 1−∑m
i=1 Xi to achieve the identification.

1.3. Representing swaptions as options on bond portfolios

Actively traded interest rate derivatives such as caps, floors, and swaptions can all be represented as Eu-

ropean options on a portfolio of zero-coupon bonds and can thus all be priced according to Proposition 3.

We use swaptions as an example and show how to link the contract details to the cashflow coefficients in

Proposition 3.

A plain-vanilla interest-rate swap is an agreement betweentwo parties to exchange a fixed for a floating

set of payments at specified future dates. The fixed leg is madeof fixed payments ofSh multiplied by

a notional amount, whereS denotes the fixed rate, andh is the frequency or tenor of the swap contract,

represented in fraction of a year. For standard U.S. dollar interest-rate swaps, the tenor is usually half year,

h= 1/2. Theith fixed payment is paid in arrears at the(i+1)th period. The floating leg is also paid in arrears,

with the ith payment beingLIBOR(Ti,Ti +h)h multiplied by the notional amount, whereLIBOR(Ti,Ti +h)

denotes the time-Ti LIBOR of maturityh, which is related to the time-Ti zero-coupon bond prices by,

LIBOR(Ti,Ti +h) =
1
h

(
1

P̂(Ti ,Ti +h)
−1

)
. (41)
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The time-T swap rate is the fixed rate that sets the time-T values of the two legs equal to each other. For

a spot-starting (T1 = T) swap contract withN payments with tenorh, the time-T swap rate that sets the

contract to zero value is related to the zero-coupon bond prices by,

S(T,Nh) =
1− P̂(T,T +(N+1)h)

∑N
i=1hP̂(T,T +(i +1)h)

. (42)

A European swaption is a contract that gives the holder the right at timeT to enter a swap contract (to

pay or receive the fixed rate over the life of the swap) ofh tenor andN payments at a pre-known rateK. In

this contract,T is the option maturity,K is the option strike. Assuming that the option gives the holder the

right to enter a spot-starting swap, we can write the payoff to the payer’s swaption as,

ΠT = (S(T,Nh)−K)+
N

∑
i=1

hP̂(T,T +(i +1)h). (43)

Plug the swap rate valuation equation (42) into the payoff function, we have

ΠT =

(
1− P̂(T,T +(N+1)h)−K

N

∑
i=1

hP̂(T,T +(i +1)h)

)+

. (44)

Thus, the payer’s swaption can be regarded as a put option with maturityT and strike 1 on a portfolio of

zero-coupon bonds, with the coupon schedule given byci = {Kh+ δN}N
i=1 paid atT +(i +1)h, whereδN is

an indicator function that is one wheni = N and zero otherwise. Accordingly, we can obtain the value of

the swaption by applying Proposition 3, withηT = 1 andηs = −ci for s= {T +(i +1)h}N
i=1.

2. Data analysis

We estimate the interest-rate factor transition dynamics using U.S. dollar LIBOR and swap rates and the

interest-rate volatility dynamics using U.S. dollar swaptions. We collect a decade worth of over-the-counter

quotes on (i) six LIBOR series at fixed time to maturities of one, two, three, six, nine, and 12 months, (ii)

nine swap rate series at fixed time to maturities of two, three, four, five, seven, 10, 15, 20, and 30 years, and

(iii) 70 at-the-money swaption implied volatility series at a fixed grid of seven swap maturities at one, two,
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three, four, five, seven, and 10 years and ten option maturities at one, three, six months and one, two, three,

four, five, seven, and 10 years. The data are sampled weekly (every Wednesday) from August 19, 1998 to

August 20, 2008, 523 weekly observations for each series.

2.1. Quoting conventions

The U.S. dollar LIBOR rates are simply compounded interest rates, related to the zero-coupon bond prices

according to equation (41), where the time to maturityh is computed following actual over 360 day counting

convention, starting two business days forward. The U.S. dollar swap rates have payment intervals of half

years (h = 0.5) and are related to the zero-coupon bond prices according to equation (42).

The swaption contracts are quoted in terms of the Black implied volatility, obtained under the assumption

that the underlying forward swap rate is log-normally distributed. Given an implied volatility quoteIV , the

invoice price for the payer’s swaption with one dollar notional is computed as,

SWAPTION(t,T,Nh) = (S(t,T,Nh)N (d1)−KN (d2))
N

∑
i=1

hP̂(t,T +(i +1)h), (45)

whereN (·) denotes the standard cumulative normal function with the two standardized variables(d1,d2)

given by

d1 =
lnS(t,T,Nh)/K + 1

2IV 2(T − t)

IV
√

T − t
, d2 = d1− IV

√
T − t, (46)

andS(t,T,Nh) denotes the time-t forward starting swap rate that starts at timeT with N payments and a

payment interval ofh. The forward starting swap rate is related to the zero-coupon bond prices by

S(t,T,Nh) =
P̂(t,T)− P̂(t,T +(N+1)h)

∑N
i=1hP̂(t,T +(i +1)h)

. (47)

The at-the-money swaptions have the strikes set to the corresponding forward starting swap rate, in which

case we can rewrite the Black formula in (45) as

ATMSN(t,T,Nh) =
(

P̂(t,T)− P̂(t,T +(N+1)h)
)

(2N (d)−1) , (48)

with d = 1
2IV

√
T − t.
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2.2. Summary statistics

Table 1 reports the summary statistics on the LIBOR and swap rates. The average interest rates exhibit an

upward sloping term structure. The standard deviation estimates of the interest rates largely decrease with

increasing maturity, but the standard deviation estimateson the weekly changes of the interest rates are in

similar ranges across all maturities, with no clear term structure pattern. The interest rates are all highly

persistent, more so at short term than at long term. The skewness and excess kurtosis estimates are small

for the interest rate levels, but the kurtosis estimates arelarge for weekly changes on the short-term LIBOR

series, reflecting the effect of the discrete Federal Reserve policy moves.

The left panel of Figure 1 plots the time series of the three-month LIBOR (solid line), and the two-year

(dashed line) and 30-year (dash-dotted line) swap rates. During our sample period, the three-month LIBOR

has moved over a wide range from as low as 1% (in June 2003) to ashigh as 6.86% (in May 2000). The

30-year swap rate does not vary as much, thus generating termstructure variations as the LIBOR moves.

The right panel plots some representative term structures of the interest rates at different rates, including an

upward sloping (dashed line on August 13, 2003), a downward sloping (dash-dotted line on September 12,

2007) and a relatively flat (dotted line on October 11, 2006) term structure. The upward-sloping solid line

represents the mean term structure.

[Figure 1 about here.]

Table 2 reports the summary statistics of the swaption implied volatility quotes. Each panel represents

one summary statistic. Within each panel, each column represents one option maturity and each row rep-

resents one underlying swap maturity. Panel A reports the sample averages of implied volatility series.

On average, the implied volatility is higher at short optionmaturities and shorter-term swaps. The aver-

age implied volatility decline along the underlying swap maturity reflects the mean-reversion behavior of

interest-rate factors, which results in long-term rates being less volatile than short-term rates. On the other

hand, the volatility decline along the option maturity reflects the mean reversion behavior of the interest-rate

volatility factors. Panels B and C report the standard deviation estimates of the implied volatility levels and

weekly changes, respectively. In both panels, the standarddeviation estimates decline with both increasing

option maturities and swap maturities. Panel D reports the weekly autocorrelation estimates on the implied
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volatility series. The estimates are largely comparable across swap maturities, but show some declining

pattern along the option maturities. Figure 2 visualizes the summary statistics of the implied volatility series

along the two maturity dimensions. One interesting featurefrom Tables 1 and 2 is that both interest rates

and interest-rate options show more persistence at short maturities than at long maturities.

[Figure 2 about here.]

Figure 3 plots the implied volatility time series at selected interest-rate and option maturities. The

two panels represent two different swap maturities, with the first panel showing options on one-year swap

and the second panel showing options on ten-year swap. The three lines in each panel represent three

different option maturities at one year (solid lines), five years (dashed lines), and ten years (dashed dotted

lines). Implied volatilities at the same option maturitiesshow similar time series behaviors across different

underlying interest-rate maturities. Comparing the interest rate time series in Figure 1 with the implied

volatility time series in Figure 3, we find that the implied volatilities are high during the low interest-rate

eras.

[Figure 3 about here.]

To understand the driving forces behind the interest-rate implied volatility variations, we perform prin-

cipal component analysis on the implied volatility series.Figure 4 plots in the first panel the ten largest

normalized eigenvalues of the correlation matrix of the weekly changes on 70 the implied volatility series,

which can be interpreted as the percentage variation explained by each principal component. The first prin-

cipal component explains 78% of the variation, the second explains 12%, and the third explains 4%. The

remaining principal components all together explain less than 7% of the variation. The remaining three

panels in Figure 4 plot the loading of the first three principal components on the 70 implied volatility se-

ries along the seven swap maturity and ten option maturity dimensions. The first component is relatively

flat across all swap and option maturities, representing thevariation on the interest-rate volatility level.

The second principal component loading positively at shortoption maturities but negatively at long option

maturities, generating a term structure variation along the option maturity dimension. The third principal

component forms a tented shape along the option maturity dimension, representing a curvature factor on
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option maturities. The loadings of all three principal components are relatively flat along the swap maturity

dimension.

[Figure 4 about here.]

3. Model estimation

Our modeling framework provides a separation of the interest-rate factors and the interest-rate volatility

factors. The former governs the interest-rate term structure variation whereas the latter governs the variation

of the option implied volatilities term structure for a given underlying interest rate series. Accordingly, our

model estimation also takes a two-step procedure. In the first step, we estimate the transition matrixA and

extract the interest-rate factorsXt to fit the LIBOR and swap rates term structure. In the second step, we take

the estimated transition matrix as given and estimate the loading coefficients(α,β), the volatility dynamics,

and extract the volatility factors to match the implied volatility surface of caps and swaptions. At each step,

we cast the model into a state-space form and estimate the dynamics using a quasi-maximum likelihood

method.

In the first step, we take the interest-rate factorXt as the hidden state vector and the LIBOR/swap rates as

our observations. We estimate both a one-factor and a three-factor specification, both taking the diagonalized

representation in (31) and (29), respectively. We approximate the state propagation equation using a simple

AR(1) specification,

Xt = A+ ΦXt−1+
√

Qεt , (49)

where we letΦ be a diagonal matrix and assume that the standardized innovation εt is normally distributed.

Under the risk-neutral measure, the diagonalized factors have zero mean and time-varying mean-reversion

speeds(κ j − xt) that are declining with increasing short rate level. In the state-propagation equation (49),

we allow non-zero means and assume constant mean-reversionspeeds for all factors under the statistical

measure. These assumptions can be regarded either as drivenby risk premium assumptions or simply
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approximations of the actual statistical dynamics that we leave unspecified. To construct the measurement

equations, we assume that the LIBOR and swap rates are observed with additive, normally distributed errors,


LIBOR(t, t +m/12)

SWAP(t,2τ)


= f (Xt ;Θ)+

√
Ret ,

m= 1,2,3,6,9,12 months,

τ = 2,3,4,5,7,10,15,20,30 years,
(50)

where f (Xt ;Θ) denotes the corresponding LIBOR/swap value generated fromthe model at the state level

Xt and the parameter setΘ. We assume that the measurement errors from different series are identical and

independent of one another with a constant pricing error varianceσ2
r .

In the second step, we take the variance risk factorsVt as the hidden state vector and the swaptions as

the observations. We estimate models with one, two, and three stochastic variance factors, respectively,

conditional on both one and three interest-rate factors from the first stage. In each case, we specify the state-

propagation equation as a discrete-time analog of its statistical dynamics, and we construct the measurement

equations by adding additive, normally distributed errorsto the at-the-money swaption prices,

ATMSN(t,τo,τs) = f o(Xt ;Θo)+
√

Reo
t ,

τO = 1
12,

3
12,

6
12,1,2,3,4,5,7,10,

τS = 1,2,3,4,5,7,10,
(51)

whereτO,τS denote the time to maturities (in years) of swaptions, and the underlying swaps. We first convert

the implied volatility quotes into invoice prices, and thenscale the invoice price by the Black vega of each

contract. With this scaling, we assume that the measurementerrors are iid with variance constant atσ2
o.

When both the state propagation equation and the measurement equations are Gaussian and linear, the

Kalman (1960) filter generates efficient forecasts and updates on the conditional mean and covariance of the

state vector and the measurement series. In our application, the measurement equations in (50) and (51) are

nonlinear. We use the unscented Kalman filter (Wan and van derMerwe (2001)) to handle the nonlinearity.

The unscented Kalman filter approximates the posterior state density using a set of deterministically cho-

sen sample points (sigma points). These sample points completely capture the mean and covariance of the

Gaussian state variables, and when propagated through the nonlinear functions in the measurement equa-

tions, capture the posterior mean and covariance of the measurement series accurately to the second order

for any nonlinearity. Appendix B provides the technical details for the filtering methodology.
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Given the predicted mean and covariance matrix on the measurement series, we construct the log-

likelihood value assuming normally distributed forecasting errors. We maximize the sum of log-likelihood

value to estimate the model parameters. We keep the long-runmean of the short rate (θr ) fixed from the first-

stage estimation, but we re-estimate the interest-rate transition coefficientκ in the second stage to achieve a

better fitting of the implied volatility behavior along the swap maturity dimension.

4. Term structure of interest rates

Table 3 reports the summary statistics of the pricing errorsfrom the one-factor and three-factor term structure

models. The pricing errors are defined as the difference in basis points between the observed LIBOR and

swap rates and the model-implied values. As expected, the three-factor model performs much better than

the one-factor model. On average, the one-factor model explains 84.1% of the variation in the interest

rate series, but the three-factor model explains over 98.6%. The estimated one-factor model explains the

short-term interest-rate variation reasonably well, but fails miserably in pricing long-term swap rates. By

contrast, the three-factor model explains all series by over 96%: The mean pricing errors are all within four

basis points. The root mean squared pricing errors are between five to 35 basis points, larger for long-term

LIBOR and short-term swap rates, but smaller for short-termLIBOR and long-term swap rates. The larger

errors between three month to two year maturities are in partdriven by the discrepancies between LIBOR

and swap rates (Babbs and Webber (1995)).

Table 4 reports the first-stage estimates and the absolute magnitude of thet-statistics (in parentheses) on

the interest-rate factor dynamics. The one-factor specification generates a mean-reversion speed of 0.2110.

For the three-factor model, the long-run mean of the short rate is estimated at 5.85% and the three mean-

reversion speeds that underly the transition matrix are estimated at 0.0242, 0.3650, and 1.3745, respectively,

allowing the three factors to capture interest-rate movements of different frequencies.

Figure 5 shows how shocks on the three interest-rate factorsimpact the interest-rate term structure

differently. The solid lines in each panel plot the continuously compounded spot rates as a function of

maturity, generated by the three-factor model with factorsset to their sample averages. The dashed lines

denote the yield curve generated by setting one of the three factors to its 90th percentile value and while
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setting the other two to their respective sample averages. The dash-dotted lines are generated by setting

one of the three factors to its 10th percentile value while setting the other two to their respective sample

averages. The first panel shows that moving the first interest-rate factor from its mean value to its 90th and

10th percentiles generates parallel shifts on the yield curve. Thus, shocks on the first factor incur relatively

uniform responses from the yield curve across all maturities. By contrast, the second panel shows that

shocks on the second factor generate larger movements at theshort term than at the long term of the yield

curve, consistent with the lower risk-neutral persistenceof the second factor. The third factor is even less

persistent, and accordingly, shocks on the third factor show up mainly at the very short end of the yield curve

maturities, as shown in the third panel. The response declines rapidly as the interest-rate maturity increases.

[Figure 5 about here.]

To gain intuition on the diagonalized interest-rate factors Xt , we can perform the following transforma-

tion,

ct = κc (κc−κx) (κc−κs)X1
t ,

st = −κc(κc−κx)X1
t −κs(κs−κx)X2

t ,

xt = κcX1
t + κsX2

t + κxX3
t .

(52)

The transformed factorxt is simply the short-rate gap withrt = xt +θr and is related to the other two factors

through the following risk-neutral transition dynamics,

E
Q
t [dxt ] = (st − (κx−xt)xt)dt,

E
Q
t [dst ] = (ct − (κs−xt)st)dt,

E
Q
t [dct ] = −(κc−xt)ctdt.

(53)

The short rate gapxt mean-reverts to a stochastic levelst , which mean-reverts to yet another stochastic

level ct , which is centered around zero. The sequence of reversion dictates that shocks onxt mainly impact

the short-term of the interest-rate term structure while shocks onct , or equivalently the first element of

Xt , generate persistent impacts on the yield curve across the whole term structure. The effects ofst are

somewhere in the middle. For all three factors, the mean-reversion speeds, (κx−xt , κs−xt , andκc−xt) are

not constant, but are all stochastic and decline with increasing interest-rate levels.
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Figure 6 plots the time series of the three interest-rate factors, both in the diagonalized formXt (on the

left side) and in the transformed short rate space (xt ,st ,ct ) (on the right side). The extractedxt + θr matches

the short-term LIBOR well.

[Figure 6 about here.]

5. Interest rate volatility term structures

In the second stage, we estimate six models with the(m+n) factor structure, withm= 1,3 andn = 1,2,3.

Table 5 reports the mean pricing error on the swaption implied volatilities from the six models. Pricing

errors are defined as the difference between the implied volatility quotes and the model-generated values, in

percentage points. All six models show similar mean pricingbias patterns along the two maturity dimensions

(option maturityτO and swap maturityτS). The mean pricing errors are negative for short-term options on

short-term swaps, and also slightly negative for long-termoptions on long-term swaps. On the other hand,

the mean pricing errors are positive for short-term optionson long-term swaps and long-term options on

short-term swaps. The mean pricing errors are particularlylarge on short-term options on the one-year

swap. This large negative mean error is potentially relatedto the large negative mean pricing error on the

12-month LIBOR. Due to institutional details, the yield curve often show distortions in linking six-month

and 12-month LIBOR to the swap rates. Our model does not have an explicit adjustment for this distortion,

and it also shows up in the pricing of short-term options on the one-year swap. The mean pricing errors on

other swap and option maturities are much smaller, mostly within two volatility points for all six models.

Table 6 reports the root mean squared pricing errors from thesix models. Increasing the number of

interest-rate factors and the number of volatility factorsboth help reduce the root mean square pricing error

estimates. For the(3+ 3) model, the root mean squared pricing errors are only one volatility point or less

for moderate maturity options on moderate maturity swaps. Table 7 reports the explained variation on each

series from each of the six models. Overall, the explained variation is higher at short option maturities than

at long option maturities. The (3+3) model explains most moderate-maturity options over 90%.
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Table 8 reports the second-stage estimates and absolute values of thet-statistics (in parentheses) on the

model parameters that govern the stochastic volatility dynamics. Given the large amount of swaption quotes

(36,610) used for estimating the models, all parameters areestimated with strong statistical significance.

When we re-estimate the interest-rate transition dynamics(κ) to match the implied volatility surface behav-

ior along the swap maturity dimension, the estimates for thefirst two factors are both much smaller than

those estimated from the interest rates. The high persistence is needed to generate the high implied volatility

observed from swaptions at long swap maturities. The estimates for the mean-reversion speed (κv) of the

first volatility factor are also very small. The high volatility persistence is needed to generate the observed

high implied volatility at long option maturities. When we estimate the(3+3) model, the last element forκ

and the last element forκv are both very large, suggesting that a highly transient interest-rate and volatility

component is needed to specifically capture the behavior of short-term options on short-term swaps.

In Figure 7, we take the(3+3) model and generate implied volatility term structures across the option

maturity dimension (left side) and the swap maturity dimension (right panel). The solid lines in each panel

are generated from the model with all interest-rate and volatility factors set to their sample average. The

dashed lines and the dash-dotted lines are generated by changing one of the volatility factors to its 90th and

10th percentile value, respectively.

[Figure 7 about here.]

From the three panels on the left side, we observe distinct responses from the swaption implied volatil-

ities along the option maturity dimension to shocks on the three volatility factors. When we shock the first

volatility factor v1
t (top left panel), the implied volatilities response acrossall option maturities. The persis-

tent response is in line with the low mean reversion speed estimate on this volatility factor. On the other

hand, when we shock the second volatility factor, the responses are large at short option maturities but dis-

sipate quickly as the option maturity increases. The speed of dissipation is even faster for the more transient

third volatility factor.

The three panels on the right side show a completely different picture about the implied volatility re-

sponses along the swap maturity dimension. The variations are largely constant as the underlying swap
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maturity varies, suggesting that the volatility dynamics mainly generate variations along the option maturity

dimension, not the swap maturity dimension.

Figure 8 plots the time series of the three interest-rate volatility factors extracted from the(3+3) model.

The first factor is the most persistent factor. Its variationmatches the variation of swaption implied volatil-

ities at long option maturities. On the other hand, the othertwo factors capture more transient variations

of swaption implied volatilities at short option maturities. In particular, the most recent spike in swaption

implied volatility is mostly attributed to spikes in the more transient second and third volatility factors.

[Figure 8 about here.]

6. Concluding remarks

Traditional models often link the interest-rate volatility to the curvature of the yield curve; yet evidence

shows that a large proportion of the variation in interest-rate option implied volatilities is independent of

the variation of the yield curve. The linearity-generatingframework proposed by Gabaix (2007) provides a

natural reconciliation between theory and the evidence. Under this framework, bond prices are linear in a set

of yield curve factors. As a result, only the risk-neutral drift, or the transition dynamics, of the interest-rate

factors enter the bond pricing equation, but neither volatilities of these factors nor the volatility dynamics

affect bond pricing. Therefore, if these factors show stochastic volatility, these stochastic volatilities are

truly unspanned and completely un-identified from the yieldcurve.

In this paper, we perform specification analysis on the linearity-generating framework, and analyze

how one can identify the interest-rate factor transition dynamics from the yield curve and how one can

identify the interest-rate volatility dynamics from interest-rate options. We show within this framework how

one can tractably price options through a Fourier transformapproach on any bond portfolios with multi-

dimensional stochastic volatility structures. We also propose a sequential identification procedure under

which we estimate the interest-rate transition dynamics from LIBOR and swap rates, and then estimate the

volatility dynamics from interest-rate options. Through model design and estimation, we show how the
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interest-rate factor transition dynamics and the volatility structures affect the swaption implied volatility

differently across the option maturity and the underlying swap maturity.

The specification analysis in this paper paves the ground formany potential applications and extensions.

For example, when one needs to price options across a wide range of strikes, one can readily extend the

innovation specification to allow discontinuous movementsin interest rates and/or interest-rate volatilities.

One can also use the same dynamic specification to price both caps and swaptions, and explore the potential

discrepancies between the two options markets. From a broader perspective, our analysis also provides

a road map to address long-standing economic questions by exploiting information in both the interest-

rate term structure and the interest-rate option implied volatilities. The options data are likely to provide

information regarding the level and dynamics of uncertainty about monetary policy, as well as the degree of

credibility of the central bank’s commitment to its inflation target.
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Appendix A. Derivation details on the one-factor example

The one-factor example can be represented as,

Yt =


1− xt

κ
xt
κ


Mt , (A1)

whereMt denotes the state price deflator.

A.1. The transition matrix

Under the specification in (A1), we can show that theP-dynamics ofYt is controlled by the transition matrixA =
θr 0

0 κ + θr


 as in equation (9).

Proof.

Et

[
dY(1)

t

]
= Et

[
d
(

1− xt

κ

)
Mt

]

=
(

1− xt

κ

)
MtEt

[
dMt

Mt

]
− Mt

κ
Et [dxt ]−

Mt

κ

〈
dxt ,

dM
Mt

〉

= −
(

1− xt

κ

)
Mt rtdt−Mt

κ

(
Et [dxt ]+

〈
dxt ,

dM
Mt

〉)

= −
(

1− xt

κ

)
Mt rtdt−Mt

κ
E

Q
t [dxt ]

= −
(

1− xt

κ

)
Mt (xt + θr)dt+

Mt

κ
xt (κ−xt)dt

=
(

1− xt

κ

)
Mt [−(xt + θr)+xt ]dt

= −θrY
(1)
t dt.

Et

[
dY(2)

t

]
= Et

[
d

xt

κ
Mt

]

=
xt

κ
MtEt

[
dMt

Mt

]
+

Mt

κ
Et [dxt ]+

Mt

κ

〈
dxt ,

dM
Mt

〉

= −xt

κ
Mt rtdt+

Mt

κ

(
Et [dxt ]+

〈
dxt ,

dM
Mt

〉)

= −xt

κ
Mt rtdt−Mt

κ
xt (κ−xt)dt

= (−xt −θr −κ +xt)
xt

κ
Mt

= −(θr + κ)Y(1)
t dt.
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A.2. The short rate dynamics and risk premium

To derive the short rate dynamics and the risk premium in terms of theZt representation, we note that

Mt = e−θr t
(
(α0 + β0Zt)+e−κt (α1 + β1Zt)

)
,

rt = θr +xt ,

xt =
κe−κt (α1 + β1Zt)

((α0 + β0Zt)+e−κt (α1 + β1Zt))
=

1
Mt

κe−(θr+κ)t (α1 + β1Zt) .

First, we derive the dynamics for the state price deflatorMt ,

dMt

Mt
=

(
−θre−θr t (α0 + β0Zt)− (θr + κ)e−(θr+κ)t (α1 + β1Zt)

)

Mt
dt

+
(β0 +e−κtβ1)

(α0 + β0Zt)+e−κt (α1 + β1Zt)
dZt ,

where the negative of the diffusion coefficient

γ(Z) = − (β0 +e−κtβ1)

(α0 + β0Zt)+e−κt (α1 + β1Zt)

defines the market price of theZ risk. The drift component of the state price deflator is the negative of the short rate,

Et [dMt ]/dt
Mt

=
−θre−θr t (α0 + β0Zt)− (θr + κ)e−(θr+κ)t (α1 + β1Zt)

Mt

=
−θrMt −κe−(θr+κ)t (α1 + β1Zt)

Mt

= −θr −xt = −rt .

To derive the dynamics forxt , we note that

dMtxt

Mt
= xt

dMt

Mt
+dxt +

〈
dxt ,

dMt

Mt

〉
.
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Thus, the risk-neutral drift ofxt is given by

E
Q
t [dxt ] = Et [dxt ]+

〈
dxt ,

dMt

Mt

〉

=
dEt [Mtxt ]

Mt
−xt

dEt [Mt ]

Mt
.

As Mtxt = κe−(θr+κ)t (α1 + β1Zt), we have

dEt [Mtxt ]

Mt
= −(θr + κ)xtdt.

Thus,

E
Q
t [dxt ] = −(θr + κ)xtdt+xt (θr +xt)dt

= −xt (κ−xt)dt,

which is the same as the specification in (6).

The martingale component ofxt is given byxZdZ, with

xZ =
κe−κtβ1

(α0 + β0Zt)+e−κt (α1 + β1Zt)
− κe−κt (α1 + β1Zt) (β0 +e−κtβ1)

((α0 + β0Zt)+e−κt (α1 + β1Zt))
2

=
κe−κt (α0β1−α1β0)

((α0 + β0Zt)+e−κt (α1 + β1Zt))
2

=
(xmax−x)(x−xmin)

xmax−xmin

1
Zt

,

with

xmin =
κe−κtα1

α0 +e−κtα1
, xmax =

κe−κtβ1

β0 +e−κtβ1
.

The instantaneous risk premium of the short rate is given by the negative of the covariance term
〈

dxt ,
dMt
Mt

〉
,

〈
dxt ,

dMt

Mt

〉
=

〈
xZdZt ,

MZ

Mt
dZt

〉
= xZ

Mz

Mt
〈dZt〉

=
(xmax−x)(x−xmin)

xmax−xmin

e−θr t (β0 +e−κtβ1)

Mt

〈dZt〉
Zt

.

Since the covariance is positive, the instantaneous risk premium on the interest rate is negative.
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Appendix B. Unscented Kalman filter and maximum likelihood estimation

To estimate the model parameters, we cast the model into a state-space form, which consists of a set of state propaga-

tion equations and measurement equations. We rewrite them in canonical forms,

xt = A+ Φxt−1+
√

Qt−1εt , εt ∼ N(0, I), (B2)

yt = h(xt)+et , et ∼ N(0,R). (B3)

Let xt ,Vt ,yt ,At denote the time-(t−1) ex ante forecasts of time-t values of the state vector, the covariance of the state

vector, the measurement series, and the covariance of the measurement series. Letx̂t andV̂t denote the ex post update,

or filtering, on the state vector and its covariance at the time t based on observations (yt) at timet. In the case of linear

measurement equations,

yt = Hxt +et , (B4)

the Kalman filter provides the most efficient updates. The ex ante predictions are,

xt = A+ Φx̂t−1, Vt = ΦV̂t−1Φ⊤ +Qt−1;

yt = Hxt , At = HVtH⊤ +R,
(B5)

and the ex post filtering updates are,

x̂t+1 = xt+1 +Kt+1 (yt+1−yt+1) , V̂t+1 = Vt+1−Kt+1At+1K⊤
t+1, (B6)

whereKt+1 is the Kalman gain, given byKt+1 = Vt+1H⊤ (HVt+1H⊤ +R
)−1

. In essence, the Kalman filter gener-

ates the state updates as a weighted average between the forecasted valuesxt+1 and the new observationsyt+1, with

the weight determined by the relative magnitudes of the state forecasting error variance (Vt+1) and the observation

measurement error variance (R).

In our application, the measurement equation in (B3) is nonlinear. Hence, we cannot directly apply the Kalman

filter procedure described in (B5) and (B6). Traditionally,the nonlinearity is often handled by the Extended Kalman

Filter (EKF), which approximates the nonlinear measurement equation with a linear expansion, evaluated at the pre-

dicted states:

yt ≈ Htxt +et , Ht =
∂h(xt)

∂xt

∣∣∣∣
xt=xt

. (B7)

By contrast, the unscented Kalman filter applied in this paper uses a set of deterministically chosen (sigma) points to

directly approximate the distribution of the state vector.The predictions and updates are directly performed on these
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sigma points, with the mean and covariance of the states and measurements computed from these points. Specifically,

let p be the number of states andδ > 0 be a control parameter. A set of 2p+1 sigma vectorsχi are generated according

to the following equations:

χt,0 = x̂t , (B8)

χt,i = x̂t ±
√

(p+ δ)(V̂t +Q) j , j = 1, · · · , p; i = 1, · · · ,2p,

with corresponding weightswi given by

w0 = δ/(p+ δ), wi = 1/[2(p+ δ)], j = 1, · · · ,2p. (B9)

We can regard these sigma vectors as forming a discrete distribution withwi being the corresponding probabilities. We

can verify that the mean, covariance, skewness, and kurtosis of this distribution arêXt , V̂t +Q, 0, andp+δ respectively.

Given the sigma points, the prediction steps are given by

χt,i = A+ Φχt,i, ξt,i = h(χt,i)

xt+1 = ∑2p
i=0wiχt,i , Vt+1 = ∑2p

i=0wi(χt,i −xt+1)(χt,i −xt+1)
⊤;

yt+1 = ∑2p
i=0wiξt,i , At+1 = ∑2p

i=0wi

[
ξt,i −yt+1

][
ξt,i −yt+1

]⊤
+R,

(B10)

and the filtering updates are

x̂t+1 = xt+1 +Kt+1 (yt+1−yt+1) , V̂t+1 = Vt+1−Kt+1At+1K⊤
t+1, (B11)

with the Kalman gain given by

Kt+1 = St+1
(
At+1

)−1
, St+1 =

2p

∑
i=0

wi
[
χt,i −xt+1

][
ξt,i −yt+1

]⊤
. (B12)

To estimate the model parametersΘ, we define the log likelihood for each day’s observation assuming that the

forecasting errors are normally distributed:

lt(Θ) = −1
2

log
∣∣At
∣∣− 1

2

(
(yt −yt)

⊤ (At
)−1

(yt −yt)
)

. (B13)
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We maximize the sum of the log likelihood values to obtain themodel parameters,

Θ ≡ argmax
Θ

N

∑
t=1

lt(Θ), (B14)

whereN denotes number of weeks in our sample.
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Table 1
Summary statistics of LIBOR and swap rates

Maturity Levels Weekly differences
Mean Std Skew Kurt Auto Std Skew Kurt

1m 3.752 1.828 -0.093 -1.457 0.997 0.108 -1.314 24.580
2m 3.789 1.831 -0.105 -1.450 0.997 0.090 -1.765 24.256
3m 3.825 1.838 -0.105 -1.433 0.998 0.086 -2.461 19.642
6m 3.897 1.824 -0.112 -1.364 0.998 0.091 -2.311 11.841
9m 3.961 1.802 -0.094 -1.284 0.997 0.102 -1.484 6.874

12m 4.040 1.773 -0.070 -1.195 0.997 0.114 -0.901 3.999
2y 4.308 1.555 0.042 -0.884 0.995 0.135 0.002 0.560
3y 4.561 1.380 0.148 -0.671 0.993 0.142 0.078 0.450
4y 4.757 1.251 0.260 -0.529 0.992 0.143 0.117 0.417
5y 4.917 1.155 0.372 -0.435 0.991 0.144 0.099 0.476
7y 5.154 1.024 0.552 -0.307 0.989 0.140 0.137 0.381

10y 5.386 0.915 0.716 -0.209 0.988 0.135 0.141 0.354
15y 5.623 0.820 0.806 -0.203 0.987 0.127 0.140 0.244
20y 5.726 0.774 0.793 -0.258 0.986 0.122 0.087 0.227
30y 5.763 0.745 0.789 -0.267 0.986 0.117 0.086 0.261

Entries report the summary statistics of the six LIBOR series and nine swap rate series, including sample
mean, standard deviation (Std), skewness (Skew), excess kurtosis (Kurt), and weekly autocorrelation (Auto).
Data are weekly (on Wednesdays) from August 19, 1998 to August 20, 2008, 523 observations for each
series.
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Table 2
Summary statistics of swaption implied volatilities

Rate\Option 1
12

3
12

6
12 1 2 3 4 5 7 10

A. Mean
1 26.60 26.65 27.57 26.98 23.89 21.80 20.33 19.28 17.37 15.11
2 28.41 28.03 27.11 25.34 22.67 20.92 19.65 18.65 16.83 14.60
3 26.48 26.10 25.31 23.79 21.68 20.24 19.08 18.18 16.39 14.22
4 25.05 24.80 24.09 22.72 20.93 19.66 18.60 17.72 15.99 13.86
5 24.13 23.89 23.22 21.94 20.33 19.16 18.16 17.29 15.57 13.49
7 21.98 21.89 21.46 20.55 19.32 18.32 17.41 16.60 14.99 13.04

10 19.99 20.00 19.77 19.13 18.19 17.35 16.53 15.76 14.31 12.48

B. Standard deviation
1 16.33 15.54 15.44 13.06 8.19 5.55 4.01 3.14 2.27 1.70
2 16.25 15.31 13.69 10.74 6.99 4.93 3.72 2.97 2.24 1.73
3 13.58 12.67 11.28 8.99 6.06 4.46 3.43 2.78 2.17 1.74
4 11.78 11.06 9.81 7.86 5.44 4.08 3.21 2.63 2.09 1.75
5 10.68 10.00 8.88 7.13 5.01 3.80 3.03 2.50 2.05 1.79
7 8.44 7.93 7.08 5.83 4.30 3.33 2.71 2.26 1.92 1.77

10 6.61 6.17 5.57 4.67 3.56 2.81 2.33 1.99 1.81 1.73

C. Standard deviation on weekly changes
1 3.50 2.86 2.46 1.95 1.29 1.00 0.86 0.73 0.58 0.52
2 3.07 2.50 1.99 1.61 1.14 0.95 0.77 0.71 0.57 0.52
3 2.53 2.07 1.74 1.44 1.01 0.86 0.71 0.63 0.55 0.48
4 2.32 1.77 1.48 1.19 0.94 0.78 0.69 0.61 0.54 0.46
5 2.18 1.66 1.34 1.10 0.87 0.75 0.67 0.60 0.53 0.47
7 1.86 1.38 1.15 0.92 0.77 0.68 0.62 0.57 0.48 0.44

10 1.66 1.18 0.98 0.79 0.69 0.63 0.58 0.53 0.49 0.47

D. Weekly autocorrelation
1 0.976 0.982 0.986 0.987 0.986 0.981 0.974 0.970 0.964 0.951
2 0.980 0.985 0.988 0.987 0.985 0.979 0.975 0.968 0.964 0.953
3 0.981 0.985 0.986 0.985 0.984 0.978 0.975 0.970 0.965 0.960
4 0.979 0.985 0.986 0.986 0.983 0.979 0.973 0.969 0.964 0.963
5 0.977 0.984 0.986 0.985 0.983 0.977 0.972 0.968 0.963 0.963
7 0.973 0.982 0.984 0.985 0.981 0.976 0.970 0.964 0.965 0.966

10 0.966 0.979 0.982 0.983 0.978 0.971 0.964 0.960 0.959 0.960

Entries report the summary statistics of the swaption implied volatilities. Each panel represents one sum-
mary statistic. Within each panel, each column represents one option maturity and each row represents one
underlying swap maturity. Data are weekly (on Wednesdays) from August 19, 1998 to August 20, 2008,
523 observations for each series.

36



Table 3
Summary statistics of the pricing errors on LIBOR/swap rates

One-factor model Three-factor model
Maturity Mean Rmse Skew Kurt Max Auto VR Mean Rmse Skew Kurt Max Auto VR

1 m 0.861 38.715 -0.271 -0.469 110.454 0.972 95.506 -1.307 8.530 -1.248 1.678 34.316 0.898 99.787
2 m 1.066 36.204 -0.274 -0.466 99.764 0.981 96.086 0.154 14.527 -0.913 1.022 53.193 0.913 99.369
3 m 1.221 33.977 -0.260 -0.466 94.651 0.984 96.580 1.389 20.553 -0.743 1.137 71.878 0.939 98.753
6 m -1.909 29.381 -0.297 -0.746 74.328 0.982 97.411 0.590 29.777 -1.043 0.832 110.659 0.949 97.330
9 m -5.576 26.359 -0.166 -0.863 69.824 0.972 97.953 -1.814 33.201 -1.198 1.180 131.062 0.945 96.610

12 m -7.487 24.676 0.002 -0.765 68.640 0.954 98.237 -3.234 34.203 -1.256 1.408 140.015 0.938 96.303
2 y -1.600 25.897 -0.433 -0.091 83.428 0.929 97.230 0.623 23.521 -1.392 1.835 100.415 0.965 97.708
3 y 2.115 32.651 -0.021 0.280 99.368 0.944 94.417 0.931 16.219 -1.328 1.609 63.080 0.952 98.621
4 y 3.651 37.856 0.236 0.059 113.203 0.954 90.906 -0.251 12.492 -1.096 1.204 48.854 0.939 99.001
5 y 4.380 41.627 0.320 -0.256 122.392 0.960 87.122 -1.205 10.588 -0.986 0.949 41.431 0.939 99.169
7 y 4.001 46.063 0.304 -0.699 124.207 0.967 79.877 -2.502 9.066 -0.795 0.664 34.323 0.939 99.274

10 y 2.408 49.507 0.212 -1.022 117.933 0.971 70.743 -2.353 8.071 -0.857 0.429 28.758 0.935 99.287
15 y 1.997 52.532 0.088 -1.194 110.526 0.976 58.959 1.704 6.032 -1.375 1.393 20.991 0.938 99.501
20 y -0.854 53.242 0.025 -1.234 101.226 0.977 52.609 2.341 5.932 -1.481 2.587 21.209 0.920 99.503
30 y -9.640 54.126 0.070 -1.178 108.739 0.978 48.735 -2.577 6.577 -1.174 2.239 30.775 0.909 99.338

Average -0.358 38.854 -0.031 -0.607 99.912 0.967 84.158 -0.501 15.953 -1.126 1.344 62.064 0.935 98.637

Entries report the summary statistics of the pricing errorson the LIBOR and swap rates, defined as the basis-point difference between the observed
LIBOR/swap rates and the model-implied values for both the one-factor model and the three-factor model. The statisticsinclude the sample
averages of the pricing error (Mean), the root mean squared pricing error (Rmse), skewness (Skew), excess kurtosis (Kurt), maximum absolute
error (Max), weekly autocorrelation (Auto), and the percentage explained variation (VR), defined as one minus the ratioof pricing error variance
to the variance of the original interest-rate series.
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Table 4
First-stage estimates on interest-rate factor dynamics

Θr θr κ A Φ Q σ2
r

1-factor

[
0.0643
(962.7)

] [
0.2110
(170.0)

] [
0.0000
(−)

] [
1.0000
(−)

] [
2.5e−5
(10.0)

] [
0.1638
(148.5)

]

3-factor

[
0.0585
(188.9)

]




0.0242
(24.2)
0.3650
(110.6)
1.3745
(76.6)







−0.0006
(0.2)

0.0000
(0.0)

0.0343
(10.1)







0.9914
(116.7)
0.9943
(168.4)
0.0007
(0.2)







0.0040
(10.0)
0.0001
(11.8)
6602.2
(0.1)




[
0.0017
(186.3)

]

Entries report the first-stage parameter estimates and absolute values of thet-statistics (in parentheses) on the one-
factor and three-factor interest-rate dynamics. The estimation is based on weekly sampled LIBOR and swap rate data
from August 19, 1998 to August 20, 2008, 523 weekly observations for each series.
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Table 5
Mean pricing errors on swaption implied volatilities

(m+n) τS/τO
1
12

3
12

6
12 1 2 3 4 5 7 10

1+1 1 -7.805 -5.586 -2.392 -0.526 0.147 -0.045 0.071 0.616 1.181 1.447
2 -0.080 0.500 0.745 0.603 0.120 -0.155 0.025 0.140 0.772 1.051
3 1.436 1.490 1.289 0.712 0.039 -0.146 -0.234 0.093 0.471 0.778
4 2.088 2.034 1.620 0.812 0.068 -0.318 -0.273 -0.085 0.379 0.527
5 2.590 2.431 1.909 0.963 -0.031 -0.333 -0.395 -0.304 0.178 0.256
7 2.258 2.124 1.656 0.806 -0.108 -0.537 -0.566 -0.422 -0.054-0.027

10 1.891 1.775 1.402 0.631 -0.221 -0.603 -0.732 -0.683 -0.371 -0.345

1+2 1 -7.667 -6.111 -3.374 -1.538 -0.118 0.278 0.678 1.227 1.194 0.688
2 -0.088 0.038 -0.071 -0.243 -0.083 0.195 0.642 0.766 0.803 0.315
3 1.384 1.084 0.582 -0.032 -0.116 0.223 0.397 0.728 0.519 0.063
4 2.026 1.673 0.989 0.142 -0.049 0.068 0.366 0.560 0.445 -0.167
5 2.532 2.107 1.337 0.352 -0.119 0.069 0.254 0.351 0.259 -0.419
7 2.222 1.859 1.168 0.279 -0.145 -0.107 0.101 0.248 0.056 -0.667

10 1.894 1.578 1.004 0.197 -0.198 -0.139 -0.043 0.009 -0.225-0.938

1+3 1 -7.741 -6.013 -3.123 -1.280 -0.116 0.093 0.407 0.936 1.003 0.797
2 -0.159 0.136 0.172 0.007 -0.074 0.020 0.383 0.482 0.616 0.425
3 1.318 1.183 0.819 0.212 -0.102 0.058 0.145 0.452 0.337 0.175
4 1.964 1.772 1.220 0.382 -0.031 -0.090 0.123 0.291 0.268 -0.055
5 2.473 2.206 1.564 0.589 -0.097 -0.082 0.018 0.088 0.087 -0.306
7 2.171 1.959 1.390 0.511 -0.117 -0.248 -0.123 -0.002 -0.108-0.553

10 1.850 1.679 1.221 0.424 -0.164 -0.266 -0.252 -0.226 -0.380 -0.821

3+1 1 -6.665 -5.674 -2.672 -0.918 -0.017 0.061 0.357 0.981 1.446 1.192
2 0.357 0.363 0.472 0.261 -0.026 -0.051 0.300 0.483 1.018 0.785
3 1.622 1.328 1.020 0.390 -0.101 -0.048 0.023 0.419 0.700 0.502
4 2.154 1.853 1.348 0.498 -0.071 -0.235 -0.031 0.223 0.594 0.240
5 2.586 2.234 1.632 0.652 -0.178 -0.260 -0.169 -0.014 0.380 -0.040
7 2.173 1.899 1.363 0.487 -0.270 -0.491 -0.370 -0.161 0.121 -0.342

10 1.737 1.516 1.085 0.293 -0.408 -0.590 -0.577 -0.464 -0.232 -0.683

3+2 1 -6.540 -5.979 -3.231 -1.422 -0.129 0.157 0.505 1.089 1.361 0.962
2 0.408 0.097 0.010 -0.165 -0.113 0.059 0.457 0.607 0.949 0.570
3 1.662 1.102 0.622 0.016 -0.165 0.074 0.194 0.555 0.645 0.300
4 2.199 1.660 0.997 0.163 -0.117 -0.099 0.150 0.372 0.554 0.052
5 2.641 2.069 1.318 0.348 -0.206 -0.113 0.024 0.147 0.353 -0.216
7 2.252 1.778 1.104 0.232 -0.267 -0.320 -0.156 0.021 0.119 -0.494

10 1.850 1.446 0.887 0.097 -0.365 -0.389 -0.334 -0.253 -0.203 -0.805

3+3 1 -6.820 -5.831 -3.030 -1.370 -0.171 0.151 0.539 1.131 1.302 0.937
2 -0.085 0.212 0.199 -0.121 -0.159 0.048 0.486 0.644 0.887 0.542
3 1.152 1.205 0.796 0.051 -0.215 0.059 0.218 0.588 0.580 0.269
4 1.705 1.755 1.158 0.191 -0.169 -0.118 0.169 0.400 0.486 0.019
5 2.166 2.158 1.468 0.371 -0.262 -0.136 0.038 0.171 0.283 -0.252
7 1.807 1.857 1.237 0.245 -0.329 -0.350 -0.149 0.037 0.044 -0.536

10 1.433 1.513 1.001 0.097 -0.435 -0.428 -0.338 -0.247 -0.284 -0.854

Entries report the sample averages of the pricing errors on swaption implied volatilities, defined as the
difference in percentage points between the market impliedvolatility quotes and model-implied values.
Each panel represents one model. Within each panel, each column represents one option maturity and each
row represents one underlying swap maturity.
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Table 6
Root mean squared pricing errors on swaption implied volatilities

(m+n) τS/τO
1
12

3
12

6
12 1 2 3 4 5 7 10

1+1 1 12.792 8.854 3.932 2.528 2.362 2.135 2.012 2.088 2.098 2.055
2 2.759 1.811 1.908 2.262 2.122 1.942 1.837 1.759 1.758 1.697
3 2.900 2.451 2.307 2.276 1.973 1.862 1.729 1.665 1.543 1.477
4 3.426 3.062 2.714 2.348 1.938 1.765 1.667 1.565 1.441 1.310
5 3.999 3.622 3.142 2.521 1.901 1.726 1.630 1.499 1.349 1.216
7 3.368 3.099 2.703 2.264 1.805 1.678 1.586 1.449 1.231 1.113

10 2.926 2.673 2.425 2.073 1.749 1.646 1.579 1.475 1.234 1.129

1+2 1 11.551 9.141 5.121 2.681 1.350 1.175 1.242 1.618 1.570 1.471
2 2.037 1.598 1.382 1.163 1.191 1.026 1.132 1.156 1.210 1.233
3 2.848 2.154 1.601 1.241 1.072 0.994 0.922 1.087 0.985 1.131
4 3.507 2.816 2.038 1.359 1.086 0.879 0.888 0.937 0.910 1.101
5 4.100 3.407 2.536 1.612 1.068 0.881 0.813 0.790 0.842 1.171
7 3.578 3.000 2.202 1.426 1.009 0.818 0.739 0.733 0.762 1.231

10 3.311 2.705 2.033 1.308 0.960 0.813 0.743 0.711 0.820 1.385

1+3 1 11.499 9.113 5.018 2.530 1.266 1.112 1.145 1.466 1.477 1.440
2 1.947 1.624 1.358 1.050 1.102 0.973 1.024 1.041 1.134 1.170
3 2.798 2.180 1.640 1.174 0.995 0.937 0.863 0.974 0.933 1.042
4 3.476 2.850 2.096 1.332 1.020 0.859 0.836 0.852 0.865 0.990
5 4.085 3.448 2.601 1.615 1.017 0.864 0.793 0.753 0.825 1.044
7 3.559 3.034 2.264 1.432 0.968 0.840 0.763 0.720 0.776 1.097

10 3.290 2.727 2.086 1.313 0.930 0.841 0.793 0.760 0.871 1.246

3+1 1 10.778 8.868 4.511 2.984 1.988 1.886 1.911 2.056 2.183 1.883
2 2.951 1.755 1.766 1.901 1.717 1.692 1.672 1.756 1.825 1.583
3 3.393 2.328 2.032 1.838 1.629 1.606 1.613 1.644 1.623 1.417
4 3.781 2.910 2.406 1.907 1.585 1.575 1.550 1.555 1.503 1.326
5 4.238 3.450 2.823 2.078 1.596 1.537 1.524 1.491 1.406 1.322
7 3.469 2.927 2.415 1.890 1.567 1.576 1.523 1.448 1.315 1.317

10 2.946 2.519 2.190 1.805 1.618 1.616 1.572 1.520 1.339 1.465

3+2 1 10.009 9.050 5.032 2.713 1.158 0.961 1.077 1.435 1.678 1.480
2 2.393 1.733 1.541 1.242 0.979 0.786 0.882 1.042 1.302 1.207
3 3.205 2.200 1.717 1.288 0.892 0.748 0.770 0.951 1.099 1.078
4 3.706 2.805 2.113 1.388 0.911 0.709 0.735 0.847 1.001 1.044
5 4.213 3.361 2.569 1.619 0.929 0.718 0.705 0.783 0.929 1.102
7 3.550 2.929 2.218 1.434 0.893 0.767 0.727 0.759 0.873 1.166

10 3.181 2.618 2.043 1.340 0.914 0.830 0.842 0.882 0.958 1.366

3+3 1 9.917 8.992 4.904 2.524 1.083 0.924 1.092 1.488 1.667 1.436
2 2.064 1.772 1.383 0.950 0.912 0.748 0.891 1.084 1.294 1.163
3 2.730 2.221 1.680 1.085 0.822 0.706 0.765 0.985 1.096 1.043
4 3.219 2.795 2.074 1.193 0.838 0.671 0.724 0.871 0.994 1.014
5 3.719 3.343 2.544 1.452 0.852 0.678 0.688 0.794 0.928 1.086
7 3.210 2.916 2.164 1.242 0.827 0.748 0.715 0.768 0.885 1.167

10 3.071 2.618 1.951 1.120 0.858 0.827 0.840 0.888 0.992 1.382

Entries report the root mean squared pricing errors on swaption implied volatilities, defined as the differ-
ence in percentage points between the market implied volatility quotes and model-implied values. Each
panel represents one model. Within each panel, each column represents one option maturity and each row
represents one underlying swap maturity.
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Table 7
Explained variation on swaption implied volatilities

(m+n) τS/τO
1
12

3
12

6
12 1 2 3 4 5 7 10

1+1 1 0.614 0.804 0.959 0.964 0.917 0.852 0.748 0.597 0.413 0.260
2 0.971 0.987 0.984 0.959 0.908 0.846 0.756 0.650 0.504 0.407
3 0.965 0.976 0.971 0.942 0.894 0.826 0.751 0.642 0.540 0.477
4 0.947 0.957 0.951 0.921 0.873 0.819 0.737 0.645 0.559 0.529
5 0.919 0.928 0.921 0.893 0.856 0.801 0.727 0.654 0.574 0.560
7 0.912 0.919 0.909 0.868 0.824 0.772 0.700 0.623 0.591 0.605

10 0.885 0.895 0.873 0.821 0.762 0.703 0.639 0.569 0.575 0.611

1+2 1 0.720 0.808 0.938 0.972 0.973 0.958 0.932 0.887 0.797 0.413
2 0.984 0.989 0.990 0.989 0.971 0.958 0.937 0.915 0.837 0.525
3 0.966 0.978 0.982 0.981 0.969 0.953 0.941 0.915 0.851 0.577
4 0.941 0.958 0.967 0.970 0.960 0.954 0.936 0.918 0.856 0.612
5 0.909 0.928 0.941 0.951 0.955 0.947 0.935 0.920 0.847 0.628
7 0.889 0.912 0.930 0.942 0.946 0.941 0.927 0.907 0.844 0.659

10 0.831 0.873 0.899 0.923 0.930 0.919 0.899 0.872 0.809 0.651

1+3 1 0.728 0.806 0.935 0.972 0.976 0.960 0.929 0.871 0.771 0.501
2 0.986 0.989 0.990 0.990 0.975 0.961 0.935 0.903 0.820 0.603
3 0.967 0.979 0.984 0.983 0.973 0.956 0.938 0.903 0.839 0.650
4 0.941 0.959 0.970 0.974 0.965 0.956 0.934 0.907 0.845 0.680
5 0.907 0.930 0.945 0.955 0.959 0.949 0.931 0.910 0.840 0.690
7 0.888 0.914 0.936 0.947 0.950 0.942 0.922 0.898 0.840 0.714

10 0.830 0.879 0.907 0.929 0.934 0.919 0.896 0.867 0.811 0.704

3+1 1 0.730 0.807 0.945 0.953 0.941 0.884 0.780 0.669 0.478 0.262
2 0.967 0.987 0.985 0.969 0.939 0.882 0.804 0.675 0.544 0.369
3 0.952 0.977 0.976 0.960 0.928 0.870 0.779 0.673 0.543 0.417
4 0.930 0.959 0.959 0.945 0.915 0.854 0.767 0.656 0.565 0.443
5 0.901 0.931 0.933 0.923 0.900 0.841 0.750 0.643 0.563 0.457
7 0.897 0.921 0.921 0.902 0.871 0.798 0.702 0.593 0.536 0.483

10 0.870 0.894 0.883 0.854 0.807 0.714 0.606 0.471 0.466 0.435

3+2 1 0.784 0.809 0.938 0.969 0.980 0.971 0.944 0.911 0.812 0.560
2 0.979 0.987 0.987 0.987 0.981 0.975 0.959 0.918 0.842 0.622
3 0.959 0.977 0.980 0.979 0.979 0.972 0.953 0.923 0.831 0.644
4 0.936 0.958 0.964 0.969 0.972 0.970 0.950 0.916 0.841 0.644
5 0.905 0.930 0.938 0.951 0.967 0.965 0.946 0.905 0.824 0.637
7 0.894 0.914 0.926 0.941 0.961 0.956 0.931 0.887 0.798 0.644

10 0.846 0.875 0.890 0.918 0.945 0.932 0.890 0.820 0.731 0.591

3+3 1 0.805 0.806 0.938 0.974 0.983 0.973 0.944 0.905 0.789 0.589
2 0.984 0.987 0.990 0.992 0.983 0.977 0.960 0.914 0.824 0.646
3 0.967 0.978 0.983 0.985 0.983 0.975 0.954 0.919 0.815 0.663
4 0.946 0.961 0.969 0.977 0.977 0.974 0.952 0.913 0.828 0.663
5 0.920 0.935 0.945 0.961 0.974 0.969 0.948 0.903 0.814 0.653
7 0.901 0.919 0.937 0.956 0.969 0.961 0.933 0.884 0.789 0.657

10 0.831 0.880 0.909 0.943 0.957 0.937 0.891 0.816 0.723 0.603

Entries report the explained variation on swaption impliedvolatilities, defined as one minus the ratio of
pricing error variance over the variance of the original implied volatility series. Each panel represents
one model. Within each panel, each column represents one option maturity and each row represents one
underlying swap maturity.
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Table 8
Second-stage estimates on interest-rate volatility dynamics

m+n κ θv κv σv ρ σ2
o

1+1

[
0.0139
(531.6)

] [
5.6874
(213.6)

] [
0.0870
(219.1)

] [
0.4965
(147.8)

] [
−0.1140
(59.3)

] [
0.0008
(839.3)

]

1+2

[
0.0158
(687.3)

]



1.4207
(548.6)
0.9915
(533.3)







0.0000
(0.0)

1.3128
(526.7)







0.2644
(470.1)
2.4900
(579.6)







0.7466
(1733.1)
−0.1616
(184.5)




[
0.0006

(1411.5)

]

1+3

[
0.0161
(797.6)

]




7.2077
(379.6)
0.3659
(455.3)
0.7046
(526.6)







0.0000
(0.0)

1.0089
(812.8)
1.5876
(627.2)







0.2729
(485.6)
1.0045
(494.9)
2.2115
(625.8)







0.6142
(1060)
0.7784
(1950)
−0.9977
(2418)




[
0.0006
(1284)

]

3+1




0.0000
(238.7)
0.0130
(917.1)
26.2771
(413.2)




[
2.4293
(386.6)

] [
0.3273
(263.6)

] [
0.7524
(307.1)

] [
−0.2525
(181.5)

] [
0.0007
(918.1)

]

3+2




0.0003
(790.6)
0.0149

(1178.2)
23.6698
(758.0)







12.6553
(4610.7)
1.1614
(868.9)







0.0001
(813.6)
0.7608
(858.9)







0.3096
(848.5)
1.0858

(1174.2)







0.4318
(723.0)
−0.9614
(29045)




[
0.0006

(1376.6)

]

3+3




0.0003
(624.2)
0.0145
(940.2)
18.5505
(589.2)







0.0104
(635.6)
0.9965
(658.4)
0.0160
(545.4)







0.0000
(0.0)

1.1875
(571.4)
10.4820
(668.7)







0.3667
(559.7)
2.1048
(762.6)
2.7376
(600.5)







0.3678
(504.1)
−0.2784
(512.5)
−0.9999
(1205)




[
0.0005

(1209.8)

]

Entries report the second-stage parameter estimates and standard errors (in parentheses) on the interest-rate volatility
dynamics. The estimation is based on weekly sampled swaptions data from August 19, 1998 to August 20, 2008, 523
weekly observations for each series.
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Figure 1
LIBOR/swap rates time series and term structure.
The left panel plots the time series of the three-month LIBOR(solid line), and swap rate at two- (dashed
line) and 30-year (dash-dotted line) maturities. The rightpanel plots the representative term structures at
different dates, with the solid line being the mean term structure.
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Figure 2
Summary statistics of swaption implied volatilities.
The four panels visualize, respectively, the sample average, the standard deviation, the standard deviation
of weekly changes, and the weekly autocorrelation of the swaption implied volatility series across different
option and interest-rate maturities.
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Figure 3
Swaption implied volatility time series.
The two panels are for two different underlying swap maturities at one year (left) and ten years (right),
respectively. Within each panel, the three lines denote three option maturities at one year (solid lines), five
years (dashed lines), and 10 years (dash-dotted lines).
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Figure 4
Principal component analysis on the implied volatility surface.
The bar chart in the first panel plots the first ten normalized eigenvalues of correlation matrix of the weekly
differences on the 70 implied volatility time series, whichcan be interpreted as the percentage variation
explained by each principal component. The remaining threepanels plot the eigenvectors of the first three
eigenvalues, respectively, which can be interpreted as theloading coefficients of the three principal compo-
nents on the 70 time series along seven swap maturities and ten option maturities.
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Figure 5
Interest rate factor shocks and yield curve responses.
The solid lines in each panel represent the continuously compounded interest rate term structure generated
from the estimated three-factor model when evaluated at thesample averages of the extracted interest-rate
factors. The dashed lines are obtained by setting one interest-rate factor to its 90-percentile while holding
the other two to their average values. The dashed-dotted lines are obtained by setting one interest-rate factor
to its 10-percentile while holding the other two to their average.
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Figure 6
The time series of the interest-rate factors.
The time series of the three interest-rate factors are extracted using the unscented Kalman filter based on the
first-stage estimated model parameters.
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Figure 7
Volatility shocks and implied volatility responses under the (3+3) model.
The solid lines in each panel represent the implied volatility generated from the estimated model when
evaluated at the sample average of the volatility state variables. The dashed lines are obtained by setting one
volatility factor to its 90-percentile while holding the other two to their average values. The dashed-dotted
lines are obtained by setting one volatility factor to its 10-percentile while holding the other two to their
average.
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Figure 8
The time series of the interest-rate volatility factors.
The time series of the three interest-rate volatility factors are extracted from the estimated(3+3) model.
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