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ABSTRACT

We propose to use the linearity-generating framework t@m@roodate the evidence of unspanned
stochastic volatility: Variations in implied volatiliteeon interest-rate options such as caps and swap-
tions are independent of the variations on the interestteaite structure. Under this framework, bond
valuation depends only on the transition dynamics of irgierate factors, but not on their volatilities.
Thus, interest-rate volatility is truly unspanned. Furthere, this framework allows tractable pricing of
options on any bond portfolios, including both caps and $iwap. This feat is not possible under ex-
isting exponential-affine or quadratic frameworks. Fipahe framework allows sequential estimation
of the interest-rate term structure and the interest-rat® implied volatility surface, thus facilitating
joint empirical analysis. Within this framework, we penfospecification analysis on interest-rate factor
transition dynamics and its relation to the interest-ratentstructure; we also analyze the interest-rate
volatility dynamics and its impact on interest-rate optiting. We estimate several specifications for
the transition dynamics to ten years worth of U.S. dollar@Band swap rates across 15 maturities. We
also estimate several interest-rate volatility dynamjescefications using ten years of swaption implied
volatilities across a matrix of ten option maturities andeseswap tenors. The estimation results show
that the volatility dynamics dictate the option implied atility variation along the option maturity di-
mension, whereas the interest-rate transition dynamatatei the implied volatility variation along the
underlying swap maturity dimension.
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Under classic one-factor interest-rate models such as&a§i977) or Cox, Ingersoll, and Ross (1985),
the different parts of the interest-rate term structurdigtely linked to the short-term interest rate dynamics
under the so-called risk-neutral measure. The short rag thietermines the short end of the yield curve,
the risk-neutral mean of the short rate determines the lowigoé the yield curve. The speed with which
shocks to the short rate transmit to long rates is contrdilethe risk-neutral mean reversion speed of the

short rate. Finally, the curvature of the yield curve is deiaed by the short rate volatility.

During the past decade, term structure modeling with ndittiensional risk structures has developed
rapidly. Prominent examples include the exponential afflass of Duffie, Pan, and Singleton (2000), under
which zero-coupon bond prices are exponential affine intétte sector, and the exponential quadratic class
of Leippold and Wu (2003), where zero-coupon bond priceggpenential quadratic functions of the state
vector. Despite the rapid development and multi-dimeradiertension, the simple intuition from the classic
one factor models remains as the guiding yardstick in desigor explaining the different roles played by

different interest-rate factors.

The intuition is challenged, however, when a few studies., €ollin-Dufresne and Goldstein (2002)
and Heidari and Wu (2003), find that a large proportion of tlewements in the interest-rate option implied
volatilities are independent of the factors identified fridme yield curve, a phenomenon labeled as “un-
spanned stochastic volatility.” At-the-money option imepl volatilities approximate well the risk-neutral
expected value of the underlying asset return volatilitarfGand Wu (2006)). Intuition from the classic
models suggests that interest-rate volatility variatibawd show up on the yield curve as variation in the
yield curve curvature. It is difficult to reconcile the indg@lent movements with most existing modeling
approaches, except under specific parametric constréotin-Dufresne and Goldstein (2002)). Probably
related to the unspanned volatility phenomenon, reseerttave found that dynamic term structure models
that price the term structure well generate very poor perémrce in pricing and hedging interest-rate options

(Dai and Singleton (2003), Li and Zhao (2006), and Heidadi ¥fu (2008)).

Most recently, Gabaix (2007) develops a new class of asgghgmodels, under which bond prices
are linear in a set of yield curve factors. This linearitytéea has profound implications that are drastically
different from the above-discussed classic models. Iriquéat, the linear relation between bond prices and

the yield curve factors dictates that only the risk-neudrit, or the transition dynamics, of the interest-rate



factors enter the bond pricing equation but that neitheatilitles of these factors nor the volatility dynamics
affect bond pricing. Therefore, if these factors show shstio volatility, these stochastic volatilities are truly

unspanned and completely un-identified from the yield curve

Another important implication of the linear structure iatlboth coupon bonds and swap rates are also
linear in the state vector. If one can price an option on a-zetgon bond, pricing an option on a coupon
bond or a swap is equally tractable. This is not the case ®eiponential affine or quadratic class. Re-
searchers often resort to different dynamics specificatfonpricing caps and floors, which are essentially
options on zero-coupon bond, than for pricing swaptionspre must resort to linear approximations to
retain tractability (Heidari, Hirsa, and Madan (2007) amthidger and Pelsser (2006)). By starting with a
linearity-generating process, we remove the need for limparoximation on the pricing relation and cir-
cumvent the concern on internal consistency when diffedlgnamics or different approximations are used

to price different contracts.

Finally, the feature that interest-rate volatilities ahdit dynamics do not show up in bond pricing but
show up in interest-rate options leads naturally to a tvep-siequential estimation procedure, under which
one can identify the interest-rate transition dynamicsnfithe interest-rate term structure during the first
step and then identify the interest-rate volatility dynesnirom the interest-rate options during a second
step. The sequential estimation breaks a large identiircgiroblem into smaller, manageable levels and

thus facilitates a joint analysis of both interest-ratentstructure and interest-rate options.

In this paper, we work within the linearity-generating framork and perform specification analysis on
(i) the interest-rate factor transition dynamics and itatien to the interest-rate term structure, and (ii) the
interest-rate volatility dynamics and its impact on inggpeate option pricing. Then, we estimate several
specifications for the interest-rate factor transition atycs using ten years worth of U.S. dollar LIBOR
and swap rates across 15 maturities, and we also estimarakgterest-rate volatility dynamics specifi-
cations using ten years of swaption implied volatilitiesoss a matrix of ten option maturities and seven
swap tenors. The sequential procedure and the large ambdatabenables us to identify the transition
and volatility dynamics accurately. The estimation resghow that the volatility dynamics dictate the op-
tion implied volatility variation along the swaption maityrdimension, whereas the interest-rate transition

dynamics dictate the implied volatility variation alongetanderlying swap maturity dimension.



The remaining of the paper is organized as follows. The nesitian performs specification analysis
on the linearity-generating framework. We start with a dmetor example to illustrate the intuition and
the general ideas, and then proceed to defin@ma# n) factor structure that includes an-dimensional
transition matrix to determine the interest-rate termaitme and am-dimensional stochastic volatility
dynamics to govern the swaption implied volatility surfad®e clarify the identification conditions under
such a generic factor structure. Secfidn 2 analyzes theotiatdBOR, swap rates, and swaption implied
volatilities. Sectiori 3 describes the two-step sequeerstimation procedure for identifying the transition
dynamics and volatility structures. Sectidn 4 discusseggitimation results on the first-stage estimation and
the interest-rate term structure variation. Sedtion Syaesl the option pricing estimation results. Sectibn 6

concludes.

1. Linearity-generating processes and unspanned volatiyi

We fix a filtered complete probability spa¢®, F,P, (‘h)o<t<s} Satisfying the usual technical conditions
with 7 being some finite, fixed time. For any tinhes [0,0) and an expiry dat& > t, we useP(t,T) to
denote the timé-value of a zero-coupon bond with time-to-maturity= T —t. The instantaneous interest
rate, or the short rate, is defined by continuity:

. —InP(t, T
I’tzllm#.

1
Tt T-—t @)

We assume no arbitrage in the economy. Then, under cert@inital conditions, there exists at least one
strictly positive stochastic proces4, which we call thestate price deflatgrsuch that the deflated gains

process associated with any admissible trading strategyniartingale (Cochrane (2004), Duffie (1992),
Harrison and Kreps (1979)). In particular, tihé&ir value of a claim to a terminal payoffy at timeT >t

can be written as

VET) = E m—:m] , 0

whereE,[-] denotes the expectation operator conditional on filtrafipand under measui@



This stochastic procedd; is unique when the market is complete. The ratid/oét two time horizons
Mt = Mt /M, is referred to as the stochastic discount factor or thermigernel. The state price deflator

is related to the instantaneous interest rate by
dM;/M; = —rdt—y(Z) " dZ, (3)

wherez; represents the risk sources of the economyy@Ad measures the market prices of these economic

risks. We can also write the state price deflator via the Walig multiplicative decomposition,

M; = Moexp<— /Ot rsds> E (— /: y(Zs)dZS> , 4)

whereE(-) denotes the stochastic exponential martingale operaaoo@and Shiryaev (1987) and Rogers
and Williams (1987)). The exponential martingale definesRadon-Nikodym derivative that transforms
the statistical measui® to the risk-neutral measuf@, under which the contingent claim valuation can be

written as,

V(t,T) =E2 [exp(— /t‘T rsds> I'IT] ) (5)

In what follows, we first use a one-factor example to illustrdoe intuition and the general idea behind
the linearity-generating framework. We then perform sipeation analysis on (i) the interest-rate transition
dynamics and the impact on bond pricing and (ii) the interat volatility dynamics and the effect on

option pricing.

1.1. A one-factor example

Let ry = 6, + %, with 6; being the long-run risk-neutral mean of the short rate mndenoting a zero-
mean random process that captures the short rate gap fréongisun mean. Gabaix (2007) proposes the
following Q-dynamics forx;,

dx = —x (K —X) dt+dn (6)



wheren; denotes the martingale component. Under this dynamicsfeadion, the value of the zero-coupon

bondP(t,T) is affine inx,

Pt,T)=EZ [exp<—/T rsds>] — e Ot (1_ 1—Ke"“xt> , T=T-t. (7)
t

The bond value depends on the long-run mean of the shortBratidne drift coefficientk that controls

the transition dynamics of the short rate, and the curresd lef short-rate gap;. However, the pricing
equation does not depends on the specification of the maltimpmponent; and hence does not depend

on the interest-rate volatility dynamics.

The linear pricing structure in equatidd (7) has importamlications. First, even if the short rate shows
stochastic volatility, its variation will not show up in therm structure of interest rates. In this sense, the
interest-rate volatility is truly unspanned by the intémede term structure, a phenomenon that has been
documented empirically by Collin-Dufresne and Goldstélf02), Heidari and Wu (2003), Li and Zhao
(2006), and Heidari and Wu (2008). Second, the linear stracilso suggests that all simply compounded

rates and all coupon bonds are also linear in the short-eqidagtorx;.

It is also helpful to consider an alternative representatibthe economy;,
Yt = Mt7 (8)

whereM; denotes the state price deflator. Then, we can show (in Appéydhat thePP-dynamics ofY; is

governed by a diagonal transition matAx

_ 6r 0
Ei [dY] = —AYdt, with A= . 9

0 K+6

Hence, we can solve the conditional expectationgrofia the matrix exponential of the transition matrix,

X
Efyr]=e Y =e ™| M (10)
3



Furthermore, we can write the state price deflatdvias-v"Y;, with v’ = (1,1). Thus, using the result
in (I0), we can derive the zero-coupon bond prices directlyaliing expectations on the pricing kernel

under the statistical measupPe

PET) = B || = gEYr) = gvery —e o (1- =2 %), (11)

which is identical to the bond pricing solution [0 (7).

Although the martingale component does not affect the bamthg equation, it does affect the pricing
of interest-rate options. To price interest-rate optioastably, instead of directly specifying the martingale
component in the short rate dynamics, we start with spetiifitcs on the innovation of the transformed

vectorY;. One simple specification can be,

0o+ BoZ
¥ — 0 0+ BoZ ’ (12)

e (a1+P1Z)

where(0g, a1, Bo,B1) are scaling coefficients arg] denotes a non-negative martingale startingpat 1.

With this specification, we have the state price deflator as,
M =V'Y; = e " (ao+BoZ + & (a1 + B1Z1)) (13)
and in the form of stochastic differential equation,
dM /M, = —rdt - y(Z,)dZ, (14)

where the market price & risk is given by

- (Bo+eBy)
y(2) = (0o +Bozt) + e (a1 +B1Zy)’ )

To guarantee the positivity of the deflator fortallve constraintig > 0,39 > 0,31 > 0, ag+ a3 > 0. Hence,

the market price of risk is negative.



From [13), we can derive the zero-coupon bond value as,

PILT) = Eu|f] = ke ® (ao+BoZ+ e (@1+PiZ))

. (16)
— et (1_ 1-¢7 ke M(a1+BiZ) >
K do+BoZ+e ™ (as+P1z) ) -
Comparing[(¥) with[(16), we have related taz; by
—Kt
% ke (a1 +B1zy) 17)

" ao+ Bozi + e N (ar +P1zy)’

shows that th& dynamics is consistent with the specification in equatigru(@ler the risk-
neutral measur@, with the martingale component given by
(Xmax(t) — %) (% — Xmin (1)) dZ

I = ) — X @) Z (18)

wherexmax andxmin define the maximum and minimum values for

Ke KB, Ke oy

Xmax(t) = Bo+ e Np; Xmin (t) = dote May

(19)

Thus, the volatility ofx is parabolic and goes to zero at the two boundafiggs (t) , Xmax(t)].

Equation [(16) derives the fair value of the zero-coupon kasd function of the model parameters and
the single factorg or Z;. Observed bond prices can deviate from the fair valuesreithe to model mis-
specification or short-term market dislocations. Regaritbe source, interest-rate options are written on
observed bond prices or interest-rate quotes, not on medigés. Hence, we need to explicitly adjust for
the mismatch, if any, between the model values and obseraeketnquotes. For this purpose, we follow
Heath, Jarrow, and Morton (1992) and Hull and White (199@dcommodate the currently observed yield
curve through a deterministic time function. Specificallyg adjust the fair value of the state price deflator

M; by a multiplicative corrective terrR;, defined as

R — e Jopudu, (20)



Then, the observed zero-coupon bond prices can be written as

~ {MTRT

P(LT) =B | Ja T | = PLT)e ¥ 2% P TIRLT),

with R(t, T) = e~ K pudu,

Now consider pricing European options on a portfolio of cmuponds. The timd- observed price of a

portfolio of bonds that pays coupag at s for a finite collection of dates> T can be written as,

Pr= > CP(T,s) = MiT > sR(T,s)e % [ao + BoZr + €7 (ar + BaZr)] . (21)

We consider a European option with expiration daten the bond portfolio with the terminal paydffy =
_ + _ +
(DPT - K) . Its time+t value can be written &% = E; [MT (DPT - K) ] /M. The following proposition

converts the European option on the bond portfolio to a Eemomption on the non-negative martingate

Proposition 1 Under the linearity-generating dynamics specifiedid (1&),can write the present value of
a European option on a portfolio of bonds as the forward valfia European option on the non-negative
martingale . Specifically, the time-t value of an option with maturity i aobond portfolio specified by
(1) can be written as,

M+

Vi —E, [W (oFr - Kﬂ B[R+ GZr)'] (22)

where the deterministic coefficientséfnd G are given by
R= 1 nsR(T s)e‘efs(cx +e %), G = 1 nsR(T s)e‘G'S(B +e7*py) (23)
- Mt Z S ) 0 1) - Mt Z S ) 0 1),

wherent = Dcr —K andns=Dcsfors>T.

The proof follows readily by plugging in the expression Ryrin (21) and collecting terms. The propo-
sition can be applied to a wide range of actively traded @serate derivatives such as caps, floors, and

swaptions, as they can all be written as European optionspontfolio of zero-coupon bonds.



Corollary 1 If we assume that the innovatiopfdllows a geometric Brownian motion Z exp(c\M — 02t/2) ,

we can represent the value of European options on a portédlimonds in the Black-Scholes formula,
Vi =V&y (Gizi, —R.ovVT —1) (24)

where \B5, (SK,o0v/T) is the Black-Scholes value of a call with initial value skrike K, volatility o,

maturity T, and interest rate 0.

Thus, tractable specifications on thedynamics generate tractable pricing of options on manyeigti
traded interest-rate derivatives. In particular, while #pecification of the interest-rate transition dynamics
(k) determines the bond pricing and hence the interest-rate & ucture, it is the dynamics specification

on the innovatior¥; that determines the variation of the option value.

1.2. The general (n+ n) factor structure

In a generate set up, we considermmgimensional interest-rate term structure awdimensional indepen-

dent interest-rate volatility factor structure, embeduatethe following specification,
Yo =e A (a+BZ) =MX, M =V'Y, (25)

where the transition matri& € R(M1*(M+1) and the loading vectare R(M™D determine then-dimensional
interest rate structure, witk = Y; /M; defines the vector of the interest-rate factors that bormeprare lin-
ear of. On the other hand, the specification of the innovatioramics or(a + BZ;) € R(™1Y*1 determines
the pricing of interest-rate options. In particular, theamationZ; can have am-dimensional stochastic

volatility structure to capture the independent variatbimterest-rate implied volatilities.

1.2.1. Specification analysis of interest-rate transitiomlynamics and bond pricing

From equation(25), the fair values of zero-coupon bondsineg

M+

P(t,T) =k [W] = Mithe-AT (a+BZ)=v'e X, (26)

9



where the time-homogeneous coefficientss A" determine the shape of the interest-rate term structure
and the loading on the transformed interest-rate factar§Vhile X; have(m+ 1) elements, the constraint
M; = v "Y; reduces one degree of freedom, resulting inmadimensional term structure. In particular, for

P(t,t) =1, we need) " X = 1.

The bond pricing equation i (26) involves evaluating a iraxponentiale " at each maturity. The

following proposition diagonalizes the matrix to enhargentification and computation.

Proposition 2 If the transition matrix A has distinct real eigenvaluesgearan diagonalize the transition
matrix Ay while settingug = (1,--- , 1) " without losing any generality. Specifically, let D denote diegonal
matrix made of the eigenvalues of A and V denote the matriernéthe eigenvectors, the diagonalized
transition matrix is simply A= D and the ith element of the transformed interest-rate factiecome

(X3 = {V~I%3}i/{V "v}i. To guarantee R,t) = 1, we asky " o {Xd}; = 1 for all t.

Proof. With V andD being the two matrices made of the eigenvectors and eigggwalf matrixA, we

haveA =V DV~ and thuss™" = Ve PV 1, The bond pricing equation becomes,
Pt,T)=v' e X% =v'VePv-Ix =v e DX, (27)

with V. =VTv and X = V~1X%. The above transformation converts the transition matrig & diagonal
matrix made of the eigenvalues of the original ma#ix= D. To transform the loading to be a vector of

ones, we have

P(t,T)=V"e P =5 vie X =5 e UiX) = vie "X, (28)
withvg = (1,---,1)7, Ay =D, and{X%}; = {(V"X}i/{V'V}i. =

We can represent the diagonalized transition matrik @9, Im;1+ (Ko, K1, -+ ,Km) With 0 =Ko < K1 <
... < Km, Im¢1 being an(m+ 1)-dimensional identity matrix, an¢) denoting a diagonal matrix with the
diagonal elements given in the brackets. With this reptesien, we can seX? =1 — zi";lxti, so that the

bond pricing can be written as

3

Pt,T)=v e Ax =97 rE:eKﬂxt‘ —e Ot (1— (1— eKiT)><J> . (29)

10



In our one-factor example in sectibn1l.1, we can set

1 01 1
V= ) A=06l2+ , XK= ) (30)

or equivalently we can use the following diagonal represion:

1 00 1-%
V= , A=6l2+ , XK= : (31)
(1) (0 K) ( 3 )

1.2.2. Specification analysis of interest-rate volatilitydynamics and option pricing

To price options, we retain th@ + 3Z;) innovation specification. With the diagonalized represtom of
the interest-rate factors, theh element ofY; becomesy} = e~ (&+<)'{a + BZ};, and the timeF price on

the bond portfolio becomes,

N
Pr=— % ( > cse-<9r+Ki>SR(T,s)> {a+PZr}. (32)

Option valuation on this bond portfolio is analogous to the-actor example.

Proposition 3 The time-t value Mof an European option on the bond portfolio that paysioff= (DIST —
K)* is given by

=y m—: (DﬁT—K>+} =B [(R+GiZr)"] (33)

where the deterministic coefficientsdnd G are given by

VT (ZSe_ASnSR(T>S)) a G _ VT (ZSe_ASnSR(T>S)) B

h= vieA(a+pz) T Ve A (a+Bz)

(34)

withns = Dcgfor s> T andnt = Dcr — K.

11



Proof. The bond portfolio with cash-flowss has timeT pricePr = DPr —K. RecallM; =v e At (a+Bz),

and calculate

i o (3] ] 5 [0 (g nne) ovse) |

_E, [(ﬁ + étzT)j ,

with

F=v' <z eASnSR(T,s)> a, G=v' (Z eASnSR(T,s)> B
andfk = ﬁ/Mt, G = ét/Mt. |

The pricing of interest-rate options depends on the spatiific of theZ; dynamics. For tractability, we
let (a,B) be (m+ 1)-dimensional vectorga;, 3}, and specifyZ; as an exponential martingale. Then, if
Z; follows a geometric Brownian motion, the Black-Scholesifata in [24) still holds. More generally, to
capture the time variation of the interest rate volatilityg propose the following generic model structure for

the Z; dynamics to accommodate multiple sources of stochastatiiity,

0Z/Z = 30\ Maw,

| - (35)
dv Kuj (ev,- —vg) dt+0vj\/\7tldV\{VJ,

where we model the instantaneous returrZpas driven by multiple Brownian motion components, each
driven by stochastic volatility. Furthermore, we allow @ation between each Brownian innovation in
Z; and the corresponding Brownian innovation in its stockagiriance ratep;dt = E[dV\{jdV\{"j]. All
other pairs of Brownian motions are assumed to be indepéraferach another. This specification can
capture the term structure variation through different mreaersion speeds,j. For identification, we rank
the mean-reversion speedskas< --- < Kn. Furthermore, through multiple innovation componentZgn
the specification also has the potential to generate vamsin the implied volatility skew along the strike
dimension. We can easily incorporate discontinuous mowesria theZ; dynamics and in the stochastic
variance rates while maintaining pricing tractability. €approach to do this is to follow the time-changed
Lévy process specification of Carr and Wu (2004). Incorfiegajumps has been proven helpful in more

accurately capturing the pricing behavior of short-term dat-of-the-money options. Nevertheless, for

12



model estimation, we only obtain at-the-money swaptions.d&lence, we focus on purely continuous

specifications for parsimony.

Under this specification, the log return dncan be written as a linear combinationrofime-changed

Brownian motions,

n
InZr/z,= S W, —Z7}%, (36)
]Z]. rz;,JT 2 ’
where the stochastic time changes are defined by the instanis variance rates,
. T .
7 = / vids (37)
t

With this representation, we can derive its Fourier tramsfas exponential affine functions of the variance

rates,
julnzr /z, - ( T i)
o(u) =Ey [ Z/Z] —exp( — 5 (aj (1)~ bj(1) V) | (38)
B 3 (@b
where the time-homogeneous coefficients can be solvedtaadily;
o o A=t _ \/ 1\2 | o2
e [ (1) 2ot (39)

0. kM
() = 42 f2in (1- 58 (1o e tr) ) 4 g - ).

V]

with KQMJ@ = Kyj —iuoy;pj andy(u) = 3(iu+u?). Once we have the Fourier transfogfu), we can solve the

option value defined i (33) numerically through various moels of fast Fourier inversions (Wu (2008)).

The interest-rate factops and the diagonalized transition matdxcan be estimated from the interest

rate term structure. To map the identified interest ratefadg to the(a + 3Z;) representation, we note that

e ™ (a+pz)
VTe A (ot Bz,)

X =Y /My =

The relation is time-inhomogeneous. In particular, it esundesirable behavior that as calendar time goes
to infinity t — o, X; — 0 for j = 1,--- ,m. To avoid this undesirable behavior, we normalize the ckien
time to zero at each time and further normalidg = 1 andZy = 1. Then, we map the loading coefficients

(a,B) to the estimated interest-rate factar®n that date.

13



In the one-factor case, equatidn(19) shows that the uppencbof x declines with increasin@o.
SettingBo = 0 generates the highest upper bound.atWe henceforth apply this constraint 8§ = 0. To
make the lower bound lower than the upper bound, we ged 0. With a strictly positiveag, the lower
bound declines as; decreases. To guarantee positive rates, weggt0) + 6, = 0, from which we have

01 = —0p (eﬂK) . Combining these conditions with the normalizatidg = a9+ Bo+ 01 + B1 = 1 further

pins downB; = 1 dog 5. To guarantee positivity off;, we need 0< ap < % Thus, we achieve full
identification withX = 1 — o, from which we can represent all loading coefficiertts{) as a function of
X and the model paramete@; (k). In the multifactor case, we analogously Bgt= 0, and

er K]
. :l_z ,
Pi Jer—|—Kj

aj = —z

Then, we can solvg; = 1— X; andag = 1— ¥, X to achieve the identification.

1.3. Representing swaptions as options on bond portfolios

Actively traded interest rate derivatives such as capsrdjcand swaptions can all be represented as Eu-
ropean options on a portfolio of zero-coupon bonds and cas d@li be priced according to Propositidn 3.
We use swaptions as an example and show how to link the conlesails to the cashflow coefficients in

Propositior_B.

A plain-vanilla interest-rate swap is an agreement betviwerparties to exchange a fixed for a floating
set of payments at specified future dates. The fixed leg is mohfiged payments oSh multiplied by
a notional amount, wherg denotes the fixed rate, ardis the frequency or tenor of the swap contract,
represented in fraction of a year. For standard U.S. dollarést-rate swaps, the tenor is usually half year,
h=1/2. Theith fixed payment is paid in arrears at {lie- 1)th period. The floating leg is also paid in arrears,
with theith payment beind.IBOR(T;, T; + h)h multiplied by the notional amount, whetéBOR(T;, T; + h)

denotes the timd; LIBOR of maturity h, which is related to the tim&- zero-coupon bond prices by,

LIBOR(Ti,Ti+h):%<m—l>. (41)

14



The timeT swap rate is the fixed rate that sets the timegalues of the two legs equal to each other. For
a spot-starting Ty = T) swap contract witlN payments with tenoh, the timeT swap rate that sets the

contract to zero value is related to the zero-coupon bor gy,

1-P(T,T+(N+1)h)

STND) = SN RP(T,T + (i + 1))’

(42)

A European swaption is a contract that gives the holder tite at timeT to enter a swap contract (to
pay or receive the fixed rate over the life of the swaph ténor and\ payments at a pre-known rate In
this contract,T is the option maturityK is the option strike. Assuming that the option gives the épttie

right to enter a spot-starting swap, we can write the payoffieé payer's swaption as,
N A~
Mt = (S(T,Nh) —K)" Zth(T,T+(i+1)h). (43)
i=

Plug the swap rate valuation equatiénl(42) into the payaftfion, we have

N
Ny = (1_ P(T, T+ (N+1)h) — Kihﬁ(T,T +(i+ 1)h)> . (44)

Thus, the payer’'s swaption can be regarded as a put optitnmaturity T and strike 1 on a portfolio of
zero-coupon bonds, with the coupon schedule giveq by{Kh+ 3y}, paid atT + (i + 1)h, wheredy is
an indicator function that is one whén= N and zero otherwise. Accordingly, we can obtain the value of

the swaption by applying Propositibh 3, with = 1 andns = —¢; for s= {T + (i + 1)h}N ;.

2. Data analysis

We estimate the interest-rate factor transition dynamgsguU.S. dollar LIBOR and swap rates and the
interest-rate volatility dynamics using U.S. dollar swaps. We collect a decade worth of over-the-counter
qguotes on (i) six LIBOR series at fixed time to maturities oéptwo, three, six, nine, and 12 months, (ii)

nine swap rate series at fixed time to maturities of two, thia, five, seven, 10, 15, 20, and 30 years, and

(iii) 70 at-the-money swaption implied volatility seriesaafixed grid of seven swap maturities at one, two,
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three, four, five, seven, and 10 years and ten option masiiati one, three, six months and one, two, three,
four, five, seven, and 10 years. The data are sampled weeldyy(8/ednesday) from August 19, 1998 to

August 20, 2008, 523 weekly observations for each series.

2.1. Quoting conventions

The U.S. dollar LIBOR rates are simply compounded interatsts; related to the zero-coupon bond prices
according to equation (#1), where the time to maturity computed following actual over 360 day counting
convention, starting two business days forward. The U.8ardswap rates have payment intervals of half

years b= 0.5) and are related to the zero-coupon bond prices accordiaguation[(4R).

The swaption contracts are quoted in terms of the Black mdplblatility, obtained under the assumption
that the underlying forward swap rate is log-normally distted. Given an implied volatility quot®/, the

invoice price for the payer's swaption with one dollar natibis computed as,
N A~
SWAPTIONt, T,Nh) = (S(t, T,Nh)A(d1) — KA((d2)) ZihP(t,T +(i+1)h), (45)
i=

whereA(-) denotes the standard cumulative normal function with the stndardized variablesl;, dy)

given by

q InS(t, T,Nh)/K + 2IVZ(T —t)
l:

h=d; —IVv/T -t 46
IV VT —t ) 2 1 ; ( )

and S(t, T,Nh) denotes the timéforward starting swap rate that starts at timevith N payments and a

payment interval oh. The forward starting swap rate is related to the zero-colqumd prices by

~ ~

P, T)—Pt, T+ (N+1)h)

SN = SN hP(L, T + (i + 1)h)

(47)

The at-the-money swaptions have the strikes set to thespmneling forward starting swap rate, in which

case we can rewrite the Black formulan]45) as
ATMSNLT,NH) = (P(LT) = Pt T + N+ 1)h) ) (2(d) - 1), (48)

with d = IV /T —t.
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2.2. Summary statistics

Table[1 reports the summary statistics on the LIBOR and swegsr The average interest rates exhibit an
upward sloping term structure. The standard deviatiommedgés of the interest rates largely decrease with
increasing maturity, but the standard deviation estimaitethe weekly changes of the interest rates are in
similar ranges across all maturities, with no clear terracitre pattern. The interest rates are all highly
persistent, more so at short term than at long term. The sk&svand excess kurtosis estimates are small
for the interest rate levels, but the kurtosis estimatesaage for weekly changes on the short-term LIBOR

series, reflecting the effect of the discrete Federal Regeolicy moves.

The left panel of Figurgll plots the time series of the threetm LIBOR (solid line), and the two-year
(dashed line) and 30-year (dash-dotted line) swap ratesnd@aur sample period, the three-month LIBOR
has moved over a wide range from as low as 1% (in June 2003)hghss 6.86% (in May 2000). The
30-year swap rate does not vary as much, thus generatingstenoture variations as the LIBOR moves.
The right panel plots some representative term structdrdeeanterest rates at different rates, including an
upward sloping (dashed line on August 13, 2003), a downwanpirgy (dash-dotted line on September 12,
2007) and a relatively flat (dotted line on October 11, 20@8ntstructure. The upward-sloping solid line

represents the mean term structure.

[Figure 1 about here.]

Table[2 reports the summary statistics of the swaption edplolatility quotes. Each panel represents
one summary statistic. Within each panel, each column septs one option maturity and each row rep-
resents one underlying swap maturity. Panel A reports theplsaaverages of implied volatility series.
On average, the implied volatility is higher at short optiaturities and shorter-term swaps. The aver-
age implied volatility decline along the underlying swaptundy reflects the mean-reversion behavior of
interest-rate factors, which results in long-term rataadpéess volatile than short-term rates. On the other
hand, the volatility decline along the option maturity reftethe mean reversion behavior of the interest-rate
volatility factors. Panels B and C report the standard dmrizestimates of the implied volatility levels and
weekly changes, respectively. In both panels, the starilaridtion estimates decline with both increasing

option maturities and swap maturities. Panel D reports thekly autocorrelation estimates on the implied
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volatility series. The estimates are largely comparablesscswap maturities, but show some declining
pattern along the option maturities. Figlie 2 visualizesstihmmary statistics of the implied volatility series
along the two maturity dimensions. One interesting feaftom Tabled 1L and]2 is that both interest rates

and interest-rate options show more persistence at shauritiess than at long maturities.

[Figure 2 about here.]

Figure[3 plots the implied volatility time series at selectaterest-rate and option maturities. The
two panels represent two different swap maturities, withfttst panel showing options on one-year swap
and the second panel showing options on ten-year swap. Tée lines in each panel represent three
different option maturities at one year (solid lines), fiveays (dashed lines), and ten years (dashed dotted
lines). Implied volatilities at the same option maturitsd®w similar time series behaviors across different
underlying interest-rate maturities. Comparing the igéerate time series in Figuré 1 with the implied
volatility time series in Figurgél3, we find that the impliedlatiities are high during the low interest-rate

eras.

[Figure 3 about here.]

To understand the driving forces behind the interest-ragied volatility variations, we perform prin-
cipal component analysis on the implied volatility seriédgure[4 plots in the first panel the ten largest
normalized eigenvalues of the correlation matrix of the kiyeehanges on 70 the implied volatility series,
which can be interpreted as the percentage variation exgulddy each principal component. The first prin-
cipal component explains 78% of the variation, the secomqdiains 12%, and the third explains 4%. The
remaining principal components all together explain Ié&s1t7% of the variation. The remaining three
panels in Figurél4 plot the loading of the first three printip@mponents on the 70 implied volatility se-
ries along the seven swap maturity and ten option maturityedsions. The first component is relatively
flat across all swap and option maturities, representingvéit&tion on the interest-rate volatility level.
The second principal component loading positively at shption maturities but negatively at long option
maturities, generating a term structure variation alorggdhtion maturity dimension. The third principal

component forms a tented shape along the option maturitgmiion, representing a curvature factor on
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option maturities. The loadings of all three principal caments are relatively flat along the swap maturity

dimension.

[Figure 4 about here.]

3. Model estimation

Our modeling framework provides a separation of the intenae factors and the interest-rate volatility
factors. The former governs the interest-rate term stractariation whereas the latter governs the variation
of the option implied volatilities term structure for a givanderlying interest rate series. Accordingly, our
model estimation also takes a two-step procedure. In thesfep, we estimate the transition matA>and
extract the interest-rate factoxsto fit the LIBOR and swap rates term structure. In the secaosl ste take
the estimated transition matrix as given and estimate #dithg coefficientga, ), the volatility dynamics,
and extract the volatility factors to match the implied viiky surface of caps and swaptions. At each step,
we cast the model into a state-space form and estimate therdgs using a quasi-maximum likelihood

method.

In the first step, we take the interest-rate fa¢foas the hidden state vector and the LIBOR/swap rates as
our observations. We estimate both a one-factor and a taote- specification, both taking the diagonalized
representation in(31) and_(29), respectively. We appraténthe state propagation equation using a simple
AR(1) specification,

X = A+ DX _1+ /Qe, (49)

where we letd be a diagonal matrix and assume that the standardized mmoeais normally distributed.
Under the risk-neutral measure, the diagonalized factave kero mean and time-varying mean-reversion
speedgK; — %) that are declining with increasing short rate level. In ttaespropagation equation (49),
we allow non-zero means and assume constant mean-revepseds for all factors under the statistical

measure. These assumptions can be regarded either as byivisk premium assumptions or simply
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approximations of the actual statistical dynamics thateaé unspecified. To construct the measurement

equations, we assume that the LIBOR and swap rates are eldseith additive, normally distributed errors,

LIBOR(t,t +m/12) m=1,2,3,6,9,12 months,

= f(%:©)+ VRa, (50)
SWARt, 21) 1=2,3,4,5,7,10,15,20, 30 years,
where f (X;; ©) denotes the corresponding LIBOR/swap value generated tihenmodel at the state level

X and the parameter s€& We assume that the measurement errors from differentssaméeidentical and

independent of one another with a constant pricing errdamaea?.

In the second step, we take the variance risk factpess the hidden state vector and the swaptions as
the observations. We estimate models with one, two, anc tsi@chastic variance factors, respectively,
conditional on both one and three interest-rate factors fite first stage. In each case, we specify the state-
propagation equation as a discrete-time analog of itsstati dynamics, and we construct the measurement
equations by adding additive, normally distributed ertorthe at-the-money swaption prices,

1 3 6
To= 122127 _717273747577710a
ATMSNE, To, Ts) = fO(X; Oo) + VRE, 12712712 (51)
1s=1,2,3,4,5,7,10,
wheretp, Ts denote the time to maturities (in years) of swaptions, aaditiderlying swaps. We first convert
the implied volatility quotes into invoice prices, and thesale the invoice price by the Black vega of each

contract. With this scaling, we assume that the measureenans are iid with variance constantc%t

When both the state propagation equation and the measureqpgations are Gaussian and linear, the
Kalman (1960) filter generates efficient forecasts and @sdan the conditional mean and covariance of the
state vector and the measurement series. In our applicétiemeasurement equations[in(50) (51) are
nonlinear. We use the unscented Kalman filter (Wan and vadewre (2001)) to handle the nonlinearity.
The unscented Kalman filter approximates the posterioe stansity using a set of deterministically cho-
sen sample points (sigma points). These sample points etehpktapture the mean and covariance of the
Gaussian state variables, and when propagated througloiti@ear functions in the measurement equa-
tions, capture the posterior mean and covariance of theurszagnt series accurately to the second order

for any nonlinearity] Appendix B provides the technicaladlstfor the filtering methodology.
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Given the predicted mean and covariance matrix on the measunt series, we construct the log-
likelihood value assuming normally distributed forecagterrors. We maximize the sum of log-likelihood
value to estimate the model parameters. We keep the longream of the short ratéy() fixed from the first-
stage estimation, but we re-estimate the interest-ratsitian coefficienk in the second stage to achieve a

better fitting of the implied volatility behavior along thegp maturity dimension.

4. Term structure of interest rates

Table3 reports the summary statistics of the pricing effrora the one-factor and three-factor term structure
models. The pricing errors are defined as the difference sislgints between the observed LIBOR and
swap rates and the model-implied values. As expected, the-factor model performs much better than
the one-factor model. On average, the one-factor modebhmgB4.1% of the variation in the interest

rate series, but the three-factor model explains over 98.6be estimated one-factor model explains the
short-term interest-rate variation reasonably well, lilsfmiserably in pricing long-term swap rates. By
contrast, the three-factor model explains all series by 88&6: The mean pricing errors are all within four

basis points. The root mean squared pricing errors are betfise to 35 basis points, larger for long-term

LIBOR and short-term swap rates, but smaller for short-tetBOR and long-term swap rates. The larger
errors between three month to two year maturities are ingraren by the discrepancies between LIBOR

and swap rates (Babbs and Webber (1995)).

Table[4 reports the first-stage estimates and the absolgritmde of the-statistics (in parentheses) on
the interest-rate factor dynamics. The one-factor spetific generates a mean-reversion speed of 0.2110.
For the three-factor model, the long-run mean of the shoet isaestimated at 5.85% and the three mean-
reversion speeds that underly the transition matrix armagtd at 0.0242, 0.3650, and 1.3745, respectively,

allowing the three factors to capture interest-rate movdsef different frequencies.

Figure[5 shows how shocks on the three interest-rate fagtguact the interest-rate term structure
differently. The solid lines in each panel plot the continsly compounded spot rates as a function of
maturity, generated by the three-factor model with facgatsto their sample averages. The dashed lines

denote the yield curve generated by setting one of the tlaters to its 90th percentile value and while
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setting the other two to their respective sample averagée dish-dotted lines are generated by setting
one of the three factors to its 10th percentile value whilirgethe other two to their respective sample
averages. The first panel shows that moving the first inteadstfactor from its mean value to its 90th and
10th percentiles generates parallel shifts on the yieldecufhus, shocks on the first factor incur relatively
uniform responses from the yield curve across all matgritiBy contrast, the second panel shows that
shocks on the second factor generate larger movements sihdheterm than at the long term of the yield
curve, consistent with the lower risk-neutral persisteatthe second factor. The third factor is even less
persistent, and accordingly, shocks on the third factowslfmmainly at the very short end of the yield curve

maturities, as shown in the third panel. The response dectapidly as the interest-rate maturity increases.

[Figure 5 about here.]

To gain intuition on the diagonalized interest-rate fagigr, we can perform the following transforma-

tion,
G = Kc(Ke—Kx)(Ke—Ks) X,
S = —Kc(Ke—Ky) Xt —Ks(Ks— Ky) X2, (52)
X = KXEHKXZ+KeXS.

The transformed factog is simply the short-rate gap witlh= % + 6, and is related to the other two factors

through the following risk-neutral transition dynamics,

EZdx] = (s — (ke—X)%)dt,
EC[ds] = (& —(Ks—%)s)dt, (53)
Eflda] = —(Kc—x%)cdt.

The short rate gap; mean-reverts to a stochastic lewgl which mean-reverts to yet another stochastic
level ¢, which is centered around zero. The sequence of reversutaiet that shocks o mainly impact
the short-term of the interest-rate term structure whileckl onc;, or equivalently the first element of
X;, generate persistent impacts on the yield curve across tiodevierm structure. The effects gfare
somewhere in the middle. For all three factors, the meaers@n speedskf — X, Ks— %, andk; — %) are

not constant, but are all stochastic and decline with irgingginterest-rate levels.
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Figure[6 plots the time series of the three interest-rat®facboth in the diagonalized forX (on the
left side) and in the transformed short rate spages( c;) (on the right side). The extractegd+ 6, matches

the short-term LIBOR well.

[Figure 6 about here.]

5. Interest rate volatility term structures

In the second stage, we estimate six models with(ithe n) factor structure, witm= 1,3 andn= 1,2, 3.
Table[% reports the mean pricing error on the swaption irdplielatilities from the six models. Pricing
errors are defined as the difference between the implieditylguotes and the model-generated values, in
percentage points. All six models show similar mean pritiiag patterns along the two maturity dimensions
(option maturityto and swap maturitys). The mean pricing errors are negative for short-term otion
short-term swaps, and also slightly negative for long-teptions on long-term swaps. On the other hand,
the mean pricing errors are positive for short-term optiondong-term swaps and long-term options on
short-term swaps. The mean pricing errors are particularye on short-term options on the one-year
swap. This large negative mean error is potentially rel&betthe large negative mean pricing error on the
12-month LIBOR. Due to institutional details, the yield earoften show distortions in linking six-month
and 12-month LIBOR to the swap rates. Our model does not haes@licit adjustment for this distortion,
and it also shows up in the pricing of short-term options @ndhe-year swap. The mean pricing errors on

other swap and option maturities are much smaller, mostlyimiwo volatility points for all six models.

Table[6 reports the root mean squared pricing errors fromsithenodels. Increasing the number of
interest-rate factors and the number of volatility factooth help reduce the root mean square pricing error
estimates. For thé3+ 3) model, the root mean squared pricing errors are only ondiltylgoint or less
for moderate maturity options on moderate maturity swapbl€[T reports the explained variation on each
series from each of the six models. Overall, the explaineitian is higher at short option maturities than

at long option maturities. The (83) model explains most moderate-maturity options over 90%.
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Table[8 reports the second-stage estimates and absoluts\@f the-statistics (in parentheses) on the
model parameters that govern the stochastic volatilityadyies. Given the large amount of swaption quotes
(36,610) used for estimating the models, all parametergstimated with strong statistical significance.
When we re-estimate the interest-rate transition dynaric® match the implied volatility surface behav-
ior along the swap maturity dimension, the estimates forfitisé two factors are both much smaller than
those estimated from the interest rates. The high persisismeeded to generate the high implied volatility
observed from swaptions at long swap maturities. The etggrfar the mean-reversion speed)(of the
first volatility factor are also very small. The high voldtil persistence is needed to generate the observed
high implied volatility at long option maturities. When wstinate thg3+ 3) model, the last element far
and the last element far, are both very large, suggesting that a highly transientesterate and volatility

component is needed to specifically capture the behavidnat-$erm options on short-term swaps.

In Figure[7, we take thé3+ 3) model and generate implied volatility term structures asithe option
maturity dimension (left side) and the swap maturity dimemgright panel). The solid lines in each panel
are generated from the model with all interest-rate andtiibfafactors set to their sample average. The
dashed lines and the dash-dotted lines are generated bgingame of the volatility factors to its 90th and

10th percentile value, respectively.

[Figure 7 about here.]

From the three panels on the left side, we observe distisporeses from the swaption implied volatil-
ities along the option maturity dimension to shocks on thedlvolatility factors. When we shock the first
volatility factor v{ (top left panel), the implied volatilities response acrab®ption maturities. The persis-
tent response is in line with the low mean reversion speethatd on this volatility factor. On the other
hand, when we shock the second volatility factor, the respsare large at short option maturities but dis-
sipate quickly as the option maturity increases. The spédi$sipation is even faster for the more transient

third volatility factor.

The three panels on the right side show a completely diftgpeature about the implied volatility re-

sponses along the swap maturity dimension. The variatiomdaegely constant as the underlying swap
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maturity varies, suggesting that the volatility dynamicamty generate variations along the option maturity

dimension, not the swap maturity dimension.

Figurel8 plots the time series of the three interest-ratatiity factors extracted from th€8+ 3) model.
The first factor is the most persistent factor. Its variatisgtches the variation of swaption implied volatil-
ities at long option maturities. On the other hand, the otiver factors capture more transient variations
of swaption implied volatilities at short option maturgieln particular, the most recent spike in swaption

implied volatility is mostly attributed to spikes in the nedrransient second and third volatility factors.

[Figure 8 about here.]

6. Concluding remarks

Traditional models often link the interest-rate volajilib the curvature of the yield curve; yet evidence
shows that a large proportion of the variation in intereg&roption implied volatilities is independent of
the variation of the yield curve. The linearity-generatirgmework proposed by Gabaix (2007) provides a
natural reconciliation between theory and the evidenceledthis framework, bond prices are linear in a set
of yield curve factors. As a result, only the risk-neutréftdor the transition dynamics, of the interest-rate
factors enter the bond pricing equation, but neither \dias of these factors nor the volatility dynamics
affect bond pricing. Therefore, if these factors show sastic volatility, these stochastic volatilities are

truly unspanned and completely un-identified from the yaidve.

In this paper, we perform specification analysis on the litegenerating framework, and analyze
how one can identify the interest-rate factor transitiomaiyics from the yield curve and how one can
identify the interest-rate volatility dynamics from inést-rate options. We show within this framework how
one can tractably price options through a Fourier transfapproach on any bond portfolios with multi-
dimensional stochastic volatility structures. We alsoppse a sequential identification procedure under
which we estimate the interest-rate transition dynamiosfLIBOR and swap rates, and then estimate the

volatility dynamics from interest-rate options. Througlodel design and estimation, we show how the
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interest-rate factor transition dynamics and the votgtsitructures affect the swaption implied volatility

differently across the option maturity and the underlyingys maturity.

The specification analysis in this paper paves the grounch&my potential applications and extensions.
For example, when one needs to price options across a wige i@nstrikes, one can readily extend the
innovation specification to allow discontinuous movemémtsiterest rates and/or interest-rate volatilities.
One can also use the same dynamic specification to price bpthand swaptions, and explore the potential
discrepancies between the two options markets. From a @rqaspective, our analysis also provides
a road map to address long-standing economic questions ggiting information in both the interest-
rate term structure and the interest-rate option impliddtiies. The options data are likely to provide
information regarding the level and dynamics of uncenjaaiiout monetary policy, as well as the degree of

credibility of the central bank’s commitment to its inflatitarget.
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Appendix A. Derivation details on the one-factor example

The one-factor example can be represented as,

1-%
Yt = M, (AL)
X
K

whereM; denotes the state price deflator.

A.1l. The transition matrix

Under the specification in (A1), we can show that thelynamics ofY; is controlled by the transition matri& =

& O . .
as in equatiori{9).
0 K+6

Proof.
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A.2. The short rate dynamics and risk premium

To derive the short rate dynamics and the risk premium insesfitheZ; representation, we note that

M; = e % ((ao+PBoZ)+e " (ar+PBiz)),

It

el’+xt7

. Ke ™ (a1 + B1Z) 7i (@
X T (GotBed)te M (a Bz Me P,

First, we derive the dynamics for the state price deflitar

d M (—erefert (ato+BoZ) — (6 +K) e Ot (oy + Blzt))
——t dt
Mt Mt
N (Bo+e “Ba)
(a0 + BoZt) + e (a1 + PaZt)

dz,

where the negative of the diffusion coefficient

(Bo+e "'B1)

V(&) =~ G Boz) + & (01 BiZd)

defines the market price of tzerisk. The drift component of the state price deflator is thgatiee of the short rate,

Ei[dM]/dt _ —6re %" (a0 +Bozt) — (B +K)e O (ay + BiZ)
Mt Mt
_ —6M—ke @ (g + B1Zy)
- n
= —6 —x =T

To derive the dynamics fog, we note that

=X+ dx + ( dx, ———

dMix dM < th>
Mt M’[ M'[ .
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Thus, the risk-neutral drift af; is given by

d
BRiox] = Belox]+ (ox, Gt )
_ JEMog] ) dE (M
M My

As Mix = ke~ &9t (a; + B1Z), we have

dE; [M

dE M) g, 4 k) wdt.

Mt
Thus,
E2[dx] = — (6 +K)xdt+X (6 +x)dt
= X (K - Xt) dta
which is the same as the specification[ih (6).
The martingale component &f is given byxzdZ, with
Ke™ By ke (a1 +PB1Z) (Bo+e 'Br)

Xz = —

(0o+PBoZt) +e (a1 +PB1Zt)  ((ag+PoZ)+e t (ay+Pazy))?
ke (aoB1 — a1Bo)

(o + BoZ) + et (a1 + B1Z:))?

(Xmax—x) (X—Xmin) 1

b)
Xmax — Xmin Z

with
N ke Koy oo ke KBy
min = o+ e Koy maxX 780"'5'7“[31.

The instantaneous risk premium of the short rate is givembyegative of the covariance te|<rdx¢, dW'Vt">

dM B Mz B &
<d>‘taw> = <XZdZt,WdZt>—XZMt (dz)

(Xmax— X) (X— Xmin) e ot (Bo+ eiKtB:L) (dz)
Xmax — Xmin My Z

Since the covariance is positive, the instantaneous risfjum on the interest rate is negative.
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Appendix B. Unscented Kalman filter and maximum likelihood estimation

To estimate the model parameters, we cast the model intéeasgiace form, which consists of a set of state propaga-

tion equations and measurement equations. We rewrite theamionical forms,

X = A+Px_1+/Q-1&, & ~N(O,I), (B2)
v = h(x)+e, &a~N(OR). (B3)

Letx,Vt,V;, A denote the timgt — 1) ex ante forecasts of timevalues of the state vector, the covariance of the state
vector, the measurement series, and the covariance of theumenent series. Lﬁtand\A/t denote the ex post update,
or filtering, on the state vector and its covariance at thetibased on observationg) at timet. In the case of linear

measurement equations,

Yt =Hx +e, (B4)

the Kalman filter provides the most efficient updates. Therga predictions are,

X% = A+®P% 1, \jt = ¢\E,1¢T +Q 1 ©5)
Vt = Hth At - HVt H T + R,
and the ex post filtering updates are,
Rt = %1+ Kt (Mt —Vien) s Ve = Vier — KesaAc K g, (B6)

whereK.1 is the Kalman gain, given b1 = Vi 1 H ™ (HViH T + R)fl. In essence, the Kalman filter gener-
ates the state updates as a weighted average between ttastecbvalue% 1 and the new observations, 1, with
the weight determined by the relative magnitudes of theeStarecasting error varianc®i, 1) and the observation

measurement error variande)(

In our application, the measurement equatioriin (B3) isineal. Hence, we cannot directly apply the Kalman
filter procedure described in_(B5) arid (B6). Traditionatlhg nonlinearity is often handled by the Extended Kalman
Filter (EKF), which approximates the nonlinear measureragnation with a linear expansion, evaluated at the pre-

dicted states:
oh(x)

~H H=—— .
Yt iX + &, t % -

(B7)

By contrast, the unscented Kalman filter applied in this pages a set of deterministically chosen (sigma) points to

directly approximate the distribution of the state veciidie predictions and updates are directly performed on these
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sigma points, with the mean and covariance of the states aadumements computed from these points. Specifically,
let p be the number of states add- 0 be a control parameter. A set gi2 1 sigma vectorg; are generated according

to the following equations:

P

Xo = %, (B8)

Xt,i = i\ti\/(p+6)(\7t+Q)Ja leaapl izla"'vzpv

with corresponding weights; given by

We can regard these sigma vectors as forming a discretédisdn withw; being the corresponding probabilities. We

can verify that the mean, covariance, skewness, and ksiabghiis distribution ar&, i +Q, 0, andp—+ d respectively.
Given the sigma points, the prediction steps are given by
Xi = A+®Xu. & = h(X,)

X1 = zizzpo WX s Vigr = zizzpo Wi (X — %e+1) Xei — Xit1) (B10)
< 2p ., T n 2p z - z - T
Ver1 = YitoWi&i, A Yi—oWi {Et,i - Yt+1} [Et,i - Yt+1} +R,

and the filtering updates are
%1 =%+ 1+ Kerr (V1 —Yera) s \7t+1 =Viy1— Kt+1ﬂt+1KtT+17 (B11)

with the Kalman gain given by

o 2p _ T
Kis1 =S (A1) 17 Si= _%Wi [Xt,i — % 1] [Et,i - Vt+1] . (B12)
i=

To estimate the model paramet@swe define the log likelihood for each day’s observation aseg that the

forecasting errors are normally distributed:

1(©) = —3 109 A| 5 (v~ (B) (4 -%). (813)
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We maximize the sum of the log likelihood values to obtainrttadel parameters,

N
O=arg rrcl)ax l(©), (B14)
t7

whereN denotes number of weeks in our sample.
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Table 1
Summary statistics of LIBOR and swap rates

Maturity Levels Weekly differences
Mean Std Skew Kurt  Auto Std Skew Kurt
Im 3752 1.828 -0.093 -1.457 0.997 0.108 -1.314 24.580
2m 3.789 1831 -0.105 -1.450 0.997 0.090 -1.765 24.256
3m 3825 1838 -0.105 -1.433 0.998 0.086 -2.461 19.642
6m 3.897 1824 -0.112 -1.364 0.998 0.091 -2.311 11.841
9m 3961 1.802 -0.094 -1.284 0.997 0.102 -1.484 6.874
12m 4.040 1.773 -0.070 -1.195 0.997 0.114 -0.901 3.999
2y 4308 1.555 0.042 -0.884 0.995 0.135 0.002 0.560
3y 4561 1.380 0.148 -0.671 0.993 0.142 0.078 0.450
4y 4757 1.251 0.260 -0.529 0.992 0.143 0.117 0.417
5y 4917 1.155 0.372 -0.435 0.991 0.144 0.099 0.476
7y 5.154 1.024 0.552 -0.307 0.989 0.140 0.137 0.381
10y 5.386 0.915 0.716 -0.209 0.988 0.135 0.141 0.354
15y 5.623 0.820 0.806 -0.203  0.987 0.127 0.140 0.244
20y 5.726 0.774 0.793 -0.258 0.986 0.122 0.087 0.227
30y 5.763 0.745 0.789 -0.267 0.986 0.117 0.086 0.261

Entries report the summary statistics of the six LIBOR seded nine swap rate series, including sample
mean, standard deviation (Std), skewness (Skew), excessisuKurt), and weekly autocorrelation (Auto).
Data are weekly (on Wednesdays) from August 19, 1998 to Augis2008, 523 observations for each
series.
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Table 2
Summary statistics of swaption implied volatilities

Raté Option i - & 1 2 3 4 5 7 10

A. Mean
1 26.60 26.65 27.57 26.98 2389 21.80 20.33 19.28 17.37 1511
2 2841 2803 2711 2534 2267 2092 19.65 1865 16.83 14.60
3 2648 2610 2531 23.79 21.68 20.24 19.08 18.18 16.39 14.22
4 2505 24.80 2409 2272 2093 1966 18.60 17.72 1599 13.86
5 2413 23.89 2322 21.94 2033 19.16 1816 17.29 1557 13.49
7 2198 21.89 2146 2055 19.32 1832 1741 1660 14.99 13.04

10 19.99 20.00 19.77 19.13 1819 17.35 16.53 15.76 14.31 812.4

B. Standard deviation
1 16.33 1554 1544 13.06 8.19 5.55 4.01 3.14 2.27 1.70
2 16.25 15.31 13.69 10.74 6.99 4.93 3.72 2.97 2.24 1.73
3 1358 12.67 11.28 8.99 6.06 4.46 3.43 2.78 2.17 1.74
4 11.78 11.06 9.81 7.86 5.44 4.08 3.21 2.63 2.09 1.75
5 10.68 10.00 8.88 7.13 5.01 3.80 3.03 2.50 2.05 1.79
7 8.44 7.93 7.08 5.83 4.30 3.33 2.71 2.26 1.92 1.77
10 6.61 6.17 5.57 4.67 3.56 2.81 2.33 1.99 1.81 1.73

C. Standard deviation on weekly changes

1 350 2.86 2.46 1.95 1.29 1.00 0.86 0.73 0.58 0.52
2 3.07 2.50 1.99 1.61 114 095 0.77 0.71 0.57 0.52
3 2.53 2.07 1.74 1.44 1.01 086 0.71 0.63 0.55 0.48
4 2.32 1.77 1.48 1.19 094 0.78 0.69 0.61 0.54 0.6
5 2.18 1.66 1.34 1.10 0.87 0.75  0.67 0.60 0.53 047
7 1.86 1.38 1.15 0.92 0.77 0.68 0.62 0.57 048 0.44
10 1.66 1.18 0.98 0.79 0.69 0.63 0.58 0.53 0.49 0.47

D. Weekly autocorrelation

1 0976 0.982 0.986 0987 098 0.981 0974 0970 0.964 0.951
2 0980 098 0988 0.987 0.985 0.979 0975 0.968 0.964 0.953
3 0981 0985 0986 0985 0.984 0.978 0.975 0970 0.965 0.960
4 0979 0985 0986 0986 0.983 0.979 0.973 0.969 0.964 0.963
5 0977 0984 0986 0.985 0.983 0.977 0972 0.968 0.963 0.963
7 0973 0982 0984 098 0981 0976 0970 0.964 0.965 0.966
10 0966 0.979 0.982 0.983 0978 0.971 0.964 0.960 0.959 00.96

Entries report the summary statistics of the swaption iegpiiolatilities. Each panel represents one sum-
mary statistic. Within each panel, each column represeamsoption maturity and each row represents one
underlying swap maturity. Data are weekly (on Wednesdaysh fAugust 19, 1998 to August 20, 2008,
523 observations for each series.
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Table 3
Summary statistics of the pricing errors on LIBOR/swap rates

One-factor model Three-factor model
Maturity  Mean Rmse  Skew Kurt Max  Auto VR Mean Rmse  Skew  Kurt xMa Auto VR
1m 0861 38.715 -0.271 -0.469 110.454 0.972 95.506 -1.307 5308. -1.248 1.678 34316 0.898 99.787
2m 1.066 36.204 -0.274 -0.466 99.764 0.981 96.086 0.154 274.5-0.913 1.022 53.193 0.913 99.369
3m 1221 33977 -0.260 -0.466 94.651 0.984 96.580 1.389 520.5-0.743 1.137 71.878 0.939 98.753
6m -1.909 29.381 -0.297 -0.746 74328 0.982 97.411 0.590 7729. -1.043 0.832 110.659 0.949 97.330
9m -5576 26.359 -0.166 -0.863 69.824 0.972 97.953 -1.814.2033 -1.198 1.180 131.062 0.945 96.610
12m -7.487 24.676 0.002 -0.765 68.640 0.954 98.237 -3.234.2034 -1.256 1.408 140.015 0.938 96.303
2y -1.600 25.897 -0.433 -0.091 83.428 0.929 97.230 0.623 5243. -1.392 1.835 100.415 0.965 97.708
3y 2115 32.651 -0.021 0.280 99.368 0.944 94.417 0.931 96.241.328 1.609 63.080 0.952 98.621
4y 3.651 37.856 0.236 0.059 113.203 0.954 90.906 -0.251 922.4-1.096 1.204  48.854 0.939 99.001
5y 4380 41.627 0.320 -0.256 122,392 0.960 87.122 -1.2055880. -0.986 0.949 41.431 0.939 99.169
7y 4001 46.063 0.304 -0.699 124.207 0.967 79.877 -2.502 669.0-0.795 0.664  34.323 0.939 99.274
10y 2.408 49.507 0.212 -1.022 117.933 0.971 70.743 -2.3530718. -0.857 0.429 28.758 0.935 99.287
15y 1997 52532 0.088 -1.194 110.526 0.976 58.959 1.704 326.0-1.375 1.393 20.991 0.938 99.501
20y -0.854 53.242 0.025 -1.234 101.226 0.977 52.609 2.3419325. -1.481 2.587 21.209 0.920 99.503
30y -9.640 54126 0.070 -1.178 108.739 0.978 48.735 -2.577.5776 -1.174 2.239 30.775 0.909 99.338

Average -0.358 38.854 -0.031 -0.607 99.912 0.967 84.158 5010. 15.953 -1.126 1.344 62.064 0.935 98.637

Entries report the summary statistics of the pricing eroorthe LIBOR and swap rates, defined as the basis-point eliféer between the observed
LIBOR/swap rates and the model-implied values for both the-tactor model and the three-factor model. The statigtickide the sample
averages of the pricing error (Mean), the root mean squatiethg error (Rmse), skewness (Skew), excess kurtosist(Kmaximum absolute
error (Max), weekly autocorrelation (Auto), and the petege explained variation (VR), defined as one minus the odtpicing error variance
to the variance of the original interest-rate series.



Table 4
First-stage estimates on interest-rate factor dynamics

2

C Or K A 0} Q of
1-factor 0.0643 0.2110 0.0000 1.0000 2.5e-5 0.1638
(9627) (1700) (-) (-) (10.0) (1485)
0.0242 —0.0006 0.9914 0.0040
(24.2) (0.2) (1167) (10.0)
3-factor 0.0585 0.3650 0.0000 0.9943 0.0001 0.0017
(1889) (1106) (0.0) (1684) (11.8) (186.3)
1.3745 0.0343 0.0007 66022
(76.6) (10.1) (0.2) (0.1)

Entries report the first-stage parameter estimates anduds@lues of the-statistics (in parentheses) on the one-
factor and three-factor interest-rate dynamics. The esiim is based on weekly sampled LIBOR and swap rate data
from August 19, 1998 to August 20, 2008, 523 weekly obseowatfor each series.
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Table 5
Mean pricing errors on swaption implied volatilities

(m+n) Ts/To 5 3 > 1 2 3 4 5 7 10
1+1 1 -7.805 -5586 -2.392 -0.526 0.147 -0.045 0.071 0.616181. 1.447
2 -0.080 0500 0.745 0.603 0.120 -0.155 0.025 0.140 0.772 511.0
3 1436 1.490 1.289 0.712 0.039 -0.146 -0.234 0.093 0.471 780.7
4 2088 2034 1620 0.812 0.068 -0.318 -0.273 -0.085 0.3795270.
5 2590 2431 1909 0963 -0.031 -0.333 -0.395 -0.304 0.1782560
7 2258 2124 1656 0.806 -0.108 -0.537 -0.566 -0.422 -0.08%027
10 1.891 1775 1.402 0.631 -0.221 -0.603 -0.732 -0.683 10.390.345
1+2 1 -7.667 -6.111 -3.374 -1.538 -0.118 0.278 0.678 1.227194l. 0.688
2 -0.088 0.038 -0.071 -0.243 -0.083 0.195 0.642 0.766 0.80331%0
3 1384 1084 0.582 -0.032 -0.116 0.223 0.397 0.728 0.519 630.0
4 2026 1.673 0989 0.142 -0.049 0.068 0.366 0.560 0.445 670.1
5 2532 2107 1.337 0.352 -0.119 0.069 0.254 0.351 0.259 190.4
7 2222 1859 1168 0.279 -0.145 -0.107 0.101 0.248 0.0566670.
10 1.894 1578 1.004 0.197 -0.198 -0.139 -0.043 0.009 -0.225938
1+3 1 -7.741 -6.013 -3.123 -1.280 -0.116 0.093 0.407 0.936003L. 0.797
2 -0.159 0.136 0.172 0.007 -0.074 0.020 0.383 0.482 0.616 250.4
3 1318 1.183 0.819 0.212 -0.102 0.058 0.145 0.452 0.337 50.17
4 1964 1.772 1.220 0.382 -0.031 -0.090 0.123 0.291 0.2680550.
5 2473 2206 1564 0589 -0.097 -0.082 0.018 0.088 0.0873060.
7 2171 1959 1.390 0511 -0.117 -0.248 -0.123 -0.002 -0.14B553
10 1.850 1.679 1.221 0.424 -0.164 -0.266 -0.252 -0.226 @.38.821
3+1 1 -6.665 -5.674 -2.672 -0.918 -0.017 0.061 0.357 0.981446l. 1.192
2 0357 0363 0472 0261 -0.026 -0.051 0.300 0.483 1.018 850.7
3 1.622 1.328 1.020 0.390 -0.101 -0.048 0.023 0.419 0.700 020.5
4 2154 1.853 1.348 0.498 -0.071 -0.235 -0.031 0.223 0.5942400.
5 2586 2234 1632 0.652 -0.178 -0.260 -0.169 -0.014 0.38D040
7 2173 1.899 1.363 0.487 -0.270 -0.491 -0.370 -0.161 0.171342
10 1.737 1516 1.085 0.293 -0.408 -0.590 -0.577 -0.464 2.23.683
3+2 1 -6.540 -5979 -3.231 -1.422 -0.129 0.157 0.505 1.0893611. 0.962
2 0408 0097 0.010 -0.165 -0.113 0.059 0.457 0.607 0.949 700.5
3 1662 1.102 0.622 0.016 -0.165 0.074 0.194 0555 0.645 00.30
4 2199 1.660 0997 0.163 -0.117 -0.099 0.150 0.372 0.554 520.0
5 2641 2069 1.318 0.348 -0.206 -0.113 0.024 0.147 0.3532160.
7 2252 1.778 1104 0232 -0.267 -0.320 -0.156 0.021 0.1194940
10 1.850 1.446 0.887 0.097 -0.365 -0.389 -0.334 -0.253 .24.805
3+3 1 -6.820 -5.831 -3.030 -1.370 -0.171 0.151 0.539 1.131302l. 0.937
2 -0.085 0212 0.199 -0.121 -0.159 0.048 0.486 0.644 0.8875420.
3 1152 1.205 0.796 0.051 -0.215 0.059 0.218 0.588 0.580 90.26
4 1705 1.755 1.158 0.191 -0.169 -0.118 0.169 0.400 0.486 190.0
5 2166 2158 1.468 0.371 -0.262 -0.136 0.038 0.171 0.2832520.
7 1.807 1.857 1.237 0.245 -0.329 -0.350 -0.149 0.037 0.0445360
10 1.433 1513 1.001 0.097 -0.435 -0.428 -0.338 -0.247 40.28.854

Entries report the sample averages of the pricing errorswaption implied volatilities, defined as the
difference in percentage points between the market impladitility quotes and model-implied values.
Each panel represents one model. Within each 8nel, easmoakpresents one option maturity and each
row represents one underlying swap maturity.



Table 6
Root mean squared pricing errors on swaption implied volatiities

(m+n) Ts/To 4 3 > 1 2 3 4 5 7 10

N
N

1+1 12.792 8.854 3.932 2528 2.362 2135 2.012 2.088 2.098552
2759 1.811 1908 2262 2122 1942 1.837 1.759 1.758 1.697
2900 2.451 2307 2276 1973 1862 1.729 1.665 1543 1.477
3.426 3.062 2.714 2.348 1.938 1.765 1.667 1.565 1.441 1.310
3.999 3.622 3.142 2521 1901 1.726 1.630 1.499 1.349 1.216
3.368 3.099 2.703 2.264 1805 1.678 1.586 1.449 1.231 1.113

2926 2.673 2425 2073 1.749 1646 1579 1475 1.234 91.12

O~NUDWN

=Y

1+2 11551 9.141 5121 2681 1.350 1.175 1.242 1618 1578711
2037 1598 1.382 1.163 1.191 1.026 1.132 1.156 1.210 1.233
2.848 2.154 1.601 1.241 1.072 0.994 0.922 1.087 0.985 1.131
3.507 2.816 2.038 1.359 1.086 0.879 0.888 0.937 0.910 1.101
4.100 3.407 2536 1.612 1.068 0.881 0.813 0.790 0.842 1.171
3.578 3.000 2.202 1.426 1.009 0.818 0.739 0.733 0.762 1.231

3.311 2.705 2.033 1.308 0.960 0.813 0.743 0.711 0.820 51.38

O~NUIDNWN R

(=Y

1+3 11.499 9.113 5.018 2530 1.266 1.112 1.145 1.466 1.474401

1947 1624 1358 1.050 1.102 0.973 1.024 1.041 1.134 1.170
2.798 2.180 1.640 1.174 0.995 0.937 0.863 0.974 0.933 1.042
3.476 2.850 2.096 1.332 1.020 0.859 0.836 0.852 0.865 0.990
4,085 3.448 2.601 1.615 1.017 0.864 0.793 0.753 0.825 1.044
3.559 3.034 2264 1.432 0.968 0.840 0.763 0.720 0.776 1.097

3.290 2.727 2.086 1.313 0.930 0.841 0.793 0.760 0.871 61.24

=

3+1 10.778 8.868 4.511 2984 1988 1.886 1.911 2.056 2.188831

2951 1.755 1.766 1.901 1.717 1.692 1.672 1.756 1.825 1.583
3.393 2.328 2.032 1.838 1.629 1.606 1.613 1.644 1.623 1.417
3.781 2910 2406 1907 1585 1.575 1.550 1.555 1503 1.326
4238 3.450 2.823 2.078 1596 1537 1524 1.491 1.406 1.322
3.469 2927 2415 1890 1.567 1576 1.523 1.448 1.315 1.317

2.946 2519 2190 1805 1.618 1.616 1.572 1.520 1.339 51.46

=

3+2 10.009 9.050 5.032 2.713 1.158 0.961 1.077 1.435 1.678801
2393 1.733 1541 1.242 0979 0.786 0.882 1.042 1.302 1.207
3.205 2.200 1.717 1.288 0.892 0.748 0.770 0.951 1.099 1.078
3.706 2.805 2.113 1.388 0.911 0.709 0.735 0.847 1.001 1.044
4213 3.361 2569 1.619 0.929 0.718 0.705 0.783 0.929 1.102
3.550 2.929 2.218 1.434 0.893 0.767 0.727 0.759 0.873 1.166

3.181 2.618 2.043 1.340 0.914 0.830 0.842 0.882 0.958 61.36

O~NUBRNWNRL|  ONURNWONRL| O~NUODNWON R

=Y

3+3 9.917 8.992 4904 2524 1.083 0.924 1.092 1.488 1.664361.

2064 1.772 1.383 0.950 0.912 0.748 0.891 1.084 1.294 1.163
2730 2221 1680 1.085 0.822 0.706 0.765 0.985 1.096 1.043
3.219 2795 2.074 1.193 0.838 0.671 0.724 0.871 0.994 1.014
3.719 3.343 2544 1.452 0.852 0.678 0.688 0.794 0.928 1.086
3.210 2916 2.164 1.242 0.827 0.748 0.715 0.768 0.885 1.167

3.071 2.618 1.951 1.120 0.858 0.827 0.840 0.888 0.992 21.38

O~NUIDWN R

=Y

Entries report the root mean squared pricing errors on sarapnplied volatilities, defined as the differ-
ence in percentage points between the market implied litlaguotes and model-implied values. Each
panel represents one model. Within each panel4@ach coleprasents one option maturity and each row
represents one underlying swap maturity.



Table 7
Explained variation on swaption implied volatilities

(m+n) Ts/To 5 2 > 1 2 3 4 5 7 10

1+1 0.614 0.804 0.959 0.964 0.917 0.852 0.748 0.597 0.413600.

0.971 0.987 0.984 0.959 0.908 0.846 0.756 0.650 0.504 0.407
0.965 0976 0971 0.942 0.894 0.826 0.751 0.642 0.540 0.477
0.947 0.957 0.951 0.921 0.873 0.819 0.737 0.645 0.559 0.529
0.919 0.928 0.921 0.893 0.856 0.801 0.727 0.654 0.574 0.560
0.912 0919 0.909 0.868 0.824 0.772 0.700 0.623 0.591 0.605

0.885 0.895 0.873 0.821 0.762 0.703 0.639 0.569 0.575 10.61

=

H
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1+2 0.720 0.808 0.938 0.972 0.973 0.958 0.932 0.887 0.794130.

0.984 0.989 0.990 0.989 0.971 0.958 0.937 0.915 0.837 0.525
0.966 0.978 0.982 0.981 0.969 0.953 0.941 0.915 0.851 0.577
0.941 0.958 0.967 0.970 0.960 0.954 0.936 0.918 0.856 0.612
0.909 0.928 0.941 0.951 0.955 0.947 0.935 0.920 0.847 0.628
0.889 0.912 0.930 0.942 0.946 0.941 0.927 0.907 0.844 0.659

0.831 0.873 0.899 0.923 0.930 0.919 0.899 0.872 0.809 10.65

1+3 0.728 0.806 0.935 0.972 0.976 0.960 0.929 0.871 0.772010.

0.986 0.989 0.990 0.990 0.975 0.961 0.935 0.903 0.820 0.603
0.967 0979 0.984 0.983 0.973 0.956 0.938 0.903 0.839 0.650
0.941 0.959 0970 0974 0.965 0.956 0.934 0.907 0.845 0.680
0.907 0.930 0.945 0.955 0.959 0.949 0.931 0.910 0.840 0.690
0.888 0.914 0.936 0.947 0.950 0.942 0.922 0.898 0.840 0.714

0.830 0.879 0.907 0.929 0.934 0.919 0.896 0.867 0.811 40.70

(=Y

3+1 0.730 0.807 0.945 0.953 0.941 0.884 0.780 0.669 0.478620.

0.967 0.987 0.985 0.969 0.939 0.882 0.804 0.675 0.544 0.369
0.952 0977 0976 0.960 0.928 0.870 0.779 0.673 0.543 0.417
0.930 0.959 0.959 0.945 0.915 0.854 0.767 0.656 0.565 0.443
0.901 0.931 0.933 0.923 0.900 0.841 0.750 0.643 0.563 0.457
0.897 0.921 0.921 0.902 0.871 0.798 0.702 0.593 0.536 0.483

0.870 0.894 0.883 0.854 0.807 0.714 0.606 0.471 0.466 50.43

(=Y

3+2 0.784 0.809 0.938 0.969 0.980 0.971 0.944 0.911 0.813600.

0.979 0.987 0.987 0.987 0.981 0.975 0.959 0.918 0.842 0.622
0.959 0977 0980 0.979 0.979 0.972 0.953 0.923 0.831 0.644
0.936 0.958 0.964 0.969 0.972 0.970 0.950 0.916 0.841 0.644
0.905 0.930 0.938 0.951 0.967 0.965 0.946 0.905 0.824 0.637
0.894 0914 0.926 0.941 0.961 0.956 0.931 0.887 0.798 0.644

0.846 0.875 0.890 0.918 0.945 0.932 0.890 0.820 0.731 10.59

O~NUIDNWN R

(=Y

3+3 0.805 0.806 0.938 0.974 0.983 0.973 0.944 0.905 0.788890.

0.984 0.987 0.990 0.992 0.983 0.977 0.960 0.914 0.824 0.646
0.967 0.978 0.983 0.985 0.983 0.975 0.954 0.919 0.815 0.663
0.946 0.961 0.969 0.977 0.977 0.974 0.952 0.913 0.828 0.663
0.920 0.935 0945 0.961 0.974 0.969 0.948 0.903 0.814 0.653
0.901 0.919 0.937 0.956 0.969 0.961 0.933 0.884 0.789 0.657

0.831 0.880 0.909 0.943 0.957 0.937 0.891 0.816 0.723 30.60

O~NUAWNR

=

Entries report the explained variation on swaption imphethtilities, defined as one minus the ratio of
pricing error variance over the variance of the original liegb volatility series. Each panel represents
one model. Within each panel, each column reptesents ofenapaturity and each row represents one
underlying swap maturity.



Table 8

Second-stage estimates on interest-rate volatility dynaits

2

m-+n K Oy Ky Oy p a5
141 [ 0.0139] [ 5.6874 ] [ 0.0870 ] [ 0.4965 ] [ —0.1140 ] [ 0.0008]
(5316) (2136) | (2191) | | (1478) | (59.3) (8393)
[ 1.4207 [ 0.0000 ] [ 0.2644 [ 0.7466 |
142 [ 0.0158] (5486) (0.0) (4701) (17331) [ 0.0006 }
(687.3) 0.9915 1.3128 2.4900 -0.1616 (14115)
| (5333) | | (5267) | | (5796) | | (1845) |
[ 7.2077 ] [ 0.0000 ] [ 0.2729 ] [ 0.6142 ]
(3796) (0.0) (4856) (1060
143 { 0.0161 ] 0.3659 1.0089 1.0045 0.7784 { 0.0006}
(797.6) (455.3) (8128) (494.9) (1950 (1284
0.7046 1.5876 2.2115 —0.9977
| (5266) | | (627.2) | | (6258) | | (2418 |
0.0000
(2387)
341 0.0130 [ 2.4293] { 0.3273} [ 0.7524] [ —0.2525] [ 0.0007]
(917.1) (386.6) (2636) (307.1) (1815) (9181)
26.2771
(4132)
0.0003
(7906) 12.6553 0.0001 0.3096 0.4318
342 0.0149 (461Q7) (8136) (8485) (7230) { 0.0006 }
(11782) 1.1614 0.7608 1.0858 -0.9614 (13766)
23.6698 (8689) (8589) (11742) (29045
(7580)
[ 0.0003 ] [ 0.0104 [ 0.0000 ] [ 0.3667 ] [ 0.3678 ]
(624.2) (635.6) (0.0) (6597) (504.1)
343 0.0145 0.9965 1.1875 2.1048 —-0.2784 [ 0.0005 }
(9402) (6584) (5714) (7626) (5125) (12098)
18,5505 0.0160 10.4820 2.7376 —0.9999
| (5892) | | (5454) | | (6687) | | (6005) | (12095 |

Entries report the second-stage parameter estimatesamthst! errors (in parentheses) on the interest-rate Niylati
dynamics. The estimation is based on weekly sampled swegpdiata from August 19, 1998 to August 20, 2008, 523

weekly observations for each series.
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Figure 1

LIBOR/swap rates time series and term structure.
The left panel plots the time series of the three-month LIB@®&tid line), and swap rate at two- (dashed

line) and 30-year (dash-dotted line) maturities. The riggutel plots the representative term structures at
different dates, with the solid line being the mean termcstme.
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Mean implied volatility, %
Implied volatility Std, %

Option maturity, years Rate maturity, years

Implied volatility change Std, %

Option maturity, years Rate maturity, years Option maturity, years Rate maturity, years

Figure 2

Summary statistics of swaption implied volatilities.

The four panels visualize, respectively, the sample aegrtige standard deviation, the standard deviation
of weekly changes, and the weekly autocorrelation of thepiaa implied volatility series across different
option and interest-rate maturities.
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Figure 3

Swaption implied volatility time series.

The two panels are for two different underlying swap matsiiat one year (left) and ten years (right),
respectively. Within each panel, the three lines denotxetloption maturities at one year (solid lines), five
years (dashed lines), and 10 years (dash-dotted lines).
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Figure 4

Principal component analysis on the implied volatility surface.

The bar chart in the first panel plots the first ten normalizgdrezalues of correlation matrix of the weekly
differences on the 70 implied volatility time series, whiclin be interpreted as the percentage variation
explained by each principal component. The remaining theels plot the eigenvectors of the first three
eigenvalues, respectively, which can be interpreted aw#ukng coefficients of the three principal compo-
nents on the 70 time series along seven swap maturities ampton maturities.
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Figure 5

Interest rate factor shocks and yield curve responses.

The solid lines in each panel represent the continuouslypooimded interest rate term structure generated
from the estimated three-factor model when evaluated atdh#ple averages of the extracted interest-rate
factors. The dashed lines are obtained by setting one stteate factor to its 90-percentile while holding
the other two to their average values. The dashed-dotted &ére obtained by setting one interest-rate factor
to its 10-percentile while holding the other two to their iage.
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Figure 6

The time series of the interest-rate factors.
The time series of the three interest-rate factors are@rtiaising the unscented Kalman filter based on the
first-stage estimated model parameters.
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Figure 7

Volatility shocks and implied volatility responses under he (3+ 3) model.

The solid lines in each panel represent the implied vahatidienerated from the estimated model when
evaluated at the sample average of the volatility statelbes. The dashed lines are obtained by setting one
volatility factor to its 90-percentile while holding thehatr two to their average values. The dashed-dotted
lines are obtained by setting one volatility factor to its@ddrcentile while holding the other two to their

average.
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Figure 8
The time series of the interest-rate volatility factors.
The time series of the three interest-rate volatility festare extracted from the estimatgh- 3) model.
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