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Abstract

We review the accumulated knowledge on city size distributions and
determinants of urban growth. This topic is of interest because of
a number of key stylized facts, including notably Zipf’s law for cities
(which states that the number of cities of size greater than S is propor-
tional to 1/S) and the importance of urban primacy. We first review
the empirical evidence on the upper tail of city size distribution. We
offer a novel discussion of the important econometric issues in the char-
acterization of the distribution. We then discuss the theories that have
been advanced to explain the approximate constancy of the distribu-
tion across very different economic and social systems, emphasizing
both bare-bone statistical theories and more developed economic the-
ories. We discuss the more recent work on the determinants of urban
growth and, in particular, growth regressions, economic explanations
of city size distributions other than Gibrat’s law, consequences of ma-
jor shocks (quasi natural experiments), and the dynamics of U.S. urban
evolution.
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1 Introduction

The evolution of city size distributions has attracted sustained by interest of
researchers over a long period of time. The existence of very large cities, the
very wide dispersion in city sizes, the remarkable stability of the hierarchy
between cities over decades or even centuries, and the role of urbanization
in economic development are all particularly interesting qualitative features
of urban structure worldwide. Another surprising regularity, Zipf’s law for
cities, has itself attracted considerable interest by researchers. Therefore,
it is tempting to see the urban evolution of different economies through
the persistence of certain patterns in city size distribution worldwide. It is
of special interest for a theory to predict Zipf’s law and other empirically
important features.

The chapter reviews the theoretical underpinnings and accumulated knowl-
edge on the evolution of city sizes. It puts considerable emphasis on Zipf’s
law for cities. After it identifies the empirical record on Zipf’s law, the
chapter turns next to technical issues, which are associated with the sort of
econometric evidence on which empirical Zipf’s law currently rests, and to
more ambitious empirical investigations of Zipf’s law with city data. The
chapter reviews the implications for city size distributions of major analyt-
ical developments in urban economics and related areas in economics over
the last forty years or so and contrasts them with the empirical literature.
The chapter also examines the general empirical evidence on the evolution
of city size distributions in the U.S. as well as internationally.

The predictions of economic theory may be classified as emanating from
roughly two major traditions. These traditions coexist and are not construed
as being mutually exclusive; they are merely meant to serve as categories
for organizing the literature. One is associated with urban economics, that
is, in particular, systems of cities theories. A second is associated with eco-
nomic geography or analytical geography, more generally. The urban struc-
ture reflects such important economic forces as increasing returns possibly
at various levels (which produce centripetal forces), congestion (which pro-
duces centrifugal forces), trade (intracity, intercity and international) and
non-market interactions, all of which play important roles in both of these
traditions. Both of these traditions in the literature yield predictions about
size distributions that are in some sense aspatial and emphasize in vary-
ing degrees differences across cities in terms of specialization. The chapter
emphasizes theories and applications that examine the evolution of the city
size distribution in a given economy as an outcome of forces that lead to
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appearance of new and to decline of existing cities. This is also stressed by
the most recent research on urban structure, as we see in more detail further
below.

2 Zipf’s Law for The Upper Tail of the City Size
Distribution

We fix ideas and set notation by starting from the statistical regularity
known as Zipf’s law for cities. As early as Auerbach (1913), it was proposed
that the city size distribution could be closely approximated by a power law
distribution.1

2.1 Zipf’s Law: Definitions

Let Si denote the normalized size of city i, that is, the population of city i
divided by the total urban population2. City sizes are said to satisfy Zipf’s
law if, for large sizes S, we have

P (Size > S) =
a

Sζ
, (1)

where a is a positive constant and ζ = 1. That is, the size of a city times
the percentage of cities with larger size equals a constant.

An approximate way of stating Zipf’s law, the so-called rank size rule,
is a deterministic rule that follows from the definition: the second largest
city is half the size of the largest, the third largest city a third the size of
the largest, etc. That is, if we rank cities from largest (rank 1) to smallest
(rank n), and denote their sizes S(1) ≥ ... ≥ S(n), respectively, the rank i for
a city of size S(i) is proportional to the proportion of cities greater than i.
Therefore, by rewriting Equ. (1) we have: S(i) ' k/i for some constant k.

It is important to bear in mind that even if Zipf’s law holds perfectly,
the rank-size rule would hold only approximately.3 Still, it is very useful to
visualize Zipf’s law.

1 It is important to point out that there is no universally accepted definition of a city
for statistical purposes. In the U.S. context, research has been conducted with both city
proper data and data for metropolitan statistical areas. Differences in data availability
worldwide may make international comparisons tricky. Rosen and Resnick (1980) show
that the Pareto exponent of city size distributions tend to be closer to 1 when agglomera-
tions are more carefully constructed, i.e. are closer to “true” agglomerations rather than
administratively defined “cities”. We return to this below.

2Talking about steady state distributions requires a normalization of this type.
3See Gabaix (1999, Proposition 4) for a precise statement of the rank-size rule, and

the goodness of fit one can expects from it. The rank-size rule is a good approximation
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Insert Figure 1 about here

To do this, we take a country (for instance the United States), and order
its cities by population: New York has rank 1, Los Angeles has rank 2, etc.
We then draw a graph, known as Zipf’s plot: on the y-axis, we place the log
of the rank (N.Y. has log rank cn1, L.A. log rank cn2); on the x-axis, the log
of the population of the corresponding city (which will be called the “size”
of the city). We take, like Paul Krugman [1996a, p.40], the 135 American
metropolitan areas listed in the Statistical Abstract of the United States for
1991.4 The result is something very close to a straight line. This is rather
surprising, because there is no tautology causing the data to automatically
generate a straight line. Furthermore, fitting a linear regression yields:

lnRank = 10.53− 1.005 lnSize, (2)

(.010)

where the standard error is in parentheses, and the R2 is 0.986. The slope
of the regression line is very close to −1, and is measured with very high
precision. Returning to levels yields a very close approximation to the rank-
size rule. As we argue further below, power laws like the one reported in
Equ. (2) fit empirical city size distributions quite well. Still, it is important
to approach the issue rigorously in terms of econometric arguments.

Our approach in reviewing the literature on the evolution of city size
distributions emphasizes conditions, theoretical or empirical, under which
one may replicate with accuracy empirical regularities in city size distrib-
utions worldwide. We are interested in economic theories with behavioral
foundations that predict such empirical regularities as Zipf’s law, and others
as well, but do not insist that the evidence on city size distributions be used
to discriminate among those theories.

is for cities of high rank, but not for the largest cities. For instance, the rank-size rules
says that ratio of the largest city to second largest city is 2. But Zipf’s law implies
that this ratio is widely variable, indeed has a smallest 95% confidence interval equal to
[1, 20]. This comes from the Renyi theorem described in section 2.2.2, which says that
P S(1)/S(2) > x = 1/x for x > 1. So [1, 1/.05] is the smallest 95% confidence interval
for S(1)/S(2).

4The Statistical Abstract of the U.S. lists all the agglomerations with size above 250,000
inhabitants. The exponent ζ is sensitive to the choice of the cutoff size above which
one selects the cities. For a lower cutoff, the exponent ζ is typically lower. We come
back to this issue, and a possible explanation, in section 2.4. The statistical literature
(Embrechts et al. 1997) offers ways to discipline the selection of the cutoff, but those
optimum cutoff techniques have not, to our knowledge, been used in the context of the
city size distribution.

6



Some definitions are in order. A power law is a distribution function of
the type P (Size > S) ∼ a/Sζ for large S. The positive number ζ is called
the power law exponent. The literature sometimes uses the terms Pareto law
(resp. Pareto exponent) instead of power law (resp. power law exponent).
Zipf’s law is the statement that ζ = 1.5 Gibrat’s law states that the growth
rate of an economic entity (firm, mutual fund, city, etc.) of size S has a
distribution function with mean and variance that are independent of S.6

Those conditions will be sometimes referred to respectively as Gibrat’s law
for means and Gibrat’s law for variances.

2.2 Statistical Methods to Measure Power Law Exponents

We discuss next why a power law exponent ζ is notoriously difficult to
estimate with city size and rank data. Embrechts et al. (1997) provides a
very useful review of the different methods. We will present the two most
commonly used, the Zipf regression and the Hill estimator. Both present
pitfalls important to bear in mind.

2.2.1 The Zipf Regression Method and its Pitfalls

With n cities of ordered sizes S(1) ≥ . . . ≥ S(n), the Zipf regression fits an
ordinary least squares (OLS) regression of the log rank i on the log size S(i)
of the type (2):

cni = A− ζncnS(i). (3)

This procedure is the most commonly used in the empirical literature. One
can show for large n, the coefficient ζn tends with probability 1 to the true
ζ.

The advantage of this procedure is that it yields a visual goodness of
fit with the power law. For large samples, such as with financial data, it is
reasonably accurate. However, it has pitfalls in small samples. We provide
next a Monte Carlo analysis of this phenomenon.

5This definition implies that the variance of S is infinite for ζ < 2, and the mean
is infinite for ζ < 1 . This is, strictly speaking, impossible, as the distribution of S is
bounded above (by the total urban population in the case of absolute sizes, or 1 in the
case of normalized sizes). So a more rigorous definition should be that the density is
p (S) = a0/Sζ+1 for S over a range [S1, S2] over which the power law applies, and p (S)
can be arbitrary elsewhere. Empirically, this range [S1, S2] typically include the top 100
or so cities.

6 It is sometimes used in the literature to mean that the distribution of growth rates of
firms of size S is independent of S, not just the first and second moments.
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We fix n, the number of cities, and draw n i.i.d. city sizes Si from an
exact power law with coefficient 1.7 So Zipf’s law holds perfectly in our
Monte Carlo simulations. Take for instance a sample n = 100. We get
a mean exponent E [ζ100] = 0.94, so that the OLS procedure on average
underestimates the value of ζ, here by an amount 0.06. One can interpret
the origin of the bias in the following way: the expected value of the ratio
between S(2) and S(1) is 0.5, but the smallest 95% confidence interval for
S(1)/S(2) is [1, 20] (see footnote 3). So typically, the value of S(1) will be
above the value predicted by the linear regression with slope −1. In other
words, the size of the largest city will look “too big”. The best OLS fit will
correct this by making the slope less steep, so that the best fit value of ζn
will be less than the true value of ζ.

OLS regression reports an average standard error σnominal (ζ100) = 0.013,
but the true standard error is var (ζ100)

1/2 = 0.13. Hence a 95% confidence
interval for ζn is [0.68, 1.20], when a naive view of OLS would one lead to ex-
pect [.974, 1.026]. This shows that the nominal standard errors reported in
the OLS regression considerably underestimates the true standard error on
the estimated coefficient. As a result, taking the OLS estimates of the stan-
dard errors at face value will lead one to reject Zipf’s law much too often. For
references, we report the results of Monte Carlo simulations in Table 1 below
and the associated Zipf’s law estimations for n = 20, 50, 100, 200, 500. The
reason for those low nominal standard errors is that the ranking procedure
creates positive correlations between the residuals, whereas the OLS stan-
dard error assumes that the errors are independent. So the total amount of
error is understated by OLS. Actually, one can show that the true standard
error is:

var (ζn)
1/2 ∼ ζ (2/n)1/2 (4)

for large n.8

Value of the number n of cities in the sample 20 50 100 200 500
Mean ζn 0.90 0.92 0.94 0.96 0.98
Mean nominal OLS standard error on ζn 0.048 0.023 0.013 0.0078 0.0037
True standard error on ζn 0.28 0.18 0.13 0.098 0.063
Approximate true standard error on ζn : 2/n 0.31 0.20 0.14 0.100 0.063
True 95% confidence interval for ζn [0.37, 1.43] [0.57, 1.27] [0.68, 1.20] [0.77, 1.15] [0.85, 1.10]

7Concretely, we draw n i.i.d. variables ui uniformly distributed in [0, 1], and construct
the sizes as Si = 1/ui and rank them.

8See Gabaix and Ioannides (2003) for the derivation.
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Table 1. Statistics on the OLS coefficient ζn from regression (3), assuming that Zipf’s law

holds perfectly (ζ = 1). The values come from 20,000 Monte Carlo simulations for each

value of n. Under a general null of power law distribution with exponent ζ, the value

for the statistics on ζn are those of the table multiplied by ζ. 2/n is the asymptotic

approximation of the true standard error on ζn, as discussed in the text.

Value of the number n of cities in the sample 20 50 100 200 500
Mean αn 1.14 1.08 1.05 1.03 1.02
Mean nominal OLS standard error on αn 0.065 0.029 0.016 0.0086 0.0039
True standard error on αn 0.33 0.20 0.14 0.099 0.063
Approximate true standard error on αn : 2/n 0.31 0.20 0.14 0.100 0.063
True 95% confidence interval for αn [0.51, 1.76] [0.69, 1.47] [0.78, 1.33] [0.84, 1.23] [0.89, 1.14]

Table 2. Statistics on the OLS coefficient αn from regression (5), assuming that Zipf’s law

holds perfectly (α = 1/ζ = 1). The values come from 20,000 Monte Carlo simulations for

each value of n. Under a general null of power law distribution with exponent ζ, the value

for the statistics on αn are those of the table multiplied by 1/ζ. 2/n is the asymptotic

approximation of the true standard error on αn, as discussed in the text.

In Table 2, we replicate the study with the other OLS-based approach
used in the literature, that is, regressions of log size on log rank:

cnS(i) = A0 − αncni. (5)

For very large n, under the null of a power law with exponent ζ, αn tends
to α = 1/ζ. The results are similar to those of Table 1. The estimate of αn
is now biased upward. The origins of the upward bias are presumably the
same as those of the downward bias of ζn, as α = 1/ζ. The true standard
error on αn are slightly higher than those on ζn. So if one chooses an OLS
procedure, regression (3) is preferable to regression (5).

We conclude by discussing a pitfall associated with an augmented Zipf
regression. That is, the literature reports regressions of log rank, cni, against
log size, cnS(i), and its square:

cni = a+ bcnS(i) + c
¡
cnS(i)

¢2
. (6)

A coefficient c statistically different from 0 is interpreted as a departure
from Zipf’s law. It may be a statistical artifact, however. To show this, we
perform Monte Carlo simulations like above with n cities drawn from Zipf’s
law. We run (6) and count the frequency at which the t-statistic on c is
greater than 1.96 in absolute value, which would naively lead one to detect
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a deviation from Zipf’s law. For n =20, 50, 100, 200 and 500, one finds a
statistically significant coefficient c respectively 65%, 78%, 85%, 90% and
93% of the time. Hence in the OLS regression in equation (6) , one will often
finds a statistically significant coefficient c, even if Zipf’s law holds perfectly.
This fact has bearing on whether it is appropriate to reject Zipf’s law on
the strength of econometric evidence of a statistically significant quadratic
term in OLS regressions of rank against the logarithm of size. We return to
this in the discussion below of Black and Henderson (2002).

We conjecture that the reason why in regression (6) the coefficient c
is typically found significant is the same as the reason why OLS has too
low a nominal standard error on the ζ term in regression (3). That is, the
positive correlations between residuals that are introduced by ranking cause
the true amount of noise in the regression to be understated. All nominal
standard errors are too low and, in particular, the coefficient c appears to
be as significant from 0 too often.

To conclude, if one wants to rely on OLS to estimate ζ, the safest thing
to do is to use a Monte-Carlo simulation with the sample size n in order
to get the expected value of the bias and the true standard error of the
estimator.One can also get the value of the bias by interpolation from our
Tables 1 and 2, and using equation (4) take the value ζ

p
2/n as an estimate

of the standard error9.

2.2.2 The Hill (Maximum Likelihood) Estimator

An alternative procedure is the Hill estimator of ζ, the Pareto exponent in
Equation (1) [ Hill (1975)]. Under the null of perfect power law, it is the
maximum likelihood estimator. For a sample of n cities with sizes S(1) ≥
... ≥ S(n), this estimator is:

bζ = n− 1Pn−1
i=1 cnS(i) − cnS(n)

. (7)

It inherits the efficiency properties of a maximum likelihood estimator.10 An
estimate of the standard error of 1/bζ is constructed the following way. One
calculates the “local slopes”

τi = i
¡
cnS(i) − cnS(i+1)

¢
,

9More tables are provided in Gabaix and Ioannides (2003).
10As we discuss below, Dobkins and Ioannides (2000) actually report estimates of the

Zipf exponent obtained by means of this estimator.
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for i = 1, . . . , n− 1. The Rényi representation theorem on ordered statistics
(see, e.g., Reiss (1989), 36—37) shows that the τi are i.i.d. exponential vari-
ables with P (τi > τ) = e−ζτ for τ ≥ 0. bζ−1 is just the empirical mean of
the slopes τi, bζ−1 = ³Pn−1

i=1 τi

´
/ (n− 1). A consistent standard error uses

the standard deviation of the slopes:

σn

³
1/bζ´ =


Pn−1

i=1

³
τi − 1/bζ´2

n− 2


1/2

(n− 1)−1/2 .

If 1/bζ À σn

³
1/bζ´, the delta method gives the standard error on bζ:
σn

³bζ´ = bζ2

Pn−1

i=1

³
τi − 1/bζ´2

n− 2


1/2

(n− 1)−1/2 . (8)

The properties of the Hill estimator in finite samples can be very worri-
some. Embrechts et al. (1997, 330—345) discuss these in great detail. The
core reason for the bad non-asymptotic properties of the Hill estimator is
that the true distribution may have the expansion, for large S :

G (S) = P (Size > S) =
a

Sζ
+

b

Sζ+γ
+ o

µ
b

Sζ+γ

¶
, (9)

and γ > 0. The terms b/Sζ+γ introduces a bias that can be very high in
small samples:11

E
hbζi = ζ +

bγ

a
E

"
1

Sγ
(i)

#
.

11 To convey the intuition for the result, we give the following heuristic derivation. Call
yi = −cnG (Si), where G (x) is the true countercumulative distribution function written
in (9). Then yi is a standard exponential variable, and the Renyi theorem implies that
ui = i y(i) − y(i+1) are i.i.d. standard exponentials. But

ui ' i
G0 S(i)

G S(i)
S(i) − S(i+1) =

S(i)G
0 S(i)

G S(i)
i
S(i) − S(i+1)

S(i)
' ζ +

bγ

aSγ(i)
τi

so that

ζ = E [τi]
−1 ' ζ +

bγ

a
E 1/Sγ(i) .
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Hence the nominal standard error (8) of the Hill estimators can also con-
siderably underestimate the true estimation error, as it overlooks the bias
term.

A number of estimators have been proposed to address these issues,
but many years of research have not yielded any simple, consensus solution
to this problem. The state of the art may be the sophisticated nonlinear
procedures advocated by Beirlant et al. (1999), Embrechts et al. (1997),
and Feuerverger and Hall (1999). Those procedures often directly estimate
the parameters ζ, b/a and γ in the expansion (9). This is still a domain of
active research.

It would be interesting to have a thorough econometric study of this issue
in order to assess how important the bias problem is.12 With those caveat
in mind, we propose one more methodological remark before proceeding to
a review of the empirical results.

2.3 A Methodological Note: “Estimate, Don’t Test”

Before evaluating the empirical evidence, it is useful to keep in mind an in-
junction of Leamer and Levinsohn (1995). They argue that in the context of
empirical research in international trade, too much energy is spent to see if
a theory fits exactly. Rather, researchers should aim at broad, though nec-
essarily non-absolute, regularities. In other words, “estimate, don’t test”.
The main question of empirical work should be how well a theory fits, rather
than whether or not it fits perfectly (i.e., within the standard errors). With
an infinitely large data set, one can reject any non-tautological theory. Con-
sistently with this suggestion, some of the debate on Zipf’s law should be
cast in terms of how well, or poorly, it fits, rather than whether it can be
rejected or not. For example, if the empirical research establishes that the
data are typically well described by a power law with exponent ζ ∈ [0.8, 1.2],
than this is a useful result: It prompts to seek theoretical explanations of
why this should be true. Likewise, if further research establishes a degree of
confidence for Gibrat’s law, then theory should fit that, within the degree
of confidence that the data offer.13

12This bias problem can be very important in financial data [ Beirlant et al. (1999) ],
as indeed theories of the origins of power law behavior in financial data [ Gabaix et al.
(2003) ] welcome the possibility of a bias term b/Sζ+γ .
13We wish to thank Henry Overman for suggesting this discussion.
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2.4 Empirical Results on Cities

Before we proceed with reviewing empirical results, we wish to underscore
an important data issue. That is, it matters whether one deals with urban
agglomerations (i.e. metropolitan areas) or with city-proper data. Concep-
tually, the proper entity is the urban agglomeration as an urban economy,
but often international data just give the city proper data. One would ex-
pect that the exponent ζ should be larger for city proper than the urban
agglomeration data, in that urban agglomerations are not bound by legal
definitions of cities-proper and therefore likely to have a longer upper tail.
This point was made first by Rosen and Resnick (1980) and has been revis-
ited recently by Brakman et al. (1999, 2001). The latter report comparisons,
ibid., pp. 206—208, 220—221, using international data.14 With these differ-
ences notwithstanding and unless otherwise indicated, the terms urban and
metropolitan are used as synonyms throughout the chapter.

Support for Zipf’s law comes from numerous country studies and com-
parative international evidence. Rosen and Resnick (1980), Brakman et al.
(2001) and Soo (2003) are the most complete empirical international com-
parative studies. These are typically conducted along the lines of Equ. (3).
Rosen and Resnick examine city size distributions for 44 countries in 1970.
The average Zipf’s exponent is 1.13 with a standard deviation of 0.19, with
almost all countries falling between 0.8 and 1.5. Brakman et al. (1999, 2001
pp. 206—208, 220—221) show that city-proper data are associated with higher
Zipf exponents (mean=1.13, S.D.=0.19, N = 42) than urban agglomeration
data (mean=1.05, S.D.=0.21, N = 22). Soo (2003) updates these results
without altering the basic findings. He finds a Zipf coefficient of 1.105, for
cities, but 0.854 for urban agglomerations.15

The estimated dispersion in the Zipf exponent is large. Some interpret
this as mixed evidence for Zipf’s law. We recall, however, that Table 1
above shows that large dispersion of exponents is to be expected under
Zipf’s law. Looking at the average of exponent estimates, however, we see
that if the average value ζ is not exactly equal to 1, it is typically in the
range [0.85, 1.15]. We conclude that power laws describe well the empirical
regularity, with a Zipf exponent typically around 1. Furthermore, predicting
a value in a range say [0.8, 1.2] may be included in the list of criteria used

14The data are available at the United Nations web site
http://unstats.un.org/unsd/citydata.
15Soo’s non-parametric examination of the estimated Zipf coefficient across countries

produces a distribution that is quite close to normal, with the variations being explained
better by political economy variables than by economic geography variables.
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to judge the success of urban theories.
Dobkins and Ioannides (2000) report OLS estimates of ζ, that are ob-

tained along the lines of (3) with repeated cross sections of U.S. Census data
for metro areas. Their estimates decline from 1.044, in 1900, to 0.949, in
1990. They also report maximum likelihood estimates for power law distri-
butions, along the lines of (7) with the same data, which decline from .953,
in 1900, to .553, in 1990. When they use the upper one-half of the sample
only, a practice that conforms to some other estimations of Zipf’s law (such
as Fujita, Krugman and Venables (1999), Ch. 12), the estimate of ζ declines
from 1.212, in 1900, with 56 metro areas in the entire sample, to .993, in
1990, with 167 metro areas in the sample. Gabaix (1999b) reports an esti-
mate equal to 1.005, using the 135 largest metro areas in 1991 as reported
in the Statistical Abstract of the United States.

Despite remarkable fits obtained for Zipf’s law with U.S. city size data,
problems remain. Nonparametric results by Dobkins and Ioannides (2000)
and a finding of a significant quadratic term in a log rank regression (accord-
ing to Equ. (6)) reported by Black and Henderson (2002), continue to raise
genuine doubts about the validity of Zipf’s law as a description of the entire
distribution of city size for the US. We return to this issue further below
when we review two very relevant recent papers. One is Duranton (2002),
who compares simulation results of an interesting new model that utilizes
quality ladders with the empirical distributions for U.S. and for France and
explains departures from Zipf’s law at both ends of the distribution. Two is
Rossi-Hansberg and Wright (2003), who develop a system-of-cities inspired
model that implies Zipf’s law in special cases and also explains departures
from Zipf’s law at both ends of the distribution.

Black and Henderson (2002) examine the performance of Zipf’s law with
the twentieth century US city size distribution data. Their criticism of Zipf’s
law rests on a regression of the logarithm of city rank against the logarithm
of size with metro area data. (Their data differ little from the Dobkins-
Ioannides data.) Their results show that the Zipf coefficient declines from
.861 in 1900 to .842 when all cities are used, and increases from 1.01 in
1900 to 1.18 in 1990, when only the top one-third of the size distribution is
used. Their estimate of the coefficient c of the quadratic term in Equ. (6)
is statistically significant. It would be useful to revisit those issues with the
pitfalls described in section 2.2.1 in mind.

The approaches to estimation of Zipf’s law that we discussed above are
based on working with the steady-state size distribution of cities and there-
fore require some notion of stability of the underlying stochastic process.
Difficulties with consistent definitions of cities over time, as when metropol-

14



itan area definitions in the U.S. change over time, make it hard to rely
entirely on panel data. However, Black and Henderson (2002) and Dobkins
and Ioannides (2000, 2001) do work with panel data. Ioannides and Over-
man (2003), on the other hand, constitutes the first attempt to use the
Gibrat’s law to test the validity of Zipf’s law. We discuss their work further
below.

We wish to draw the reader’s attention to sources of information that
have not been fully explored. Historians have produced fascinating series of
urban populations that are reported in Bairoch (1988), Bairoch et al. (1988),
Van der Woude et al. (1990) and De Vries (1984). The casual impression
of the authors is that in some decades, large cities grow faster than small
cities, but in other decades, small cities grow faster. This would suggest
that Gibrat’s law for means holds only as a long run average. But to our
knowledge, no one has systematically used those data. They clearly deserve
attention16.

Insert Figure 2 about here

Finally, we wish to note that Zipf’s law has been shown to hold for the
bulk of the firm size distribution. Axtell (2001) and Okuyama et al. (1999)
present evidence for the U.S. and Japan respectively. Our Figure 2 repro-
duces Axtell (2001). If the countercumulative density of the distribution
is G (x) = a/xζ , the density, its derivative, is g (x) = aζ/x1+ζ , so that a
plot of log density vs log size will show an affine curve with slope − (1 + ζ):
ln g (x) = − (1 + ζ) lnx + constant. Axtell (2001) finds ζ = 1.059 (S.E.
0.054) for the 5 million firms in the U.S. Census in 1997. Hence one can
safely say that, except for very small and very large firms, U.S. firms follow
Zipf’s law. This is interesting because many of the conceptual issues that
arise for cities arise also for firms. Most worked out theories of the firm
would predict that many details should matter for the distribution. Fixed
costs, and increasing or decreasing marginal costs, the type of competition,
the cost and benefit of integration, should influence the size distribution
of firms. This view of the world this way begs the question of why those
details should be have the proper values that generate Zipf’s law. How-
ever, random growth model offer a simple way to understand Zipf’s law.
16There is also an interesting connection between Zipf’s law and Christaller’s Hierarchy

principle. This principle states that if an industry is present in a certain city, it tends
to be present in larger cities as well. Mori, Nishikimi and Smith (2003) show that this
implies that is a negative correlation between the average size of the cities that host an
industry, and the number of those cities. They call this the Number-Average Size rule.
They provide empirical evidence this new, very interesting stylized fact.
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Also, though random growth seems to suggest that, in the long run, firms
and cities behave like constant return to scale economies, one does need a
feature that is not constant return to scale to generate firms and cities in
the first place — for instance a fixed cost, or an initial advantage. Perhaps
this similarity of firms and cities will help guide some new theorizing. In
any case, this strong support of Zipf’s law for firms should increase one’s
posterior about the probability of Zipf’s law for cities.

3 Random Growth and Zipf’s Law

A first formal attempt to obtain power laws, and therefore, Zipf’s law in
particular, is Simon (1955). Simon assumes that urban population grows by
discrete increments or “lumps.” A new lump becomes a new city, with some
probability; or, it goes to augment an existing city, with a probability that is
proportional to the recipient city’s population. Simon obtains a power law
distribution as a limit of this process, but the model yields Zipf’s law only
as a special case. Dobkins and Ioannides (2001) confirm broad features of
Simon’s model, that is, that the probability of new cities appearing in the
immediate vicinity of old cities and thus leading to large urban agglomera-
tions, is increasing in the size of the existing city. Simon’s model encounters
some serious problems. In the limit where it can generate Zipf’s law, it does
not converge well, and requires that the number of cities grow indefinitely, in
fact as fast as the urban population. Gabaix (1999b) and Krugman (1996)
detail these problems.

3.1 From Gibrat’s Law to Zipf’s Law

We discuss next a variant of random growth theories that builds on Gibrat
(1931).17 The conclusion is that if different cities grow randomly with the
same expected growth rate and the same variance (Gibrat’s Law for means
and variances of growth rate), then the limit distribution of city sizes con-
verges to Zipf’s law. We follow here the treatment of Gabaix (1999b), who
also discusses the consequences of deviation from Gibrat’s law.

Specifically, the distribution of city sizes will converge to G(S), given by
equation (1), if Gibrat’s Law holds for city growth processes, that is, if city

17The first economic model with a power law may be Champernowne (1953). The classic
mathematical treatment is Kesten (1973). Those random growth processes have enjoyed a
renewed popularity in physics. Interesting analyses are include Levy and Solomon (1996),
Marsili and Zhang (1997), Manrubia and Zanette (1997), Malcai, Biham and Solomon
(1999), and Sornette (2001).
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growth rates are identically distributed, independent of city size, and with
a mean equal to the mean growth rate of the total urban population. It
is straightforward to verify this claim. Let γit be the total growth of city
i: Si

t+1 = γit+1S
i
t . If the growth rates γ

i
t are independently and identically

distributed random variables with density function f(γ), and given that the
average normalized size18 must stay constant and equal to 1,

R∞
0 γf(γ)dγ =

1, then the equation of motion of the distribution of growth rates expressed
in terms of the countercumulative distribution function of Si

t , Gt(S), is

Gt+1(S) =

Z ∞

0
Gt

µ
S

γ

¶
f (γ) dγ.

Its steady state distribution G, if it exists, satisfies

G(S) =

Z ∞

0
G

µ
S

γ

¶
f (γ) dγ.

It is straightforward to verify that G(S) = a/S, where a is a constant,
satisfies this equation. Gabaix (1999b) examines in further detail the precise
conditions that generate Zipf’s law.

3.2 Deviations from Gibrat’s Law

3.2.1 Deviations that Affect the Distribution

Recognizing the possibility that Gibrat’s Law might not hold exactly, Gabaix
(1999b) also examines the case where cities grow randomly with expected
growth rates and standard deviations that depend on their sizes. That is,
the size of city i at time t varies according to:

dSt
St

= µ(St)dt+ σ(St)dBt, (10)

where µ(S) and σ2(S) denote, respectively, the instantaneous mean and
variance of the growth rate of a size S city, and Bt is a standard Brownian
motion. In this case, the limit distribution of city sizes will converge to a law
with a local Zipf exponent, ζ(S) = − S

p(S)
dp(S)
dS − 1, where p(S) denotes the

18One has E [γ] = 1 if all cities follow Gibrat’s law. The more general condition for
E [γ] = 1 is that cities in the relevant range have a growth rate that is independent of
size, and that this growth rate is equal to the growth rate of the total urban population.
Gabaix, Ramalho and Reuter (2003) elaborate this point in a more general context that
allows birth and deaths.
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stationary distribution of S.Working with the forward Kolmogorov equation
associated with equation (10) yields:

∂

∂t
p(S, t) = − ∂

∂S
(µ(S) S p(S, t)) +

1

2

∂2

∂S2
¡
σ2(S) S2 p(S, t)

¢
. (11)

The local Zipf exponent that is associated with the limit distribution is given
by ∂

∂tp(S, t) = 0, can be derived and is given by:

ζ(S) = 1− 2 µ(S)
σ2(S)

+
S

σ2(S)

∂σ2(S)

∂S
, (12)

where µ(S) is relative to the overall mean for all city sizes.
Gabaix’s theoretical contribution offers an opportunity for direct tests

of the origin of Zipf’s law in the form of Gibrat’s Law for city growth rates.
The empirical approach of Ioannides and Overman (2003) allows for a city’s
growth rate to depend on city size and to vary according to a law like
equation (10) above. To do this, they non-parametrically estimate the mean
and variance of city growth rates conditional on size. This allows them to
test the validity of Gibrat’s Law. It appears to be confirmed. We report the
graphs in Figure 3. They then use equation (12) to directly estimate the local
Zipf exponents. As we saw earlier, direct estimation of ζ(S) has turned out to
be difficult to implement with standard parametric econometric procedures.
However, non-parametric estimation lends itself readily to such a task. It is
for this reason that Ioannides and Overman (2003) is arguably the strongest
empirical confirmation to date of the validity of Zipf’s law with U.S. data
for metropolitan areas.

Insert Figure 3 about here

Their findings also help explain two interesting features of the size distri-
bution of U.S. cities. First, as outlined above, estimates of the Zipf exponent
for U.S. cities decline overtime. Gabaix (1999b) suggests that a possible ex-
planation for this declining Zipf exponent is that towards the end of the
period, more small cities enter, and that these small cities have a lower
local Zipf exponent. The Ioannides and Overman estimations show that
this suggestion is probably correct. Second, comparison of nonparametric
estimates of the log rank — log size relationship to a standard parametric
estimate suggests that the slope of the countercumulative function should
increase absolutely and then decrease again at the upper end of the range of
values, as Black and Henderson (2002) and Dobkins and Ioannides (2000)
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document. The Ioannides and Overman finding of a local Zipf exponent
that hovers between .8 and .9 for most of the range of values of city sizes
and then rises and finally falls is consistent with this pattern. They conclude
that, at least for the upper tail of the distribution, the Gibrat assumption is
indeed verified. More work is called for to look at this issue.

We can offer a simple explanation for this flattening of the Zipf curve
(lower exponent ζ) for small cities, which in effect means few small cities.
It is conceivable that smaller cities have a higher variance than large cities.
Variance would decrease with size for small cities, and then asymptote to a
“variance floor” for large cities. This could be due to the fact that large cities
still have a very undiversified industry base, as the examples of New York
and Los Angeles would suggest. Using Equation (12) in the baseline case
where all cities have the same growth rate, which forces µ (S) = 0 for the
normalized sizes, gives: ζ(S) = 1+∂ lnσ2(S)/∂cnS, with ∂ lnσ2(S)/∂cnS <
0 in the domain where volatility decreases with size. So potentially, this
might explain why the ζ coefficient is lower for smaller sizes.

3.2.2 Deviations from Gibrat’s Law that do not Affect the Dis-
tribution

In this section we will see that the basic Gibrat process may be weakened
considerably. First, the urban growth may accommodate a wide range
of growth processes, as long as they contain a unit root with respect to
the logarithm of city size: in particular, growth processes can have some
mean-reverting component. Second, Zipf’s law is compatible with the pre-
dictability present in the data (see section 6.1) as long as the determinants
themselves are not ultimately correlated with size, and mean revert at long
horizons.

To examine those facts analytically, we use discrete time notation and
write:

cnSit − cnSi,t−1 = µ (χit, t) + εit, (13)

where χit is a possibly time-varying vector of characteristics of city i; µ (χit, t)
is the expectation of city i’s growth rate as a function of economic condi-
tions at time t; and εit is white noise. In the simplest Gibrat model, εit is
independently and identically distributed over time and µ (χit, t) is constant.
We examine in turn the consequence of relaxing those assumptions.

Mean reversion versus unit root in the evolution process
First, we continue to assume a constant µ (χis, t) = µ, but we examine

the consequence of relaxation of the assumption of an i.i.d. εit. We suppose

19



a stochastic structure of the form

εit = bit + ηit − ηi,t−1,

where bit is i.i.d., and ηit follows a stationary process. This gives

cnSit − cnSi,0 = µt+
tX

s=1

bis + ηit − ηi0. (14)

The
Pt

s=1 bis term in the above equation gives a unit root in the growth rate
process, which is what ensures convergence to Zipf’s law. The ηit term can
have any stationarity (as long as the tails of eηit are less fat than the Zipf
distribution).19 This means that, for Zipf’s law to hold, the city evolution
process (14) can contain a mean reversion component, as long as it contains
a non-zero unit root component. Hence, in growth regressions the presence
of a mean-reversion term is a priori compatible with Zipf’s law – the crucial
ingredient being the presence of a unit root term. Hence one can imagine
that the next generation of city evolution empirics could draw from the
sophisticated econometric literature on unit roots developed in the past two
decades and surveyed by Stock (1994).

Economic predictability
We now examine the consequences of a non-constant µ (χit, t) in (13).

This is motivated by the empirical literature on urban growth (see section
6.1), which obtains a predicted value for the growth rate µ (χit, t) as a func-
tion of a vector of characteristic χit of city i. In terms of the above section,
this translates into:

ηit − ηi,0 =
tX

s=1

[µ (χit, t)− µ] ,

where µ is the average growth rate. In view of the previous paragraph, Zipf’s
law requires that ηit be stationary. Let us unpack the economic meaning of

19We offer a heuristic derivation of this fact. Say that the process is St = BtHt, where
dBt/Bt = bt = σdzt is a Brownian motion with zero drift as in the simplest Gibrat
process, and Ht = eηt is an independent stationary process that follows a diffusion. St is
reflected in the lower tail. One can write the forward Kolmogorov equation, and see that
p (B,H) = aB−2f (H) is a solution of this equation if a is a constant and f (H) is the
steady state distribution of H. It is highly plausible, though we did not attempt to prove
it, that this is the unique solution for large values of B. If H has power laws less fat than
1, i.e. if E [H] <∞, then P (S > x) = aE [H] /x and Zipf’s law holds.
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this condition. ηit is stationary if: (1.i) for a fixed χ, µ (χ, t) − µ is “suffi-
ciently” mean-reverting; or if: (1.ii), for a given city i, the χit’s are “suffi-
ciently” mean-reverting. Case (1.i) says that the dependence on t indicates
that some permanent characteristic can have impacts that are good in some
time periods, bad in others. For instance the importance of temperature de-
pends on the availability of heating systems or air conditioning. Proximity
to iron ore deposits is a growth factor in some decades, and a decline factor
in others. Case (1.ii) means that “good” characteristics are temporary. For
instance, having better fiscal policies, or a more educated population, might
be temporary, as policies and capacities change. If either (1.i) or (1.ii) hold,
one sees how the growth regressions mentioned in section 6.1 can hold. IfPt

s=1 [µ (χit, t)− µ] is not stationary, then we have case (2): cities with the
“right” characteristics will dominate, and the city size distribution will di-
verge. This divergence could be very slow. For example, suppose that city
number 50 is endowed with a permanent advantage that make it grow at a
rate higher than the rest of the urban population by a rate of 1% rate per
year. It will need, in order of magnitude, T = ln (50) /0.01 ' 400 years to
overtake city number 1. Hence one needs an extremely persistent advantage
to ensure this divergence of the distribution. It is somewhat unlikely that
such advantages can persist without decaying or being imitated, with the
help of directed technological or political change. This, and the evidence on
Zipf’s law, suggests that (2) is not possible, and rather that we must be in
cases (1.i), (1.ii), or both. It would be extremely interesting for the empirical
literature on urban growth to determine this, and to examine more precisely
the mechanism by which (1.i) or (1.ii) happen, as one can conjecture they
do.

3.3 Economic Models that Deliver Gibrat’s Law

One could argue that a major challenge for urban theory is to deliver models
that generate Gibrat’s law, at least approximately. The dominant model of
urban structure, that is the system of cities approach [ Henderson (1974;
1988) ] and the new economic geography [ Fujita et al. (1999)] in their pure
forms both fail the task of predicting a Zipf’s law, and in fact not even a
power law.20

Gabaix (1999b) offers a simple model of amenity shocks to cities, which
cause intercity migration that in turn produce population shocks that are
proportional to existing populations. When such amenity shocks are in-

20For the latter, see several prominent reviews of Fujita et al. (1999), such as Anas
(2001); Davis (2002); Neary (2001).
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dependent and identically distributed, the conditions of Gibrat’s Law are
satisfied. Gabaix (1999a) examines how extensions of such a model can be
compatible with unbounded positive or negative externalities.

In a recent paper, Córdoba (2003) examines systematically the condi-
tions for Zipf’s law and concludes that “Gibrat’s Law is not an explanation
[...] but it is the explanation.”. In other words, Gibrat’s law is a neces-
sary condition for Zipf’s law. In Córdoba’s model at equilibrium, cities are
specialized and produce one good. Cities arise because of Marshallian ex-
ternalities and there are no transport costs. Córdoba shows that for Zipf’s
law to arise, one first needs to have a balanced growth path. Remarkably,
this is possible only if: (i) consumers have Cobb-Douglas preferences; or,
(ii) Marshallian external effects have equal elasticities. If either tastes or
productivity have power law distribution, one gets a power law distribution
of city sizes. This power law distribution of tastes or productivity can itself
come from a random growth process. The result is extended to the case of
diversified cities with production of non-tradeables. One can expect that the
analysis in Córdoba (2003) will motivate even more research on economic
models compatible with Gibrat’s law.

Rossi-Hansberg and Wright (2003) use ideas from the system-of-cities
theory of Henderson (1974) and its urban growth application of Black and
Henderson (1999) to develop a model where the urban structure eliminates
local increasing returns to scale to yield constant returns to scale in the ag-
gregate. This is accomplished by a model where local production takes place
with a Cobb-Douglas production function and constant returns to scale in
capital and labor services. Labor services are produced using raw labor
and human capital, again with a Cobb-Douglas production function. Cities
specialize completely in the production of different products. Total factor
productivity affecting local production is produced in the style of endoge-
nous growth [ Lucas (1988), Romer (1990) ] from total human capital and
total labor in the city under Cobb-Douglas production function, is affected
multiplicatively by a exogenous shock, and is external to each firm. Their
specifications lead to a critical feature of the model, in that the optimal
city size, that is the size that maximizes output net of commuting costs,
implies that total commuting costs in each city are a constant fraction of
total city output. This implies in turn that optimal city size is proportional
to the square of the average product of labor. The model admits a balanced
growth path along which growth is positive even if population growth is
zero. Furthermore, along a balanced growth path, the growth rate of each
city type may be written in terms of three components: one is proportional
to the growth rate of human capital per person in each city type; a second
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is proportional to the rate of growth of the total factor productivity shock
in the industry; and a third is proportional to the excess of the contempo-
raneous total factor productivity over a weighted sum of past realizations
of total factor productivities. So, faster growth of human capital leads to
larger cities, while faster population growth leads to smaller cities.

Proposition 4, in Rossi-Hansberg and Wright, characterizes emergence
of Zipf’s law in exactly two restrictive cases. One case obtains if capital is
not used in production and the growth rate of the total factor productivity
shock is time-independent. In this case, productivity shocks are permanent
and produce permanent increases in the level of the marginal product of
labor making its growth rate scale-independent. A second case obtains if
industry production is according to an AK model, where there is no human
capital and production is linear in physical capital, all capital depreciates
after production, there is no population growth and productivity shocks are
temporary. In this case, productivity shocks have a permanent effect on
the marginal product of labor through the accumulation of human capital.
If neither of the above conditions are satisfied, Rossi-Hansberg and Wright
show that the growth rate of cities exhibits reversion to the mean and that
the standard deviation of city sizes increases with the standard deviation of
industry shocks. That is, if a city is large, defined as having experienced
a history of productivity shocks above average, it can be expected to grow
slower than average in the future, and the opposite would be true for small
cities. Therefore, there would be relatively few small cities and large cities
are not large enough. Consequently, the departure of the log rank—log size
from the straight line associated with Zipf’s Law is as found in the U.S.
data. This is, of course, great progress in the long-standing effort to provide
plausible microfoundations for Zipf’s law for cities by delivering good news
for all sides. Zipf’s law can be the outcome, albeit in a special case of a very
important class of models, that is, those inspired by the system-of-cities
approach augmented by adopting features of the endogenous growth theory.

3.4 Power Laws at Both End of the City Size Distribution:
Random Growth with Exponential Compounding

Reed (2001; 2002) and Reed and Hughes (2002) advocate an interesting
variant of the random growth process. This is obtained by a compounding
geometric Brownian motion for city growth rates with the exponential dis-
tribution as follows. A Gibrat assumption of geometric Brownian motion
but with constant instantaneous mean and variance, and given an initial
state S0, letting the process run for a fixed time T yields a size ST that is
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lognormally distributed. However, if time T is exponentially distributed –
for instance, if the cities “die” at a Poisson rate δ — then a power law dis-
tribution is obtained at the upper tail, which is expected, but also a power
law distribution in the lower tail. Thus, the outcome is a double Pareto,
with different Pareto law exponents above and below the threshold, which
is given by the initial state S0. Reed (2002) offers some evidence that this is
empirically relevant, as the bottom tail of the distribution has a distribution
of the type P (S < x) ∼ xγ for γ > 0. The hypothesis of a non-zero death
rate is likely to be indeed relevant in the lower tail of the distribution. We
expect future research to be stimulated by these contributions.

4 Economic Explanations for Zipf’s Law Other
than Gibrat’s Law

In principle, the distribution of city sizes may satisfy Zipf’s law even if city
growth rates do not satisfy Gibrat’s Law. One such possibility, suggested by
Krugman (1996b), is that the presence of Zipf’s law in features of physical
geography that are relevant for the properties of the urban system that
adapts to them, may cause city sizes to obey it as well. Other theories
may predict stable distributions for city sizes as outcomes of deterministic
or random growth processes which may also satisfy Zipf’s law. For example,
Henderson-style systems of cities theories are not incompatible with Zipf’s
law for cities, in that the actual cause of Zipf’s law for city sizes may be
found among the underlying determinants of city sizes [ Henderson (1988) ].

4.1 Zipf’s Law for Cities Coming from a Power Law of Nat-
ural Advantages

Krugman (1996b) suggests that Zipf’s law for cities might come from a
Zipf’s law of natural advantages. Indeed, he presents some evidence that
the size of rivers follows Zipf’s law. This might give rise to a power law
of cities. A simple model to helps think about those issues. Call A a
index of natural advantages of a city – for instance,its proximity to the
coast or the size of the river near it. Consider that the output of a city i
with amenities Ai is F (Ai,Ki, Si), with F exhibiting constant returns to
scale with respect to all of its arguments: Ki is the amount of capital and
Si the amount of labor in city i. Consider a model without randomness.
Equalization of marginal products across cities gives FK (Ai,Ki, Si) = r
and FL (Ai,Ki, Si) = w, where r and w are the rental prices of capital
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and labor respectively. The constant returns to scale assumption gives
FK (Ai,Ki, Si) = FK (1, Si/Ai, Si/Ai), so that the solutions are of the type
Ki = kSi and Li = lSi. The population of city i is proportional to the
natural advantages of the city.

If the distribution of natural advantages across cities is power law with
exponent ζA, (i.e. there is a b such that P (Ai > A) = bA−ζA for A large)
we get:

P (Si > S) = P (Ai > S/l) = b = b (S/l)−ζA ∼ S−ζA

so that the population distribution is power law with exponent ζA: ζS = ζA.
Hence, if we have evidence that ζA = 1, we would have an explanation for
Zipf’s law.

Obviously, more research is needed to assess this hypothesis. One of the
difficulties is that the link between say the river flow f and the corresponding
economic amenity A that would enter in the productivity function is not
obvious. Should we have A = f , or A = fβ for some β 6= 1? This matters,
as one can show that if f is power law distribution with exponent ζf , relation
A = fβ will yield ζS = ζA = ζf/β. Hence one has to give a reason why β = 1.

As an explanation for the persistence of city size distributions, the trans-
mission of power laws of physical geography to city sizes needs to be refined
further. For example, we know from Fujita and Mori (1997) that disconti-
nuities in the physical landscape, such as natural ports and waterways, have
important consequences for the location of cities. Still, it is clearly not the
case that their actual dimensions may affect the size of cities in all instances.
For example, the size of a navigable river is pertinent, but coastal location
does not lend itself to such measurement. Furthermore, such theories are
problematic as theories of growth when a particular physical amenity is held
fixed. Clearly, this issue needs to be addressed further by the literature.

4.2 Zipf’s Law for Cities in Models of Self Organization and
Endogenous City Formation

We review next a number of recent papers that develop models that combine
several theoretical ideas. All of these papers use simulations to test their
theoretical predictions.

Axtell and Florida (2001) offer a hybrid theoretical model of an urban
system that predicts Zipf’s law at its steady state. They attempt to “rec-
oncile the tension between centripetal and centrifugal forces that we believe
determines city sizes at the micro level, and the as-if-constant returns dy-
namics that seem to apply at the macro level” [ ibid. ].
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Axtell and Florida propose a model of firm formation which leads to city
formation by the location decisions of firms. Individual agents are myopic
and interact in team production. Total team output is increasing and convex
in team effort, and agents receive compensation equal to the equal shares
of output. Individuals’ choice of income versus leisure imply that a Nash
equilibrium in effort levels exist but is Pareto-dominated by higher effort
levels which are not individually rational. There exists a maximum stable
size for firms beyond which groups are dynamically unstable. This implies
that for firms beyond a certain size random perturbations lead to unstable
adjustments. Each agent’s location is originally random. Agents are allowed
to move among firms or to start their own firms. When an agent starts a
new firm, she selects a new location from among a finite number of locations,
with a small probability, and it stays put, with a large probability. The
authors claim that firms’ growth rates are Laplace-distributed, their variance
decreases with firm size according to a power law, wages are increasing in
firm size, constant returns to scale prevail at the aggregate and city sizes
obey Zipf’s law.

Duranton (2002) is one of the most interesting economic models of city
growth and aims at matching the observed distribution of city sizes. It actu-
ally does so very well: it offers a fairly good fit (with several free parameters),
with approximate power laws for both the upper and lower tails [c.f. Reed
(2002)]. Several ingredients of Duranton’s model are familiar to students
of new economic geography. It uses the quality-ladder model of growth de-
veloped by Grossman and Helpman (1991) in an urban framework. Cities
grow, or decline, as they win, or lose, industries following new innovations.
So small innovation-driven technological shocks are the main engine behind
the growth and decline of cities. The paper shows that observed regularities
about the city size distribution are compatible with the basic building blocks
of urban economics, like the existence of agglomeration economies, crowding
costs, etc. In particular, these building blocks are crucial for the theory’s
good simulation performance.

Duranton’s model has the virtue of offering a plausible explanation of
the mobility of cities through the size distribution, and of generating a non-
trivial such distribution from economic decisions of firms. The model does
not match Gibrat’s law: the mean and variance of growth rates decreases
with size.21 This is due to the fact that it does not model that larger

21At the time of the completion of this chapter, the quantitative predictions of the model
for the mean and variance of growth rates as a function of size were not made explicit, so
that it was unclear how close or far they are from empirical processes.
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cities have very diversified industrial base, which is an intuitive reason why
Gibrat’s law for variance may hold.

The model does match both the U.S. and French city size distributions
when key parameters are calibrated based on appropriately different fun-
damentals.22 Duranton’s simulations show that the 10th and the 90th per-
centiles, that are predicted by the model, bound the U.S. distribution above
the size of 220,000 inhabitants and the French distribution in its entirety.
Still, in spite of his success in matching both the U.S. and French data, Du-
ranton underscores that the real test should be whether proposed theories
work well in explaining sources of urban growth and decline.

While Krugman (1996a) argues that the basic features of the urban
system ought to be studied in models of self-organization, it was only un-
til relatively recently that these newer theories were actually utilized to
study empirically testable aspects of the urban system. The two most im-
portant contributions along such an approach is Brakman, Garretsen, Van
Marrewijk and van den Berg (1999) and Brakman, Garretsen, and Van
Marrewijk (2001). The new economic geography models of cities that they
develop provide, in particular, for congestion costs via the specification of
labor requirements for the production of the intermediate goods produced in
different cities. Their simulations yield outcomes that resemble Zipf’s Law.
However a Zipf coefficient near 1 is obtained only for certain parameter
values which they associate with what they refer to as “industrialization”,
that is, large decrease in transportation costs and increasing importance of
footloose industry with increasing returns to scale. Their pre- and post-
industrialization scenaria are associated with Zipf coefficients exceeding 1.

5 Dynamics of the Evolution of City Size Distrib-
utions

Eaton and Eckstein (1997) is, arguably, the most noteworthy recent study
that focused on the persistence of the city size distribution and one of the
most important contributions to the recent urban growth literature. The
paper starts with a comparison of the dynamic evolution of the city size
distribution between France and Japan. These countries have maintained
national borders (that is when colonial possessions are ignored) that have
remained unaltered during recent history and have urban systems with the
number of cities remaining roughly constant. Eaton and Eckstein emphasize

22This is important because the US data imply a roughly concave Zipf’s curve and the
French data a roughly convex one.
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the observed persistence of the distribution over time, which they refer to as
parallel growth of French and Japanese cities during 1876—1990 and 1925—
1985, respectively. They confirm this finding by means of several alternative
empirical techniques, such as Lorenz curves, Zipf regressions (logarithm of
rank against logarithm of size) and non-parametric transition matrices of
evolving size distributions.

They propose a theory that explains these facts and combines features
of Henderson (1974) and of Lucas (1988). Their model allows for urban
congestion but not intercity transportation. Persistence in the relative city
size distribution is ensured by assuming that returns to learning in each
city is proportional to the weighted average of human capital stocks in all
cities, where the interaction coefficients are constrained to be consistent with
steady-state growth. If city populations are growing at the same rate, than
so are wages and consumption. Eaton and Eckstein also allow for intercity
migration and examine conditions for utility costs of migration such that
relative populations remove incentives for individuals to migrate. These
conditions take the form of lower and upper bounds on the relative popula-
tions of two successive ranks. These bounds converge to the same quantity,
if the effective rate of time discounting is equal to 0, for each city depend
upon the ratio of human capitals in the respective cities and economy-wide
parameters. However, while their result does explain the existence of invari-
ant city size distributions, it does not explain why this distribution should
obey a Zipf law, or even a power law. Nonetheless, the model is sufficiently
flexible to let them set parameters that fit the data quite well. This re-
sult of parallel growth is also associated with parallel growth in total factor
productivities across cities.

As the above discussion makes clear, the results of Eaton and Eckstein
(1997) depend critically on conditions that bound intercity migration. Some
of the earlier literature on city size distributions, such as Suarez-Villa (1988)
and Tabuchi (1986), also emphasize the relationship between ad hoc laws
governing intercity population flows and the stability of the city size distri-
butions. This is, of course, not surprising. It thus appears that additional
progress would be made if general models of intercity migration and trade
would be built.

In the context of Eaton and Eckstein’s approach, the reader naturally
wonders what would happen to city size distributions in an economy marked
by expansion of its land mass and emergence of new cities. Dobkins and
Ioannides (2000) were the first to address this question recently with respect
to the urban system. We next turn to questions of spatial evolution by
posing them in the context of recent research on the spatial distribution of
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economic activity in the U.S.

5.1 Spatial Concentration of Economic Activity in the U.S.

Before we go into details of this literature, it would be interesting to provide
a broader historical perspective on the spatial concentration of economic
activity in the U.S.. Recent research has also examined the spatial distrib-
ution of population at different levels of aggregation. Beeson, DeJong and
Troesken (1999) and Beeson and DeJong (2002) examine regional patterns
of population growth at the state and county level from 1790 to 1990. They
find that state-level populations show convergence while county level popu-
lations show divergence. While initial tendencies towards convergence lasted
roughly through 1800s, in the post World War II period county-level popula-
tions have diverged. Their analysis points to the importance of transitional
dynamics as opposed to steady state dynamics. When territories opened up
for settlement, growth rates were very high relative to steady states. Once
such “frontier effects” have been controlled for, the tendency to divergence
in the post war period is clear.

The United States transformed itself from a rural to an urban society
over the last three centuries. Kim (2000) emphasizes that after a century of
unremarkable growth, the 1700s, the pace of urbanization rose to historically
unprecedented levels between the nineteenth and early twentieth centuries.
In the twentieth century, the urban population continued to increase but
in a much more dispersed manner as the suburban population increased.
Throughout these developments, cities also exhibited considerable variation
in their population sizes. Kim emphasizes the role of changes in regional
comparative advantage and in economies of scale in transportation and lo-
cal public goods for the patterns of U.S. urban development. He finds that
differences in urban sizes are associated with the role of reduced market
transaction costs in coordinating greater geographic division of labor. Kim
(2002) looks at the dynamic evolution of urban densities. The paper doc-
uments the historical changes in population and employment densities in
U.S. cities and metropolitan areas, and explores the causes of their rise and
decline between the late nineteenth and the twentieth centuries.

The role of urban density has recently attracted attention in relation
to the evolution of other measures of urban size, such as employment. In
particular, papers by Carlino and Chatterjee (2001, 2002) point to a pro-
nounced trend towards deconcentration of employment in the U.S. since
WWII. That is, the employment share of relatively dense MSAs has declined
and the share of less dense MSAs has risen. Similarly, they show that such
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effects also apply within MSAs. They explain these trends by means of a
density-dependent congestion costs. They do not, however, estimate models
for the pattern of transition. Still, these works challenge the view, based on
population size studies, that the urban landscape is in some sort of steady
state. Instead, they find considerable change.

5.2 Urban Evolution in the U.S.

Dobkins and Ioannides (2000) develop a data set that tracks U.S. cities,
actually metropolitan areas, from 1900 to 1990. They use contemporaneous
definitions of metropolitan areas, described in detail in the Data section in
ibid. The number of cities grows from 112 in 1900 to 334 in 1990. Many of
the cities that enter the data grow from settlements physically in existence
for many years, prior to the time they pass the appropriate threshold of
population, that is 50000 inhabitants. Entirely new cities also come into
being, the latest one in 1944, and quickly grow large enough to be included
in the data. Dobkins and Ioannides find that the U.S. urban system is
characterized by parallel growth, despite its spatial expansion. They analyze
the data in more detail, by constructing transition matrices, and track the
movement of each city in the distribution relative to the others.

As noted above, Eaton and Eckstein’s selection of France and Japan was
motivated by their roughly stable geographical boundaries and the consistent
availability of data. In contrast to such “old” countries as France and Japan,
the United States has grown by continuously expanding its land mass into
a well defined hinterland. New regions and cities have been brought into
the U.S. urban system during the nineteenth and twentieth centuries, older
regions have grown and declined, and the spatial distribution of economic
activity has undergone some remarkable changes. In Europe, almost no new
cities were created during the twentieth century. The U.S. urban system
has developed with initial conditions quite different from those of other
countries.

As Quah (1993) has forcefully argued, typical cross-section or panel data
techniques do not allow inference about patterns in the intertemporal evolu-
tion of the entire cross-section distribution. They do not allow us to consider
the impact over time of one part of the distribution upon another, i.e., of
the development of large cities as a group upon smaller cities. Making such
inferences requires one to model directly the full dynamics of the entire dis-
tribution of cities. The evolution of urbanization and suburbanization may
affect individual cities so drastically as to render conventional methods of
accounting for attrition totally inappropriate. As smaller urban units fuse
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to create larger ones, and given the small number of time series observa-
tions, non-parametric or semi-parametric distributional approaches such as
the one proposed here would be the only appropriate ones. In fact, these
techniques are appropriate when the sample of interest is the entire distrib-
ution, and individual observations are used to recover information about the
entire distribution. The availability of data are severely restricted both in
the time and the cross-section dimensions: there are only ten cross-sections,
one for each of the ten census years since 1900, with 112 metropolitan areas
and 334 in 1990.

The paucity of the data naturally lends itself to techniques used by Quah
(1993) and Eaton and Eckstein (1997). That is, one may construct from pop-
ulation data a fairly low-dimensional vector indicating the frequency of cities
in each of a number of suitably defined intervals (cells). Let ft denote the
frequency (density) distribution of Pit at time t. Eaton and Eckstein assume
that ft evolves according to a first-order autoregression (that applies to the
entire distribution function (rather than scalars or vectors of numbers):

ft+1 =M · ft, (15)

where M is a matrix of parameters. If ft were restricted to be measures
defined over a discrete set, then M in (15) is a Markov transition ma-
trix. Absence of a random disturbance allows us to iterate (15) forward
to get:ft+s = (M ·M · . . . ·M) ·ft =Ms ·ft. Divergent, convergent or parallel
growth may be ascertained by the properties of f∞ ≡ limt→∞ : ft. If a limit
distribution f∞ exists, then according to the Perron-Frobenius theorem it
is given by the eigenvector corresponding to the unique unitary eigenvalue
of M, the nonzero solution of [M − I]f∞ = 0], where 0] denotes a column
vector of zeroes. Parallel growth is understood to occur if f∞ tends to a
limit with non-zero probability over the entire support. Convergent growth
would occur if f∞ is a mass point, and divergent growth if f∞ is a polarized
or segmented distribution.

Dobkins and Ioannides (2000) and Black and Henderson (2002) adapt
Equ. (15) in order to allow for new cities to enter according to a frequency
distribution εt. If the number of entrants between t and t+ 1 is Int , It+1 =
It + Int , then

ft+1 =
It
It+1

Mt ft +
Int
It+1

εt. (16)

If Mt and ιt ≡ Int
It+1

are time-invariant, then the above equation is amenable
to the standard treatment. LettingM and ι be the respective time-invariant
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values, we may iterate Equ. (16) backwards to get: ft = (1 − ι)tM t f0 +Pt
τ=0[(1− ι)M ]t−τ ιετ , where f0 denotes the initial distribution of city sizes.
A steady state solution of (16) characterizes the distribution of city sizes

in the long run with entry. In general, if there are few or no entrants, ι ≈ 0,
the homogeneous solution dominates: the invariant (ergodic) distribution is
a useful measure of the state of the urban system in the long run. If, on
the other hand, ι is non-negligible, then the particular solution may not be
ignored. In fact, in that case, the magnitude of the largest eigenvalue of
(1 − ι)M is (1 − ι), and the impact of the initial conditions would be less
important the higher is ι, the number of new cities that have entered over
the last decade as a proportion of the new total number of cities.

In the Dobkins and Ioannides data, the values of ιt are as follows: ι1910 =
.194, ι1920 = .067; ι1930 = .051, ι1940 = .019, ι1950 = .012, ι1960 = .229,
ι1970 = .136, ι1980 = .245, and ι1990 = .036. These numbers suggest possibly
a non-stationary series and the intertemporal variations in ιt are interesting
and worthy of special analysis. We note that in the absence of a theory
of entry of new cities, there is rather limited scope for a purely statistical
analysis based on such a small number of time series observations. Entry of
new cities is pursued further by Dobkins and Ioannides (2001).

The stochastic specification of Equ. (16) is, in general, very complicated,
especially when Mt may be time-varying. E.g., forces that cause urban
growth and decline may operate quite differently at the upper level of the
distribution than at the lower one, and their pattern may change over time.
The distribution of new entrants has most of its mass at the lower end, which
to large extent reflects the nature of our data. Even ifMt is not time-varying,
it could be associated with an invariant distribution that could reflect very
different properties.

By coding the position of each city relative to the others within the
distribution, we are able to see whether or not specific cities move up or
down in the distribution over time. Dobkins and Ioannides constructed
transition matrices which are reported in ibid., Appendix A.23 The empirical
transition matrices that are reported suggest that concentration at the upper
end of the distribution becomes more pronounced over time: the diagonal
entries are higher for higher percentiles. Another observation that follows
is that most movements are to nearby cells, with very few big jumps. As
one might expect in the U.S. data, there is somewhat more movement off
the diagonal (compared to the French and Japanese data). Most of that

23De Vries (1984), Ch. 7, appears to have originated the study of urbanization by means
of transition matrices.
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movement is toward greater concentration in the time period from 1900 to
1990. However, these transition matrices have limitations. They do not
pick up the full effect of “entering” cities and they do not offer us any more
insight into why such changes might occur. There are undoubtedly other
variables that might impact on city size distribution.

Black and Henderson (2002) confirm these results by working with a
slightly different data set and a somewhat more general model. Specifically,
they work with the steady state solution of Equ. (16) which does account
for entry. They also interpret the increasing concentration at the upper end
of the distribution as being due to scale economies and changes in technol-
ogy. Since the mean city size increased four-fold and the median five-fold,
medium-size cities have grown substantially. They attribute this growth less
to the impact of technology through local knowledge accumulation and im-
proved commuting and more the effect of changes in the national demand
for the output of inter-city traded services, which favors large cities. They
test for the stationarity of the transition matrices, which is never close to
being rejected. They also examine mobility by means of first passage times
and find that upward mobility is much stronger than downward mobility.
They interpret slow downward mobility as an effect of “established urban
scale.”

Ioannides and Overman (2000) consider, in the light of recent theoret-
ical advances, the spatial characteristics of the U.S. urban system as it
evolved over the twentieth century. These advances have highlighted the
importance of spatial dimensions in understanding the evolution of urban
systems: Fujita, Krugman and Venables (1999) have added important new
spatial insights to the established literature on systems of cities [ Henderson
(1974; 1988) ]. The system of cities approach features powerful models of
intrametropolitan spatial structure, but neglected intermetropolitan spatial
structure. Intermetropolitan spatial structure plays a key role in the new
economic geography literature [ Krugman (1991); Fujita et al. (1999) ].
Further, as shown by Fujita and Thisse (2002), the importance of spatial
dimensions is not just restricted to the new economic geography. Rather, it
is a general feature of recent theoretical advances in our understanding of
the economics of agglomeration.

This recent theorizing has formalized thinking about two fundamental
features of any given location — the first and second “natures” — that de-
termine the extent of development at that location. First nature features
are those that are intrinsic to the physical site itself, independent of any
development that may previously have occurred there. For example, loca-
tions on navigable rivers, with favorable climates have first nature features

33



that might encourage development. The second nature features of a location
are those that are dependent on the spatial interactions between economic
agents.

However, these theories do not offer very precise predictions, and espe-
cially of the type that may be used to structure empirical investigations.
Real life geography, the tendency for all cities to grow, the gradual conver-
gence to some kind of equilibrium in the westward expansion of the country,
the movement of population towards the sunbelt and changes in the U.S.
urban system induced by a shift over the period in industrial structure away
from manufacturing and towards services are all important features in the
spatial evolution of the US urban system that have not yet been elaborated
in the formal theory. Thus, Ioannides and Overman seek to understand first
and second nature features of the U.S. urban system without restricting
analysis to specific functional forms. Instead, they choose to focus predom-
inantly on non-parametric methods proposed by Quah, op. cit., that is,
non-parametric estimations of stochastic kernels for the distributions of city
sizes and growth rates, conditional on various measures of market potential.
They show that while these relationships evolve during the twentieth cen-
tury, by 1990 they stabilize so that the size distribution of cities conditional
on a range of spatial variables are all roughly independent of these condi-
tioning variables. In contrast, similar results suggest that there is a spatial
element to the city wage distribution.

Their parametric estimations for growth rates against market potential,
entry of neighbors, and own lagged population imply a negative effect of
market potential on growth rates, unless own lagged population is also in-
cluded, in which case market potential has a positive effect and own lagged
population a negative one. Cities grow faster when they are small relative
to their market potential.

Overman and Ioannides (2001) report non-parametrically estimated sto-
chastic transition kernels for the evolution of the distribution of U.S. metropol-
itan area populations, for the period 1900 to 1990. These suggest a fair
amount of uniformity in the patterns of mobility during the study period.
The distribution of city sizes is predominantly characterized by persistence.
Additional kernel estimates do not reveal any stark differences in intra-region
mobility patterns. They characterize the nature of intra-size distribution dy-
namics by means of measures that do not require discretization of the city
size distribution. They employ these measures to study the degree of mobil-
ity within the U.S. city size distribution and, separately, within regional and
urban subsystems. They find that different regions show different degrees
of intra-distribution mobility. Second-tier cities show more mobility than
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top-tier cities.
The results of Dobkins and Ioannides (2001) may also be considered as

supportive of parallel growth. They test implications of economic geography
by exploring spatial interactions among U.S. cities. They augment the data
set developed in Dobkins and Ioannides (2000) by means of spatial measures
including distance from the nearest larger city in a higher- tier, adjacency,
and location within U.S. regions. They also date cities from their time of
settlement. They find that among cities which enter the system, larger cities
are more likely to locate near other cities. Moreover, older cities are more
likely to have neighbors. Distance from the nearest higher-tier city is not
always a significant determinant of size and growth. They find no evidence
of persistent nonlinear effects on urban growth of either size or distance,
although distance is important for city size for some years.

6 The Empirical Evidence on the Determinants of
Urban Growth

6.1 Determinants of Urban Growth

Madden (1956) provides an interesting non-parametric analysis of urban
growth in the United States. He emphasizes stability features in the distrib-
ution of growth rates and their evolution over time, where he notes that great
dispersion coexists with considerable intertemporal variation for individual
cities.

Henderson (1988), Glaeser, Kallal, Scheinkman and Shleifer (1992) and
Glaeser, Scheinkman, and Shleifer (1995) examine the role of socioeconomic
characteristics of city populations and of city industrial structures in eco-
nomic growth. The results are detailed in this Handbook by Moretti (2004).

Black and Henderson (2002) also estimate an equation for Gibrat’s Law,
that is for the growth rate as a function of lagged size, which yields a statis-
tically significant estimate for the mean reversion coefficient, the coefficient
of the logarithm of size, from −.022 to −.039. However, the finding of sig-
nificant mean reversion may be an artifact of measurement error. That is,
measurement error of 10% along with a standard deviation of the logarithm
of size of .7, for the fifty largest cities, would imply an estimate coefficient
of .02. Also, positive autocorrelation in the residual of the regression could
also show up as mean reversion. In fact, the studies of Davis and Weinstein
(2001) and Brakman et al. (2002), discussed below, do estimate generally
positive autocorrelation for the error in such a regression.
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Black and Henderson also report regressions with additional explanatory
variables, that is spatially varying geographical variables like temperature,
precipitation, proximity to coast (including proximity to the Great Lakes,
regional dummies, and market potential variables (which are defined in an
ad hoc fashion). They find that cities in warmer, drier and coastal locations
do grow faster, and that regional dummies have little additional impact.
Market potential has a quadratic effect on growth that diminishes as mar-
ket potential rises, but it has a large effect around its mean value. Having
neighbors nearby enhances growth, an effect of intercity trade. They inter-
pret the diminution of the effect for large market potential as an outcome of
competition. If a city is in a very high market potential area it suffers from
competition: Los Angeles benefits by being far from New York. Still, high
market potential helps large cities maintain their relative positions.

Black and Henderson are particularly careful with the estimation of the
relative growth equation. Noting that the lagged city size and spatial in-
teractions introduce endogeneity, they use lagged instruments with GMM
for the unbalanced panel data for the estimation. Allowing for fixed effects
and using GMM increase the absolute value of the mean reversion coefficient
nearly ten-fold. This implies mean reversion that is so much stronger than
is typically found in the growth literature, that it raises doubts for the re-
liability of these estimates. Black and Henderson also examine city sizes in
relation to city types, defined in terms of industrial compositions, and find
that different city types have different absolute sizes. Therefore, changes in
industrial compositions change relative sizes. These results confirm impor-
tant features of the system-of-cities approach.

Finally, Florida (2002) studies the impact of hard-to-measure variables
such as the openness to new ideas and creativity. He uses measures and
proxies, such as the fraction of the population who is foreign born or gay,
a coolness and a bohemian index, all of which are not commonly used, and
finds that they have a high predictive power.

We expect more studies such as those to arise, especially in a non-U.S.
contexts. A tighter link with the evidence on the stability of the city size
distribution, such as along the lines of the distinction in section 3.2.2 deserves
serious empirical attention.

6.2 The Determinants of Urban Primacy

Rosen and Resnick (1980) and Wheaton and Shishido (1981) show that ur-
ban concentration is negatively correlated with a country’s population. Ades
and Glaeser (1995) offer an empirical analysis that shows that high tariffs,
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high costs of internal trade and low level of international trade increase
the degree of urban concentration. Interestingly, a very good predictor is a
political variable: dictatorships have central cities that are, on average, 50
percent larger than their democratic counterpart. Their evidence suggests
that the causation goes from political factors to urban concentration rather
than the opposite.

6.3 Studies of Urban Growth Based on Quasi “Natural Ex-
periments”

Davis and Weinstein (2002) and Brakman et al. (2002) offer a completely
different viewpoint on the robustness of city size distributions when they are
subject to unusually large aggregate shocks. These papers rely on the quasi
“natural experiments” provided by the strategic bombing of, respectively,
Japan and Germany, during World War II. The two studies differ, however,
in their time horizons. In the former paper, the case of Japan, the time span
ranges over the past 8,000 years. In the latter paper, the case of Germany,
in the latter, it ranges from the beginning to the end of the 20th century.

These studies examine the performance of three, possibly not mutually
exclusive, theories of economic geography and urban development. These
are: first, increasing returns, defined as the combined effects on city size
of knowledge spillovers, labor market pooling and costly intercity trans-
portation either as modelled by the system of cities literature [ Henderson
(1974) ] or by new economic geography [ Krugman (1991) ]; second, ran-
dom growth processes; and third, locational fundamentals, by which they
mean that random growth results from randomness in the physical and eco-
nomic characteristics of locations themselves. Davis and Weinstein argue
that these three theories, which we discuss earlier in the chapter, have very
different testable predictions for the impact on the size distribution from a
powerful but temporary shock.

Davis and Weinstein (2002) argue that the great deal of variation in re-
gional densities suggests factors other than increasing returns are important
in determining regional densities. The extraordinary changes in technol-
ogy over the length of the study would have produced radical shifts in the
urban structure over time, which are not observed. Random growth, on
the other hand, is consistent with the facts, provided that the underlying
stochastic process satisfies certain conditions. The locational fundamentals
theory could easily explain persistence, as certain physical features of the
landscape, like proximity to waterways and the ocean, have not been altered
even with the intense bombing that Japan (and Germany) suffered. They
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interpret the great deal of persistence in population densities over time that
they find as strong support of the locational fundamentals theory.

They interpret the evidence on the robustness of Japan’s urban system
as against the increasing returns theory and in favor of the locational funda-
mentals theory. They conclude that the evidence is consistent with a hybrid
theory whereby locational advantages help establish basic patterns of re-
gional densities and increasing returns, or random growth, help determine
the degree of concentration. Davis and Weinstein interpret the remarkable
recovery of Japan’s urban system fact as evidence against random growth.
While their results are very interesting, they need not warrant this conclu-
sion. In the terms of section 3.2.2 of this chapter, they show evidence for
a mean-reverting component in the growth process. This is still a priori
compatible with the main condition of random growth models, the presence
of a unit root. They do not purport to reject the existence of such a unit
root.

The same caveat applies to Brakman et al. (2002). Like Davis and
Weinstein, they estimate an equation for the growth rate during 1946+t and
1946, where t assumes alternative values 4, 17 and 18 in order to distinguish
between short-term and long-term effects, with German city data. They
separate the sample into West and East Germany, for t = 4, 17 and t = 4, 18,
respectively. They conclude that when the entire of Germany and West
Germany only are studied, the impact of the bombing is significant but
temporary. The East German urban system, if treated separately, obeys a
random walk. They attribute this difference to the different socioeconomic
systems prevailing in the two parts of Germany following WW II, with East
Germany having been a communist state from 1949 until its absorption
into the Federal Republic of Germany in 1989. The post World War II
division of Germany might have created border effects for those cities near
the border. It is interesting that in spite of the prevalence of central planning
in East Germany, the East German urban system might not have been
altered and thus remained affected by its state at the end of WW II. In
contrast, the outcome for the urban system within the free market system
in West Germany was not conditioned by the bombing. They find this to be
consistent with the locational fundamentals theory but not necessarily with
the increasing returns theory. It is interesting that the study of the urban
dynamics in Germany and Japan provides evidence for such different results.
Perhaps this is due to the very different geographies of those two countries,
which might have prevented the operation of market forces’ altering the
urban system in Japan but not in Germany.

These historical studies have clearly opened up new horizons for eco-
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nomic research. Still, they may be providing additional evidence on the
resilience of urban systems in-the-large. For example, repeated destructions
of urban settlements in Europe have always been followed by reconstruction
along the earlier patterns. But it is also true, as the chapter by Hohenberg
in this handbook [ Hohenberg (2003) ] articulates, that persistence of the ur-
ban structure historically must always be studied in terms of fully dynamic
models. Such an approach finds us in full agreement.

7 Conclusion

Because Zipf’s law appears to be a quite robust empirical regularity, this
survey put some emphasis on it. Two related empirical regularities are
Gibrat’s law for means and Gibrat’s law for variances. They have been less
systematically studied, so more research is warranted to study their empir-
ical validity (though initial assessments appear favorable to Gibrat’s laws).
These three laws offer a strong benchmark against which to measure theories
of urban evolution and to organize an up to date look at the literature. The
robustness of Zipf’s law has also served to attract attention to the need for
microfoundations.

The paper reviews a number of theories, some of them very recent,
whose implications match those laws quite closely, at least approximately
and within the confidence intervals in which those laws themselves hold.
Most existing theories until very recently did not easily accommodate these
laws. The classical urban (system of cities) theory may accommodate it
as outcome of very special assumptions about preferences and technology.
Some of its recent variants offer much more precise predictions and, notably,
also explain departures from Zipf’s law that we observe at the extremes of
the city size distribution. The new economic geography literature may also
accommodate it, albeit in very simple models. We do not know whether
this accommodation would survive in more complex models. As the revival
of interest in these topics fosters additional research with enriched theories
of urban growth and development, we think that several important issues
deserve attention. Notable such issues are the robustness of urban evolu-
tion, in spite of the presence of stochastic forces, and the role of economic
integration and international trade.

39



8 Appendix: Zipf’s Law and Urban Primacy

Ordering cities by size, the k−primacy πk is the ratio between the size of the
largest city and the sum of the population of the k largest cities. Formally:

πk =
S(1)Pk
i=1 S(i)

(17)

It lies between 0 and 1. A large πk indicates that the largest city is quite
large. In this appendix we describe the predictions of Zipf’s law for this.
The Rényi representation theorem cited in section 2.2.2 gives that, for i < j,
the difference cnS(i) − cnS(j) can be written:

cnS(i) − cnS(j) =

j−1X
h=i

τh
h

(18)

where the τk are independent draws of an exponential distribution P (τk >
τ) = e−τ for τ ≥ 0. A consequence of this is the distribution of the k first
cities in a sample of n cities depends only on the ratios

¡
S(1)/S(k), ..., S(k−1)/S(k)

¢
and doesn’t depend on the specific value of n. So, to sample k−primacies
(and most statistics), it is enough to draw k cities from a Zipf distribution,
rather than draw n cities and take the k biggest cities. One can do that
by drawing k i.i.d. random variables ui from a uniform distribution in [0, 1]
and sets the sizes as Si = 1/ui. One sorts them to get the ordered sizes S(i).
One gets the corresponding k−primacy ratio πk. The results are reported
in Table 3.

k 2 3 5 10 50
Mean πk 0.693 0.590 0.502 0.424 0.323
S.D. of πk 0.140 0.172 0.193 0.205 0.208
95% C.I. [0.506,0.975] [0.361,0.961] [0.251,0.944 [0.168,0.922] [0.090,0.879]

Table 3 Statistics on the k−primacy ratio πk.
πk is the ratio between the size of the largest city and the sum of the population
of the k largest cities. The table reports the mean of πk, its standard deviation,
and a 95% confidence interval for πk. Source: Authors’ calculations, based on 1

million Monte-Carlo simulations for each k.

A conclusion from Table 3 is that the confidence intervals are extremely
wide. This could be guessed from the result cited in footnote 3, that under
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Zipf’s law, the ratio of the largest city to second largest city has smallest
95% confidence interval equal to [1, 20]. Various authors look to explain
variations in urban primacy. But Table 3 suggests that the large variations
in urban primacy across countries are just what Zipf’s law predicts. In a
sample of 44 countries, Rosen and Resnick (1980) finds a 5-primacy of 0.49
(S.D. 0.12), which is very close to the Zipf prediction, and a 50-primacy of
0.24 (S.D. 0.098). Thus Rosen and Resnick’s 50-primacy number is a bit less
than expected from Zipf. This maybe be due to the quality of their data.
Soo (2003) finds a for the 5-primacy mean 0.50 with a standard deviation
of 0.13. For the 10-primacy, he finds a mean of 0.39, with a mean of 0.13.
The results are thus extremely close to the Zipf predictions.

41



References

[1] Ades, A. and E. Glaeser (1995),"Trade and circuses: explaining urban
giants", Quarterly Journal of Economics 110:195—228.

[2] Anas, A. (2001), "The spatial economy: cities, regions and international
trade", Regional Science and Urban Economics 31:601—15.

[3] Auerbach, F. (1913), "Das Gesetz der Bevölkerungskonzentration", Pe-
termanns Geographische Mitteilungen 59:74—76.

[4] Axtell, R. L. (2001), "Zipf distribution of U.S. firm sizes", Science
293:1818—1820.

[5] Axtell, R.L., and R. Florida (2001), "Emergent cities: a microeconomic
explanation of Zipf’s Law", paper presented at the Society for Compu-
tational Economics, Yale University.

[6] Bairoch, P., (1988), Citites and Economic Development: From the
Dawn of History to the Present, Christopher Braider, tr.(University
of Chicago Press, Chicago).

[7] Bairoch, P., J. Batou, P. Chevre (1988) " The population of european
cities 800- 1850: Data bank and short summary of results", Centre of
International Economic History series, no. 2 (Geneva University).

[8] Beeson, P. E., and D. N. DeJong (2002), "Divergence", Contributions
to Macroeconomics 2:1049.

[9] Beeson, P. E., D. N. DeJong, and W. Troesken (1999), "Population
growth in U.S. counties: 1840—1990", Department of Economics, Uni-
versity of Pittsburgh, mimeo.

[10] J. Beirlant, G. Dierckx, Y. Goegebeur, G. Matthys (1999), "Tail index
estimation and an exponential regression model", Extremes: 2177.

[11] Black, D., and J. V. Henderson (1999), "A theory of urban growth",
Journal of Political Economy 107: 252—284.

[12] Black, D., and J. V. Henderson (forthcoming), "Urban Evolution in the
USA", Journal of Economic Geography.

[13] Brakman, S., H. Garretsen, and C. van Marrewijk (2001), An Introduc-
tion to Geographical Economics (Cambridge University Press, Cam-
bridge and New York).

42



[14] Brakman, S., H. Garretsen, C. Van Marrewijk and M. van den Berg
(1999), "The return of Zipf: a further understanding of the rank-size
distribution", Journal of Regional Science 39:183—213.

[15] Brakman, S., H. Garretsen, M. Schramm (2002), "The strategic bomb-
ing of german cities during WWII and its impact on cities growth",
CESifo working paper no. 808, CESifo, Munich.

[16] Carlino, G., and S. Chatterjee (2001), "Aggregate metropolitan employ-
ment growth and the deconcentration of metropolitan employment",
Journal of Monetary Economics 48:549—583.

[17] Carlino, G., and S. Chatterjee (2002), "Employment deconcentration:
a new perspective on America’s postwar urban evolution", Journal of
Regional Science 42: 455—475.

[18] Champernowne, D. (1953), "A model of income distribution", Eco-
nomic Journal 83: 318-51.

[19] Córdoba, J.-C. (2003), "On the distribution of city sizes", working pa-
per, Rice University.

[20] Davis, D. R. (2002), Review of The Spatial Economy, Cities, Regions
and International Trade, by M.Fujita, P. R. Krugman, and A. J. Ven-
ables, in: Journal of International Economics 57: 247-251.

[21] Davis, D. R., and D. E. Weinstein (2002), "Bones, bombs and break
points: the geography of economic activity", American Economic Re-
view 92: 1269—1289.

[22] De Vries, J. (1984), European Urbanization, 1500— 1800, (Harvard Uni-
versity Press,Cambridge, MA).

[23] Dobkins, L. H., and Y. M. Ioannides (2000), "dynamic evolution of the
U.S. city size distribution", in : J. Huriot and J. Thisse, eds., The Eco-
nomics of Cities,Theoretical Perspectives (Cambridge University Press,
Cambridge) 217—260.

[24] Dobkins, L. H., and Y. M. Ioannides (2001), "Spatial interactions
among U.S. cities", Regional Science and Urban Economics 31:701—731.

[25] Duranton, G. (2002), "City size distribution as a consequence of the
growth process", Department of Geography and Environment, London
School of Economics.

43



[26] Eaton, J., and Z. Eckstein (1997), "Cities and growth: theory and evi-
dence from France and Japan", Regional Science and Urban Economics
27:443—474.

[27] Embrechts, P., C. Kluppelberg, T. Mikosch (1997), Modelling Extremal
Events for Insurance and Finance (Springer, New York).

[28] Feuerverger, A. and P. Hall (1999), "Estimating a tail exponent by
modelling departure from a pareto distribution", Annals of Statistics
27:760-781.

[29] Florida, R. (2002) The Rise of the Creative Class: And How Its Trans-
forming Work, Leisure Community and Everyday Life, (Basic Books,
New York).

[30] Fujita, M., and T. Mori (1997), "Structural Stability and Evolution of
Urban Systems", Regional Science and Urban Economics 27:399— 442.

[31] Fujita, M., P. Krugman, and T. Mori, (1999), "On the Evolution of
hierarchical urban systems", European Economic Review 43:209—251.

[32] Fujita, M., P. Krugman and A. J. Venables (1999), The Spatial Econ-
omy (MIT Press, Cambridge, MA).

[33] Fujita, M., and J-F. Thisse (2002), Economics of Agglomeration (Cam-
bridge University Press, Cambridge).

[34] Gabaix, X. (1999a), "Zipf’s Law and the growth of cities", American
Economic Review, Papers and Proceedings 89:129-32.

[35] Gabaix, X. (1999b), "Zipf’s Law for cities: an explanation", Quarterly
Journal of Economics 114: 739—767.

[36] Gabaix, X., P. Gopikrishnan, V. Plerou, H. E. Stanley (2003),"A theory
of power laws in financial fluctuations", Nature 423:267-70.

[37] Gabaix, X. and Y. Ioannides (2003), "The properties of the least squares
estimates of power law exponents", (MIT and Tufts University).

[38] Gibrat, R., (1931), "Les inégalités économiques", Librairie du Recueil
Sirey, Paris, France.

[39] Glaeser, E. L., J. A. Scheinkman, A. Shleifer (1995), "Economic growth
in a cross-section of cities, Journal of Monetary Economics 36:117-143.

44



[40] Grossman, G. M. and E. Helpman (1991), "Quality ladders in the the-
ory of growth", Review of Economic Studies 58:43—61.

[41] Henderson, J. V. (1974), "The types and size of cities", American Eco-
nomic Review, 64: 640—656.

[42] Henderson, J. V. (1988), Urban Development: Theory, Fact and Illusion
(Oxford University Press, Oxford).

[43] Hill, B. M. (1975), "A simple approach to inference about the tail of a
distribution", Annals of Statistics 3:1163—1174.

[44] Hohenberg, Paul M. (2003), “The historical geography of European
cities: an interpretive essay,” this Handbook.

[45] Ioannides, Y. M., and H. G. Overman (2003)," Zipf’s Law for cities:
an empirical examination", Regional Science and Urban Economics 33:
127—137.

[46] Ioannides, Y. M., and H. G. Overman, (2000), "Spatial
evolution of the U.S. urban system", Journal of Economic
Geography, forthcoming (Tufts University, Medford MA)
http://ase.tufts.edu/econ/papers/index.html.

[47] Kesten, H. (1973) "Random difference equations and renewal theory
for products of random matrixes", Acta Mathematica 131: 207-48.

[48] Kim, S.(2000), "Urban development in the United States, 1690-1990",
Southern Economic Journal.

[49] Kim, S. (2002), The reconstruction of the American urban landscape
in the twentieth century Working paper no. w8857 (National Bureau
Economic Research).

[50] Krugman, P. (1991), "Increasing returns and economic geography",
Journal of Political Economy 99: 483—499.

[51] Krugman, P. (1996a), The Self-Organizing Economy (Blackwell Pub-
lishers Oxford, UK and Cambridge, MA).

[52] Krugman, P. (1996b), "Confronting the mystery of urban hierarchy",
Journal of the Japanese and the International Economies 10: 399—418.

45



[53] Leamer, E. and J. Levinsohn (1995), "International trade theory: the
evidence", in: G. Grossman and K. Rogoff, eds., Handbook of Interna-
tional Economics, Vol III (North-Holland, Amsterdam) 1339-1394.

[54] Levy, M. and S. Solomon (1996), "Dynamical explanation for the emer-
gence of power law in a stock market model", International Journal of
Modern Physics C 7:65-72.

[55] Lucas, Jr., R. E. (1988), "On the mechanics of economic development",
Journal of Monetary Economics, 22: 3-42.

[56] Madden, C. H. (1956), "On some indications of stability in the growth
of cities in the United States", Economic Development and Cultural
Change 4: 236—252.

[57] Malcai, O., O. Biham and S. Solomon (1999), "Power-law distributions
and lévy-stable intermittent fluctuations in stochastic systems of Many
Autocatalytic Elements", Physical Review E 60:1299.

[58] Marsili, M. and Y.C. Zhang (1998), "Interacting individuals leading to
Zipf’s Law", Physical Review Letters 80:2741-44.

[59] Moretti, E. (2004), "Human capital externalities and cities", in: Hen-
derson and J. Thisse, eds., Handbook of Urban and Regional Eco-
nomics, vol. 4 (North Holland, Amsterdam).

[60] Mori, T., K. Nishikimi and T. Smith (2003), “Some Empirical Regular-
ities of Spatial Economies: A Relationship between Industrial Location
and City Size”, Kyoto University Mimeo.

[61] Neary, P. (2001) "Of hype and hyperbolas: introducing the new eco-
nomic geography", Journal of Economic Literature 39: 536—561.

[62] Okuyama, K., M. Takayasu and H. Takayasu, "Zipf’s Law in income
distribution of companies", Physica A 269:125—131.

[63] Overman, H. G., and Y. M. Ioannides (2001) "Cross-sectional evolution
of the U.S. city size distribution", Journal of Urban Economics 49: 543—
566.

[64] Quah, D. (1993), "Empirical cross-section dynamics and economic
growth", European Economic Review 37:426-434.

[65] Reed, W. (2001) "The Pareto, Zipf and other power law", Economics
Letters, 74:15-19.

46



[66] Reed, W. (2002) "On the rank-size distribution for human settlements",
J. Regional Science, 41: 1-17

[67] Reed, W. and B. Hughes (2002), "From gene and genera to incomes
and internet files: why power laws are so common in nature", Physical
Review E 66:067103/1-4.

[68] Reiss, R. (1989), Approximate Distributions of Order Statistics,
(Springer Verlag, Berlin).

[69] Romer, P. M. (1990), "Endogenous technological change", Journal of
Political Economy 98: S71-102.

[70] Rosen, K. and M. Resnick (1980), "The size distribution of cities: an
examination of the Pareto Law and primacy", Journal of Urban Eco-
nomics 8:165-186.

[71] Rossi-Hansberg, E., and M. L. J. Wright (2003), "Urban structure and
growth", Working paper (Stanford University).

[72] Simon, H.(1955), "On a class of skew distribution functions”, Bio-
metrika, 44:425-440, and reprinted in: (1957) Models of Man: Social
and Rational. Mathematical Essays on Rational Human Behavior in a
Social Setting, (Wiley and Sons, New York).

[73] Soo, K. T. (2003), "Zipf’s Law for cities: a cross country investigation",
Working paper (Centre for Economic Performance, London School of
Economics).

[74] Sornette, D. (2001) Critical Phenomena in Natural Sciences (Springer
Verlag, Berlin and New York).

[75] Stock, J. (1994) "Unit roots, structural breaks, and trends", ch. 46 in:
R. Engle and D. McFadden, eds., Handbook of Econometrics, volume
IV (Amsterdam: Elsevier) 2740-2843.

[76] Suarez-Villa, L. (1988), "Metropolitan evolution, sectoral economic
change, and the city size distribution", Urban Studies 25:1—20.

[77] Tabuchi, T. (1986), "Existence and stability of city-size distribution in
the gravity and logit models", Environment and Planning A 18:1375—
1389.

47



[78] Van der Woude, A., J. de Vries, A. Hayami (1990), "The hierarchies,
provisioning, and Demographic patterns of cities", in: Urbanization in
History: A Process of Dynamic Interactions ( Oxford and New York,
Oxford University Press)1-19.

[79] Wheaton, W. and H. Shishido (1981), "Urban concentration, agglom-
eration economies and the level of economic development", Economic
Development and Cultural Change 30: 17—30.

[80] Zanette, D. H. and S. C. Manrubia (1997), "Role of Intermittency in
Urban Development: A Model of Large-Scale City Formation", Physical
Review Letters 79:523—6

[81] Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort
(Addison-Wesley, Cambridge, MA).

48



files/eudoraold/attach/ZipfPlotUSA1991.wmf

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5.50 6.50 7.50 8.50 9.50
Log of the Population

Lo
g 

of
 th

e 
R

an
k

Figure 1: Log Size vs Log Rank of the 135 U.S. Metropolitan Areas in 1991
listed in the Statistical Abstract of the United States (1993).
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Log frequency ln g (S) vs log size lnS of U.S. firm sizes (by number of
employees) for 1997. OLS fit gives a slope of 2.059 (s.e.= 0.054;

R2 =0.992). This corresponds to a frequency g (S) ∼ S−2.059. Source:
Axtell (2001).
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Figure 2: Figure 2(a)

Figure 3: Non-parametric estimates of the mean and variance of the
growth rate of a city of size S as a function of the size S. The figure plots
the bootstrapped 95% confidence intervals. Source: Ioannides and Overman
(2003).

[Note to NorthHolland: The two figures below should be displayed next
to each other in one Figure 3]
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