VARIABLE RARE DISASTERS: AN EXACTLY SOLVED
FRAMEWORK FOR TEN PUZZLES IN MACRO-FINANCE*

XAVIER GABAIX

This article incorporates a time-varying severity of disasters into the hy-
pothesis proposed by Rietz (1988) and Barro (2006) that risk premia result from
the possibility of rare large disasters. During a disaster an asset’s fundamental
value falls by a time-varying amount. This in turn generates time-varying
risk premia and, thus, volatile asset prices and return predictability. Using
the recent technique of linearity-generating processes, the model is tractable
and all prices are exactly solved in closed form. In this article’s framework,
the following empirical regularities can be understood quantitatively: (i) equity
premium puzzle; (ii) risk-free rate puzzle; (iii) excess volatility puzzle; (iv)
predictability of aggregate stock market returns with price-dividend ratios; (v)
often greater explanatory power of characteristics than covariances for asset
returns; (vi) upward-sloping nominal yield curve; (vii) predictability of future
bond excess returns and long-term rates via the slope of the yield curve; (viii)
corporate bond spread puzzle; (ix) high price of deep out-of-the-money puts; and
(x) high put prices being followed by high stock returns. The calibration passes
a variance bound test, as normal-times market volatility is consistent with the
wide dispersion of disaster outcomes in the historical record. The model extends
to a setting with many factors and to Epstein-Zin preferences. JEL Codes: E43,
E44, G12.

I. INTRODUCTION

There has been a revival of a hypothesis proposed by Rietz
(1988) that the possibility of rare disasters, such as economic
depressions or wars, is a major determinant of asset risk premia.
Indeed, Barro (2006) has shown that internationally, disasters
have been sufficiently frequent and large to make Rietz’s pro-
posal viable and account for the high risk premium on equities.
Additionally, the recent economic crisis has given disaster risk a
renewed salience.

The rare disaster hypothesis is almost always formulated
with constant severity of disasters. This is useful for thinking
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about averages but cannot account for some key features of asset
markets, such as volatile price-dividend ratios for stocks, volatile
bond risk premia, and return predictability. In this article, I for-
mulate a variable-severity version of the rare disasters hypothesis
and investigate the impact of time-varying disaster severity on the
prices of stocks and bonds as well as on the predictability of their
returns.!

I show that many asset puzzles can be qualitatively under-
stood using this model. I then demonstrate that a parsimonious
calibration allows one to understand the puzzles quantitatively,
provided that real and nominal variables are sufficiently sensitive
to disasters (which I argue is plausible below).

The proposed framework allows for a very tractable model
of stocks and bonds in which all prices are in closed form. In
this setting, the following patterns are not puzzles but emerge
naturally when the present model has just two shocks: a real one
for stocks and a nominal one for bonds.2

I.A. Stock Market: Puzzles about the Aggregates

1. Equity premium puzzle: The standard consumption-based
model with reasonable relative risk aversion (less than 10)
predicts a too low equity premium (Mehra and Prescott
1985).

2. Risk-free rate puzzle: Increasing risk aversion leads to a
too high risk-free rate in the standard model (Weil 1989).3

3. Excess volatility puzzle: Stock prices seem more volatile
than warranted by a model with a constant discount rate
(Shiller 1981).

4. Aggregate return predictability: Future aggregate stock
market returns are partly predicted by price/dividend
(P/D) and similar ratios (Campbell and Shiller 1998).

I.B. Stock Market: Puzzles about the Cross-Section of Stocks

5. Characteristics vs. covariances puzzle: Stock characteris-
tics (e.g., the P/D ratio) often predict future returns as well

1. Alater companion paper, Farhi and Gabaix (2011), studies exchange rates.
A briefintroduction is Gabaix (2008), but almost all results appear here for the first
time.

2. I mention just a few references, but most puzzles have been documented
by numerous authors.

3. For this and the above puzzle, the article simply imports from Rietz (1988),
Longstaff and Piazzesi (2004), and Barro (2006).
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as or better than covariances with risk factors (Daniel and
Titman 1997).

I1.C. Nominal Bond Puzzles

6. Yield curve slope puzzle: The nominal yield curve slopes up
on average. The premium of long-term yields over short-
term yields is too high to be explained by a traditional
RBC model. This is the bond version of the equity premium
puzzle (Campbell 2003).

7. Long-term bond return predictability: A high slope of the
yield curve predicts high excess returns on long-term bonds
(Macaulay 1938; Fama and Bliss 1987; Campbell and
Shiller 1991).

8. Credit spread puzzle: Corporate bond spreads are seem-
ingly higher than warranted by historical default rates
(Almeida and Philippon 2007).

I.D. Options Puzzles

9. Deep out-of-the-money puts have higher prices than
predicted by the Black-Scholes model (Jackwerth and
Rubinstein 1996).

10. When prices of puts on the stock market index are high,
so are its future returns (Bollerslev, Tauchen, and Zhou
2009).

To understand the economics of the model, first consider
bonds. Consistent with the empirical evidence reviewed shortly,
a disaster leads on average to a positive jump in inflation in the
model. This has a greater detrimental impact on long-term bonds,
so they command a high risk premium relative to short-term
bonds. This explains the upward slope of the nominal yield curve.
Next, suppose that the size of the expected jump in inflation itself
varies. Then, the slope of the yield curve will vary and predict
excess bond returns. A high slope will mean-revert and, thus,
predicts a drop in the long rate and high returns on long-term
bonds. This mechanism accounts for many stylized facts on bonds.

The same mechanism is at work for stocks. Suppose that
a disaster reduces the fundamental value of a stock by a
time-varying amount. This yields a time-varying risk premium
that generates a time-varying price-dividend ratio and the “excess
volatility” of stock prices. It also makes stock returns predictable
via measures such as the price-dividend ratio. When agents
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perceive the severity of disasters as low, price-dividend ratios are
high and future returns are low.

The model’s mechanism also impacts disaster-related assets
such as corporate bonds and options. If high-quality corporate
bonds default mostly during disasters, then they should command
a high premium that cannot be accounted for by their behavior
during normal times. The model also generates option prices with
a “volatility smirk,” that is, a high put price (and, thus, implied
volatility) for deep out-of-the-money put options.

After laying out the framework and solving it in closed form,
I calibrate it. The values for disasters are essentially taken from
Barro and Ursua’s (2008) analysis of many countries’ disasters,
defined as drops in GDP or consumption of 10% or more. The
calibration yields results for stocks, bonds, and options consistent
with empirical values. The volatilities of the expectation about
disaster sizes are very hard to measure directly. However, the
calibration generates a steady-state dispersion of anticipations
that is lower than the dispersion of realized values. This is
shown by “dispersion ratio tests” in the spirit of Shiller (1981),
which are passed by the disaster model. By that criterion, the
calibrated values in the model appear reasonable. Importantly,
they generate a series of fine quantitative predictions. Hence, the
model calibrates quite well.

So far, asset price movements come from changes in how
badly the asset will perform if a disaster happens (i.e., movements
in the asset-specific recovery). The power utility model allows us
to think about that quantitatively. However, as found by previous
authors (see, for instance, Barro 2009), the power utility model
has one important anomalous feature: when the disaster prob-
ability goes up, even though risk premia increase, the safe rate
decreases so much that asset prices tend to go up. To counteract
the strong movement in the short rate, it is useful to have an
Epstein-Zin model, which basically weakens this movement, as
people’s savings behavior is decoupled from their risk aversion.
I extend the model to Epstein-Zin preferences only later in the
article, as the machinery is substantially more complex. For
movements in asset-specific fears, the Epstein-Zin model leads
to very similar predictions. However, it makes arguably better
predictions for movements in disaster probability. Hence, I recom-
mend the basic power utility model for many asset pricing issues,
such as the volatility of stocks, bonds, and the predictability of
their returns, but to study the impact of movements in disaster
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probability, I recommend paying the somewhat higher cost of
using the Epstein-Zin model.

Throughout this article, I use the class of “linearity-
generating” (LG) processes (Gabaix 2009), which was motivated
by the present article. That class keeps all expressions in closed
form. The entire article could be rewritten with other processes
(e.g., affine-yield models) albeit with considerably more compli-
cated algebra and the need to resort to numerical solutions. The
LG class and the affine class yield the same expression to a first-
order approximation. The use of the LG processes should thus be
viewed as a mere analytical convenience.

Relation to the Literature. A few papers address the issue
of time-varying disasters. Longstaff and Piazzesi (2004) consider
an economy with constant severity of disasters, but in which stock
dividends are a variable, mean-reverting share of consumption.
They find a high equity premium and highly volatile stock re-
turns. Veronesi (2004) considers a model in which investors learn
about a world economy that follows a Markov chain through two
possible economic states, one of which may be a disaster state.
His model yields GARCH effects and apparent “overreaction.”
Weitzman (2007) provides a Bayesian view that the main risk
is model uncertainty, as the true volatility of consumption may
be much higher than the sample volatility.* Unlike the present
work, all of those papers neither consider bonds nor study return
predictability.

After the present paper was circulated, Wachter (2009) pro-
posed a different model, based on Epstein-Zin utilities, where
valuation movements come solely from the stochastic probability
of disasters and which analyzes stocks and the short-term rate,
but not nominal bonds. The present article, in contrast, allows
the stochasticity to come both from movements in the probability
of disasters and from the expected recovery rate of various assets,
and can work with power utility as well as Epstein-Zin utility.
Importantly, it is conceived to easily handle several assets, such
as nominal bonds and stocks (as in this article), stocks with
different timing of cash flows (Binsbergen, Brandt, and Koijen

4. Another related literature explores the idea that fear of medium-frequency
(e.g., yearly) market crashes (rather than macroeconomic disasters) is impor-
tant for risk premia. Such high-frequency extreme events could be due to the
trades of large funds trading under limited liquidity (Gabaix et al. 2003, 2006;
Brunnermeier, Nagel, and Pedersen 2008).
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forthcoming), particular corporate sectors (Ghandi and Lustig
2011), and exchange rates (Farhi and Gabaix 2011). This choice
is motivated by the empirical evidence which shows that several
factors are needed to explain risk premia (Fama and French
1993) across stocks and bonds. It is useful to have asset-specific
shocks, as single-factor models generate perfect correlations of
risk premia across assets, while empirically valuation ratios are
not highly correlated across assets (see Section IV.A).

Within the class of rational, representative-agent frame-
works that deliver time-varying risk premia, the variable rare
disasters model may be a third workable framework, along with
the external-habit model of Campbell and Cochrane (CC 1999)
and the long-run risk model of Bansal and Yaron (BY 2004). These
have proven to be two very useful and influential models. Still,
the reader might ask: why do we need another model of time-
varying risk premia? The variable rare disasters framework has
several useful features, besides the obvious feature that disaster
risk might be substantially crucial for financial prices.

First, as emphasized by Barro (2006), the model uses the
traditional isoelastic expected utility framework like the majority
of models in macroeconomic theory. CC and BY use more complex
utility functions with external habit and Epstein and Zin (1989)
utility, which are harder to embed in macroeconomic models. In
Gabaix (2011) (see also Gourio 2011), I show how the present
model (in an endowment economy) can be directly mapped into a
production economy with traditional real business cycle features.
Hence, the rare-disasters idea brings us closer to the long-sought
unification of macroeconomics and finance. Second, the model
makes different predictions for the behavior of “tail-sensitive”
assets, such as deep out-of-the-money options and high-yield
corporate bonds—broadly speaking, the model naturally predicts
that such assets command very high premia. Third, the model is
particularly tractable. Stock and bond prices have linear closed
forms. As a result, asset prices and premia can be derived and
analytically understood without recourse to simulations. Fourth,
the model easily accounts for some facts that are hard to generate
in the CC and BY models. In my proposed model, “characteristics”
(such as P/D ratios) predict future stock returns better than
market covariances, which is virtually impossible to generate in
the CC and BY frameworks. The model also generates a low cor-
relation between consumption growth and stock market returns,
which is also hard to achieve in the CC and BY models.
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There is a well-developed literature that studies jumps par-
ticularly with option pricing in mind. Using options, Liu, Pan,
and Wang (2005) calibrate models with constant risk premia and
uncertainty aversion, demonstrating the empirical relevance of
rare events in asset pricing. Santa-Clara and Yan (2010) also
use options to calibrate a model with frequent jumps. Typically,
the jumps in these papers happen every few days or months and
affect consumption by moderate amounts, whereas the jumps in
the rare-disasters literature happen perhaps once every 50 years
and are larger. The authors also do not study the impact of jumps
on bonds and return predictability.

Section II presents the macroeconomic environment and
the cash-flow processes for stocks and bonds. Section III derives
equilibrium prices. Section IV proposes a calibration and reports
the model’s implications for stocks, options, and bonds. Section V
discusses various extensions of the model, in particular to an
Epstein-Zin economy. The Appendix contains notations and
some derivations. An Online Appendix contains supplementary
information and extensions.

II. MODEL SETUP

II.A. Macroeconomic Environment

The environment follows Rietz (1988) and Barro (2006), and
adds a stochastic probability and severity of dlsasters There is
a representative agent with utility E, [Et 0e f’tclﬂ ], where
~v > 0 is the coefficient of relative risk aversion and p > 0 is the
rate of time preference. She receives a consumption endowment
C;. At each period ¢ + 1, a disaster may happen with a probability
p:. If a disaster does not happen, %1 = e8¢, where g¢ is the
normal-time growth rate of the economy. If a disaster happens,
CC‘“ = e%¢B,,1, where B;,; > 0 is a random variable.? For instance,

if B;+1 = 0.8, consumption falls by 20%. To sum up:®

(D

Ci1 o2 5 1 if there is no disaster at ¢ + 1
[ B,,; ifthereis adisasterat¢+1

5. Typically, extra i.i.d. noise is added, but given that it never materially
affects asset prices, it is omitted here. It could be added without difficulty. Also,
countercyclicality of risk premia could easily be added to the model without
hurting its tractability.

6. The consumption drop is permanent. One could add mean-reversion after
a disaster.
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The pricing kernel is the marginal utility of consumption M, =
e P'C; ", and follows:

My s { 1 if there is no disaster at ¢ + 1

K

@) M, ¢ B,.] ifthereis a disaster at ¢+ 1

where ¢ = p + g, the “Ramsey” discount rate, is the risk-free rate
in an economy that would have a zero probability of disasters.
The price at ¢ of an asset yielding a stream of dividends (Dy),-,

B[, D] :

is: P, = =zt

I1.B. Setup for Stocks

I consider a typical stock i which is a claim on a stream of
dividends (Dj;);-0:"

D1

it

(3) =ef? (1+60,,)

2

" 1 if there is no disaster at ¢t + 1
F;;1 ifthereis a disaster at ¢ +1

where P, > —1 is a mean-zero shock that is independent of
the disaster event. It matters only for the calibration of dividend
volatility. In normal times, D;; grows at an expected rate of g;p.
But if there is a disaster, the dividend of the asset is partially
wiped out following Longstaff and Piazzesi (2004) and Barro
(2006): the dividend is multiplied by a random variable F;;,; > 0,
which is the recovery rate of the dividend. In other terms, for this
individual asset i, there can be a partial “default” in a disaster,
without any necessary effect on aggregate consumption and the
pricing kernel. When Fj;,; = 0, the asset is completely destroyed
or expropriated. When F;,,; = 1, there is no dividend loss.

To model the time variation in the asset’s recovery rate,
I introduce the notion of “resilience” H;; of asset i,

(4) Hy =pEP B, {Fis1 — 1],

where EP (resp. EMP) is the expected value conditionally on a
disaster happening at ¢ + 1 (resp. no disaster).® In (4), p, and B,

7. There can be many stocks. The aggregate stock market is a priori not
aggregate consumption, because the whole economy is not securitized in the stock
market. Indeed, stock dividends are more volatile than aggregate consumption.

8. Later in the paper, when there is no ambiguity (e.g., for E [B;]] ), T will

drop the D.
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are economy-wide variables, whereas the resilience and recovery
rate F; ;.1 are stock-specific though typically correlated with the
rest of the economy.

When the asset is expected to do well in a disaster (high
F;;.1), H;; is high—investors are optimistic about the asset. In the
cross-section, an asset with higher resilience H;; is safer than one
with low resilience. As is intuitive, assets with high resilience will
command low risk premia.

I specify the dynamics of H;; directly rather than through the
individual components p;, B;;1, and Fi,t+1/.\I split resilience H;; into
a constant part H;, and a variable part H;;:

H,;=H,; +H;,

and I postulate the following linearity-generating (Gabaix 2009)
process for the variable part Hj;:
~ 1+H;

(5) Hi,t+1 1 +1;IL: 7¢HHzt + €{It+1>
12

where .l 1 =0and ell |, <P, and the disaster event are uncor-
related variables.
To interpret (5), observe that to the leading order, it implies

that Hl a1 e ¢HHt+5 1 (as H;; hovers around H;,, IfFII’* is close

1,t+12

to 1): Hlt mean-reverts to 0 at a speed ¢y, but has innovations at
every period. To the leading order, the process is an autoregressive
AR(1) process. However, this is a “twisted” AR(1); the “twist” term
11’_'5; makes prices linear in the factors and independent of the
functlonal form of the noise.”

Economically, H;; does not jump if there is a disaster. How-
ever, one can imagine, for instance, that resilience falls in a
disaster. Such a feature could easily be added in the form of an
extra negative jump in (5) in case of a disaster. Everything would
go through qualitatively, though in addition, equities would be
even riskier. However, to keep the model parsimonious, I shrink
from postulating that extra feature.

I turn to bonds.

9. The noise €Z; can be heteroskedastic, but its variance need not be spelled
out, as_it does not enter into the prices. However, the process needs to sat-
isfy (151% > e~%H — 1 for it to be stable, and also ﬁit > —p — H;, to
ensure F;; > 0. Hence, the variance needs to vanish in a right neighborhood
max ((e~%# — 1) (1+H,.),—p — H;.) (see Gabaix 2009).
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I1.C. Setup for Bonds

The two most salient facts on nominal bonds are arguably the
following. First, the nominal yield curve slopes up on average,
that is, long-term rates are higher than short-term rates (e.g.,
Campbell 2003, Table VI). Second, there are stochastic bond
risk premia. The risk premium on long-term bonds increases
with the difference between the long-term rate and the short-
term rate (Fama and Bliss 1987; Campbell and Shiller 1991;
Cochrane and Piazzesi 2005). These facts are considered to be
puzzles because they are not derived from standard macroeco-
nomic models, which generate risk premia that are too small
(Mehra and Prescott 1985).

I propose the following explanation. When a disaster occurs,
inflation increases (on average). Since very short-term bills are es-
sentially immune to inflation risk and long-term bonds lose value
when inflation is higher, long-term bonds are riskier, so they yield
a higher risk premium. Thus, the yield curve slopes up. Moreover,
the magnitude of the surge in inflation is time-varying, which
generates a time-varying bond premium. If that bond premium
is mean-reverting, it generates the Fama-Bliss puzzle. Note that
this explanation does not hinge on the specifics of the disaster
mechanism. The advantage of the disaster framework is that it
allows for formalizing and quantifying the idea in a simple way.

Several authors have models where inflation is higher in bad
times, which makes the yield curve slope up. An earlier unification
of several puzzles is provided by Wachter (2006), who studies a
Campbell and Cochrane (1999) model with extra nominal shocks,
and concludes that it explains an upward-sloping yield curve and
the Campbell and Shiller (1991) findings. The Brandt and Wang
(2003) study is also a Campbell and Cochrane (1999) model, but
one where risk aversion depends directly on inflation. Bansal
and Shaliastovich (2009) build on Bansal and Yaron (2004). In
Piazzesi and Schneider (2007), inflation also rises in bad times,
although in a very different model. Finally, Dai and Singleton
(2002) and Duffee (2002) present econometric frameworks that
deliver the Fama-Bliss and Campbell-Shiller results.

I decompose trend inflation I; as I; = I.+ I;, where I, is its
constant part and I; is its variable part. The variable part of
inflation follows the process:

—1,

— I T I
7 <e ¢IIt + 1{Disaster at t+1}Jt) + &1
— 14t

=~ 1
(6) It+1 = 1
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where ¢/, ; has mean 0 and is uncorrelated with the realization of
a disaster. This equation means, first, that if there is no disaster,
Eilpq= 111{7, e %[, ~ e~ %], thatis, inflation follows the LG-twisted
autoregressive process (Gabaix 2009). Inflation mean-reverts at a
rate ¢;, with the LG twist 11:IIZ to ensure tractability. In addition,
in case of a disaster, inflation jumps by an amount ¢J;, decomposed
into J; = J, + J;, where oJ, is the baseline jump in inflation and J;
is the mean-reverting deviation of the jump size from baseline.
This jump in inflation makes long-term bonds particularly risky.
It follows a twisted autoregressive process and, for simplicity, does

not jump during crises:

-~ 1-1.
(7 Jt+1: 1

e_(b’]jt + E;f]+1’

— 1

where ¢/,; has mean 0. €/,; is uncorrelated with disasters but can
be correlated with innovations in I;.

A few more notations are useful. I define Hg = p:E;
[Fs;1B;,] — 1], where Fg,,; is one minus the default rate on
bonds (later this will be useful to differentiate government from
corporate bonds). For simplicity, I assume that Hg is a constant:
there will be much economics coming solely from the variations of
I;. 1 call m; the variable part of the bond risk premium:

Py [B;'{Fﬂs,nﬂ ,7

(8) T = 1+H$ te

The second notation is only useful when the typical jump in
inflation ¢/, is not zero, and the reader is invited to skip it in the
first reading. I parametrize J, in terms of a variable xk < %,
called the inflation disaster risk premium:10

pt]Et [B;’{F&Hl] J.

(9) 1+H$

=(1-L)k(1—e ¥ —k),

that is, in the continuous time limit: p,E; [B,1Fs 1] J.=k (¢1 — k).
A high x means a high central jump in inflation if there is
a disaster. For most of the paper it is enough to think that
J.=k=0.

10. Calculating bond prices in a linearity-generating process sometimes in-
volves calculating the eigenvalues of its generator. I presolve by parameterizing
J« by k. The upper bound on « implicitly assumes that </, is not too large.
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I1.D. Expected Returns

I conclude the presentation of the economy by stating a gen-
eral lemma about the expected returns.

LEMMA 1. (Expected returns) Consider an asset ¢ and call r; ;1
the asset’s return. Then, the expected return of the asset at ¢,
conditional on no disasters, is:

1 _
A0 rh= g (€ - pE? (B (14 rie)]) — 1.

In the limit of small time intervals,

(11) r4, =46 —ptIEtD [B;A{ (A +7ip) — 1] =rf —ptIEtD [B;’Iri,t+1] ,
where r¢ is the real risk-free rate in the economy:

(12) rr=0—pEP B} —1].

The unconditional expected return is (1 — p;) ¢, + pt]E? [ig+1]-

Proof. It comes from the Euler equation, 1=E; [(1 + 7 .1) M1 /M,
that is:

1=e°{(1—pe)- (1+7%) +p - EP [BL] (1 +7i001)]}- u

No disaster term Disaster term

Equation (10) indicates that only the behavior in disasters
(the r;;,1 term) creates a risk premium. It is equal to the risk-
adjusted (by B,,]) expected capital loss of the asset if there is a
disaster.

The unconditional expected return on the asset (i.e., without
conditioning on no disasters) in the continuous time limit is 7§, —
PEP [ri441]. Barro (2006) observes that the unconditional expected
return and the expected return conditional on no disasters are
very close. The possibility of disaster affects primarily the risk
premium, and much less the expected loss.

III. ASSET PRICES AND RETURNS

II1.A. Stocks

THEOREM 1. (Stock prices) Let A;. =In (1 + H;,) and define §; =9 —
g0 — h;, which will be called the stock’s effective discount
rate. The price of stock i is:
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D;; e_éi_h"*ﬁit
(13) Pit_lfe*‘si <1+165i¢H .
In the limit of short time periods, the price is:
D; H;
14 Py,=—|1 .
(14 'y ( +5i+¢H)

The next proposition links resilience H; and the equity
premium.

PROPOSITION 1. (Expected stock returns) The expected return on
stock i, conditional on no disasters, is:

(15) 7% =06 — Hy.

The equity premium (conditional on no disasters) is r§, — ry =
piE: [Bi] (1 — Fj41)], where ry is the risk-free rate derived in
(12). To obtain the unconditional values of these two quanti-
ties, subtract p;EP [1 — F; 11].

Proof. If a disaster occurs, dividends are multiplied by F;;. As
ﬁit does not change, 1 + r;; = F;. So returns are, by (11), 7§, = 4§ —
Pt (Bt [BiiFipa] — 1) =6 — Hyy. u

As expected, more resilient stocks (assets that do better in a
disaster) have a lower ex ante risk premium (a higher H;;). When
resilience is constant (H;; = 0), equation (14) is Barro (2006)’s
expression. The P/D ratio is increasing in the stock’s resilience A;,.

The key advance in Theorem 1 is that it derives the stock
price with a stochastic resilience H;;. More resilient stocks (high
H;;) have a lower equity premium and a higher valuation. Since
resilience Hj; is volatile, so are price-dividend ratios, in a way that
is potentially independent of innovations to dividends. Hence,
the model generates a time-varying equity premium and there
is “excess volatility,” that is, volatility of the stocks unrelated to
(normal-times) cash-flow news. As the P/D ratio is stationary, it
mean-reverts. Thus, the model generates predictability in stock
prices. Stocks with a high P/D ratio will have low returns, and
stocks with a low P/D ratio will have high returns. Section
IV.B quantifies this predictability. Proposition 11 in the Online
Appendix extends equation (14) to a world that has variable
expected growth rates of cash flows in addition to variable risk
premia.
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II1.B. Nominal Government Bonds

THEOREM 2. (Bond prices) In the limit of small time intervals, the
nominal short-term rate is r; = § — Hg + I;, and the price of a
nominal zero-coupon bond of maturity 7T is:

1—e ¥l

(16) Z$t (T) = e_(‘s_H$+I**)T (1 .
Yr

(It _I**) _KTﬂ—t> ’

i I e

Kr= Y1 B Pg ,
r by — Y1
where I; is inflation, 7; is the bond risk premium, I, = I, + &,
U1 = ¢ — 2k, and vy = ¢5 — k. The discrete-time expression
is in (42).

Theorem 2 gives a closed-form expression for bond prices.
As expected, bond prices decrease with inflation and with the
bond risk premium. Indeed, expressions L_IWT and Kr are
non-negative and increasing in bond maturity 7. The term
I_‘i/}#lt simply expresses that inflation depresses nominal bond
prices and mean-reverts at a (risk-neutral) rate ¢;. The bond risk
premium 7; reduces the price all bonds of positive maturity, but
not the short-term rate.

When s > 0 (resp. « < 0) inflation typically increases (resp.
decreases) during disasters. While ¢; (resp. ¢;) is the speed of
mean reversion of inflation (resp. of the bond risk premium, which
is proportional to J;) under the physical probability, v (resp. 1)
is the speed of mean reversion of inflation (resp. of the bond risk
premium) under the risk-neutral probability.

I calculate expected bond returns, bond forward rates, and
yields, again in the limit of small time intervals.

PROPOSITION 2. (Expected bond returns) Conditional on no dis-
asters, the short-term real return on a short-term bill is
¢, (0) = 6 — Hg, and the real excess return on the bond of
maturity T is:

Loe U (s (4 + 1) + )

1- = (1, — L.) + Kpmy

a7 rg(T) —rg (0) =

(18) =T (k (1 + &) + ) + O (T?) + O (my, I, k)*

(19) = Tp.E, [B;{Fs 1] I + O (T?) + O (m, I, k)° .
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Proof. After a disaster in the next time interval of size dt — 0,
inflation jumps by dI; = J; and 7; by 0. By (16), the bond price
jumps by dZs; (T) = Zssear (T — dt) — Zg, (T) = —e~ O Hstle)T

w,T

=—J;+0 (\/7 ) Lemma 1 gives the risk premia,

—e— T
< ° —ydZs,; (T) = o1 o P [Bt+1F$t+1Jt}
7% ()7 (0)="nd [B 7 @) |71

and we conclude using p/E; [B 1Fss1di] = w(¢r— k) + m =
k(Y1 +K) + m. [ ]

Equation (19) shows the first-order value of the bond risk
premium for bonds of maturity T'. It is the maturity T of the bond
multiplied by an inflation premium, p;E; [B,,]Fs.1] J;. The infla-
tion premium is equal to the risk-neutral probability of disasters
(adjusting for the recovery rate), p,E; [B;,]Fs.1], times the jump
in expected inflation if there is a disaster, J/;. We note that a lower
recovery rate reduces risk premia, a general feature that we will
explore in greater detail in Section ITI.D

LEMMA 2. (Bond yields and forward rates) The forward rate,
£.(T) = —9InZg, (T) 0T, is:
_ e~V _o=%gT
e (I — L) + 55—
1- 1= (1, — I.) — Krmy
e~ T _ o—vsT

g — Y1

Tt

(20) f;(T)=6—Hg+1I,, +

(21) =0 —Hg+I,.+e VT (I, - I.,)+ T

+O(I — 1., m)°.

The bond yield is y; (T') = —% with Zg, (T) given by (16),
and its Taylor expansion is given in (43)—(44).

The forward rate increases with inflation and the bond risk
premia. The coefficient of inflation decays with the speed of mean
reversion of inflation, 17, under the “risk-neutral” probability. The

coefficient of the bond premium, =, is % and, thus, has
value 0 at both very short and very long maturities and a positive
hump shape in between. Very short-term bills, being safe, do not
command a risk premium, and long-term forward rates are also
essentially constant (Dybvig, Ingersoll, and Ross 1996). Therefore,
the time-varying risk premium only affects intermediate maturi-

ties of forwards.

e "0 (I, — L) + Kpm,|
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III.C. Options

Let us next study options, which offer a potential way to
measure disasters. The price of a European one-period put on
a stock i with strike K expressed as a ratio to the initial price
is: V; = E; [M“l max (0 K — g*l)} Recall that Theorem 1 yields

% =a + bH,, for two constants a and b. Hence, END [%}%} = ghit

1 12

e~ PHE.

e—h" 1,
a+bH,

with p;; =gip + ln . Therefore, I parameterize the noise

according to:11

2

(22) Pist _ ey, { eout1=°/2  if there is no disaster at ¢ + 1

it Fi;a if there is a disaster at ¢ + 1
where u;; is a standard Gaussian variable and Fj;,; is as
already given. This parameterization ensures that the option
price has a closed form, and at the same time conforms to the
essence of the underlying economics. Economically, I assume that
in a disaster most of the option value comes from the disaster,
not from “normal-times” volatility. In normal times, returns are
log-normal. However, if there is a disaster, stochasticity comes
entirely from the disaster (there is no Gaussian u;,; noise, though
adding some would have little impact). The structure takes ad-
vantage of the flexibility in the modeling of the noise in H;; and
D;;. Rather than modeling them separately, I assume that their
aggregate yields exactly a log-normal noise (the Online Appendix
provides a way to ensure that this is possible). At the same time,
(22) is consistent with the processes and prices in the remainder
of the article.

PROPOSITION 3. (Put price) The value of a put with strike K (the
fraction of the initial price at which the put is in the money)
and a one-period maturity is V;; = Vi];’D + Vilt’ with Vf;’D and
VLLZ corresponding to the events with no disasters and with
disasters, respectively:

23)  VpP=e **u(1—p,) VEy (Ke ", 0)

(24) VD =e *ip,E, [B,,] max (0,Ke " — F;..1)],

12

11. Recall that with LG processes many parts of the variance need not be
specified to calculate stock and bond prices. So, when calculating options, one is
free to choose a convenient and plausible specification of the noise.
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where V55 (K, o) is the Black-Scholes value of a put with
strike K, volatility o, initial price 1, maturity 1, and interest
rate 0.

III.D. Corporate Spread, Government Debt, and Inflation Risk

Consider the corporate spread, which is the difference be-
tween the yield on the corporate bonds issued by the safest
corporations (such as AAA firms) and government bonds. The
“corporate spread puzzle” is that the spread is too high com-
pared to the historical rate of default (Almeida and Philippon
2007). It has a very natural explanation under the disaster
view. It is mostly during disasters (i.e., in bad states of the
world) that very safe corporations will default. Hence, the risk
premia on default risk will be very high. To explore this effect
quantitatively, I consider the case of constant severity of dis-
asters. The following proposition summarizes the effects, which
are analyzed quantitatively in the next section. It deals with
one-period bonds; the economics would be similar for long-term
bonds.

PROPOSITION 4. (Corporate bond spread, disasters, and expected
inflation) Consider a corporation i; call F; the recovery rate of
its bond!2 and ); the default rate conditional on no disaster,
then the yield on debt is y; = § + \; — pEP [B~"FsF;]. So,
denoting by y¢s the yield on government bonds, the corporate
spread is:

(25) ¥i —yc =X +pEP [BFs (1 - F)].

In particular, when inflation is expected to be high during dis-
asters (i.e., Fg is low, perhaps because the current Debt/GDP
ratio is high), then (i) the spread |y; — y;| between two nominal
assets i and j is low, and (ii) the yield on nominal assets
is high.

Proof. The Euler equation is 1 =e % (1+y;) [(1-p) (1—X)+
pEP [B~7Fs..1F;]], and the proposition follows from taking the
limit of small time intervals. [ |

12. In the assumptions of Chen, Collin-Dufresne, and Goldstein (2009) and
Cremers, Driessen, and Maenhout (2008), the loss rate conditional on a default,
X4, is the same across firms, but only their probability of defaulting in a disaster
state, p;, varies. Then F; =1 — p; A%, which is a particular case of this article.
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IV. A QUANTITATIVE INVESTIGATION

IV.A. Calibrated Parameters

I propose the following calibration of the model’s parameters.
I assume that time variation of disaster risk enters through the
recovery rate F;, for stocks and through the potential jump in infla-
tion J; for bonds. I take the limit of small time intervals and report
annualized units. The calibration’s inputs are summarized in
Table I, while the results from the calibration are in Tables II-VII
and Figure I. Section V.C will show that in the calibration realized
disaster risk varies enough compared to the volatility of resilience,
so that the calibrated numbers are reasonable by that criterion.

Macroeconomy. In normal times, consumption grows at rate
gc = 2.5%. To keep things parsimonious, the probability and
conditional severity of macroeconomic disasters are taken to be
constant over time; I discuss this assumption later and relax it
in Section V.A. The disaster probability is p = 3.63%, Barro and
Ursua (2008)’s estimate. I take v = 4, for which Barro and Ursua
(2008)’s evaluation of the probability distribution of B;; gives
E[B~"] = 5.29, so that the utillity-weighted mean recovery rate
of consumption is B =E [B~"] * = 0.66. Because of risk aversion,
bad events receive a high weight: the modal loss is less severe.
There is an active literature centering around the basic disaster
parameters, namely, Barro and Ursua (2008) and Nakamura et al.

TABLE I
VARIABLES USED IN THE CALIBRATION

Variables Values

Time preference, risk aversion p=6.57%,v=4

Growth rate of consumption g=gip=25%
and dividends

Volatility of dividends op=11%

Probability of disaster, p=3.63%,B=0.66
recovery rate of C after disaster

Stocks’ recovery rate: F;, =B,op = 10%, ¢ = 13%

typical value, volatility, speed of mean
reversion

Inflation: 1. =3.7%,01 =1.5%, ¢; = 18%
typical value, volatility, speed of mean
reversion

Jump in inflation: «=2.1%,05=156%, ¢5 = 92%
typical value, volatility, speed of mean
reversion
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TABLE II
SOME VARIABLES GENERATED BY THE CALIBRATION

Variables Values
Ramsey discount rate 6=16.6%
Risk-adjusted probability of disaster pEB,]1=19.2%
Stocks: effective discount rate 6; =5.0%,
Stock resilience: typical value, H;, =9.0%, cg =1.9%

volatility
Stocks: equity premium, conditional 6.5%, 5.3%

on no disasters, uncond.
Real short-term rate 1.0%
Resilience of one nominal dollar Hg =16.0%
5-year nominal slope y; (5) — y: (1): 0.57%, 0.92%

mean and volatility
Long-run — short-run yield: Kk =2.6%

typical value
Inflation parameters Ly =6.3%, 1 = 13%, vy = 90%
Bond risk premium: volatility or =2.9%

Notes. The main other objects generated by the model are in Tables III-VII and Figure 1.

(2011) who find estimates consistent with the initial Barro (2006)
numbers.

The key number is the risk-neutral probability of disasters,
pE[B~7] = 19.2%. This high risk-neutral probability allows the
model to calibrate a host of high risk premia. Following Barro and
Ursua, I set the rate of time preference to match a risk-free rate
of 1%, so in virtue of (12), the rate of time preference is p = 6.6%.

Stocks. 1 use a growth rate of dividends g;p = g¢, consistent
with the international evidence (Campbell 2003, Table IIT). The
volatility of the dividend is op=11%, as in Campbell and Cochrane
(1999). The speed of mean reversion of resilience ¢y is the speed
of mean reversion of the P/D ratio. It has been carefully exam-
ined in two recent studies based on U.S. data. Lettau and van
Nieuwerburgh (2008) find ¢z =9.4%. However, they find ¢y =26%
when allowing for a structural break in the time series, which they
suggest is warranted. Cochrane (2008) finds ¢y = 6.1% (std.err.
4.7%). 1 take the mean of those three estimates, which leads to
¢g = 13%. Given these ingredients, a typical volatility oy = 1.9%
helps match the volatility of stock returns.13

13. The Online Appendix details a specific volatility process for H;;, which
satisfies the requirement that volatility vanishes at a lower bound, see note 9.
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To specify the volatility of the recovery rate F;;, I specify that
it has a baseline value F;, =B and support F;; € [Fiuin, Frax] =[0, 1].
That is, if there is a disaster, dividends can do anything from
losing all their value to losing no value at all. The process for H;;
then implies that the corresponding average volatility for Fj;, the
expected recovery rate of stocks in a disaster, is 10%. This may
be considered a high volatility. Economically, it reflects the fact
that it seems easy for stock market investors to alternatively feel
extreme pessimism and optimism (e.g., during the large turning
points around 1980, 2001, and 2008). In any case, this perception
of the risk for Fj; is not directly observable, so the calibration
does not appear to contradict any known fact about observable
quantities.

The disaster model implies a high covariance of stock prices
with consumption during disasters. Is that true empirically? First,
it is clear that we need multicountry data, as, for instance, a
purely U.S.-based sample would not represent the whole distri-
bution of outcomes because it would contain too few disasters.
Using such multicountry data, Ghosh and Julliard (2008) find
a low importance of disasters. On the other hand, Barro (2009)
report a high covariance between consumption and stock returns
during a disaster, which warrants the basic disaster model. The
methodological debate, which involves missing observations—for
instance due to closed stock markets, price controls, the mea-
surement of consumption, and the very definition of disasters—is
likely to continue for years to come. My reading of Barro (2009)
is that the covariance between consumption and stock returns,
once we include disaster returns, is large enough to vindicate the
disaster model.

Inflation and Nominal Bonds. For simplicity and parsimony,
I consider the case when inflation does not burst during disasters,
Fg;,1 = 1. Bond and inflation data come from CRSP. Bond data
are monthly prices of zero-coupon bonds with maturities of one to
five years, from June 1952 through September 2007. In the same
time sample, I estimate the inflation process as follows. First, I
linearize the LG process for inflation: I;,; — I, = e~ %4 Iy - L) +
el.. Next, it is well known that inflation contains a substantial
high-frequency and transitory component, which is in part due

Fortunately, many moments (e.g., stock prices) do not depend on the detalis of
that process.
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to measurement error. The model accommodates this. Call Tt =
I; + n; the measured inflation (which can be thought of as trend
inflation plus mean-zero noise), while I; is the trend inflation.
I estimate inflation using the Kalman filter, with I;,; =C; + Col, +
el for the trend inflation and I; =1, +7, for the noisy measurement
of inflation. Estimation is at the quarterly frequency, and yields
Co =0.954 (std.err. 0.020), that is, the speed of mean reversion of
inflation is ¢; = 0.18 in annualized values. Also, the annualized
volatility of innovations in trend inflation is o; = 1.5%. I have also
checked that estimating the process for I; on the nominal short
rate yields substantially the same conclusion. Finally, I set I, at
the mean inflation, 3.7% (note that the slight nonlinearity in the
LG term process makes I, differ from the mean of I; by only a
trivial amount).

To assess the process for J;, I consider the five-year slope,
st = y:(5) — y:(1). Equation (44) shows that, conditional on no
disasters, it follows (up to second-order terms) that s;;1 = a +
e~ %4, + bl + £,,, where At is the length of “a period” (e.g.,
a quarter means At = %). I estimate this process at a quarterly
frequency. The coefficient on s; is 0.78 (std.err. 0.043). This yields
¢ = 0.92. The standard deviation of innovations to the slope is
0.92%.

To calibrate «, I consider the baseline value of the yield, which
1—e— T

from (16) is y; (T') =y; (0) + k +1In 1+N with ¢y = ¢y — 2k, and I
compute the value of « such that it ensures y; (5) —y; (1) =0.0057,
the empirical mean of the five-year slope. This gives k = 2.6%. By
(9), this implies that in a disaster the expected jump in inflation
isd, =2.1%.

As a comparison, Barro and Ursua (2008) find a median
increase of inflation during disasters of 2.4%. They find a median
inflation rate of 6.6% during disasters, compared to 4.2% for
long samples taken together. This is heartening, but one must
keep in mind that Barro and Ursua (2008) find that the average
increase in inflation during disasters is equal to 109%—because of
hyperinflations, inflation is very skewed.14 I conclude that a jump

14. There is a difference between wars and financial disasters: wars very rarely
lead to deflations, but financial disasters often do, especially during the Great
Depression. The inflation jump is a bit higher during wars than financial disasters,
by about 1% or 4%, depending on whether one takes the median or the mean
of winsorized values. It is useful to note that financial disasters in non-OECD
countries are typically inflationary.
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in inflation of 2.1% is consistent with the historical experience. In-
vestors do not know ex ante if disasters will bring about inflation
or deflation; on average, however, they expect more inflation.

As there is considerable variation in the actual jump in
inflation, there is much room for variations in the perceived jump
in inflation, J; = J, + Jt—somethlng that the calibration will
indeed deliver. We saw that empirically the standard deviation
of the innovations to the spread is 0.92% (in annualized values),
whereas in the model it is (K5 — K1) 0. Hence, we calibrate o, =
2.9%. As a result, the standard deviation of the five-year spread
is "o 8)%= = 0.68%, while in the data it is 0.79%. Therefore, the
model is reasonable in terms of observables.

An important nonobservable is the perceived jump in infla-
tion during a disaster, oJ;. Its Volatility is og= "7" =15.4%, and
= 11% ThlS is arguably
high, although it does not violate the constraint that the actual
jump in inflation should be more dispersed than its expectation
(see Section V.C). One explanation is that the yield spread has
some high-frequency transitory variation that leads to a very
high measurement of ¢;; with a lower value one would obtain
a considerably lower value of o;. Another interpretation is that
the demand for bonds shifts at a high frequency (perhaps for
liquidity reasons). While this is captured by the model as a change
in perceived inflation risk, it could be linked to other factors. In
any case, we shall see that the model does well in a series of
dimensions explored in Section IV.C.

Fixed Versus Variable p; The baseline calibration uses a
fixed p;. Let us see how things would change with a variable p,.
If only p; varied, then the correlation between stock and bond
risk premia would be perfect. Empirically, we shall see that the
correlation is much closer to 0, which suggests that asset-class-
specific factors drive the bulk of stock versus bond returns, rather
than a common factor. This suggests that a calibration with a
constant p; is a useful first pass.

To be more quantitative, one would like long time series of %i
and of real bond yields. To obtain such a long-term time series, [
use the real short-term yield. Then, I regress Aln Boot BArs +e.

I observe that, in the model, p; affects ry and In P , but that F};

affects only £ D Hence, using the model, the 1nterpretat10n of
the R? is an answer to the question: how much of the variation
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in % comes from p; rather than F;? Empirically, R? = 13% and
B =—2.1 (std.err. 1.1). This means that, prima facie, 87% of the
variation in the P/D ratio comes from the recovery rate, and 13%
from changes in p;. For the calibration’s parsimony, I take o, = 0.
Using the regression on the Cochrane and Piazzesi (CP, 2005)
factor, regressing Aln g—‘t = a + BACP; + ¢, yields an R? of 0.04%.
This also points to a very small role for a common shock in bond
versus stock premia. I note that this 13% / 87% breakdown is, of
course, provisional. In addition, it is undoubtedly the case that
in some episodes, variations in p; are important (e.g., during the
2008 crisis), and then it is useful to pay the somewhat higher cost
of using the Epstein-Zin model developed later.

Let me expand on the theme that the correlation between
stock and nominal bond premia appears to be small. Viceira (2007)
reports that the correlation between stock and bond returns is 3%.
The correlation between the change in the CP factor and stock
market returns is 3%, and the correlation between the level of CP
and the change in stock market returns is also 3%, at monthly
frequencies. In the model, this could be accounted for by setting
corr (1,1, —elt,1) ~ corr (el,1,€0,,1) ~ 3%.

On the Degree of Parsimony of this Calibration. This article is
mainly concerned with the value of stocks and government bonds.
It uses two latent measures of riskiness, one for real quantities
(the stock resilience H;;) and another for nominal quantities (the
bond risk premium ), both of which load on just one macro
shock, the disaster shock. This assumption of at least one risk
premium for nominal quantities and another risk premium for
real quantities is used by several authors, for example, Wachter
(2006), Piazzesi and Schneider (2007), Bansal and Shaliastovich
(2009), and Lettau and Wachter (2011).

My conclusion is that it is hardly possible to be more par-
simonious and still account for the basic facts of asset prices.
Indeed, a tempting, though ultimately inadequate, idea would be
the following: nominal bonds and stocks are driven by just one
factor, perhaps the disaster probability. However, there is much
evidence that risk premia are driven by more than one factor
(see above, and also Fama and French 1993 who find that five
factors are necessary to account for stocks and bonds). Hence, the
framework in this article using two time-varying risk premia (one
for nominal assets, one for real assets) is, in a sense, the minimal
framework to make sense of asset price puzzles on stocks and
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TABLE IIT
SOME STOCK MARKET MOMENTS
Data Model
Mean P/D 23 18.2
Std. dev. InP/D 0.33 0.30
Std. dev. of stock returns 0.18 0.15

Notes. Stock market moments. The data are from Campbell (2003, Table 1 and 10)’s calculation for the
United States 1891-1997.

nominal bonds. Of course, those premia ultimately compensate
for just one source of risk—disaster risk.

I next turn to the return predictability generated by the
model. Sometimes I use simulations, in a sample without disas-
ters, as in most of the theory. The calibration was designed to
match two-thirds of Table III, but the predictions in Figure I and
Tables IV-VII are out of sample, that is, were not directly targeted
in the calibration.

IV.B. Stocks: Level, Excess Volatility, Predictability

Average Levels. The equity premium (conditional on no dis-
asters) is 7%, — rr = pE[B~ 7] (1 — F}.) = 6.5%. The unconditional
equity premium is 5.3% (the above value minus p (1 — F;,)). So,
as in Barro (2006), the excess returns of stocks mostly reflect a
risk premium, not a peso problem.!® The mean value of the P/D
ratio is 18.2 (and is close to equation (14), evaluated at H;; =0), in
line with the empirical evidence reported in Table III. The central
value of the D/P ratio is ; = 5.0%. 16

“Excess” Volatility. The model generates “excess” volatility

1+ﬁit
and predictability. Consider (14), % = “FE. As stock market
resilience ﬁit is volatile, so are stock market prices and P/D
ratios. Table III reports the numbers. The standard deviation of
In (P/D) is 0.27. Volatile resilience yields a volatility of the log

of the P/D ratio equal to 10%. For parsimony’s sake, I assume

15. Note that this explanation for the equity premium is very different from
the one proposed in Brown, Goetzmann, and Ross (1995), which centers around
survivorship bias.

16. In those tables, the sample sometimes includes the Great Depression, but
as shown by Campbell (2003), for the stock market moments considered, the broad
facts do not depend on including the Great Depression.
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that innovations to dividends and resilience are uncorrelated.
The volatility of equity returns is 15%. I conclude that the model
can quantitatively account for an “excess” volatility of stocks
through a stochastic risk-adjusted severity of disasters. In ad-
dition, changes in the P/D ratio reflect only changes in future
returns, not future dividends. This is in line with the empirical
findings of Campbell and Cochrane (1999).

Predictability. Consider (14) and (15). When IA{it is high, (15)
implies that the risk premium is low and P/D ratios (14) are
high. Hence, the model generates above-average subsequent stock
market returns when the market-wide P/D ratio is below average.
This is the view held by many, but not all, researchers (see the
discussion in Cochrane 2008). The model predicts the following
magnitudes for regression coefficients.

PROPOSITION 5. (Predicting stock returns via D/P ratios) Consider
the predictive regressions of the return from holding the stock
from ¢ to t + T, ri_7, on the initial dividend-price ratio,

Dy .
n(Be):

D; .
(26) Tit—t+T = O + BT In (f’t) + noise
it
/ / Dit .
27) Tit—tsT = Qp + Bp o + noise.
it

In the model, for small holding horizons T, the slopes are, to

the leading order: 8r = (§; + ¢g) T and 57 = (lt;fH) T.

Proof. Proposition 1 states the expected returns over a short
horizon T tobe 7%, ,,,,=(6 — Hy) T. Equation (14) implies that the
right-hand side of (26) is, to the leading order, In (D/P), = Iné; —
55211
ar — Br 6{3}} Equating the ﬁit terms, Oy = (§; + ¢g) T. The same
reasoning yields 7. |

. So the regression is, to a first order, 75, ,,.,=(0—H;. —ﬁit)T:

The intuition for the value of 37 is as follows. First, the slope
is proportional to T simply because returns over a horizon T are
proportional to 7. Second, when the P/D ratio is lower than the
baseline by 1%, it increases returns through two channels: the
dividend yield is higher by 6;%, and mean reversion of the P/D
ratio creates capital gains of ¢%.

Using the paper’s calibration of §; = 5% and ¢z = 13%, Propo-
sition 5 predicts a slope coefficient 8; =0.18 at a one-year horizon.
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TABLE IV
PREDICTING RETURNS WITH THE DIVIDEND/PRICE RATIO
Data Model
Horizon Slope s.e. R? Slope R2

lyr 0.11 (0.053) 0.04 0.17 0.06
4yr 0.42 (0.18) 0.12 0.45 0.19
8yr 0.85 (0.20) 0.29 0.79 0.30
Notes. Predictive regression for the expected stock return rj; ;.7 = ap + Bpln 2—3‘ , at horizon

T (annual frequency), up to an 8-year horizon. The data are from Campbell (2003, Table 10 and 11B)’s
calculation for the United States 1891-1997.

This prediction is in line with the careful estimates of Lettau and
van Nieuwerburgh (2008) who find a (3, value of 0.23 in their
preferred specification. Also, Cochrane (2008) runs regression
(27) at the annual horizon, and finds 3] = 3.8 with a standard
error of 1.6. Proposition 5 predicts §; = 3.6. We note that the
approximation in Proposition 5, valid for “small” T, appears to
be valid up to approximately a one-year holding period. Table IV
reports the model predictions for large T', using simulations, and
their arguably good congruence with empirical data.

I conclude that the model is successful in matching not only
the level but also the variation and predictability of the stock
market.

Characteristics Versus Covariances. In a rare-disaster econ-
omy, characteristics tend to predict returns better than covari-
ances, which a strand of research argues is true (Daniel and
Titman 1997). Indeed, in a sample without disasters, betas will
only reflect the covariance during “normal times,” but risk premia
are only due to the covariance with consumption in disasters.
The two can be entirely different. Hence, the “normal-times”
betas can have no relation with risk premia. However, “charac-
teristics,” like the P/D ratio, imbed measures of risk premia (as
in (14)). Hence, characteristics will predict returns better than
covariances.

However, there could be some spurious links if stocks with
low H;, have higher cash-flow betas. One could conclude that
a cash-flow beta commands a risk premium; however, this is
not because cash-flow betas cause the latter, but simply because
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stocks with high cash-flow betas happen to be stocks that have a
large loading on the disaster risk.

These points may help explain the somewhat contradictory
findings in the debate about whether characteristics or covari-
ances explain returns. When normal-times covariances badly
measure the true risk, as is the case in a disaster model,
characteristics will often predict expected returns better than
covariances.1?

IV.C. Bond Premia and Yield Curve Puzzles

Excess Returns and Time-Varying Risk Premia.

i. Bonds Carry a Time-Varying Risk Premium. Equation (18)
indicates that bond premia are (to a first order) proportional to
bond maturity 7. This is the finding of Cochrane and Piazzesi
(2005). The explanatory factor here is the inflation premium m,
that is, compensation for a jump in inflation if a disaster happens.
The model delivers this because a bond’s loading of inflation risk
is proportional to its maturity 7'

1i. The Nominal Yield Curve Slopes Up On Average. Suppose
that when a disaster happens, inflation jumps by /., > 0. This
leads to a positive parametrization x of the bond premia (equation
(9)). The typical nominal short-term rate (i.e., the one correspond-
ingtol;=1,)isy (0)=§—Hg+1., while the long-term rate is y (0) +x
(i.e., —limr_, o In %). Hence, the long-term rate exceeds the
short-term rate by x > 0. The yield curve slopes up. Economically,
this is because long-maturity bonds are more sensitive to inflation
risk than short-term bonds, so they command a risk premium.

On the other hand, in the model, the yield curve on real
bonds is flat: all yields are equal to . The empirical evidence on
real bonds is scarce and mixed (e.g., Nakamura et al. 2011). In
the UK, the real yield curve has been downward sloping, but in
the US, it has been upward-sloping. Hence, a flat real yield curve
may be a good benchmark.

The Forward Spread Predicts Bond Excess Returns. Fama
and Bliss (1987) regress short-term excess bond returns on the for-
ward spread, that is, the forward rate minus the short-term rate:

17. A recent working paper (Koijen, Lustig, and van Nieuwerburgh 2010)
brings new substance to this debate, showing that value stocks’ dividends fell a
lot during the Great Depression.
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(28) Fama-Bliss regression: Excess return on bond of
maturity T =ar + 07 - (f; (T) — r¢) + noise.

The expectation hypothesis yields constant bond premia and,
thus, predicts Gr = 0. I next derive the model’s prediction.
As in the calibration U‘U’:;rlt i _ . 023, I highlight the case
where this quantity is smaﬁ which means that changes in the
slope of the yield curve come from changes in the bond risk
premium rather than from changes in the drift of the short-term
rate.

PROPOSITION 6. (Coefficient in the Fama-Bliss regression) The
slope coefficient Gr of the Fama-Bliss regression (28) is given
in (45). When U0Vl

var(m)

(29) Br=1+ wJ

—ZT+0(T?.

When var (1) = 0 (no risk premium shocks), the expectation
hypothesis holds and 7 = 0. In all cases, the slope G7 is non-
negative and eventually goes to 0: limy_, o, 87 = 0.

To understand the economics of the previous proposition,
consider the variable part of the two sides of the Fama-Bliss
regression (28). The excess return on a T—maturity bond is
approximately T'r; (see equation (18)), while the forward spread
isf; (T) — ry ~ T'm; (see equation (21)). Both sides are proportional
to mT. Thus, the Fama-Bliss regression (28) has a slope equal to
1, which is the leading term of (29).

This value Gr above 1 is precisely what Fama and Bliss (1987)
have found, a result confirmed by Cochrane and Piazzesi (2005).
This is quite heartening for the model. Table V reports the results.
We also see that as maturity increases, coefficients initially rise
but then fall at long horizons, as predicted by Proposition 6.
Economically, most of the variations in the slope of the yield curve
are due to variations in the risk premium, not due to the expected
change of inflation.

The Slope of the Yield Curve Predicts Future Movements in
Long Rates. Campbell and Shiller (CS, 1991) find that a high slope
of the yield curve predicts that future long-term rates will fall. CS
regress yield changes on the spread between the yield and the
short-term rate:
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TABLE V
FAMA-BLISS EXCESS RETURN REGRESSION
Data Model
Maturity T 8 (std. err.) R2 8 R2
2 yr 0.99 (0.33) 0.16 1.33 0.34
3yr 1.35 (0.41) 0.17 1.71 0.23
4yr 1.61 (0.48) 0.18 1.84 0.14
5yr 1.27 (0.64) 0.09 1.69 0.08

Notes. The regressions are the excess returns on a zero-coupon bond of maturity 7, regressed on the
spread between the T forward rate and the short-term rate: rxsp1 (T) = a + 8 (ft (T) — fz (1)) + €41 (T).
The unit of time is one year. The empirical results are from Cochrane and Piazzesi (2005, Table II). The
expectation hypothesis implies 3 = 0.

TABLE VI
CAMPBELL-SHILLER YIELD CHANGE REGRESSION

Data Model
Maturity T 8 (std. err.) 8
3m -0.15 (0.28) —1.03
6 m -0.83 (0.44) -1.16
12 m —1.43 (0.60) —141
24 m —1.45 (1.00) —-1.92
48 m -2.27 (1.46) —2.83

Notes. The regressions are the change in bond yield on the slope of the yield curve: ys1 (T — 1) — 3¢ (T)
=a+ % ¢ (T) — y¢ (1)) + 441 (T') . The time unit is one month. The empirical results are from Campbell,
Lo, and MacKinlay (1997, Table 10.3). The expectation hypothesis implies 3 = 1.

Campbell-Shiller regression:
T — At) —y, (T .
Yerar ( A ) =5 (T) =a+0p- N + noise.

The expectation hypothesis predicts Sy = 1. However, CS find
negative Gr’s, with a roughly affine shape as a function of maturity
(see Table VI). This empirical result is predicted by the model, as
the next proposition shows. As in the calibration % =0.045,

(7¢)
I highlight the case where these quantities are smgﬁ

¥ (T) —:(0)

(30)

PROPOSITION 7. (Coefficient in the Campbell-Shiller regression)
The slope coefficient Sr in the Campbell and Shiller (1991)

regression (30) is given by (46). When dpvarl) 1, kT < 1,

var(m)
Br=— (1 + @T) +0 (T) when T — 0, and Br=—yT+o (T)
when T' > 1.
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Table VI also contains simulation results of the model’s
predictions. They are in line with CS’s results. To understand
the economics better, I use a Taylor expansion in the case where
inflation is minimal. The slope of the yield curve is, to the leading
order, SL;”(O) =% +0 (T). Hence, to a first-order approximation
(when inflation changes are not very predictable), the slope of the
yield curve reflects the bond risk premium. The change in yield is
(the proof of Proposition 7 justifies this):

Year (T —A) =y (T) Oy (T) _ —m
At o orT =~ 2
Hence, the CS regression yields a coefficient of —1, to the leading
order. Economically, it means that a high bond premium increases
the slope of the yield curve (by %).

As bond maturity increases, Proposition 7 predicts that the
coefficient in the CS regression becomes more and more negative.
The economic reason is the following. For long maturities, yields
have vanishing sensitivity to the risk premium, which the model

+0(T).

says has the shape y; (T) =a + 2% + 0 (%) for some constants a, b.
Thus, the slope of the yield curve varies with %, and the expected

change in the yield is 71’?:’ ™t So the slope in the CS regression (30)

is B ~ —¢4T. On the other hand, the expression for Gy shows that
when the predictability due to inflation is non-negligible, the CS
coefficient should go to 1 for very large maturities.

In Table VI, we see that the fit between theory and evidence
is rather good. The only poor fit is for a short maturity. The
CS coefficient is closer to 0 than in the model. The short-term
rate has a larger predictable component at short-term horizons
than in the model. For instance, this could reflect a short-term
forecastability in Fed Funds rate changes. That feature could be
added to the model, as in the Online Appendix. Given the small
errors in fit, it is arguably better not to change the baseline model
which broadly accounts for the CS finding. Economically, the CS
finding reflects the existence of a stochastic one-factor bond risk
premium.

A Tent-shaped Combination of Forward Rates Predicts the
Bond Risk Premium. Cochrane and Piazzesi (CP, 2005) establish
that (i) a parsimonious description of bond premia is given by a
stochastic one-factor risk premium, (ii) (zero-coupon) bond premia
are proportional to bond maturity, (iii) this risk premium is
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empirically well approximated by a “tent-shaped” linear combina-
tion of forward rates, and (iv) a regression of excess bond returns
on five forward rates gives such a tent shape.

Equation (18) is consistent with their findings (i)—(ii): there is
a single bond risk factor m;, and the loading on it is proportional to
bond maturity.!® Economically, this is because a bond of maturity
T has a sensitivity to inflation risk approximately proportional
to T

We shall see that the model delivers finding (iii) but not
finding (iv). It cannot deliver (iv) because it has only two factors,
so that five forwards rates in a regression would be collinear. It
is conceivable that richer extensions (e.g., with five factors) of the
model might deliver (iv), although at the same time it would be
nice to see if (iv) replicates robustly in other countries (see Kozak
2011).

However, we shall see that the model is account for CP’s
finding (iii). To understand this, rewrite (21) as:

e~ T _ o—JT
by — Y1

This model’s interpretation of the CP “tent-shaped” effect is that,
in the model, forward rates of maturity 7' necessarily have a “tent-
shaped” loading A (T') on the bond risk premium. To see that the
model’s loading A (T') is tent-shaped, observe that A (0)=A4(c0)=0
and A(T) > 0 for T > 0. We saw earlier (after Lemma 2) that the
economic reason for this tent shape of A (T') is that short-term
bonds have no inflation risk premium, and long-term forwards
are constant (in this model, f; (c0) = § — Hg + I,,), so that only
intermediate maturity forwards have a loading on the bond risk
premium.

To econometrlcally capture the bond risk premium, a tent-
shaped ZT cwrfy (T) combmatlon of forwards predicts the bond
I‘lSk premium. The simple (Y5 ,wr) and maturity-weighted
(ZT 1 Twr) sums of the weights should be roughly 0, so as to elimi-
nate slow-moving factors such as e =¥/, up to second-order terms.
This reasoning leads one to ask if there is a simple combination of

(M) =F(T)+e YL+ A(T)m, A(T)=

18. This is not an artifact of postulgting a single bond risk premium, coming
from oJ;. If there are K bond risk premia «J;;, with different speeds of mean reversion
(as in the multifactor model of the Online Appendix), then, to the leadin, order , the
risk premium on a bond of maturity T is still T'r;, with 7 = p;E; | B,,] Zk 1 J, bt
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forward rates that one might expect to robustly proxy for the risk
premia. The next proposition provides an answer.1?

PROPOSITION 8. (Estimation-free combinations of forwards to
proxy for the bond risk premium) Given time horizons a and
b, consider the following “estimation-free” combinations of
forwards:

1) OB (0 )= SO Aerh) “ilar2)

where f; (T) are the forwards of maturity 7. Then, up to third-
order terms, for small a and b, CPEF (a,b) = (¢ + ) 7 is
proportional to the bond risk premium.

Proof. From (21), up to third-order terms, CPEF = (47 + v5) m;. The
leading inflation term is —1?I;, a third-order term. |

For instance, CPPF (1,2) = Z{W2iBI-10) yges the forwards
up to a maturity of 5 years. Proposition 8 suggests that CPEF
could be used in practice to proxy for the bond risk premia without
requiring a preliminary estimation.2? Over the period 1964—2008,
repeating the CP analysis gives an average R? of 28% to predict
excess bond return, while the estimation-free CPEF (1,2) yields
a R? of 23%. This is arguably a good performance, given the CP
analysis uses five regressors, and the estimation-free CPEF uses
just one. In addition, the correlation between CP’s variable and
CPPF is 0.89. Finally, consider a country with a short data set:
the estimate of the CP coefficients will be very noisy. Researchers
could thus use the estimation-free CPEF to evaluate risk premia.

I conclude that the model can account for the CP findings
(i)—(iii) and proposes new combinations of factors to predict the
bond risk premium. The latter are “estimation-free” and might be
useful empirically.

19. Combination (31) is not unique in the present two-factor model. However,
if we add a small third persistent factor, then the combination becomes unique. It
goes to (31) when the extra persistence of that factor and inflation go to 0 (see
the Online Appendix). In that sense, (31) is a special combination that comes
naturally out of a small perturbation of the baseline model. Lettau and Wachter
(2011) proposed earlier another combination of theoretical factors to obtain the
risk premium, but it is not estimation-free.

20. The CP estimate is very close to 8CPFF (1,2) — 1CPFF (2,1), which
is —2f (1) + 0.5 (2) + 3f (3) + 0.5f (4) — 2f (5).
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Implied Volatility
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FIGURE 1
Option implied volatility in the model and in the data.

This figure presents the Black-Scholes annualized implied volatility of a
one-month put on the stock market. The solid line is from the model’s calibration.
The dots are the empirical average (January 2001 to February 2006) for the
options on the S&P 500 index (Figlewski 2008). The initial value of the market
is normalized to 1. The implied volatility of deep out-of-the-money puts is higher
than the implied volatility of at-the-money uts, which reflects the probability of
rare disasters.

IV.D. Options

I now investigate whether the model’s calibration (which
did not target any option-specific value) yields good values for
options. I calculate the model’s Black-Scholes implied volatilities
of puts with a one-month maturity. I am very grateful to Stephen
Figlewski for providing the empirical implied volatilities of one-
month options on the S&P 500 from January 2001 to February
2006 (Figlewski 2008).

Figure I reports the implied volatilities from the data and the
calibration. The correspondence is quite good, despite the fact that
no extra parameter was tuned to match option prices.2! Hence,
I conclude that as a first pass and for the maturity presented
here, the variable rare disasters model can yield correct option
prices. Du (2011) finds other parametrizations of jumps that
match option prices. Of course, a more systematic study would
be desirable. Farhi et al. (2009) investigate the link between

21. Tuse o0 =15% (from Table III), and the central case F; ;.1 = F«, which yields
H;y =H,..
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currency option prices and currency levels, finding support for the
existence of a disaster risk premium.

Backus, Chernov, and Martin (forthcoming) study a specifi-
cation that equity dividends are D; = C} for some A > 0, and
cannot fit option prices in a disaster framework with constant
disaster risk. In their framework, a high X (about 4) is necessary
to attain a high volatility of equity (so that dividend volatility is
A times consumption volatility). But then, equity is immensely
risky during disasters, and put prices are too high. In contrast,
in the present framework, equity volatility comes from resilience
volatility, and put prices can be moderate and calibrate naturally.

Proposition 3 suggests a way to extract key structural param-
eters of disasters from options data. Stocks with a higher put price
(controlling for “normal-times” volatility) should have a higher
risk premium, because they have higher future expected returns.
Evaluating this prediction would be most interesting. Supportive
evidence comes from Bollerslev, Tauchen, and Zhou (BTZ, 2009).
They find that when put prices are high, subsequent stock market
returns are high. This is qualitatively what a disaster-based
model predicts.

For a more quantitative assessment, consider the “variance
premium” VP;, which is the risk-neutral expected variance mi-
nus the expected variance (conditional on no disasters). It is
straightforward to derive VP, = p,E? [B,,] (1—F, i,t+1)2], as the
jump size in a disaster is 1 — Fj;,;. BTZ regress annualized
stock market returns on the variance premium VP,;. Table VII
reports the results.?? In addition, the mean and standard de-
viation of VP, are, respectively, 2.2% and 0.53% in the BTZ
data, and 3.4% and 0.66% in the model. Hence, the model is
broadly congruent with the empirical results of BTZ. It cannot
account for all the patterns in the variance premium, as it is
a one-factor model and the VIX index clearly exhibits some
high-frequency transient dynamics. They might be accounted for
by a resilience made of fast and slow components, as in the
Online Appendix. Still, it is comforting to see that the model
can generate some of the qualitative and quantitative empirical
patterns.

22. I convert BTZ’s results to annualized units, which multiplies their slopes
by %. The model’s baseline prediction (i.e., neglecting small nonlinear terms)

for the slope in Table VILis 8 = — (53 ) / (37 = rrtpmyy = 15. Table VIL's

simulations confirm the prediction.
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TABLE VII
PREDICTING RETURNS WITH THE VARIANCE PREMIUM
Data Model
Horizon Slope std. err. R2 Slope R2
1m 3.2 (1.8) 0.01 1.6 0.006
3m 3.9 (1.4) 0.06 1.6 0.02
6 m 2.5 (1.2) 0.05 1.6 0.03
12m 1.0 (0.9) 0.01 14 0.05

Notes. Predictive regression for the expected stock return %’”it—»HT = ap + BpVPr at horizon T (using
annualized units). VP is the variance risk premium. The empirical data come from Bollerslev, Tauchen,
and Zhou (2009, Table II).

IV.E. Corporate Bonds

The calibration allows us to evaluate Proposition 4. The
disaster risk premium is 7rlD =y; —¥g — \;, the difference between
the yield on corporate bonds and governance bonds minus the
historical default rate of corporate bonds. The rare disaster model
provides a macroeconomic foundation for Almeida and Philip-
pon (2007)s view that the corporate spread reflects the exis-
tence of bad states of the world and for reduced-form models of
credit risk.

Almeida and Philippon (2007) yield an estimate of 7P as the
difference between the risk-adjusted annualized probability of
default and the historical one.?3 For instance, this implies 77 to be
about 4.05% for a bond rated B (resp. 0.60% for a AAA bond). With
pE [B77]=19.2%, this means that the expected loss in a disaster is
405% =21% (resp. $59% =3.2% for a AAA bond). This is a moderate
loss. We see how easily, though, a disaster model can rationalize
the corporate spread.

Moody’s (1999) reports evidence on the United States. Dur-
ing the Great Depression, the realized loss rate was 5.3% on
“investment-grade” bonds (of which AAA are the least risky) and
25% for the “speculative-grade” bonds (a category that comprises

23. I take Almeida and Philippon (2007)’s Table III, which has the 10-year
risk-neutral and historical probability, and apply the transformation — In 1_0x to
obtain the annualized probability of default. I also add back the AAA-Treasury
spread of 0.51% to get the actual AAA-Treasury spread. This yields the following
disaster premia: 0.60% (AAA bonds), 1.11% (AA), 1.71% (A), 2.57% (BBB), 3.06%
(BB), and 4.05% (B). Almeida and Philippon (2007) do not report standard errors.
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B bonds).2¢ This is roughly in line with the magnitude from
market prices and disaster models.

Prediction (i) of Proposition 4 seems quite novel. The intuition
is the following. To take an extreme example, suppose agents
know that there will be hyperinflation in disasters, so that the
real value of all nominal assets will be zero (Fg = 0). Then,
government bonds lose all their advantage over corporate bonds,
as the value of all bonds will be wiped out in a disaster. Hence,
before the disaster, there should be no difference in the disaster
risk premium between government bonds, AAA bonds, or any
nominal bond. In less extreme scenarios, the same logic applies:
high inflation risk lowers the spread between nominal bonds,
because high inflation compresses the performance of all nominal
bonds in the disaster state.

Prediction (i) provides an explanation for Krishnamurthy and
Vissing-Jorgensen (2008)’s finding that when the Debt/GDP ratio
is high, the AAA-Treasury and the BAA-AAA spreads are low:
in their 1925-2005 U.S. sample, regressing the AAA-Treasury
and BAA-AAA spreads on the Debt/GDP ratio yields significant
coefficients of —1.5 and —1.2, respectively. The first AAA-Treasury
finding can be explained by their favored interpretation of a
liquidity demand for treasuries, but the BAA-AAA spread may be
harder to explain by liquidity. The disaster hypothesis offers an
explanation for both, hence it is complementary to the liquidity
explanation. When Debt/GDP is high, the temptation to default
via inflation (should a risk occur) is high,2? thus Fy is low and so
are nominal spreads.

Prediction (ii) of Proposition 4 allows one to think about the
impact of the government Debt/GDP ratio. It is plausible that if
the Debt/GDP ratio is high, then—once there is a disaster—the
government will sacrifice monetary rectitude, so that J; is high
(this effect could be microfounded). This implies that when the
Debt/GDP ratio (or the deficit/GDP) is high, then long-term rates
are high and the slope of the yield curve is steep (controlling
for inflation and expectations about future inflation in normal
times). In addition, in the Krishnamurthy and Vissing-Jorgensen
(2008) data, regressing bond rates minus the bill rate on the

24. T average over the two methodologies in the Moody’s (1999) paper (Exhibits
5-11 and 5-13). I use the 1932-1935 cumulative rate. The earlier losses are much
smaller.

25. Catao and Terrones (2005) find that high Debt/GDP leads, on average, to
an increase in inflation.
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Debt/GDP ratio yields a significant coefficient of 1.8, consistent
with the disaster hypothesis: when the Debt/GDP ratio is high,
the bond risk premium is high, so the slope of the yield curve is
also high.

Likewise, suppose that an independent central bank has
a more credible commitment not to increase inflation during
disasters (J; smaller). Then, real long-term rates (e.g., nominal
rates minus expected inflation) are lower and the yield curve
is less steep. This effect works in an economy where Ricardian
equivalence holds. Higher deficits increase long-term rates not
because they “crowd out” investment but instead because they
increase the government’s temptation to inflate away the debt
if there is a disaster. In such a case, there is an inflation risk
premium on nominal bonds.

V. DISCUSSION AND EXTENSIONS

V.A. Epstein-Zin Preferences

As mentioned, the power utility model has one qualitative
deficiency: if the disaster probability increases, the risk-free rate
decreases so much that the prices of most assets, including a
consumption claim, go up.28 To remedy this strong movement of
the risk-free rate, I extend the model to the preferences introduced
by Epstein and Zin (EZ, 1989), which allow one to decouple the in-
tertemporal elasticity of substitution (IES), v, and risk aversion,
~.27 This decoupling is indexed by y = 1;_14 Y which is equal to 1 in
the case of power utility preferences.?8 EZ show that the stochas-

.. _e X pl/x—1
tic discount factor (SDF') evolves as A]ﬁ” =e X (—Cgl) X Rcéfl ,
t t )
PL’

where R; ;1 = P f(ljt is the gross return of a consumption claim —

26. The same anomalous effect works with a change in the recovery rate of
consumption, Bz,1, and is fixed by Epstein-Zin preferences.

27. This effect of “bad news increase the price” is also present without anzs; risk.
In that case, the interest rate is rp = p + %, and the stock price is P; = m
by the Gordon formula. Hence, if both g¢ and gp go down by the same amount
(bad news), the asset price increases, unless ¥ > 1. That is why it is useful to have
1 > 1. At the same time, we need v > 1 to have large risk premia. EZ preferences
allow for ¢ > 1 and v > 1, whereas power utility preferences, which impose 1y=1,
do not.

28. This subsection complements the prior and different Epstein-Zin model
of Wachter (2009), whose many results require a unit IES, and the numerical
treatment in Gourio (2008a, 2008b).
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the asset that gives a consumption C; as a dividend and the price
of which we call Pc;.

The Appendix presents a setup in which this Epstein-Zin
model is exactly solved. To make the exposition more trans-
parent, I present here the economics of the model using a
first-order approximation (in the exposition I neglect quadratic
terms).2?

The resilience of a consumption claim, H,; = p,E [B/;;” - 1],

is again assumed to follow the LG-twisted process, Hct+1 =
1”;;*e onH, (+eL | to the leading order. The main tool is the value
of the SDF.

THEOREM 3. (SDF with EZ preferences) In the Epstein-Zin setup,
the stochastic discount factor is given exactly by (37) and
approximately by:

Mt+1 —
M,

c,t+

(14 (x— 1) Hy +ly)

(32) % { 1 if there is no disaster at ¢ + 1

B,,] ifthereis adisasteratt+1 °’

where 6 = p + g./t, 6. = 6 — g — xH.. and ¥

(1 —x) gett f“‘ . To the leading order, the risk-free rate is ry =
§ — piEP [Bt+1 (1+(x = 1) Bu1) — x]-

The key impact of disaster is in B,,], as in the power utility
case. However, it is now modulated by the H,; term, which cancels
out in the power utility case, x = 1. When y decreases (up to a
point), the interest rate becomes less sensitive to p;, as people are
less willing to increase savings when disaster risk is high.

Consider a stock i. I define its Epstein—Zin—enriched resilience
in (38), whose leading term is H%% = H;, + (x — 1) Hy, that is,

(33) HEZ = pEP [B;] (Fipe1 + (x — 1) Biu1) — x] -

When x =1, (33) is the earlier definition of resilience, given
in (4). The EZ resilience is the power utility resilience plus an
asset-independent term that reflects variation in the risk-free
rate. Hence, when noise is small, introducing EZ preferences
changes the risk-free rate but leaves risk premia unchanged to the

29. The Online Appendix finds that, for parameters used in the calibration, the
second-order terms are very small (less than 1% of the first-order terms).
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leading order (the risk premium remains p,EP [B.] (1 — Fy)]).3°
This echoes Barro (2009), which find this result (EZ changes the
interest rate, but not the risk premium) when disaster risk is
constant over time, but finds it for a time-varying disaster risk.

I assume that the EZ-enriched resilience follows, up to
second-order terms, an LG process, with HEZ = HEZ + HEZ and

E, [ﬁft{l] = Egge*@figz (to the leading order; see (40) for all

specifics). The next proposition shows that the above results on
stocks (e.g., Theorem 1, Proposition 1) follow, provided one uses
the enriched notion of resilience.

PROPOSITION 9. (Stock price with EZ preferences) With EZ pref-
erences, the price of a stock i is the same exact expression
(14) as in the power utility case, but with the EZ-enriched

resilience:

P, 1 HE?
34 LA it 6 =06—g —HE?,
(34) D, 5i< +5i+¢H ’ g ”

In particular, a consumption claim has a resilience Hgtz =

xp:EP [Btlfl"’ — 1], and its price is P; = % (1 + }?g‘) We see that

in the case y < 0 (i.e., an IES > 1 and v > 1), when p; goes up,
the resilience of a consumption claim and its price go down. This
is the key qualitative effect from an EZ model. In contrast, the
power utility model (x = 1) would lead to the opposite prediction,
which is likely anomalous.

Consider now a more general stock. When x < 0, as the
disaster probability goes up, the stock price goes down. This is true
as long as F;; < B;, that is, the asset is riskier than consumption.
However, if the asset is very safe (e.g., with Fj;,1 =1) and x is neg-
ative enough, then if the disaster probability goes up, the asset’s
resilience and price go up. This corresponds to a “flight to safety.”

Calibration. I follow Barro (2009) and take 1 = 2. This leads
to a value x = —%. For o, I observe that the variations in the
risk-free rate are small (Campbell and Cochrane 1995 calibrate

a constant risk-free rate), so I calibrate a small volatility of p;,

30. Comovement between the SDF and resilience also affects the asset’s risk
premium, which is —cov; (M#?,ri,,+1). The Appendix derives terms due to the

normal-times covariance with the innovations in the SDF, but we shall see that
they are quantitatively small.
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op = 0.4%, which implies a volatility of the risk-free rate of o, =
0.55%. To lower the number of free parameters, I assume that the
movements in p; and F;; are uncorrelated, and preserve the values
of all parameters as in the power utility calibration in Table I,
except the rate of time preference, which changes to p = 4.8%.
Further details are in the Online Appendix.

It turns out that the extra volatility coming from the variation
in p; increases the volatility of resilience only by a fraction 1%:
o = oy - 1.01. To see why, consider the case of F; 1 = B.s1 = B.
Then, to the leading order, HEZ = XEI_W@ +p.B "Fy. As x is
small, the resilience is not too sensitive to deviation of the disaster
probability from trend, p;, but it remains equally sensitive as in
the power utility case to the deviation of the recovery rate from
trend, F;. At least in this calibration, most of the volatility comes
from the movement in the recovery rate, and most of the risk
premia come from disaster risk (the “normal-times” volatility in
the SDF is very small, o.» = 6.4%).

Hence, a time-varying probability usually has little impact
on the volatility of stocks and their price-earnings ratio. However,
the major impact of that probability likely occurs in times of crises,
that is, when it suddenly moves a lot. During such episodes, the
fraction of the variance explained by p; would be high.

For nominal bonds with Epstein-Zin utility, we can anticipate
that the economics would be like in the power utility case, except
for an extra variation in the risk-free rate, in a fashion very
analogous to the one developed in Proposition 13 of the Online
Appendix.

The present EZ model has some limitations. Indeed, Naka-
mura et al. (2011) find that empirically consumption drops a
couple of years after the disaster strikes and then partly recovers.
Then, using a numerical solution, the authors find that the impact
of EZ preferences on risk premia is first order, and the partial re-
covery affects the relative premia of short-term versus long-term
assets. The present setup, which assumes that consumption falls
on impact and does not recover, misses that effect. I conjecture
that the present setup could be extended so as to yield predictable
consumption dynamics after the disaster and complement the
available numerical treatments, and then account for some fur-
ther asset pricing puzzles (e.g., for short-term versus long-term
assets). Still, the benchmark of consumption dropping at the onset
of the disaster is surely useful to study asset prices before the
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disaster, and the present model offers a reasonably transparent
way (via equations (33) and (34)) to understand the economics of
that benchmark.

To conclude, the main advantage of this Epstein-Zin setting
is that it inverts the anomalous qualitative impact of p;. At the
same time, the quantitative impact of the Epstein-Zin setting
is not very large on average, though it can be large in times of
crises. Hence, I recommend using the power utility setting with
time-varying recovery rates for a host of asset pricing issues (e.g.,
excess volatility, predictability, options, and the impact of p; on
the relative risk premia) and paying the cost of the somewhat
more complex Epstein-Zin framework only when movements in
p: affect the risk-free rate too much. A simple way to think about
all these issues is to use the Epstein-Zin enriched resilience (33),
which incorporates much of the economics in a compact way.

V.B. Alternative Interpretation of the Model

Some derivations on stocks and bonds do not depend solely on
the disaster hypothesis. On the other hand, for some predictions
about “tail assets” (e.g., options and high-grade corporate bonds)
the disaster model is crucial. This is formalized in the next
proposition.

PROPOSITION 10. (Models generating the same stock and govern-
ment bond prices as a disaster economy, but not the same
option and corporate bond prices) Consider a model with
stochastic discount factor Mﬁ? =e~ "7 (1+&¥,) and a stock with

dividend following 5=t =e# (1+¢P,,), where all e, _’s have
expected value 0 at time ¢. Call Hj = By [ef1eP,1] = Hiw +
HL t+1, so that fH,t is the risk premium on the dividend,

and assume HL sl = l“Z;*e ¢HH” + E{{Hl’ with sl \,1 uncor-

related with the innovations to ME(;D”“ Then, Theorem 1
and Proposition 1 hold, except that the equity premium is
—H;; and the interest rate is r;. Furthermore, suppose that

inflation is I, = I, + I, and follows I,,; = 11__Ilt (e‘¢lft + E{H).
Call E; [e),el,] = m. + m, the inflation risk premium, and
assume 7,1 = {ore” /m, + ey, with By [e}17,,] = 0. Also, use
the notation 7, =(1 —I.) x (1 — e~? — k). Then, Theorem 2 on

bond values (with Hg = 0) and Propositions 2, 6-8 on bond
predictability hold (except equation (19)).
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However, such a model generically has different prices for
options and corporate bonds (which are more tail-sensitive).

Proof With % =1 —I,, MD; (1,11,) and M,Q, (1, 2 ﬁ)
are both LG processes with the same moments as in the disaster
economy. |

Proposition 10 shows that in many models stocks and bonds
will behave exactly as in a disaster economy (however, options
or defaultable bonds will behave differently), so that disaster
analytics shed light on many models. Rather than a disaster-
based pricing kernel, the proposition studies a generic pricing
kernel M;, which could include a “behavioral” one. Relatedly,
in some respects one way to model “time-varying sentiment” in
a time-consistent way would be to model it as a time-varying
perception of disaster risk. Note that it is hard for agents to learn
a “rational” perception of disaster risk, as feedback will be scant
(Chen, Joslin, and Tran 2011).

Yet disaster models make clearly distinctive predictions
for tail-sensitive assets such as options and high-grade cor-
porate bonds (and gold, which could be modeled similarly
to a stock, but with a very high resilience). These assets
are naturally the object of scrutiny of the growing literature
that examines disaster risk empirically, and to which I now
turn.

V.C. A Further Provisional Empirical Assessment

This section provides an assessment of the empirical evidence
on the link between disasters and asset price movements, as
worked out in the present model.

Are the Movements of Asset Prices Correlated with the Move-
ments in Objective Disaster Risk?

i. Political Measures of Disaster Risk. A question very high
on the empirical agenda is to find “objective” measures of disaster
risk that ideally do not come from asset prices. A few papers
attempt to do this. Using a database of 447 major international
political crises during the period 1918-2006, Berkman, Jacobsen,
and Lee (2011) show that high war risk leads to a drop in asset
prices: returns are low when a crisis starts and are high when
it ends, and crisis risk is positively correlated with the dividend
yield. Other papers measure (on shorter data sets) the impact of
the probability of war on asset prices. Bittlingmayer (1998) finds
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that political risk was an important factor of volatility between
1880 and World War II. Amihud and Wohl (2004) document the
link between the probability of the second Iraq War (obtained from
prediction markets) and the stock market. All in all, a growing
number of studies document a link between political risk and the
volatility and level of asset prices, in a way consistent with the
disaster hypothesis. A fully structural empirical analysis has yet
to be carried out, probably enriched with new data, but the extant
evidence is encouraging.

ii. Disaster Risk Measured by Tail Behavior of Asset Prices.
Alternatively, we may detect disaster risk in asset prices. Boller-
slev, Tauchen, and Zhou (2009) show that when put prices are
high, future stock returns are low, like in this article. In addition,
the high price of put prices is consistent with disaster risk. Boller-
slev and Todorov (forthcoming) find large jumps in option prices
that are much harder to detect than in the physical probability. In
currency markets, Farhi et al. (2009) find that when put prices on
currencies are high, the return on investing in “risky” currencies
(by the measure of their put prices) is high. They find that when a
currency falls in value, its put prices increase, with a correlation
of —0.4. This is consistent with the disaster view. Burnside et al.
(2011) also calibrate that disaster risk might account for the
violations of uncovered interest rate parity.

In conclusion, put prices are high and they predict future
returns, as in the disaster hypothesis. Hence, the evidence is,
though not systematically so, supportive of the disaster hypoth-
esis. Finally, a recent paper by Kelly (2011) finds that a moving
average of the cross-sectional tail distribution of realized stock
returns may be a good proxy for aggregate tail risk, predicting
equity returns.

Do High-yield Assets do Particularly Poorly During Disas-
ters? Barro (2009) find that stocks indeed do particularly poorly
during disasters. Farhi et al. (2009) report that high-yield cur-
rencies do particularly poorly during currency market crashes,
consistent with rare-event risk premia. Koijen, Lustig, and van
Nieuwerburgh (2010) find that during the Great Depression div-
idends of value stocks fell a lot more than dividends of growth
stocks.3! Ongoing work with Joachim Voth investigates Russia

31. It also finds that the Cochrane and Piazzesi (2005) factor helps predict
value stock returns. This might indicate that disaster risk is important for value
stocks and is higher in the cross-section of stocks when it is higher in the
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and Germany around 1917, and finds that high-yield stocks did
do particularly badly during disasters. Furthermore, I mentioned
earlier that Moody’s (1999) finds that high-yield bonds did worse
than low-yield bonds during the Great Depression.

Is There Sufficient Variation of Disaster Risk Compared to
that of Resilience? In the model, we need a large enough variation
of resilience. One indirect test is to compare the volatility of the
required resilience to the dispersion of actual outcomes in asset
markets. Thus, I define and perform the disaster counterpart of
the Shiller (1982) excess volatility test. Consider indeed the asset-
to-disaster dispersion ratio for a variable X that pays off during
disasters:

DRy — Dispersion of prediction of X from asset markets
X = Dispersion of realized values of X

It should be less than 1. Indeed: denote by Vx the standard
deviation of the variable X, then DRy = VE‘[/LX'Q] < 1 for any
information set G.

To evaluate the dispersion of stock resiliences, I consider X =
B,,1 (1 +riz1). As the calibration has p; constant, we have Vy =
PV [Biig (Lsrig)] As (14) gives V), » = %, we obtain:

-1 5i Vn
DRStocks=p (0; + om) IWP/D

B, (1+r;4,1)|disaster

To evaluate this dispersion ratio, I use the Barro (2009)
data, which report series of B;,; and stock market returns dur-
ing disasters. Note that they use a flexible window to circum-
vent a variety of econometric problems, including missing data.
I find: VB;;(1+ri,,+1)\disaster =5.05. Using also %Vln = =18.0.33=
1.63, I obtain a dispersion ratio DRgicks = 0.32. It is less than 1,
so I conclude that the stocks pass the dispersion-ratio test. This
is something of a success for the disaster hypothesis. Economi-
cally, the test means that the P/D ratio is volatile, but it is less
volatile than the dispersion of (marginal-utility-adjusted) actual
stock returns during disasters. Of course, this test is simple and
aggregate, and refining it across asset classes, say, would be a very
good thing to do.

cross-section of bonds. This could be modeled as a common innovation in the risk
premia of value stocks and bonds.
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For inflation, I use the similar reason for the change in
inflation during a disaster, X = Al;. As V. = pVB;; Al the dis-
Vi
p VB;] (Aly,q)|disaster
V. = 2.1%, and the empirical value is VB;]( Al disaster = 6.36,
so that DRpfation = 0.09. The dispersion ratio is less than 1,
consistent with the disaster hypothesis. I conclude that the rare
disaster model passes the dispersion-ratio test, for both stocks
and inflation. There is enough dispersion in the realized outcomes
during disasters to warrant the volatility of stock and bond prices

in samples without disasters.

Do Variations in Recovery Rates Implied by the Model Make
Sense? For stocks, the P/D ratio reflects resilience in the model.
For instance, the low P/D ratio in the 1930s and 1970s reflects the
fact that agents believed that if there was going to be a disaster,
the stock market would do terribly. This seems reasonable, given
the recent experience. Likewise, the measured subjective risk
premia for bonds rise and peak between 1975 and 1982 (Piazzesi
and Schneider 2011). In terms of the model, agents reasoned:
“if there is a disaster, inflation will really go up.” This seems
sensible given their experience with a (nondisaster) crisis and
the concomitant rise in inflation. It would be insightful to have a
way of formalizing that intuition and probing it, for example, via
a learning model. More broadly, a learning model of how agents
might form beliefs about disasters, and conditional asset behavior
in disasters, would seem to be quite useful and an important new
frontier for research on time-varying assessment of disaster risk.

persion ratio is: DRynfation = . The calibration gives

VI. CONCLUSION

This article presents a tractable way to handle a time-varying
severity of rare disasters, demonstrates its impact on stock and
bond prices, and shows its implications for time-varying risk
premia and asset predictability. Many finance puzzles can be
understood through the lens of the variable rare disasters model.
On the other hand, the model does suffer from several limitations
and suggests several questions for future research.

First, it would be useful to empirically examine the model’s
joint expression of the values of stocks, bonds, and options. Here
I have only examined their behavior separately, relying on ro-
bust stylized facts from many decades of research. The present
study suggests specifications for joint cross-asset patterns of
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predictability. The multifactor extension of the model presented in
the Online Appendix could be instrumental in such an endeavor.

It would be useful to understand how investors estimate
disaster risk. Risk premia seem to decrease following good news
for the economy (Campbell and Cochrane 1999) and for individ-
ual firms (the growth-firms effect). So it seems that updating
will involve resiliences increasing following good news about the
fundamental values of the economy or about individual stocks.
Modeling this idea would lead to a link between recent events,
risk premia, and future predictability.

This model brings us one step closer to a unified framework
for various puzzles in macroeconomics and finance. A companion
paper (Farhi and Gabaix 2011) suggests that various puzzles in
international macroeconomics (including the forward premium
puzzle and the excess volatility puzzle on exchange rates) can
be accounted for in an international version of the variable rare
disasters framework. Furthermore, ongoing work (Gabaix 2011,
Gourio 2011) shows how to embed the rare-disasters idea in a pro-
duction economy by modifying its asset pricing properties while
preserving its business-cycle properties, producing realistic em-
pirical results. Thus, variable rare disaster modeling may bring
us closer to the long-sought goal of a joint, tractable framework
for macroeconomics and finance.

APPENDIX

Notations

The article often uses a decomposition of a generic variable
X; as follows: X; = X, + X;, where X, is a constant part (or
“typical value”) and X; a variable part centered around 0. X, is
an innovation to X, and oy, its standard deviation, is the volatility
of variable X;. The other notations are as follows.

B, : recovery rate of consumption in a disaster

B=E[B,]] 7:risk-adjusted average B,

Or : slope in a predictive regression with horizon T

y : in Epstein-Zin, x = 1;i/7 ¥ which is 1in the
power utility case

D;; : dividend of stock i

0 : “Ramsey” discount rate

0; : stock i’s effective discount rate
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EP [X;11] (resp. ENP [X;,1]): expected value conditional on a
disaster (resp. on no disaster)

f: (T') : nominal forward rate of maturity T’

Fg; : recovery rate of a nominal dollar

F;; : recovery rate of stock i

gc : growth rate of consumption

gip . growth rate of stock i’s dividend

~ : coefficient of relative risk aversion

H;; : resilience of stock ¢

HEZ : Epstein-Zin-enriched resilience of stock i

Hj : resilience of a nominal dollar

I; : inflation

I.. : risk-adjusted central part of inflation

J; : jump in inflation in a disaster

k : inflation disaster risk premium

K7 : loading on bond risk premium

M, : pricing kernel

1 - expected growth of the stock price, conditional on no
disasters (only used for options)

p: : disaster probability

P;; : price of stock i

7 : variable part of the bond risk premium

¢x : rate of mean reversion of variable X;

1 : intertemporal elasticity of substitution

1x : rate of mean reversion of variable X; under the
risk-adjusted measure

rs : risk-free rate

r¢%, : stock i’s expected stock return, over a one-period horizon

ris_s7 - stock i’s expected stock return, over a horizon T

r¢, (T) : expected return on a nominal bond of maturity 7'

p : subjective rate of time preference

t : calendar time

T : maturity (for a bond) or horizon (for a regression)

Vx : dispersion (standard deviation of the distribution) of
variable X

y; : yield on the debt of corporation i

v (T) : nominal yield of maturity T

Zg, (T) : price of a nominal zero-coupon bond of maturity T'

Exact Setup and Results for the Epstein-Zin Model. Here are

the exact postulates for the EZ model, which lead to closed forms.
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I postulate that the variable part of resilience can be written
as Hct =k + —Xw (k:), with a process k; following

(35)
dkt:— (d)c + th) k dt+<(§ + ¢c + th) [( — 1) w2 (kt) dt + w (k )dZt]

where z; is a standard Brownian motion. 32 Up to second-order
terms, the interpretation is Hct ~ k; and dk; ~ —¢.k;dt+ noise,
that is, Hct mean-reverts with speed ¢.. For tractability, Ehe
process is best expressed with the primitive k; rather than H,.
The volatility function w can be arbitrary, except that it vanishes
before k; hits —%¢ (as in Gabaix 2009). This postulate has two
joint consequences derived in the Online Appendix. The price of
a consumption claim obtains in exact closed form:

_ C, xk:
(36) Pt_ac<1+6c+¢c).
In addition, the SDF M; follows:
2
IM: st s (0 — 1) ( (o + 2250 gy — o (k)
M, 2
37 + (Bt_”* — 1) at;,

where d.J; is the disaster jump process, equal to 1 with prob-
ability p,dt, and otherwise equal to 0. As a result, rp = § —
(x—1) (H + M) — pEP [B; 7 —1]. The interpretation for
both is that in the main text, where the second-order term X% (kt)
is neglected.

The Epstein-Zin enriched resilience of a stock i is defined as:

2 ND
EZ _ 7. _ xw* (k) dM; dD;
(38) Hit =y + (X 1) (HCt + 2 ) + < Mt ) Dit )

where H;, = p,EP [B; "F;, — 1] and (dx;, dy,)"" dt : = cov™P(dx, dy;)
is the normal-times (i.e., conditional on No Disaster) covariance

32. The reader might ask: why those postulates? I tried to have £ C 1;” , with
x; a small term meanreverting at speed ¢., and allowed to add second order terms
to its equation of motion. That generates movements in the SDF, which in turn

generate the price of a consumption claim. To ensure self-consistency and find ‘ =
T4xp

5 while having M;C; (1, x;) an LG process, there is very little freedom. Bas1cally,
one is more or less directly led to postulate (35). Hence, in the spirit of Campbell-
Cochane (1995), Gabaix (2009), and this article, I (proudly) reverse-engineered
second-order terms to make the first-order economics transparent.
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between two processes x; and y;. Hence HEZ ~ H + (x — 1) He,
that is, the EZ resilience is the power utility asset-specific re-
silience (H;;) plus an asset-independent term that reflects vari-
ations in the interest rate ((x — 1) H.). I posit that it follows an

LG-twisted process: HEZ = HEZ 4+ HEZ with

dM; . dD;;
M, D

= — (¢n + HE?) HE?dt + ANE,

ND
(39) dHZ + < ,dN§Z> dt

where dNZZ is a mean-zero innovation to HZZ, The small LG terms
are largely mathematical conveniences that ensure that the model
is solved in closed form, but the interpretation of the leading order
is easy: dHE? ~ —¢yHEZdt+noise, that is, HZ? mean-reverts with
a speed ¢gy.

Then, the Online Appendix proves Proposition 9. It is easy to
check that the stock price is higher if the dividends covary with the
price kernel in normal times, or if resilience innovations covary
with it. One can easily verify that HE% = yk;, which elucidates the
meaning of &;: up to a multiplicative factor, it is the variable part
of the EZ-enriched resilience of a consumption claim.

Proof of Theorem 1. Following the general procedure for LG

processes, I use (2), (3), and form:
MiaDig1 _sio D
]l}tDit =e 7 (L+epy)

o 1 if there is no disaster at ¢ + 1
B, {Fi;1 ifthereis a disaster at ¢+ 1

As the probability of disasters at ¢ + 1 is p;, and H; =
Pt (Et [B;’{Fi,ﬂl] - 1),

E, [M 1D p41

M.D, } =e 780 { (1-p;)-1 +p;-E (B iFia]}

No disaster term Disaster term
= e_5+giD (1 +Hit) = e_5+giD (1 +Hi* +Hit)

(40)

=e % (1 + e‘hi*Hit) ,
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where I use the notations 4;, =In(1+H;,) and 6; =6 — gip — hix.
Next, as H;;,; is independent of whether there is a disaster, and
is uncorrelated with €2,

MisDien g 1 _ g [MuiDiea ] p g
B, [ M, e | =B | Trp | [H"”l]
1+H, PN
— o048 ). o~ PH ],
(41) e (1+Hy) " e *HH,,

- 675+giD+hi**¢HHit — e*5i*¢HHit.

We see that in (5) the reason for the 1+H;; term in the denominator
was to ensure that the above expression would remain linear
in H, ite

There are two ways to conclude. The first way (which is not
entirely rigorous, but is elementary) is to look for a solution of the
type P;;=D;; (a + bH;; ) for some constants a and b. The price must

satisfy: Py =Dy +E [%&} , that is, for all ﬁit,

@+ bH, =1+E, [MIDI (av bﬁIi,m)}

M.D;,
Mt+1Di t+1:| [MHIDL' t+1 17 :|
=1+aE; |—————| +bE; | ————H,;
‘ [ M:D; ‘| M:D, T

=1+ae ¥ (1 + e‘hi*ﬁit) + be“si_‘f’flﬂ = (1 + ae“si)
+ <ae*‘5i*hi* + be*‘si*@f) Hy,.

Solving for @ and b, we get a =1 + ae %, b = ae %" 4 be %%,
and (13).

The second way is rigorous, and uses linearity-generating
(LG) processes. A very short summary of the machinery is avail-
able on my web page, and the reader is encouraged to refer
to it for the following argument and the proof of Theorem 2.
Equations (40) and (41) ensure that M;D;; (1, Hit) is an LG process
e~ 0i o= 0i—hix

0 e %i—%m
Theorem 2 in Gabaix (2009).

with generator ) The stock price (13) comes from

Proof of Theorem 2. The proof is simpler when J, = x =0, and
this is the best case to keep in mind in a first reading. I call p; =
e~ % and py =e~ %/, use the inflation-adjusted (i.e., real) face value
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of the bond, @, so that % = (1 —I;) in normal times, and % =
(1 —1;) Fg 4,1 if there is a disaster. I calculate the LG moments.

- 7
E, IQI} e (1—L){(1—py) - 1+p;-Ee [BriFssm])
M,Q,
=8 (1 + Hy) (1—1* —Z).
Mt+1Qt+1
Et MtQt It+1:|
=e(1-1,){(1-p) EY [Im} +p; - EP {B;}F&HITHI}}

_ 1-1, B -
(1-1) ?It{(l —pi+pEy [BiFs441] ) x prly

+ DBy [Bi]Fs 1] (J* +¢7t) }

_ s B =~ Py [B;-¥F$,t+1] =~
=e 0 (1+Hs)(1-1,) (mzt S EY (J* +Jt>

=0 (prd+ (1= L) (1= pr = 5) 7).
U=e(1+Hg)(1-1,)

using (8) and (9). This gives:
M;1Q¢1 /I\t+1 /I\t Tt
Et[ MQ, 1-1. R =pr=r)vp— 7

E |:Mt+1Qt+1J 1:| — |:Mt+1Qt+1
! MtQt - t MtQt

= WIOJ']t+1 ’

} E, [jt+1] = W%p#/jtﬂ

Tt

so that, as % is proportional to jt (equation (8)),
E; [Mﬁg“l T } Ypy1-. Hence, MtQt( T Tor ) is an LG

tt 1—

1 -10

process with generator 2 =¥ (/-@ (1—pr—k) pr 1 ) . Theorem 1
0 0 pr

in Gabaix (2009) gives the bond price, Zg (T) = (1,0,0) 27

I Tt

/
(l,ﬁ, 1_1*) , which concludes the derivation of (16) when

k = 0. When «# 0, one more step is required. The eigenvalues
of 2 are V{1 —k,pr+k, pﬂ} It is convenient to factorize by
1 — « and, hence, to define: p; = {2~ and p, =
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discrete-time analogues of the continuous-time mean-reversion
speeds ¢y = ¢; — 2k and ¢y = ¢ — k. Calculating 27 gives the
bond price:

Z$t(T)=(W(1—/<;))T><{1— 1 1_ﬁiT< L n)

1-rkl—p \1-1,
42
42 L
N S S AR
(1-r)* pi — P 1-L (-
The corresponding value of the yield y; (T) = —% is:
1—e T
¥e(T)=0 —Hg+ 1 + ——F—— (I; — I.\)
(43) ¢IT
1T 1 %7
r r 2
+ me+ O Iy — Loy, m
r—wr oWl
T
(44) =6—H$+It+(K(¢1_K)+7Tt—¢)](1t—l*))§.

Proof of Proposition 3. We have V; = VNP + VP with:

P; ’ _
VI (1 p B (K- T ) =1t

S a—

VP pisp o (B s

it

N
> } =pie °E¢ [B,] (K — e"Fiz41)"],

where x* = max (0,x). Recall that the l?lack-Scholes value of a put
with maturity 1is: E;Je (K —e"*%1~7/2)*]=VBS (Ke" o). Hence,
the first term is (1 — p;) times:

eﬂSEt[(K _ eu+au“1702/2)+} — 675+“Et [(Keil‘ . eu+0u¢+1702/2)+]
=e HVED (Ke ™", o).
Proof of Proposition 6. The Fama-Bliss regression (28) yields
5 (T) =, (0)./:(T)—£:(0) . .
Br= cou(rs var(ﬁrfT)fﬁ(O)) ) 2Equatlons (17) and (21) give r%, (T) —

%, (0)= = "5, + 0 (Tt,m) and
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~ e T _ =T

A 2
fi(T) £, (0) = (e — 1)It+w7”+‘”+0(1“7”)’

where ar is a constant. So to the leading order,

—yT _ ,— T _o— YT
e e var(m)
(45) ﬁT = T ~ e—ViT _o—gT ’
var ((eiwl — 1) It + Wﬂt)

which implies that limp_, . Br =0, limp_,¢ Br = #(j”f), and (29).
rprle+7e

_ Proof of Proposition 7. This proof is in the limit of o7 — 0,
I, =0, k = 0, and A¢ — 0. Equation 43 gives: y; (T) =a + b (T) m,
i N Er i’

with b (T) = ——pi— =7 — 02 T? + O (T?). Hence:

Yerar (T = At) —y: (T) _ Ee[dy: (T)] _ 0y:(T)
At dt oT

=(=¢sb (T) = b'(T)) .

As ye(T%—rz = b(ig)ﬂt —B= d’Jb((TTQ*/bT(T) that is,

Tb' (T)
b(T)

(46) 6 = - — ¢JT,

sothat f=—1-24-%T 40 (T?) when T — 0, and 8= 4T +o (T)
when 7' — co. The reasomng in the text of the artlcle comes from

the fact that for small 7, 22Tl - o/T7 ' 0D (_1 4 O (T))m,
S0 Yerrt(T—A8) -y (T) ., (T

At = aT -
NEW YORK UNIVERSITY

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at QJE
online (gje.oxfordjournals.org).
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