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This paper builds on a recently proposed algorithm to construct cities based on 
geographical features of high-quality micro data (Hernán D. Rozenfeld et al. 2008), 
rather than informative but somewhat arbitrary legal or administrative definitions. It 
allows us to take a fresh look at key quantities in urban economics, namely the popu-
lation and the area of cities. We find that Zipf’s law for population holds quite well, 
and well below the very upper tail of the city size distribution, where it had been 
shown to hold to a good degree of approximation (Gabaix and Yannis M. Ioannides 
2004). We also find that the distribution of city areas follows a power law, with an 
exponent close to one, the Zipf value. These findings help constrain further theories 
of cities and theories of geography.

A key difficulty in studying cities is finding a practical way to define them (George 
K. Zipf 1949; Paul Krugman 1996; Jonathan Eaton and Zvi Eckstein 1997; Linda 
Harris Dobkins and Ioannides 2001; Jan Eeckhout 2004; Kwok Tong Soo 2005; Batty 
2006). A canonical method involves defining Metropolitan Statistical Areas (MSAs) 
obtained in the United States from the Office of Management and Budget and avail-
able from the US Census Bureau (2009). MSAs are defined for each major agglomer-
ation and attempt to capture their extent by merging administratively defined entities, 
counties in the US, based on their social or economic ties (other countries use similar 
criteria). For instance, the MSA of Boston, MA, includes not only the administrative 
unit of Boston, but also adjacent Cambridge. MSAs derive their appeal from a strong 
economic logic, but their construction requires qualitative analysis and is very time-
consuming. Therefore, MSAs have been constructed only for the 276 most populated 
cities in the US, and the corresponding Zipf’s law has been documented only for the 
upper tail of the distribution (Gabaix and Ioannides 2004; Soo 2005).

Two main alternatives to the MSAs have been proposed in the literature. One 
method is to use administrative or legal borders of cities to define so-called “places” 
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as done by Eeckhout (2004) and Moshe Levy (2009). The analysis of 25,359 places 
in the US has suggested that Zipf’s law holds in the upper tail (Levy 2009; Ioannides 
and Spyros Skouras 2009) but fails in the bulk of the distribution, as legally defined 
cities follow a log-normal distribution rather than a power law (Eeckhout 2004, 2009). 
The advantage of this definition is that it allows the study of the distribution of cities 
of all sizes. Still, it is problematic to define cities through their fairly arbitrary legal 
boundaries (the places method treats Cambridge and Boston as two separate units), 
and, indeed, this is why researchers prefer agglomerations such as MSAs whenever 
such constructs are available. A second approach is to construct cities from micro data 
(Gilles Duranton and Henry G. Overman 2005; Marcy Burchfield et al. 2006; Elena 
G. Irwin and Nancy E. Bockstael 2007; Guy Michaels, Ferdinand Rauch, and Stephen 
J. Redding 2008; Thomas J. Holmes and Sanghoon Lee 2009; Tomoya Mori and Tony 
E. Smith 2009). In particular, Holmes and Lee (2009) consider cities to be individual 
cells of six-by-six miles, for which the size distribution is much less fat-tailed than 
Zipf’s law. However, this is probably because constraining cities to areas of six-by-
six miles makes it nearly impossible to find a very large city. Hence, because of these 
methodological difficulties, the shape of distribution of agglomerations beneath the 
few hundred largest cities is still an open problem.

Here we build on an algorithm, the City Clustering Algorithm (CCA), recently 
introduced (Rozenfeld et al. 2008) and based on previous studies done by Makse, 
Shlomo Havlin, and Stanley (1995) to build cities “from the bottom up.” The algo-
rithm defines a “city” as a maximally connected cluster of populated sites defined at 
high resolution. Namely, a population cluster is made of contiguous populated sites 
within a prescribed distance ℓ that cannot be expanded: all sites immediately outside 
the cluster have a population density below a cutoff threshold. Rather than defining a 
city as one cell, as done by Holmes and Lee (2009), our method defines an agglom-
eration as a maximally connected cluster of potentially many cells. Hence the CCA 
operationalizes in a simple, reproducible way, an intuitive idea used by statistical insti-
tutes (Shlomo Angel, Stephen C. Sheppard, and Daniel L. Civco 2005).

We find that Zipf’s law holds, to a good approximation, in Great Britain (GB) and 
the US, for both populations and areas. We also find that density has only a weak 
correlation with population and area. We propose that the two facts of Zipf’s law for 
populations and areas could serve as tight constraints on models of cities.

In Section I we present the analyzed data and explain the CCA. In Section II we 
present our results for the population distribution of CCA clusters in GB and the US. 
We also compare the CCA clusters with US census MSAs and places and present a 
formal test of robustness of our clustering method. In Section III we show the results 
of the area distribution of CCA clusters in GB and the US and present a study of the 
correlations between densities, areas, and populations for CCA clusters. In Section IV 
we discuss the consequences posed by our findings, and summarize our conclusions.

I. Data and Methods

A. Raw Data

The GB data are uniformly gridded at high resolution. They consist of a grid 
of cell size 200 meters by 200 meters overlaid on the area of GB for which the 



2207ROzENfElD ET Al .: THE AREA AND POPulATION Of CITIEsVOl. 101 NO. 5

 population in each cell is given. The source of the GB data is the ESRC (1981, 1991 
population census, Crown Copyright and ESRC purchase, 2009) and is composed of 
5.75 million square cells comprising a total population of about 55 million inhabit-
ants in 1991.1

The data for the US consist of the location and population of 61,224 points located 
throughout the US (US Census Bureau 2001). Each point corresponds to a Federal 
Information Processing Standards (FIPS) census tract code (National Institute of 
Standards and Technology 2008) generated by the US Census Bureau and ranging 
in population from 1,500 to 8,000 people, with a typical size of about 4,000 people. 
FIPS codes are uniquely specified by 11 digits. The first two digits correspond to 
the state code, the next three to the county within the state, and the next six to the 
census tract code. For example, FIPS 36061016500 corresponds to New York State 
(36), NY County (Manhattan, 061), census tract 016500, which is an area ranging 
from 58th Street to 60th Street and from 8th Avenue to 9th Avenue. Figure 1 shows 
all FIPS for Manhattan in New York City and its surroundings. The location of the 
FIPS is not always equidistant. For instance, the shortest distance between two 
FIPS (Euclidean distance between the centroid of two FIPS) is about 100 meters 
(m), as in Manhattan, while in less populated areas like Wyoming, FIPS can be 
separated by about 100 kilometers (km). We note that there is some endogeneity 
in FIPS, which aim at gathering a roughly constant population size, and thus might 
be problematic for the analysis of areas (FIPS with a large area are less dense by 

1 See Duranton and Overman (2005) for another study using GB micro data, albeit with a different method 
and focus.

Figure 1. Raw Data for Manhattan

Notes: In this plot we show all Federal Information Processing Standards (FIPS) codes cor-
responding to Manhattan obtained from the raw data for the US. Each point corresponds to a 
FIPS code specified by the US Census Bureau.
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construction). We are comforted by the fact that the US results are broadly similar 
to the GB results, which are made from finer-grained and hence arguably higher-
quality raw data. All datasets and results used and presented in this work may be 
downloaded from Rozenfeld et al. (2011).

B. The City Clustering Algorithm

We start this section by providing a detailed explanation of the CCA (Rozenfeld 
et al. 2008). As mentioned before, the original data for GB are already gridded at 
a resolution of 200 m by 200 m. We may change the data resolution by construct-
ing a dataset at a resolution of ℓ by ℓ by simply merging cells from the original 
dataset. For example, to construct a dataset at a resolution of 400 m by 400 m we 
merge four cells of the original data into larger square cells, or to obtain a resolu-
tion of 1 km by 1 km we merge 25 cells from the original data. Once the cell size, 
or coarse-graining level, ℓ, is selected, we start the CCA. In panel A of Figure 2 
we show four steps of the CCA when it is applied to GB. To define a CCA cluster, 
we first locate a populated cell. Then, we recursively grow the cluster by adding 
all  nearest-neighbor cells with a population density, D, larger than a threshold  D * . 

Figure 2. The CCA Algorithm for GB and the US

Notes: Panel A shows the CCA applied to GB (discrete CCA). (i) Cells are colored in blue if they are populated; 
otherwise they are in white. (ii) We initialize the CCA by selecting a random populated cell (red cell). Then, we 
merge all populated neighbors of the red cell as shown in (iii). We keep growing the cluster by iteratively merging 
neighbors of the red cells until all neighboring cells are unpopulated, as shown in (iv). Next, we pick another popu-
lated cell and repeat the algorithm until all populated cells are assigned to a cluster. Panel B shows the CCA applied 
to the US (continuum CCA). The points in this figure denote populated sites or FIPS. For our studies (and in this 
diagram) we use a density threshold  D *  = 0. (i) We start a cluster selecting a populated site, red point, among all 
available populated sites. We draw a circle of radius ℓ and add all populated sites, blue point, that fall within the 
circle. (ii) We draw a circle from the new member of this cluster and add all populated sites (denoted by the two 
blue points) within the circle. (iii) Recursively, we keep drawing circles from all new cluster sites. The populated 
sites inside the circles (three blue points in this case) are merged into the cluster. (iv) The red points are the mem-
bers of the cluster. Since no black point is at a distance smaller than ℓ from any red point, the cluster does not grow 
anymore. We start the process again, selecting another initial point that has not been already assigned to any cluster. 
This process is repeated until all populated sites are assigned to a cluster.

i ii

iii iv

i ii

iii iv

Panel A Panel B
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The cluster stops growing when there is no neighboring cell outside the cluster with 
population density D >  D * . In this work, to minimize the number of free param-
eters, we set the threshold  D *  = 0, and therefore clusters are recursively grown by 
merging all populated cells in the immediate neighborhood of the cluster. Once the 
clusters are built, we calculate the population of a cluster as the sum of the popula-
tions of all cells within the cluster.

The data for the US do not allow simply merging neighboring cells to build clusters. 
In panel B of Figure 2 we show four steps of the CCA when it is applied to the US. 
We start a CCA cluster by locating a populated site. Then, we recursively grow the 
cluster by adding all nearest-neighbor sites (populated sites within a distance smaller 
than the coarse-graining level, ℓ, from any site within the cluster) with a population 
density, D, larger than a threshold  D * . Notice that the distance between two FIPS is 
measured as the Euclidean distance between their geographical centroids. The cluster 
stops growing when no site outside the cluster with population density D >  D *  is at a 
distance smaller than ℓ from the cluster boundary. Since in this work we set  D *  = 0, 
clusters are grown by merging all populated sites within a distance smaller than ℓ 
from any site within the cluster. We call this version of the CCA the continuum CCA, 
while the version applied to GB is the discrete CCA (see Figure 2). Once the clusters 
are built, we calculate the population of a cluster as the sum of the populations of all 
sites within the cluster. Panel A of Figure 3 shows a map of all identified clusters in 
the continental US where gray levels correspond to the cluster population, and panel 
B shows a detail of the clusters in the northeastern US for different ℓ.

A noteworthy feature of both discrete and continuum CCA is that, in contrast to 
what is observed for cities that are defined using commuting thresholds (like MSAs 
in the US) where the resulting agglomerations depend on the choice of the initial 

Figure 3. CCA Clusters in the US

Notes: Panel A shows the CCA clusters in the entire US. The map shows the different clusters obtained by the algo-
rithm. The grayscale indicates the population of each urban cluster (in logarithmic scale). Panel B shows the results 
of the CCA applied to the major clusters of the northeastern US at different length scales. The top left panel shows the 
CCA clusters for ℓ = 1 km separating the cities of Washington, DC, Baltimore, Philadelphia, Newark, Jersey City, 
New York, and Boston (from southwest to northeast). The top right panel shows the results of the algorithm when 
the data are coarse-grained to ℓ = 2 km. Here, for example, the cities of New York, Newark, and Jersey City become 
part of the same cluster. The lower left panel shows the results for ℓ = 4 km, where the main clusters are Washington 
DC–Baltimore; Philadelphia; New York–Newark–Jersey City–Long Island; and Boston–Cambridge. The lower right 
panel for ℓ = 8 km shows a giant cluster comprising all major cities in the northeastern US. The black points are also 
identified as part of other clusters, but for clarity we do not specify them in this figure.
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point (US Census Bureau 2009), the outcome of the CCA is independent of the 
initial condition.

II. Population Distribution

A. Basic Results

We analyze the population data in GB and the US to obtain the probability density 
function, P(s), measuring the probability that a cluster has a population between 
s and s + ds. Figure 4 displays the population distribution of the CCA clusters in 
GB for ℓ = 0.2 km, ℓ = 0.6 km, ℓ = 1 km, ℓ = 1.4 km, ℓ = 1.8 km, ℓ = 2.2 km, and 
ℓ = 2.6 km. For clusters with a population above a cutoff  s *  = 5,000 inhabitants, the 
GB population follows a power law of the form

(1) P (s)  ∼  s − ζ−1 ,

with an exponent of ζ ≈ 1 (in approximate accordance with the value of Zipf’s law) 
to a good degree of approximation. Using an OLS regression, we estimate for ℓ = 1 
km (1,008 clusters with 83 percent of the country’s population) a Zipf exponent 
ζ = 0.93 ± 0.07 (the notation ± denotes two standard errors).

Figure 5 shows the results of P(s) for the US for ℓ = 2 km, ℓ = 3 km, and 
ℓ = 4 km, for which we obtain 30,201, 23,499, and 19,912 clusters, respectively. 
We find that the population distribution also follows a power law, as for GB. 
For example, when we estimate the exponent for ℓ = 3 km and for clusters with  
s >  s *  = 12,000 inhabitants (comprising 63 percent of the country’s population), 
we find ζ = 0.97 ± 0.06 using an OLS estimator.

Figure 4. Probability Distribution P(S) for GB at Different Coarse-Graining Scales ℓ

Note: The black solid line denotes a power law function with density exponent −2, i.e., Zipf’s 
law.
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To formally study the validity of our power law fits, we employ two tests for good-
ness of fit: the standard Kolmogorov-Smirnov (KS) test, and a test proposed by 
Gabaix and Ibragimov (Gabaix 2009; Gabaix and Rustam Ibragimov 2011) offer-
ing a simple quantification of possible deviations from a pure power law. 2 In the 
KS test one does not reject the hypothesis that the empirical cumulative distribution 
function (CDF) follows a power law (with an exponent given by the OLS estimation 
shown above) at the 1 percent confidence level if the statistic D satisfies D  √ 

_ n   < 1.63 
(M. A. Stephens 1974). When we apply the KS test to GB we obtain a statistic of 
D = 0.07 (D  √ 

_ n   = 1.59), when  s *  = 13,000. On the other hand, for the US we 
obtain D = 0.05 (D  √ 

_ n   = 1.61) when  s *  = 20,000. The test for quadratic deviations 
proposed by Gabaix (2009) and Gabaix and Ibragimov (2011) is used to determine 
if a power law is adequate to describe the city size distribution. The method is as fol-
lows. Sort the cities according to their rank i (i = 1 being the largest city) and run the 
OLS regression

(2) ln(i − 1/2) = constant − ζ ln  s i  + q(ln  s i  − γ ) 2 ,

where ζ (the power law exponent) and q (the quadratic deviation from a power 
law) are the parameters to estimate, and γ ≡ (cov((ln  s j  ) 2 , ln  s j ))/(2var(ln  s j )). The 
−1/2 terms corrects a small sample bias. The recentering term γ ensures that the 

2 We have also performed a Jarque-Bera test for normality of lns, i.e., a log-normal distribution for cluster 
populations. We found that in both GB and the US the test rejects the hypothesis of log-normality, with a p-value 
less than 0.001.

Figure 5. Probability Distribution of Cluster Populations P(S) for the US  
at Different Coarse-Graining Scales ℓ

Note: The black solid line denotes a power law function with density exponent −2, i.e., Zipf’s 
law.
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exponent ζ is the same whether the quadratic term is included or not, and there-
fore ζ may be estimated beforehand using a simple linear OLS. The quadratic test 
formalizes the intuition that a pure power law has q = 0 in the asymptotic limit, 
so a high value of | q | indicates deviations from power law behavior. Under the 
null hypothesis of a power law, for large samples   √ 

_
 2N   q N / ζ  2  converges to a stan-

dard normal distribution (where N is the number of data-points). With probability 
0.99, a standard normal is less than 2.57 in absolute value. Hence, let  q c  ≡ 2.57 ζ  2 
/  √ 

_
 2N   be the critical value for the absolute value of the quadratic term q at the 1 

percent confidence level. If | q | >  q c  we reject the hypothesis that the data are well 
described by a power law since the quadratic term becomes significant. Otherwise, 
if | q | <  q c , the quadratic term is insignificant and we do not reject the power law 
hypothesis.

For the US, when we consider the distribution of city sizes for cities larger than  
s *  = 12,000 for ℓ = 3 km, we obtain | q | = 0.0291 and  q c  = 0.0413. Since | q | <  q c  , 
we conclude that we can disregard the quadratic correction to the OLS fit and con-
sider that the power law describes the empirical distribution of city sizes. In the 
case of GB, we consider  s *  = 5,000 and ℓ = 1 km, for which | q | = 0.0521 and  
q c  = 0.0522. Although | q | and  q c  are very close, the fact that | q | <  q c  indicates that 
we cannot reject the hypothesis that the power law describes the city size distribu-
tion for GB. We conclude that Zipf’s law is a good description of city sizes with 
population above  s *  = 12,000 inhabitants in the US and  s *  = 5,000 inhabitants in 
GB. This comprises 1,947 clusters (for ℓ = 3 km) and a population of 171.3 million 
out of a total population of 271.1 million in the US, and 1,007 clusters (for ℓ = 1 
km) and a population of 45.3 milllion out of a total population of 54.5 million in GB, 
in contrast to previous samples (Soo 2005) typically having a few hundred cities. 
The values for  s *  at which the KS and Gabaix-Ibragimov tests do not reject a power 
law, although not exactly the same, are within the same order of magnitude. Both 
results suggest that Zipf’s law is valid for a surprisingly large range of values of s 
and for a large number of cities in both GB and the US.

So far, we have focused only on the part of the distribution where a power law fit 
could not be statistically rejected. Now, somewhat more loosely, we turn to a visual 
inspection of Figure 4 and Figure 5. We see that the distribution is arguably well 
approximated by a power law, in a region covering cities above 300 inhabitants in 
GB, and cities above 3,000 inhabitants in the US. In part, these cutoffs are driven 
by the coarseness of the initial data; it is conceivable that studies with finer-grained 
initial data would conclude that the power law cannot be rejected starting with an 
even smaller minimum city size. The deviations from the power law, while statisti-
cally significant, are not very large economically. Hence, we also submit that, for 
the modeling of cities, the domain of an approximate power law is quite large. This 
domain comprises 9,214 clusters and a population of 53.1 million (96 percent of 
the total population) in GB, and 17,609 clusters and a population of 259.3 million 
(96 percent of the total population) in the US.

B. Comparison between CCA Clusters, MsAs, and Places

Although the CCA allows one to choose the observation level of population clus-
ters, ℓ, it may be desirable to have an objective way to choose ℓ to ease comparison 
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between CCA clusters and other constructions of agglomerations.3 For this purpose, 
we perform a comparison with the MSAs in the US, which may be considered a 
benchmark for plausibly well-constructed cities. MSAs are defined starting from a 
highly populated central county with population larger than 50,000 and adding its 
surrounding counties if they have social or economic ties such as large commut-
ing patterns between the regions. Panels A and B of Figure 6 show a comparison 
between the MSAs of the northeastern US and the clusters obtained using CCA.

Figure 7 shows the Zipf exponent ζ for the US for several values of ℓ, indicating 
that the Zipf exponent has small variations for different values of ℓ. We observe that 
the exponent ζ remains approximately within 5 percent of the Zipf value in the range 
ℓ ∈ [2.5, 3.5] km.

In order to find the value of ℓ that best matches the MSAs, we match each MSA 
with the most populated overlapping CCA cluster. For this purpose, from the US 
Census Bureau, we obtain the counties (and corresponding FIPS) that belong to 
each MSA. An overlap between an MSA and a CCA cluster exists if they share 
at least one FIPS code. This overlapping procedure leads to several CCA clusters 
 corresponding to one particular MSA. To obtain a one-to-one correspondence among 

3 Of course, as Figures 5 and 6 show that the exponent has small variations for different values of ℓ, this question 
is not crucial for the size distribution of cities.

Figure 6. Comparison between the MSAs and the CCA Clusters

Notes: Panel A shows the MSAs for the northeastern US. For example, New York county (Manhattan) with a popu-
lation larger than 50,000 is a center of an MSA. Jersey City belongs to the same MSA since a large number of its 
population commute to Manhattan, setting economic and social ties between the two regions. Panel B shows the 
CCA clusters for the northeastern US for ℓ = 5 km. Each cluster or MSA is plotted with a different grayscale. For 
instance, the MSA centered in New York City is composed of several clusters. The white concentric circles corre-
spond to the location of the state capitals in the considered region. The star denotes Washington, DC, and the white 
full circle corresponds to New York City.

MSA CCA

Panel A Panel B
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all overlapping CCA clusters we select the one with the largest population. We com-
pare the size of the obtained CCA cluster with the corresponding MSA by comput-
ing the correlation, ρ(ℓ), between the logarithm of the cluster population,  s  i  CCA (ℓ), 
and the logarithm of the population of the MSA,  s  i  MSA . Panel A of Figure 8 shows the 
cross-plot of log s  i  MSA  versus log s  i  CCA (ℓ) for ℓ = 3 km displaying an approximately 
linear behavior. Panel B shows the correlation analysis between CCA clusters and 
MSAs by plotting ρ(ℓ) for other values of ℓ. We quantify the regression, log s  i  CCA  (ℓ)   
= a(ℓ) + b(ℓ)log  s  i  MSA  (ℓ) , by measuring the value of the linear regression slope 
b(ℓ) as a function of ℓ. We find that b(ℓ) ≈ 1.2 for ℓ > 2 km. Correlation in log 
sizes is very good for values of ℓ between 2 km and 6 km; the correlation, dis-
played in panel B, is very high for this range of ℓ. We find that ρ(ℓ) exhibits a 
maximum value of ρ ≈ 0.91 for ℓ ∈ [2.5, 3.5] km, so that we consider ℓ = 3 km as 
the optimal value.

We study the differences between MSAs and CCA clusters in the US for ℓ = 3 km 
by defining the “relocation fraction,”  R i , the fraction of the population that needs to 
be relocated from the MSA i to the CCA cluster i (or vice versa) in order for both to 
have the same population:

(3)   R i  ≡   
|  s  i  MSA  −  s  i  CCA  |  __  

2 max( s  i  MSA ,  s  i  CCA )   .

We find that the mean value of  R i  is 0.28. This indicates that, on average, among all 
matches between MSAs and CCA clusters, 28 percent of their population must be 
relocated for them to have the same population. We also find that the median value 
of  R i  is 0.30.

Figure 7. Zipf Exponent ζ Obtained for the US Clusters at Different ℓ

Note: The error bars correspond to ± 2 standard errors.
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Another plausible measure of similarity between MSAs and CCA clusters is based 
on the Euclidean distance. We define the distance, d(ℓ), between MSAs and CCA as

(4) d(ℓ) ≡   √ ___
     ∑ 

i
   

 

   [ln( s  i  MSA ) − ln( s  i  CCA (ℓ)) ] 2    ,

where the sum is over all the MSAs and their corresponding CCA clusters. In panel 
C of Figure 8 we show the distance between overlapped MSAs and CCA clusters 
as a function of ℓ. We find that when ℓ = 5 km the distance (in population) is mini-
mized, and that it is very low between 2.5 km ≤ ℓ ≤ 6 km in approximate agreement 
with the log correlation analysis of panels A and B.

 In conclusion, there is a good level of agreement between the MSAs and our 
clusters in the domain where MSAs are available. However, MSAs have been 
constructed by the US census only for large agglomerations. Our clusters allow 
researchers to study small as well as large agglomerations.

Figure 8. Correlations between CCA clusters and MSAs

Notes: Panel A: population of the CCA cluster in the US for ℓ = 3km versus its corresponding MSAs, using the 
one-to-one correspondence explained in the text. Panel B: correlation analysis between CCA clusters and MSAs 
by plotting ρ(ℓ) for different values of ℓ. We quantify the regression, ln  s  i  CCA  (ℓ)  = a(ℓ) + b(ℓ) ln  s  i  MSA  (ℓ) , by mea-
suring the value of the linear regression slope b(ℓ) as a function of ℓ. Panel C: Euclidean distance between MSAs 
and CCA clusters.
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In addition to the MSAs, we compare the CCA clusters with US Census Bureau 
“places” previously analyzed in Eeckhout (2004) where a log-normal distribution 
of city sizes was found. We first find a one-to-one correspondence between CCA 
clusters and places, in analogy to the previous match between MSAs and CCA 
clusters. In contrast to MSAs, US census places take into account all towns, vil-
lages, and cities and are based only on their administrative or political boundaries 
(Eeckhout 2004; Holmes and Lee 2009). The smallest and largest places are Lost 
Spring, Wyoming, with exactly one resident, and the political entity of New York 
City (Manhattan, Brooklyn, Queens, Bronx, and Staten Island) with population 
~ 8.0 million.

From the US Census Bureau we obtain the geographical location of each US 
census place. Then, we identify each place with a unique FIPS code. Accordingly, 
each place is associated with a unique CCA cluster. This association leads to 
many places corresponding to a single CCA. To obtain the one-to-one corre-
spondence, among all overlapping places we consider the one with the largest 
population.

In Figure 9, panel A, we show that the smallest cities found with the CCA 
do not correspond well to US census places; however, for cities above popula-
tion s = 10,000, CCA and census places do exhibit a correlation coefficient of 
ρ = 0.79. A detailed comparison between CCA clusters and places shows that 
the number of small CCA clusters is smaller than that for places because the 
CCA tends to group small places that are geographically connected into a larger 
cluster. Therefore, the construction based on places overestimates the number 
of small cities and underestimates the number of large cities in comparison with 
CCA, resulting in the size distribution of places being less fat tailed than the dis-
tribution for CCA clusters. This discrepancy, which may find its root in the fact 
that places are purely based on legal boundaries of locations (Holmes and Lee 

Figure 9. Comparison between US Census Places and CCA Clusters and MSAs

Notes: Panel A shows the log of population of US census places versus the log of population of their correspond-
ing CCA clusters for ℓ = 3 km. The straight line corresponds to a least square fit with slope b = 0.90 ±0.02 and 
y-intercept a = 0.25 ±0.09, from where the correlation coefficient ρ = 0.79 is obtained for cities with population 
larger than 10,000. Panel B shows the log of population of US census places versus the log of population of their 
corresponding MSA. The straight line corresponds to a least square fit with slope b = 0.84 ±0.03 and y-intercept 
a = 0.37 ±0.14, whence the correlation coefficient ρ = 0.87 is obtained.
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2009), may explain the finding of a log-normal distribution of places (Eeckhout 
2004), whose full elucidation is beyond the scope of this paper. Here, we show 
results for ℓ = 3 km as representative, but other values of ℓ lead to the same 
conclusions.

We also perform a comparison between MSAs and places. In Figure 9, panel B, 
we observe a good congruence in the whole range for which MSAs are defined. 
Notice that MSAs by definition have a minimum population of 50,000. Therefore, 
when looking for the one-to-one correspondence, only large places are consid-
ered, leading to a good congruence, as found between a large CCA cluster and 
large places, with correlation ρ = 0.87.

C. Robustness Checks

In this section we test whether the results shown in Section IIA could be forced 
by the CCA or, in other words, whether they could be an artifact of the CCA. 
We randomize the data of GB by placing all populated cells at random positions 
throughout a rectangle of the same area as GB. Then we apply the CCA to obtain 
the corresponding clusters for the new randomized data. In the case of the US, we 
randomize the data by placing all 61,224 FIPS at random positions in a rectangle 
of the same area as the US. Then we apply the CCA to obtain the correspond-
ing clusters. This randomization procedure preserves the population of each cell 
(in the case of GB) and of each FIPS (in the case of the US). In panels A and B 
of  Figure 10, we show the population distribution for the shuffled data and for 
the original data for GB and the US. These results show that the shuffled data do 
not exhibit Zipf’s law. For example, in the US the largest cluster for the shuffled 
data contains 196,112 inhabitants: the reshuffling prevents the emergence of very 
large clusters. This suggests that the CCA is not forcing the data to present a 
power law for the population distribution, and that Zipf’s law arises purely from 
the data.

Figure 10. Population Distribution for Shuffled Data

Notes: The black lines correspond to the real data studied in Section IIA. The red lines correspond to the shuffled 
data for GB (panel A) and the US (panel B), showing a change in the population distribution and suggesting that 
the results of Section IIA are not an artifact of the CCA.
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III. Investigation of the Geography of Cities: Areas and Densities

A. Areas

The CCA presents a unique feature in that it allows the definition of the area 
of cities not based on administrative boundaries. Such a feature is not present in 
agglomerations defined by places or MSAs. Thus, the spatial analysis of the CCA 
allows us to examine a possible feature of the origin of Zipf’s law: highly populated 
cities may have a large geographic area. Therefore, it is of interest to study the dis-
tribution of areas, P(A), defined by the CCA.

As explained above, the data of GB consists of a high-resolution grid with cell 
size 200 m by 200 m. Therefore, after applying the CCA, we calculate the area of 
a cluster in GB as the number of cells in the cluster multiplied by the area of a cell.

The case of the US is more complicated. The data consist of 61,224 populated 
points on the map. Each point corresponds to a different FIPS code, defined by 
the US Census Bureau. US FIPS are simply a partition of the map of the US, so 
that any point in the map belongs to one FIPS code, and each FIPS has an associ-
ated area which is given by the US Census Bureau in the dataset. In the US, FIPS 
codes are not homogeneously distributed. In the New York City area, there is high 
resolution, which means that there are many FIPS covering a small area, but in the 
states of Wyoming or Utah the resolution is quite low, so that there are FIPS with 
a large area. For instance, FIPS in Manhattan typically cover an area of about 0.20 
km2 while in the state of Utah FIPS 49003960100 covers an area of 15,962  km 2 . 
Therefore, when ℓ is of the order of a few kilometers, a FIPS in the Wyoming 
area will remain isolated in its own cluster, but still its area will be extremely 
large, typically a couple of orders of magnitude larger than ℓ2. Therefore, since the 
area of isolated points is very large, these points will appear at the tail and in the 
middle of the distribution P(A), overestimating the outcome for middle and large 
areas. Accordingly, in order to compute P(A), we do not take into account clusters 
containing only one or two FIPS since they overestimate the amount of land they 
cover. Moreover, the population of those isolated points is typically small and 
rarely exceeds s = 10,000. In fact, we find that removing all clusters with only 
one or two FIPS is practically the same as removing all clusters with populations 
smaller than 10,000: only 7 percent of clusters with one or two FIPS have a popu-
lation larger than 10,000.

In panel A of Figure 11 we report the results of P(A) for GB. We find a power law 
distribution of the form

(5) P(A) ∼  A −  ζ A −1 ,

with a Zipf exponent  ζ A  = 0.97 ± 0.04, for ℓ = 1 km. In Figure 11, panel B, we 
show the results of P(A) for the US. As for GB, we find that the area distribution 
for the US follows a power law with exponent  ζ A  = 1.07 ± 0.04, for ℓ = 3 km. This 
extends the results obtained in Makse, Havlin, and Stanley (1995) and Makse et al. 
(1998) for the distribution of areas in the regions of London, Berlin, and in GB. The 
result of Zipf’s law for areas in the US appears to be new.
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In Figure 12 we study the correlations between areas and populations for GB and 
the US. We find that the linear OLS regression lnA = a + b lns leads to the results 
shown in Table 1, indicating a strong correlation between areas and population in 
log sizes (Julian D. Marshall 2007). Indeed, the finding of b ≃ 1 indicates that popu-
lation is, to a good degree of approximation, simply proportional to area. This find-
ing motivates us to study city density in more detail.

B. Densities

In this section we study the population density, D = s/A.4 We study the behavior 
of D versus s and A by performing the linear regressions lnD = a + b lnA, and 

4 See Kevin A. Bryan, Brian D. Minton, and Pierre-Daniel G. Sarte (2007) and Sukkoo Kim (2007) for analysis 
of density in the US history.
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Figure 11. Distribution of areas in GB and the USA

Notes: Panel A: Probability distribution P(A) of the areas of the clusters in GB at different coarse-graining scales ℓ. 
The distribution of city areas for GB is consistent with Zipf’s law. We find  ζ A  = 0.97 ±0.04, for ℓ = 1 km. Panel B: 
Probability distribution of the areas, P(A), for the USA for different ℓ. The black solid lines denote Zipf’s law, i.e., 
a power law function with density exponent −2.

Figure 12. Correlations between Population and Area

Notes: Log of the population, s, versus the log of the area, A, for GB (panel A) with ℓ = 1 km and the USA 
(panel B) with ℓ = 3 km. The black lines denote the OLS regression (see Table 1).
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lnD = a + b lns. Table 2 shows the results of the OLS regression estimates with  
s *  = 5,000 and ℓ = 1 km for GB, and  s *  = 12,000 and ℓ = 3 km for the US (other 
choices of ℓ lead to the same conclusions). We find that population density has very 
little relation to area: the coefficients are quite close to zero. It has a slightly higher 
link with population.

Of course, measurement error in the areas may bias the value of b toward −1 in 
the case of the regression of log density on log area. This measurement error prob-
ably explains the negative b found for the US.5 As FIPS try to have a homogeneous 
population around 5,000 inhabitants, low-density FIPS have large areas. Hence, the 
GB results, which are not subject to that endogeneity bias, should be considered 
the main source of information on density. They show a positive, though small, link 
between density and size.

We also examine population density weighted by the population of the CCA clus-
ter. This measurement allows us to have a sense of the density of an average person 
in a cluster. We define the weighted density  D w , for a given cluster i, in the fol-
lowing manner. Assume cluster i contains  n i  cells (for GB) or FIPS (for the US) 
j = 1…  n i  , each with population  s ij  and area  A ij  . The density of a cell is therefore  
 s ij / A ij  . We define the weighted density of cluster i as  D i,w  = ( ∑ j  

 
    s ij  ×  s ij / A ij  )/( ∑ j  

 
    s ij  ). 

5 Indeed, such a negative correlation contradicts a basic economic idea expressed in the classic models of the 
monocentric city (William Alonso 1964; Richard F. Muth 1969; Edwin S. Mills 1967) that large cities will be 
denser as inhabitants want to be close to the center.

Table 1—Results of the OLS Regression Analysis of ln s = a + b ln A,  
where A Is the Area and S the Population

GB US

lnA 1.065 0.958
(0.007) (0.020)

Constant 8.166 6.567
(0.010) (0.085)

Observations 1,007 1,064
R 2 0.921 0.686

Notes: We report results for s* = 5,000 and ℓ = 1 km for GB and s* = 12,000 and ℓ = 3 km 
for the US. Standard errors are reported in parentheses.

Table 2—Results of the OLS Regression Analysis of ln D = a + b ln A and  
ln D = a + b ln s, where D = s/A Is the Density, A the Area, and S the Population

ln D = a + b ln A ln D = a + b ln s

GB US GB US

ln A 0.065 −0.042 ln s 0.099 0.284
(0.007) (0.010) (0.006) (0.015)

Constant 8.166 6.567 Constant 7.299 3.357
(0.010) (0.086) (0.057) (0.159)

Observations 1,007 1,064 Observations 1,007 1,064
R 2 0.007 0.004 R 2 0.050 0.256

Notes: We report results for s* = 5,000 and ℓ = 1 km for GB and s* = 12,000 and ℓ = 3 km 
for the US. Standard errors are reported in parentheses.
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Notice that the regular density of cluster i (as studied above in this section) is simply  D i   
= ( ∑ j  

 
    s ij  )/( ∑ j  

 
    A ij  ). We have replicated the same regressions reported in Table 2 

using the weighted density  D w . Table 3 shows the results of the OLS regression anal-
ysis. The weighted density shows results that are similar to those in Table 2, espe-
cially for GB, where the data are more fine-grained.

The link between density and city size is perhaps surprisingly small. Some urban 
systems, like New York City, are quite dense, but even then, the effects are moderate: 
the density of New York City is only 3.7 times the national median even though its 
population is 485 times the national median. Of course, we obviate here a consid-
eration of the interesting heterogeneity within cities; for the purposes of this paper 
such a study may be deferred to later work. We find that density has a very small 
dispersion: the standard deviation of its natural logarithm is 0.09 for GB and 0.28 
for the US. In contrast, the corresponding quantity for area and population is about 
one. Hence, we conclude that city area covaries greatly with population, and only a 
little bit with density. We next discuss the link of this and earlier findings with the 
theoretical literature.

IV. Conclusion

We next discuss to what extent existing theories explain or do not explain our 
results. Recent economic theories that are compatible with Zipf’s law for popula-
tions generally rely on the existence of random growth (David G. Champernowne 
1953; Herbert Simon 1955; Krugman 1996; Gabaix 1999a; Ofer Malcai, Ofer 
Biham, and Sorin Solomon 1999; Dobkins and Ioannides 2001; Donald R. Davis and 
David E. Weinstein 2002; Eeckhout 2004; Claes Andersson, Alexander Hellervik, 
and Kristian Lindgren 2005; Gilles Duranton 2006; Duranton 2007; Esteban Rossi-
Hansberg and Mark L. J. Wright 2007; Juan-Carlos Cordoba 2008; Gabaix 2009, 
and references therein): cities follow a proportional growth process where the dis-
tribution of the percentage growth rate is the same for small and large cities.6 Small 
cities, however, grow faster (Glaeser et al. 1992; Glaeser, Jose A. Scheinkman, and 

6 See Wen-Tai Hsu (2009) for an interesting exception.

Table 3—Results of the OLS Regression Analysis of ln Dw = a + b ln A and 
ln Dw = a + b ln s, where Dw Is the Weighted Density, A the Area, and S the Population

ln Dw = a + b ln A ln Dw = a + b ln s

GB US GB US

ln A 0.062 0.181 ln S 0.093 0.325
(0.008) (0.020) (0.006) (0.015)

Constant 8.703 6.214 Constant 7.893 3.521
(0.011) (0.085) (0.066) (0.057)

Observations 1,007 1,064 Observations 1,007 1,064
R 2 0.005 0.005 R 2 0.051 0.099

Notes: We report results for s* = 5,000 and ℓ = 1 km for GB and s* = 12, 000 and ℓ = 3 km 
for the US. Standard errors are reported in parentheses.
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Andre Shleifer 1995; Rozenfeld et al. 2008), which prevents the distribution from 
becoming degenerate. Some theories obtain Zipf’s law only approximately, and do 
not obtain it over the range that we find in the present work.

None of those existing models, however, generates a Zipf’s law for areas. Hence, 
it seems important to develop such models. We took a preliminary stab at this in 
the NBER working paper version of the present paper (Rozenfeld et al. 2009), 
with a model featuring endogenous areas, and generating Zipf’s law for popula-
tion and areas. In such a model, the need of the city to expand pushes inhabitants 
to extend the area of the city (as in Rossi-Hansberg and Wright 2007; Stijn Van 
Nieuwerburgh and Pierre-Oliver Weill 2010). Agents have Cobb-Douglas prefer-
ences on goods and real estate, and hence spend a constant fraction on both items, 
as found in Morris A. Davis and Francois Ortalo-Magné (forthcoming). There 
is a random growth of city productivity as in Erzo G. J. Luttmer (2007), with a 
reflecting barrier. This minimalist model generates (in the limit of small frictions) 
a Zipf’s law for areas and for cities. The conclusion is that Cobb-Douglas prefer-
ences for goods and housing, and random growth with small frictions, generate 
a Zipf’s law for population and areas. A defect of this model, however, is that it 
generates a constant density across cities, and hence fails to generate the positive 
though small elasticity of density with respect to city size.

To do so, it seems warranted to add positive and negative agglomeration exter-
nalities (J. Vernon Henderson 1974), which are also compatible with random 
growth, as in Gabaix (1999b), Eeckhout (2004), and Rossi-Hansberg and Wright 
(2007). Those external effects are conceptually important but tend to be quanti-
tatively moderate when viewed through the lens of scaling. For instance, Antonio 
Ciccone and Robert E. Hall (1996), Glaeser (1998), Stuart S. Rosenthal and 
William C. Strange (2004), Patricia C. Melo, Daniel J. Graham, and Robert B. 
Noland (2009), Luis M. A. Bettencourt et al. (2007), Davis, Jonas D. M. Fisher, 
and Toni M. Whited (2009), and David Albouy (2009) report quantitatively mod-
erate deviations from the hypothesis that cities are constant-return-to scale: a 
recent meta-analysis reports that the median estimated elasticity of productivity 
with respect to city size is 0.04 (Melo, Graham, and Noland 2009).

Such a small impact will modify the Pareto exponent of order unity predicted by 
random growth models by only a small factor, on the order of magnitude of 0.04. 
However, these models will help better understand the behavior of density and other 
“per capita” and “per area” variables.

Hence, to move forward, high on the agenda is the formulation and calibration of 
a model featuring external effects, which would account for the small but real scal-
ings in real estate prices, productivity, amenities, etc., with city sizes, together with 
approximate Zipf’s laws for population and areas.

Another open question that begs a theoretical answer is the following: why is the 
distribution of “legal” cities broadly lognormal (Eeckhout 2004, 2009; Levy 2009;  
Ioannides and Skouras 2009), while the distribution of geography-based “agglom-
erations” is quasi-Zipf distributed? A model studying the evolution of both “eco-
nomic” and “legal” units should presumably explain those facts. (See Holmes and 
Lee 2009 for a discussion of the “legal” definition of cities.)

Finally, most random growth modelling, focused on explaining the city size distri-
bution, has eschewed a detailed analysis of the heterogeneity within a city, such as 
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the ones in the classical models of the monocentric city and the more recent devel-
opments of Masahisa Fujita and Jacques-Francois Thisse (2002), Robert E. Lucas 
and Rossi-Hansberg (2002), and Steven Brakman, Harry Garretsen, and Charles van 
Marrewijk (2009). Further unification of those two “macro” and “micro” strands of 
thinking would be very useful.

To sum up, we have used a “bottom-up” approach, which allows us to construct 
cities independently of their “legal” definition, instead using a more geographical 
and economic basis. The resulting data extend the domain of validity of Zipf’s law 
to a considerable range: we show that when cities are constructed independently of 
their administrative boundaries, Zipf’s law appears to be a genuine regularity for the 
bulk of the city size distribution. Second, we are able to analyze city areas, which 
allows for the estimation of a potentially very important quantity in urban economics, 
and anchors the definition of cities much more in geography. We find evidence for a 
power law distribution of areas, with an exponent close to one. Third, we find a posi-
tive but small link between density and city size. Fourth, we provide a public good 
by providing the correspondence between ZIP code and CCA clusters (Rozenfeld et 
al. 2011), so that other researchers can use the agglomerations constructed with the 
CCA and study dimensions of local economics other than areas and populations.

In the present work, we have investigated only two countries. It is natural to 
extend this study to more countries, an investigation that might offer confirma-
tion of the scaling laws for areas, population, and density that we have found, and 
also perhaps find economically interesting deviations from them. We think that this 
bottom-up approach could be useful for a host of urban questions. Combining our 
geographical approach with land price data could lead to a much more constrained 
and geography-based understanding of the micro (within a city) and macro (across 
cities) structure of cities.
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