CHAPTER 8

ESTIMATING RISK PARAMETERS AND COSTS OF FINANCING

Problem 1
We use the CAPM:
The Expected Return on the stock = 0.058 + 0.95(0.0876) = 0.1412 = 14.12%.
Since the investor is a short-term investor, we use the T-bill rate, and the arithmetic mean. Since the focus is short-term, we don’t need to take compounding into account.
For a long-term investor, we would use the T-bond rate, and the geometric mean:
The expected return 0.064 + 0.95(0.055) = 0.1163 or 11.63%.
The cost of equity for the company is more appropriately the long-term required rate of return, since most projects for the company would be long-term.
(I am using the 8.76% arithmetic average premium for stocks over T.Bills and the 5.5% geometric average premium for stocks over T.Bonds that were prevailing at the time this problem was written. Obviously, both numbers will change as the premiums get updated.)

Problem 2
The levered beta of the company is given by formula: $\beta_L = \beta_u \left(1 + (1-t)(D/E) \right)$.
Solving, we get $\beta_{unlevered} = 0.95/(1+(1-0.36)(1.7/1.5)) = 0.55$
The proportion of the risk of the firm’s equity that can be attributed to business risk is 0.55/0.95 = 58%, while the remainder is due to financial leverage risk.

Problem 3
a. The cost of equity equals 0.064 + 1.70(0.055) = 15.75%
b. If long-term bond rates rise to 7.5%, the cost of equity will rise by a like amount to 16.85%.
c. Since Biogen had no debt, all of its risk is due to business risk.

Problem 4
The Malaysian government bond is not riskfree but in the absence of information about default risk in Malaysia, I will use that as my risk free rate in the local currency. If you assumed a default spread, you are on perfectly safe ground).

a. The expected return on the stock, assuming that the marginal investor is a Malaysian with primarily domestic holdings is $0.115 + 1.15(0.12) = 25.30\%$, using the risk premium based on country risk provided by ratings agencies.

b. For an international investor, who has the ability to diversify globally, some of the risk might be diversifiable, and hence the true beta might be lower. To take care of this possible overstatement, it would be appropriate to compute a beta relative to a more global index, such as the Morgan Stanley Capital Index.

Problem 5

a. Using the CAPM, we compute the expected return as $0.03 + 1.2(0.0876) = 13.51\%$.

We use a T-bill rate, because the focus is on the short-term expected return (the next year). For the same reason, we use the market premium over bills.

b. The cum-dividend price, one year from now, would be $50(1.1351) = 56.75$. The ex-dividend price, assuming that the stock price goes down by the amount of the dividend is $56.75 - 2.50 = 54.25$.

c. Over the last year, the expected return would have been 15.51\%, based on the prevailing T-bill rate then of 5\%.

d. The actual returns were $(-4+2)/54 = -3.70\%$

e. The unlevered beta based on the current capital structure would be $1.2/(1+(1-0.4)(50/100)) = 0.92$. There is no debt in the new capital structure. Hence the new beta would be 0.92.

Problem 6

It’s current levered beta is 1.2. Using the formula for leveraging a beta

$$\beta_L = \beta_u (1 + (1-t)(D / E)),$$

we find the unlevered beta $= 1.2/(1+(1-0.4)(50/100)) = 0.92$. If the D/E ratio is increased to 8, we have the new levered beta equal to $0.92(1+(1-0.4)8) = 5.35$.

Problem 7
a. The combined beta for Novell after the acquisition equals
\[
\left(\frac{2}{1+2}\right)1.5 + \left(\frac{1}{1+2}\right)1.3 = 1.43
\]

b. If Novell borrowed the $1m., we would lever this beta to get
\[
1.43(1+(1-0.4)(1/2)) = 1.86
\]

Problem 8

a. Firm Value = $ 8 billion + $ 1 billion = $ 9 billion

We will assume that the debt is allocated to the divisions in proportion to the market value of equity of the divisions. The unlevered for Hewlett Packard as a company can be computed as
\[
\left(\frac{2.25}{9}\right)1.1 + \left(\frac{2.25}{9}\right)1.5 + \left(\frac{1.125}{9}\right)2.0 + \left(\frac{3.375}{9}\right)1.0 = 1.275
\]
Using the debt to equity ratio of 1/8, we can estimate HP’s levered beta to be
\[
\text{Levered Beta} = 1.275 \left(1 + (1 - 0.36) (1/8)\right) = 1.377
\]
Since the divisional structure and leverage of Hewlett Packard has probably changed over the years, the beta obtained by regressing past returns of HP against a market index will not be the same as 1.377.

b. If the T. bond rate is 7.5%, the cost of equity for the divisions can be computed as follows:

<table>
<thead>
<tr>
<th>Business Group</th>
<th>Beta and Cost of Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframes</td>
<td>Levered Beta = 1.1 ((1+(1-0.36) (1/8))) = 1.19 (0.075+1.19(0.055) = 14.03%)</td>
</tr>
<tr>
<td>Personal Groups</td>
<td>Levered Beta = 1.5((1+(1-0.36) (1/8))) = 1.62 (0.075+1.5(0.055) = 16.41%)</td>
</tr>
<tr>
<td>Software</td>
<td>Levered Beta = 2.0((1+(1-0.36) (1/8))) = 2.16 (0.075+2.16(0.055) = 19.38%)</td>
</tr>
<tr>
<td>Printers</td>
<td>Levered Beta = 1.0 ((1+(1-0.36) (1/8))) = 1.08 (0.075+1.0(0.055) = 13.44%)</td>
</tr>
</tbody>
</table>

To value the printer division, we would use a cost of equity of 13.44%.

c. We will assume that the mainframe division is sold for its estimated value of $2.25 billion. The value of the remaining divisions is now $ 6.75 billion.
After the divestiture, we’d have the unlevered beta equal to
\[
\left(\frac{2.25}{6.75} \right)^{1.5} + \left(\frac{1.125}{6.75} \right)^{2.0} + \left(\frac{3.375}{6.75} \right)^{1.0} = 1.333.
\]
If the proceeds are used to buy back stock, the market value of equity will drop to $5.75 billion. Using the information that HP had debt outstanding equal to $1.0 billion, the levered beta equals 1.333(1+(1-0.36)(1/5.75))=1.48

Problem 9

a. The degree of operating leverage is computed as $\% \Delta \text{Operating Income}/\% \Delta \text{Revenue}$.

<table>
<thead>
<tr>
<th>Firm</th>
<th>Degree of Operating Leverage</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PharmaCorp</td>
<td>$25/27 = 0.92$</td>
<td>1.0</td>
</tr>
<tr>
<td>SynerCorp</td>
<td>$32/25 = 1.28$</td>
<td>1.15</td>
</tr>
<tr>
<td>BioMed</td>
<td>$36/23 = 1.56$</td>
<td>1.3</td>
</tr>
<tr>
<td>Safemed</td>
<td>$40/21 = 1.90$</td>
<td>1.4</td>
</tr>
</tbody>
</table>

b. There is a clear relationship between the degree of operating leverage and the beta. The greater the degree of operating leverage, the more responsive income (and presumably stock returns) will be to changes in revenue which are correlated with changes in market movements.

Problem 10

It is possible that the service is adjusting the beta estimate towards the mean of 1.0

Problem 11

The volatility in commodity prices will be reflected in the beta only to the extent that commodity price movements are correlated with market movements. Commodity prices probably do not move closely with the rest of the market.

Problem 12

a. Here are the results of the regression of AD Corp. returns on the NYSE returns:
R² = 0.285948

The beta value of 0.735. The alpha is computed as –0.147.

b. Using the annualized 6-month T. bill rate as the riskfree rate, we get an expected return of 0.06 + 0.735(0.0876) = 12.44%.

c. Comparing the alpha of -0.147 to (1-β)R_f = (1-0.735)0.06 = .0159, we see that AD did worse than expected relative to the market.

d. If you were undiversified, you would be much more interested in the total standard deviation in the stock, since you cannot eliminate the firm specific risk. 72% (1-0.28) of this risk is diversifiable.

e. 0.735 = (0.2)(2x0.735) + (0.8)β_{rem}, where β_{rem} is the beta of the remaining firm.

Solving, we find β_{rem} = 0.55.

Problem 13

a. The required rate of return is 0.06 + 0.46(0.055) = 8.53%

b. (1-R²) = 95% of this firm’s risk is diversifiable.

C. The current unlevered beta = 0.46/(1+(1-0.36)(20/40)) = 0.35. The total firm is worth 60 m. The average beta of the divisions that will be kept must equal

0.35 = (1/3)0.20 + (2/3)β_{rem}. Solving, β_{rem} = 0.425. The new unlevered beta equals

\[
\left(\frac{40}{40 + 50}\right)0.425 + \left(\frac{50}{40 + 50}\right)0.80 = 0.63
\]

The new levered beta = 0.63(1+(1-0.36)(50 /90))=0.85.

Problem 14

a. (β²)(Var. of mkt)/Var. of stock = R²; hence the β = 1.41

b. Intercept – (1-β)R_f = 0.0039; the monthly riskfree rate is computed as (1.0484)^{1/12} – 1 = 0.0039465 or 0.39465%.

Intercept = 0.0039 – (1-1.141)(.0039465) = .45%
c. The two firms need not have the same beta, if the extents to which their relative stock price movements covary with the market are different. If AMR has a higher beta, then it will also have correspondingly a lower amount of diversifiable firm-specific risk.

Problem 15

a. The expected return over the next year = 0.048 + (1.65)(0.0876) = 19.25%.

b. In this case, we would use a geometric average estimate of the risk premium and a long-term T. bond rate to get 0.064 + (1.65)(0.055) = 15.48%

c. The extent of the monthly overperformance = (1.511)^\frac{1}{12} – 1 = 3.5%.

Hence, Intercept – (1-β)R_f = 0.035, using a value of 0.0328 for the intercept, R_f = 4.14%, after annualizing.

d. It’s current unlevered beta = 1.65/(1+(1-0.4)(.03)) = 1.62. Taking into account the new leverage ratio of [2000+.03(265)(30)]/(265)(30) = 0.2816, the new levered beta becomes 1.62(1+(1-0.4)(.2816)) = 1.89.

Problem 16

a. The riskfree rate on a monthly basis equals 0.4868%. Hence the extent of overperformance equals –0.0005 – (1-1.2)(0.00487) = 0.05% approximately.

b. After the sale of the division and the share repurchase, MAD had $40m. in debt and $120 in equity. Hence, before these events, it would have had $160m. in equity and $20m. in debt. Assuming, for convenience, that the beta before the restructuring is still 1.2, we can compute its unlevered beta as 1.2/(1+(1-0.4)(20/160)) = 1.116. The unlevered beta of the leftover firm other than the magazine division, β_{rem}, must satisfy

\[
\frac{20}{180} 0.6 + \frac{160}{180} \beta_{rem} = 1.116 \; ; \text{hence } \beta_{rem} = 1.1805.
\]

The new levered beta equals 1.1805(1+(1-0.4)(40/120)) = 1.4166.

Problem 17

a. The unlevered beta equals 1.61/(1+(1-0.4)(10/10))=1.01

b. If the debt ratio goes from 1 to .9 and then to 0.8, the levered beta would become 1.01(1+(1-0.4)(0.9)) = 1.5554 and 1.4948 respectively.
Problem 18

a. Unlevered Beta of the firm including cash can be computed by:
\[\frac{1.05}{1+\left(1-0.36\right)\left(\frac{13000}{355\times50}\right)} = 0.715 \]
This beta is depressed by the fact that the firm has a substantial amount of cash on its balance sheet.

Unlevered beta of non-cash assets = Unlevered Beta / (1 - Cash/Firm Value)
\[= \frac{0.715}{1 - \frac{8000}{(13000 + 355\times50)}} = 0.966 \]

b. If some of the cash is paid out, the unlevered beta of the firm will decrease:
Value of Firm after cash dividend = 13000 + 355\times50 – 5000 = 25750
New unlevered beta = 0.966 \left(\frac{22750}{25750}\right) + 0 \left(\frac{3000}{25750}\right) = 0.85

c. The debt ratio would be rise to 13000/(355\times50-5000). The levered beta is 0.85\left(1+\left(1-0.36\right)\left(\frac{13000}{(355\times50-5000)}\right)\right) = 1.41

Problem 19

<table>
<thead>
<tr>
<th>Firm</th>
<th>Beta</th>
<th>debt</th>
<th>equity</th>
<th>d/e</th>
<th>unlevered beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black and Decker</td>
<td>1.4</td>
<td>2500</td>
<td>3000</td>
<td>0.833333</td>
<td>0.933333</td>
</tr>
<tr>
<td>Fedders</td>
<td>1.2</td>
<td>5</td>
<td>200</td>
<td>0.025</td>
<td>1.182266</td>
</tr>
<tr>
<td>Maytag</td>
<td>1.2</td>
<td>540</td>
<td>2250</td>
<td>0.24</td>
<td>1.048951</td>
</tr>
<tr>
<td>National Presto</td>
<td>0.7</td>
<td>8</td>
<td>300</td>
<td>0.026667</td>
<td>0.688976</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>1.5</td>
<td>2900</td>
<td>4000</td>
<td>0.725</td>
<td>1.045296</td>
</tr>
</tbody>
</table>

The average unlevered beta = 0.9798. Using the private firm’s leverage ratio of 25%, we can compute a levered beta of 0.9798\left(1+\left(1-0.4\right)\left(0.25\right)\right)= 1.1268. (If, instead of estimating the unlevered beta for each of the comparable firms, you had used the average beta and debt to equity ratio for the sector to compute an unlevered beta, you would have estimated an unlevered beta of 0.9820)

b. Given the range of unlevered betas for these publicly traded firms, it might be that there are differences amongst these firms and between these firms and the private firm that are not averaged out in the numbers. For example, the degree of operating leverage
might be different. In addition, the private firm owner may not be diversified, in which case it may be inappropriate to use betas in the first place.

Problem 20

a. The unlevered beta for the comparable firms would be $0.95/(1+(1-0.36)(0.35)) = 0.7761$. The levered beta for the division would be $0.7761(1+(1-0.36)(0.25)) = 0.90$

b. If RJR Nabisco had a much higher fixed cost structure than comparable firms, then the division would probably have a higher unlevered beta as well.

Problem 21

The unlevered beta for the current business in 1995 would be $0.9/(1+(1-0.36)(1.0)) = 0.5488$. The unlevered beta of comparable media business firms is $1.2/(1+(1-0.36)(0.50)) = 0.9091$. Hence the unlevered beta of the new business (including the media division) in 1999 can be estimated as $0.3(0.9091) + 0.7(0.5488) = 0.6569$. Leveraging it up, we get the levered beta estimate of 1.077.

Southwestern’s debt-to-capital ratio = _; if it decided to finance its media operations with a debt equity ratio of 50%, then the media division’s debt-to-capital ratio would be 1/3. Hence, Southwestern’s over-all debt-to-capital ratio would be $0.3(1/3) + 0.7(1/2) = 0.45$; hence it’s debt to equity ratio would be 9/11. Hence the levered beta would be $0.6569(1+(1-0.36)(9/11)) = 1.00$

Problem 22

a., b. Not necessarily. A growing firm would expect its beta to decline, since it is becoming a larger portion of the market portfolio. Presumably, in some ways, it is also getting diversified. The rate of decline would decrease eventually, and in any case, the beta shouldn’t drop below 1.0, unless the firm sees other changes.

Problem 23

a. The levered beta using comparable firm data would be $1.15(1+(1-0.4)(0.2)) = 1.288$.

b. Using the regression, a range estimate with a likelihood of 95% that the true beta lies within it, is -0.25 to 1.75.

c. Using the comparable firm beta,

Cost of Equity = 6.5% + 1.29 (5.5%) = 13.60%
Cost of Capital = 13.60% (10/12) + 7.5% (1-.4) (2/12) = 11.34%

Problem 24

a. With a default spread of 1% over the treasury bond rate, we have a pre-tax cost of debt of 7%. Hence the estimated value of the debt would be

\[\frac{600}{.07} \left[1 - \frac{1}{1.07^n} \right] + \frac{10000}{1.07^n}, \]

where \(n \) is the average maturity of the debt. This works out to $9.523 billion, using an average maturity of 6 years

b. The pre-tax cost of debt would be 7%, given that BBB bonds earn 1% over the treasury bond rate. The after-tax cost of debt would be

After tax cost of debt = 7% (1-.35) = 4.55%

c. Using the estimated market value of debt, the debt-to-capital ratio is 9.523/(25+9.523) = 0.2759; the debt/equity ratio is 0.38. The levered beta estimate, using the average unlevered beta of firms in the industry is 0.8[1+(1-0.35)0.38] = 0.998; hence the cost of equity is 6+0.998(5.5) = 11.49. Hence, the cost of capital = (0.2759)(7)(1-0.35) + (1-0.2759)(11.49) = 9.576%