Recall that \(\{x_t\} \) is a martingale if \(E[x_{n+h} \mid x_n, x_{n-1}, \ldots] = x_n \) for all \(n \) and for all lead times \(h > 0 \). Actually, to establish that \(\{x_t\} \) is a martingale, one simply needs to prove the above formula for \(h = 1 \) since it can be shown that if it holds for \(h = 1 \) it must hold for all \(h > 0 \).

1) Suppose \(x_t = x_{t-1} + \varepsilon_t \) where \(\varepsilon_t = e_t + \beta e_{t-1} \), \(\beta \neq 0 \), and \(\{e_t\} \) is strict white noise.

a) What is the best linear predictor of \(x_{n+1} \) based on \(x_n, x_{n-1}, \ldots \) ? Justify your answer.

b) What is the best possible predictor of \(x_{n+1} \) based on \(x_n, x_{n-1}, \ldots \) ? Justify your answer.

c) Compare your answers to a) and b) to decide whether \(\{x_t\} \) is a martingale. (Keep in mind the discussion at the top of this handout).

2) Suppose \(x_t = \alpha x_{t-1} + e_t \) where \(\{e_t\} \) is strict white noise.

a) If \(|\alpha| < 1 \), is \(\{x_t\} \) a martingale? Justify your answer.

b) If \(\alpha = 1 \), is \(\{x_t\} \) a martingale? Justify your answer.

3) Suppose \(\{\varepsilon_t\} \) are martingale differences. Suppose we "integrate" \(\{\varepsilon_t\} \) to obtain a series \(\{y_t\} \).
 Specifically, define \(y_1 = \varepsilon_1, y_2 = \varepsilon_1 + \varepsilon_2, \) etcetera.

a) Show that \(y_t = y_{t-1} + \varepsilon_t \).

b) Use the results of a) to show that \(\{y_t\} \) is a martingale. (Thus, integrating a martingale difference yields a martingale.)