4: MORE HYPOTHESIS TESTING

The Logic Behind Hypothesis Testing

For simplicity, consider testing $H_0 : \mu = \mu_0$ against the two-sided alternative $H_1 : \mu \neq \mu_0$.

Even if H_0 is true (so that the expectation of \bar{X} is μ_0), \bar{X} will probably not equal μ_0 exactly.

Instead, we need to decide if the observed difference between \bar{x} and μ_0 can plausibly be accounted for by chance (i.e., by the natural variability of \bar{X}) or should be attributed to a systematic difference between the true and hypothesized means, μ and μ_0.
If H_0 is true, then Z is approximately standard normal, and will very rarely lie outside the interval $(-z_{\alpha/2}, z_{\alpha/2})$.

But if $\mu \neq \mu_0$ then the distribution of Z will have a nonzero mean, with the same sign as $\mu - \mu_0$, and it would not be so unusual to find Z in the rejection region.
So if for our given data we find that z is in the rejection region, there are only two possibilities:

- EITHER H_0 is true, in which case the observed value of z must be just a "fluke", or rare event, due simply to the natural variability of \bar{X}; (This "false alarm" scenario is not impossible, although it is somewhat implausible, especially if α is small),

- OR ELSE H_0 must be false.
Here, a reasonable person would conclude that there is sufficient evidence to reject H_0.

The situation is analogous to having an alarm which almost never goes off falsely, but which is now ringing.

It is more plausible that the largeness of $|z|$ is caused by some systematic effect (i.e., that $\mu \neq \mu_0$), rather than by the natural variability of a standard normal. Thus, we reject H_0.
Statistical Significance And The Meaning Of α

- If H_0 is rejected, we say that the results are statistically significant at level α. In this case, we have proven that H_1 is true, beyond a reasonable doubt (but not beyond all doubt).

Note that α is not the probability that H_0 is true, since there is nothing random about H_0.

Instead, α represents the false alarm rate (Type I error rate) of the test, i.e., the proportion of the time that a test of this kind would reject H_0 if H_0 were in fact true.
A finding of statistical significance does not provide absolute proof that H_0 is false.

We may be committing a Type I error (i.e., we may have a false alarm).

To make matters worse, we may never find out whether we made a mistake by rejecting H_0.

We do know, however, that if H_0 were true, then false alarms would be unlikely to occur: they would have probability α.
If H_0 is not rejected, then we say that the results are not statistically significant at level α.

The terminology often used here is that H_0 is "accepted", but this should be avoided, since our inability to find sufficient evidence to reject H_0 does not in any way demonstrate that H_0 is true. (By analogy, the acquittal of a defendant on murder charges obviously does not constitute proof of innocence.)
Tests For μ When σ Is Unknown

When σ is unknown, we estimate it by the sample standard deviation, S_x.

The test statistic to use in this case is

$$t = \frac{\bar{X} - \mu_0}{S_x / \sqrt{n}}.$$

If the population is normal and H_0 is true, then t has a Student’s t distribution with $n-1$ degrees of freedom.
The criteria for a level α test are:

\[H_1 \quad \text{Rejection Region} \]

\[
\begin{align*}
\mu \neq \mu_0 & \quad |t| > t_{\alpha/2} \\
\mu < \mu_0 & \quad t < -t_\alpha \\
\mu > \mu_0 & \quad t > t_\alpha
\end{align*}
\]

This test is commonly referred to as the t-test.

Values of t_α can be found in Table 2, using $\nu = n - 1$.

As ν gets larger, t_α becomes smaller.

For $\nu \geq 30$, t_α and z_α are virtually identical.
Before applying the t-test, it is wise to check a histogram of the data for approximate normality. Although it is safe to apply the t-test even if the data contain outliers, the actual level (false alarm rate) of the test will be somewhat smaller than α in this case.

A more serious problem is that the probability of a Type II error will be larger, so the test has a harder time detecting that H_1 is true, than in the normal case.