THE YULE WALKER EQUATIONS

The Yule-Walker equations arise naturally in the problem of linear prediction of any zero-mean weakly stationary process \(\{x_t\} \) based on a finite number of contiguous observations. First, we will consider the case where \(\{x_t\} \) is the AR(\(p \)) process \(\sum_{k=0}^{p} a_k x_{t-k} = \varepsilon_t \), where \(a_0 = 1 \), and \(\text{var} \ \varepsilon_t = \sigma_p^2 \). If \(\{\varepsilon_t\} \) are the autocovariances, then

\[
E[x_t \varepsilon_t] = E[\sum_{k=0}^{p} a_k x_{t-k}] = \sum_{k=0}^{p} a_k \varepsilon_k .
\]

On the other hand,

\[
E[x_t \varepsilon_t] = E[(\varepsilon_t - \sum_{k=1}^{p} a_k x_{t-k}) \varepsilon_t] = E[\varepsilon_t^2] = \sigma_p^2 .
\]

Therefore,

\[
\sum_{k=0}^{p} a_k \varepsilon_k = \sigma_p^2 . \tag{1}
\]

For \(l > 0 \), we have

\[
0 = E[x_t \varepsilon_{t+l}] = E[\sum_{k=0}^{p} a_k x_{t+l-k}] = \sum_{k=0}^{p} a_k \varepsilon_{l-k} . \tag{2}
\]

Writing (1) and (2) for \(l = 1, \ldots, p \) in matrix form, we have the Yule-Walker equations:

\[
\begin{bmatrix}
\varepsilon_0 & \varepsilon_1 & \cdots & \varepsilon_p \\
\varepsilon_1 & \varepsilon_0 & \cdots & \varepsilon_{p-1} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon_p & \varepsilon_{p-1} & \cdots & \varepsilon_0 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
\vdots \\
a_p \\
\end{bmatrix}
= \begin{bmatrix}
\sigma_p^2 \\
0 \\
0 \\
\end{bmatrix} . \tag{3}
\]

Let \(\Sigma_p \) denote the \((p+1) \times (p+1) \) Toeplitz covariance matrix in (3). Note that \(\Sigma_p \) is nonnegative definite, since for any \(p+1 \)-dimensional vector \(b = (b_0, \ldots, b_p)' \) we have

\[
b' \Sigma_p b = \sum_{j=0}^{p} \sum_{k=0}^{p} b_j c_{j-k} b_k = \text{var} \sum_{j=0}^{p} b_j x_{t-j} \geq 0 .
\]

Note that we did not need to assume that \(\{x_t\} \) was AR(\(p \)) to get this last result.
Suppose now that \(\{x_t\} \) is any weakly stationary zero mean process with autocovariance sequence \(\{c_r\} \), and we want to find the best linear predictor of \(x_t \) based on \(x_{t-1}, \ldots, x_{t-p} \). Writing the (one-step) predictor as \(\hat{x}_t = -\sum_{k=1}^{p} b_k x_{t-k} \), the mean squared prediction error is (with \(b_0 = 1 \))

\[
E[x_t - \hat{x}_t]^2 = E[\sum_{k=0}^{p} b_k x_{t-k}]^2 = E\left[\sum_{j=0}^{p} b_j x_{t-j} \sum_{k=0}^{p} b_k x_{t-k}\right] = \sum_{j=0}^{p} \sum_{k=0}^{p} b_j c_{j-k} b_k = b' \Sigma_p b .
\]

We will now show that \(b' \Sigma_p b \) is minimized (subject to the constraint that \(b_0 = 1 \)) by taking \(b = a \), where \(a = (1, a_1, \ldots, a_p)' \) is the solution to the Yule-Walker equations (3), and that the resulting minimum attainable mean squared prediction error is \(\sigma_p^2 \). Thus, by solving the Yule-Walker equations for \(a_1, \ldots, a_p \), and \(\sigma_p^2 \), we obtain the coefficients of the best linear predictor of \(x_t \) based on \(x_{t-1}, \ldots, x_{t-p} \) and the corresponding minimum mean squared error of prediction, even if \(\{x_t\} \) itself is not AR(\(p \)).

Here is the proof of the theorem stated above. Note that

\[
b' \Sigma_p b = (a + (b-a))' \Sigma_p (a + (b-a))
\]

\[
= a' \Sigma_p a + 2(b-a)' \Sigma_p a + (b-a)' \Sigma_p (b-a) .
\]

The first term is

\[
a' \Sigma_p a = (1, a_1, \ldots, a_p) \begin{bmatrix} \sigma_p^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \sigma_p^2 .
\]

The second term is

\[
2(b-a)' \begin{bmatrix} \sigma_p^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = 0 ,
\]

since the first entry of \(b-a \) is \(b_0 - a_0 = 1 - 1 = 0 \). It follows that the mean squared error of the linear predictor \(b \) is

\[
b' \Sigma_p b = \sigma_p^2 + (b-a)' \Sigma_p (b-a) .
\]
Note that \((b-a)'\Sigma_p (b-a)\) will always be nonnegative, and will be zero if we take \(b = a\). Thus, the best linear predictor is \(a\), and the resulting minimum attainable mean squared prediction error is

\[a'\Sigma_p a = \sigma_p^2. \]