The Projection Theorem for Hilbert Spaces

Suppose H is a Hilbert space. Thus, H is a vector space with an inner product (\cdot, \cdot) satisfying the properties given in Handout 10, page 2. We say that vectors x, y in H are orthogonal if $(x, y) = 0$. The norm of a vector x in H is defined by $\|x\| = (x, x)^{1/2}$.

Let M be a subspace of H. (M is a vector space, and any element of M is an element of H).

Let x be any vector in H but not in M. We want to find the vector z in M which is closest to x in the sense that

$$\|x - z\| = \min_{y \in M} \|x - y\|.$$

This means that $\|x - z\| \leq \|x - y\|$ for any y in M. In other words, we want to find the vector z in the subspace M which is at least as close to the given vector x as any other y in M. Such a vector z is called the orthogonal projection of x on M.

We are going to show that if z satisfies the following two conditions, then $\|x - z\| = \min_{y \in M} \|x - y\|$. so that z is the orthogonal projection of x on M. The conditions are

a) $z \in M$

b) $(x - z) \perp M$.

Condition b) means that $x - z$ is orthogonal to any element of M.

In Problems 1-4, suppose that z does satisfy conditions a) and b) above, and suppose that y is any element of M.

1) Show that $z - y$ is in M.

2) Show that $(x - z) \perp M$.

3) Show that $\|x - y\|^2 = \|x - z\|^2 + \|z - y\|^2$.
4) Show that \(\|x - z\| = \min_{y \in M} \|x - y\| \), so that \(z \) is indeed the orthogonal projection of \(x \) on \(M \).

5) Consider the special case where \(H = M^X \), the Hilbert space generated by linear combinations of the weakly stationary zero mean process \(\{X_t\} \) with inner product \((X, Y) = E[XY] \). Take \(M = M^X_t \), the linear subspace generated by the elements \(X_s \) for \(s \leq t \). Take the vector \(x \) to be \(X_{t+\nu} \). Then explain why the problem of finding the orthogonal projection of \(x \) on \(M \) reduces to the linear prediction problem. What does the orthogonal projection of \(X_{t+\nu} \) on \(M^X_t \) minimize?