1) If \(\{x_t\} \) is \(AR(p) \), show that

\[
c_0 = \sigma^2 + \sum_{k=1}^{p} a_k c_{-k}.
\]

This formula is the Yule-Walker equation for \(r = 0 \).

2) If \(\{x_t\} \) is the \(MA(1) \) process \(x_t = \varepsilon_t - 0.9\varepsilon_{t-1} \) where \(\{\varepsilon_t\} \) is zero-mean white noise, show that \(\{x_t\} \) is invertible, and find its \(AR(\infty) \) representation.

3) The **Yule-Walker estimates** of an \(AR(p) \) model are obtained by solving the sample version of the first \(p+1 \) Yule-Walker equations (with \(\hat{c}_r \) in place of \(c_r \))

\[
\hat{c}_0 = \sigma^2 + \sum_{k=1}^{p} a_k \hat{c}_{-k},
\]

\[
\hat{c}_r = \sum_{k=1}^{p} a_k \hat{c}_{r-k} \quad (r = 1, \ldots, p),
\]

and solving for the \(p+1 \) unknowns \(\sigma^2, a_1, \ldots, a_p \).

Obtain an explicit expression for the Yule-Walker estimates of an \(AR(1) \) model in terms of \(\hat{c}_0 \) and \(\hat{c}_1 \).

Give an interpretation of the estimate of \(a_1 \) in terms of autocorrelation.

4) Construct the Dow returns, using \(\text{DowRet} = \text{diff}(\log(\text{Dow})) \). Assume that the Dow returns were generated by a time series with zero (theoretical) mean. Estimate an \(AR(1) \) model for this data using the Yule-Walker estimates. Is the estimated model closer to a white noise process, or to a random walk? In view of the fact that we are looking at daily returns on a stock index, does your answer make sense? Use your fitted model to predict the return one day ahead and two days ahead.

5) Suppose \(\{x_t\} \) is an \(AR(1) \) process, \(x_t = a x_{t-1} + \varepsilon_t \), where the \(\varepsilon_t \) are iid with zero mean, and \(|a| < 1 \).

Prove that \(\{x_t\} \) is a linear process.
6) Consider the model $x_t = e_t + 2e_{t-1} + e_{t-2}$, where the e_t are iid with zero mean and e_t is independent of x_{t-1}, x_{t-2}, \ldots.

a) Prove that $\{x_t\}$ is zero-mean white noise.

b) What is the best linear predictor of x_{t+1} based on x_t, x_{t-1}, \ldots? Prove your answer.

c) What is the optimal predictor (not necessarily linear)? Prove your answer.