Market simulation

- Your mission: maximize portfolio value
 \[= \text{(# shares} \times \text{your valuation per share}) + \text{cash}.\]
- Different people have different valuations for shares; hence there are “gains from trade.” Keep your valuation secret!
- You may freely buy and/or sell shares at any agreed upon price, but: cash balance must be positive at all times.
- Keep a record of all transactions.

Record Sheet

<table>
<thead>
<tr>
<th>Number</th>
<th>Buy/Sell</th>
<th># of Shares</th>
<th>Price</th>
<th>Cash Balance</th>
<th>Portfolio Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buy</td>
<td>1</td>
<td>340</td>
<td>340</td>
<td>780</td>
</tr>
<tr>
<td>2</td>
<td>Sell</td>
<td>2</td>
<td>40</td>
<td>1040</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Buy</td>
<td>1</td>
<td>1</td>
<td>1040</td>
<td>1010</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Context and concepts

- Context: Analyst/investor/consultant needs to estimate product price in (new or changing) market.
- Concepts: demand curve, supply curve, equilibrium; shifts in demand, supply and price.

The demand curve

- Demand curve: quantity “demanded” at any given price
 - Slope and shape depend on tastes
 - Normally downward sloping
 - Price on the vertical axis
- Inverse demand: what would you be willing to pay for a new laptop?

Demand curve: at price \(P_1 \) buyers are willing to purchase \(Q_1 \).
The demand function
- Quantity demanded also depends on “other factors”
 - prices of substitutes or complements (Pepsi and Coke; cars and gas)
 - population and income (expensive vacations; higher education)
 - advertising (Nike; cod fish)
 - lots of other things
- Changes in other factors shift the demand curve
- Important to distinguish between
 - movements along the demand curve (changes in price)
 - shifts in the curve itself (changes in other factors)

The supply curve
- Supply curve: quantity “supplied” at any given price
 - Slope and shape depend on costs (+ market power)
 - Normally upward sloping
 - Price on the vertical axis
- Inverse supply: at what price would you be willing to sell your new laptop?

The supply function
- Quantity supplied also depends on “other factors”
 - Input prices (gasoline ← oil price)
 - technology and nature (earthquake)
 - Number of suppliers
 - lots of other things
- Changes in other factors shift the supply curve
- Important to distinguish between
 - movements along the supply curve (change in price)
 - shifts in the curve itself (changes in other factors)
Market equilibrium

- [Equilibrium of a system: situation where all forces cancel out, so that the system is at rest]
- Equilibrium price: a price \(P^* \) such that supply equals demand
- \(P > P^* \) implies excess supply
- \(P < P^* \) implies excess demand

![Market equilibrium: intersection of supply and demand curves](image)

Law of supply and demand

In competitive markets,
- When there is excess supply, there is a tendency for price to decrease
- When there is excess demand, there is a tendency for price to increase
- In general, price tends to its equilibrium level

Simulation analysis

- Why did the price behave as it did?
- Who ended up with the shares?
- Who were the big winners?

Changes in market conditions

- [a.k.a. "comparative statics"]
- What is the impact of changes in "other factors" on price and output? (higher fuel prices and airfares; Taiwan earthquake and DRAM prices; economic growth in Calif and price of electricity)
- Answer: compute new equilibrium after one or both curves shift

![Impact of Taiwan earthquake on DRAM price and output](image)
Price vs output effect

- The relative impact of a change on price and output depends on the slope of the relevant curve.
 - Supply shift:
 - Impact on price greater the “steeper” the demand curve
 - Impact on output greater the “flatter” the demand curve
 - Demand shift:
 - Impact on price greater the “steeper” the supply curve
 - Impact on output greater the “flatter” the supply curve

Exercises

For each of the following events, shift the appropriate supply and demand curves [markets in brackets]. What is the impact on price and output? Is the impact primarily on price or output?

- Unusually rainy fall in NYC [umbrellas]
- Fall in the NASDAQ [housing market in Palo Alto]
- Wireless bandwidth breakthrough [wireless web]
- More liberal Medicare [prescription drugs]

Supply and demand in practice
Application: rent regulation

- In NYC (and many other cities), rents are capped below their equilibrium level.
- What is the impact of rent regulation on market equilibrium?
- Who gains and who loses from rent controls?
- What are the goals of rent regulation? Are there any alternatives to achieve the same goals?

Tricky ones

- **Microprocessors:**
 - Who’s the consumer? How is demand determined?
- **Textbooks**
 - Who’s the consumer? How price sensitive?
- **Prescription drugs**
 - Who’s the customer? How price sensitive?
 - What if they’re OTC?
- **“The Sopranos” (cable TV show)**
 - What’s the demand? What’s the revenue model?

Takeaways

- The supply and demand diagram is a framework for understanding markets.
- Inputs: characteristics of buyers and sellers (demand and supply curves).
- The quantitative impact of “shocks” depends on the sensitivity of buyers and sellers to changes in price (slopes of demand and supply curves).
- Market forces are often felt even when prices are “controlled” by regulation.