Context and concepts

- Context (continued from last class): You need to decide how much to produce (possibly zero). What costs should you take into account?
- Concepts: fixed cost, variable cost, average cost, marginal cost. Short run and long run.

Costs

Cost function is total cost of inputs the firm needs to produce output q. Denoted C(q).
- Fixed cost (FC): the cost that does not depend on the output level, C(0).
- Variable cost (VC): that cost which would be zero if the output level were zero, C(q) – C(0).
- Average cost (AC) (aka "unit cost"): total cost divided by output level, C(q)/q.
- Marginal cost (MC): the unit cost of a small increase in output.
- Derivative of cost with respect to output, dC/dq
- Approximated by C(q)-C(q-1)

Examples

- Bagels: modest fixed cost (space), relatively constant marginal cost (labor and materials).
- Electricity generation: large fixed cost (plant), initially declining marginal cost (large plants are more efficient, and many plants have "startup" costs). [More on this in Assignment 1.]
- Music CDs: large fixed cost (recording), small marginal cost (production and distribution)
- Computer software: ditto.
- Airlines: ditto.

T-shirt factory example

To produce T-shirts:
- Lease one machine at $20 / week.
- Machine requires one worker.
- The machine, operated by the worker, produces one T-shirt per hour.
- Worker is paid $1/hour on weekdays (up to 40 hours), $2/hour on Saturdays (up to 8 hours), $3 on Sundays (up to 8 hours).

T-shirts: costs

Suppose output level is 40 T-shirts per week. Then,
- Fixed cost: FC = $20.
- Variable cost: VC = 40 × $1 = $40.
- Average cost: AC = (20+40)/40 = $1.5
- Marginal cost: MC = $2.
- Note that producing an extra T-shirt would imply working on Saturday, which costs more.

Similar calculations can be made for other output levels, leading to the cost function ...
Mac

T-shirts: how many to make

Scenario A: Benetton™, sole buyer of T-shirts, offers price \(p = $1.8 \) per T-shirt.
- Benetton™ is willing to buy as many T-shirts as factory wants to sell (at given price).

Should factory increase output beyond 40 T-shirts/week, thus operating on Saturdays?
- \(p = 1.8, \ AC = 1.5, \ MC = 2 \)
- Although factory is making money at \(q=40 \) (because \(p > AC \)), profits would be lower if it produced more (because \(p < MC \)). It would lose money at the margin. (Verify: compute profit at \(q=40,41 \))

Scenario B: Benetton™ offers \(p = $1.3 \) per T-shirt.
- No matter how much factory produces, price is below per-unit cost, i.e., no matter how much factory produces, it will lose money:
 \[p < AC \quad \text{implies} \quad q \times p < q \times AC \]
 \[\text{Revenue < Cost} \]
- Optimal decision is not to produce at all.

Important lesson:
Marginal cost: how much to produce
Average Cost: whether to produce

Supply curve

Supply curve: how much a firm produces at each price.
Generalizing from previous example:
- Firm can sell all it wants at given price ("competitive").
- If price is below minimum average cost, \(p_0 \), then firm is better off by shutting down. (What if fixed cost is sunk? More shortly.)
- If price is greater than \(p_0 \), say \(p' \), then firm should sell output \(q' \) such that \(MC=p' \).

Supply curve is given by MC curve for values of \(p \) greater than the minimum of AC, zero for values of \(p \) below minimum of AC.
Short and long run

- Suppose it’s Monday morning. Lease for machine has already been paid. Price offered by Benetton is $1.3. Should factory shut down?
- Answer: not this week (short run). Lease has already been paid, nothing I can do about it. I would keep the factory open for any price above $1 per T-shirt.
- Suppose it’s Friday afternoon and I have to decide whether to pay the fixed cost (machine lease) for next week. Then analysis is as before (long-run): shut down if price is $1.3 (in fact, any price below $1.5).
- General result: you typically have more control over costs in long run than short run.

Examples revisited

- Airlines: the combination of high fixed costs and low marginal costs means they’re willing to fly even at low prices. But these prices may not be consistent with long-run profitability.
- How to avoid the p=MC trap:
 - Limit capacity (electricity)
 - Monopoly (software, pharmaceuticals)
 - Product differentiation (music CDs, software)
 - Regulation (cable, electricity)
- More on this later.

Takeaways

- In a competitive market, a firm can sell all it wants at the market price.
- A competitive firm will
 - Use AC to decide whether to product or shut down (produce if p > AC, otherwise shut down).
 - Use MC to decide how much to produce (produce as long as p > MC). In fact, MC defines the firm’s supply function.
- In industries with low MC, market pressures may produce prices that are inconsistent with long-run profitability.