LIABILITIES

EFFECTS

Fall 2002
Surplus = Assets - Liabilities

\[S_1 = A_1 - L_1 \quad \text{at one} \]

\[S_0 = A_0 - L_0 \quad \text{at zero} \]

\[\frac{S_1}{S_0} = (1 + r_s) = \frac{A_1 - L_1}{A_0 - L_0} \]

\[= \frac{1}{A_0} \begin{pmatrix} A_0 \\ S_0 \end{pmatrix} - \frac{1}{L_0} \begin{pmatrix} L_0 \\ S_0 \end{pmatrix} \]

\[= (1 + r) \frac{A}{S_0} - (1 + r) \frac{L}{S_0} \]
\[R_S = \left(\begin{array}{c} A \\ 0 \\ S \\ 0 \end{array} \right) r_A - \left(\begin{array}{c} L \\ 0 \\ S \\ 0 \end{array} \right) r_L \]

\[\text{Mean } \bar{R}_S \]

\[\bar{R}_S = \left(\begin{array}{c} A \\ 0 \\ S \\ 0 \end{array} \right) \bar{R}_A - \left(\begin{array}{c} L \\ 0 \\ S \\ 0 \end{array} \right) \bar{R}_L \]

\[\text{Variance } \sigma^2_S \]

\[\sigma^2_S = \left(\begin{array}{c} A \\ 0 \\ S \\ 0 \end{array} \right)^2 \sigma^2_A + \left(\begin{array}{c} L \\ 0 \\ S \\ 0 \end{array} \right)^2 \sigma^2_L - 2 \left(\begin{array}{c} A \\ 0 \\ S \\ 0 \end{array} \right) \left(\begin{array}{c} L \\ 0 \\ S \\ 0 \end{array} \right) \rho_{AL} \sigma_A \sigma_L \]
What can manager influence:

1. Can not affect \(A_0, L_0 \) or \(S_0 \)
2. Can not affect \(\bar{r}_L \) or \(\sigma_L \)
3. Can only affect \(\rho_{AL}, \bar{R}_A \) and \(\sigma_A \)

Note if \(\rho_{AL} = 0 \) can concentrate on asset allocation and ignore liabilities but being conscience that mean return and variance of surplus are affected by liabilities when looking at trade off.

What if \(\rho_{AL} \neq 0 \)?

1. What are desirable assets?

Those assets that serve hedge functions.
Unlike normal mean variance, portfolio manager needs to be concerned with σ_A, \overline{R}_A, and ρ_{AL}.

Can view as three-dimensional with the following properties:

1. $\max \overline{R}_A$

2. $\min \sigma_A$

3. $\max \rho_{AL}$

Efficient set defined over these three.
Consider, however, trade off. Terms that influence variance under managers control are:

\[
\sigma_s^2 = \left(\frac{A}{S} \right)^2 \sigma_A^2 + \left(\frac{L}{S} \right)^2 \sigma_L^2 - 2 \frac{A}{S} \frac{L}{S} \rho_{AL} \sigma_A \sigma_L
\]

\[
\sigma_s^2 = \left(\frac{L}{S} \right)^2 \sigma_L^2 + \frac{2A}{2S} \sigma_L^2 \left[\left(\frac{1}{2\sigma_L} \right) \sigma_A^2 - \rho_{AL} \sigma_A \right]
\]

Note first term and term in front of brackets is not under manager's control, thus manager can only control

\[
\left[\left(\frac{1}{2\sigma_L} \right) \sigma_A^2 - \rho_{AL} \sigma_A \right]
\]

as long as this term is constant risk unchanged and this term measures trade-off.
For example, assume:

1. \(A_0 = 100 \)
2. \(L_0 = 80 \)
3. \(\sigma_L = 20 \)

then \[
\frac{1}{2\sigma} \frac{A_0}{L_0} = \frac{1}{40} \frac{100}{80} = \frac{1}{32}
\]

and I would be equally happy to choose a portfolio with \(\sigma_A^2 \) up 10 if \(\rho_{AL} \sigma_A \) was also up \(\left(\frac{1}{32} \right) \cdot 10 \).

This explicit tradeoff allows me to collapse the choice into mean return and standard deviation.
Example 2:

Shape and TINIC suggests giving less than full credit to the risk reducing aspects of liabilities because, among other reasons, uncertainty in their estimated value.

<table>
<thead>
<tr>
<th>Asset Classes</th>
<th>ρ_{iL}</th>
<th>σ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate Bonds</td>
<td>.20</td>
<td>8</td>
</tr>
<tr>
<td>Growth Stocks</td>
<td>.65</td>
<td>20</td>
</tr>
</tbody>
</table>

$$A_0 = 100$$

$$L_0 = 80$$

$$\sigma_L = 20$$
\[\frac{1}{2} A_0 \sigma_A^2 \]

Intermediate

\[\frac{110064}{28020} = 2 \]

Growth

\[\frac{1100400}{28020} = 12.5 \]

and term in parenthesis

\[(2 - 1.6) = .4\]

\[(12.5 - 13) = -.5\]

and the higher "risk" asset is actually less risky. It is possible, however, that both assets should enter.
Note last term in brackets is:

\[
\frac{\text{cov}\left(R_A R_L\right)}{\sigma_A \sigma_L} \sigma_A
\]

or

\[
\frac{\text{cov}(R_A R_L)}{\sigma_L}
\]

But

\[
\text{Cov}\left(R_A R_L\right) = \Sigma_i \text{Cov}(R_i R_L)
\]

so individual assets enter linearly. The affect on last term in brackets can be looked at one term at a time. However, this does not hold for \(\sigma_A \).