Basic Valuation Theory

Total Return:

\[r = \frac{c_1}{P_0} + \frac{\Delta P}{P_0} \quad \text{where} \quad \Delta P = P_1 - P_0 \]

- \(c_1 \) is the cash flow payment
- \(P_1 \) is the end of period security value
- \(P_0 \) is the beginning of period security value

Implied Valuation Model:

\[P_0 = \frac{c_1 + P_1}{1 + r} = \frac{c_1}{1 + r} + \frac{P_1}{1 + r} \]

Weighted Valuation Model:

\[r = W_a \frac{C_1}{P_0} + W_b \frac{\Delta P}{P_0} \]

where \(w_a \) and \(w_b \) are 1.0
Weighted Valuation Model:

\[r = w_a \frac{c_1}{P_0} + w_b \frac{\Delta P}{P_0} \]

where \(w_a \) and \(w_b = 1.0 \)

Implied Weighted Valuation Model:

\[P_0 = \frac{w_a c_1}{(w_b + r)} + \frac{w_b P_1}{(w_b + r)} \]

<table>
<thead>
<tr>
<th>Total Return Index</th>
<th>(c_1 / P_0)</th>
<th>(P / P_0)</th>
<th>(r =) index of total return</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_a = 1.0); (w_b = 1.0)</td>
<td>.05</td>
<td>.05</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td>.02</td>
<td>.08</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td>.08</td>
<td>.02</td>
<td>.010</td>
</tr>
<tr>
<td>(w_a = 0.60); (w_b = 0.80)</td>
<td>.05</td>
<td>.05</td>
<td>.070</td>
</tr>
<tr>
<td></td>
<td>.02</td>
<td>.08</td>
<td>.076</td>
</tr>
<tr>
<td></td>
<td>.08</td>
<td>.02</td>
<td>.064</td>
</tr>
<tr>
<td>(w_a = 2.0); (w_b = 1.0)</td>
<td>.05</td>
<td>.05</td>
<td>.150</td>
</tr>
<tr>
<td></td>
<td>.02</td>
<td>.08</td>
<td>.120</td>
</tr>
<tr>
<td></td>
<td>.08</td>
<td>.02</td>
<td>.180</td>
</tr>
</tbody>
</table>
BASIC PRICE-EARNINGS RATIO RELATIONSHIPS

\[P_0 = \frac{dv_0 (1 + g)}{k - g} \]

If \(b \) = fraction of net income reinvested (earnings retained) then \((1 - b) \) = fraction of net income paid out as dividends.

The reinvested earnings earn a return = \(r \).

\[P_0 = \frac{ni_0 (1-b) (1+g)}{k - g} \]

\[\frac{P_0}{ni_0} = \frac{(1-b)(1+g)}{k - g} \]

\[\frac{P_0}{ni_1} = \frac{(1-b)}{k(1-br/k)} \]

\[\frac{P_0}{ni_1} = \frac{1*(1-b)}{k * (1-br/k)} \]
PRICE-EARNINGS RATIO RELATIONSHIPS

\[\frac{P_0}{ni_1} = \frac{1}{k} \ast \frac{(1-b)}{(1-br/k)} \]

Other things being equal for this basic dividends model framework:

If \(r = k \) then (price / expected earnings) is:
- independent of the growth rate \(g = br \)
- independent of the dividend payout rate \((1 - b) \)
- a decreasing function of the level of \(k \)

If \(r > k \) then (price / expected earnings) is:
- an increasing non-linear function of the growth rate
- a decreasing function of the dividend payout rate

If \(r < k \) then (price / expected earnings) is:
- a decreasing non-linear function of the growth rate
- an increasing function of the dividend payout rate
Price-earnings using CAPM for k estimate

$$\frac{P_0}{ni_1} = \frac{1}{(i_{rf} + \beta_f (r_m - i_{rf}))} \ast \frac{(1 - b)}{(1 - b r / (i_{rf} + \beta_f (r_m - i_{rf})))}$$

For two-rate growth models you can start from:

$$P_0 = \frac{dv_0 (1 + g_A) [1 - \frac{(1 + g_A)^N}{(1 + k_A)^N}]}{k_A - g_A} + \frac{dv_{N+1}}{k_F - g_F} \left(\frac{1}{(1 + k_A)^N} \right)$$

PV of high growth dividends PV of Price at end of period N
Interpreting Two Stage Dividends Growth Model

\[P_0 = \frac{d v_0 (1 + g_A) [1 - \left(1 + g_A\right)^N]}{k_A - g_A} + \frac{d v_{N+1}}{k_F - g_F} \left(\frac{1}{(1 + k_A)^N}\right) \]

PV of high growth dividends \(= \) PV of Price at end of period \(N \)

\[P_0 = \left[\frac{d v_0 (1 + g_A) [1 - \left(1 + g_A\right)^N]}{k_A - g_A} + \frac{d v_{N+1}}{k_F - g_F} \left(\frac{1}{(1 + k_A)^N}\right) - \frac{d v_0 (1 + g_A)}{k_F - g_F} \right] \]

PV of extraordinary growth (Value of a firm with high growth for first \(N \) years minus value of firm if it were a stable growth firm for entire horizon)

\[+ \left[\frac{d v_0 (1 + g_A)}{k_F - g_F} - \frac{d v_0}{k_F} \right] + \frac{d v_0}{k_F} \]

\(plus \) PV of stable growth (Value of a stable growth firm minus value of a no-growth firm)

\(plus \) PV of assets in place (Value of a no-growth firm)