The simple linear regression model is $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ for $i = 1, 2, \ldots, n$. The ε_i values are assumed to constitute a sample from a population that has mean 0 and standard deviation σ (or sometimes σ_ε). The data will be $(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)$.

The “simple” here means that there is only one predictor, x_i.

These symbols are used in the simple linear regression work:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Alternate symbol</th>
<th>Description</th>
<th>Observed (known) or unobserved (unknown)?</th>
<th>Random or Nonrandom?</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>X_i</td>
<td>Independent variable</td>
<td>Observed</td>
<td>Nonrandom [1]</td>
</tr>
<tr>
<td>Y_i</td>
<td>y_i</td>
<td>Dependent variable</td>
<td>Observed</td>
<td>Random</td>
</tr>
<tr>
<td>β_1, β_0</td>
<td>α, β</td>
<td>True regression slope and intercept</td>
<td>Unobserved</td>
<td>Nonrandom</td>
</tr>
<tr>
<td>σ</td>
<td>σ_ε</td>
<td>Noise standard deviation</td>
<td>Unobserved</td>
<td>Nonrandom</td>
</tr>
<tr>
<td>b_1, b_0</td>
<td>$\hat{\beta}_0, \hat{\beta}_1$</td>
<td>Estimated slope and intercept</td>
<td>Observed [2]</td>
<td>Random [2]</td>
</tr>
<tr>
<td>ε_i</td>
<td>ε_i</td>
<td>Statistical noise</td>
<td>Unobserved</td>
<td>Random</td>
</tr>
<tr>
<td>\hat{Y}_i</td>
<td>\hat{y}_i</td>
<td>Fitted values</td>
<td>Observed [2]</td>
<td>Random [2]</td>
</tr>
</tbody>
</table>

[1] Yes, the x-values are really random in most cases, but we do the analyses conditional on the x’s that we have managed to acquire.

[2] These are observed, because we compute them from the data values. Since the random Y’s are used in the computation here, these must also be regarded as random.