Return Measures

Professor Lasse H. Pedersen

Outline

- Quoted rate = APR
- Compounding and EAR
 - Single period realized return:
 - holding period return
 - Multiple-period realized return:
 - Arithmetic average
 - Geometric average
 - IRR

Quoted Rates and EAR

- Example:
 - Interest rate quoted at 10% compounded semi-annually

- Effective Annual Rate EAR if interest is compounded \(m \) times a year:
 - \(EAR = \left(1 + \frac{\text{quoted rate}}{m}\right)^m - 1 \)

- Example: Which loan is cheapest:
 - 15%, compounded daily
 - 15.5%, compounded quarterly
 - 16%, compounded annually
Continuous Compounding

- Suppose the quoted rate is given.
- Consider increasingly frequent compounding: annually, quarterly, daily, every second,…
- What happens to the EAR?
- When compounding happens “all the time,” it is called continuous compounding
- \[\text{EAR} = \exp(\text{quoted rate}) - 1. \]
- Challenge: why? (Problem C1.)

APR

- Lenders are required by law to report the Annual Percentage Rate, APR.
- \[\text{APR} = \text{Quoted Rate} = \text{interest per period} \times \text{number of periods per year} \]
- How do you make a loan seem cheaper?

Single-Period Realized Return

- Holding period return:
 \[HPR = \frac{\text{ending price} + \text{cash dividend} - \text{beginning price}}{\text{beginning price}} \]
- Annualized holding period return for a holding period of \(t \) years:
 \[\text{annualized } HPR = (1 + HPR)^{\frac{1}{t}} - 1 \]
 \[= \left(\frac{\text{ending price} + \text{cash dividend}}{\text{beginning price}} \right)^{\frac{1}{t}} - 1 \]
Multiple-Period Realized Return

- Arithmetic Average:
 \[\frac{1}{T} (r_1 + r_2 + r_3 + \ldots + r_T) \]
 - Not equivalent per-period return because it neglects compounding
 - Useful for forecasting the return next period

- Geometric Average
 \[\left[(1 + r_1)(1 + r_2)(1 + r_3)\ldots(1 + r_T) \right]^{1/T} - 1 \]
 \[= \left[\frac{\text{accumulated value}_T}{\text{value}_0} \right]^{1/T} - 1 \]

Multiple-Period Realized Return

- Internal rate of return, IRR
 - Return if one can re-invest cash-flows at this rate
 - “Dollar-weighted average”
 - The IRR in the rate that makes:
 \[\sum_{t=0}^{\infty} \frac{C(t)}{(1 + \text{IRR})^t} = \text{initial price} = \text{present value of future net profits} \]

\[P(0) = \sum_{t=0}^{\infty} \frac{C(t)}{(1 + \text{IRR})^t} \]