Introduction to Calculus of Variations

In calculus we search for the solution to

\[\min_{x \in \mathcal{X}} f(x) \quad [\ast] \]

where \(\mathcal{X} \) is a finite-dimensional space, e.g., \(\mathcal{X} \subseteq \mathbb{R}^n \).

If \(n = 1 \) and \(\mathcal{X} = [a, b] \), then under some smoothness conditions we can characterize solutions to \([\ast]\) through a set of necessary conditions.

Necessary conditions for a minimum at \(x^* \):

Interior point: \(f'(x^*) = 0, \ f''(x^*) \geq 0, \) and \(a < x^* < b \).

Left Boundary: \(f'(x^*) \geq 0 \) and \(x^* = a \).

Right Boundary: \(f'(x^*) \leq 0 \) and \(x^* = b \).

Existence: If \(f \) is continuous on \([a, b]\) then it has a minimum on \([a, b]\).

Uniqueness: If \(f \) is strictly convex on \([a, b]\) then it has a unique minimum on \([a, b]\).
Abstract Vector Space

Consider a general optimization problem:

\[
\min_{x \in \mathcal{D}} J(x) \quad [**]
\]

where \(\mathcal{D} \) is a subset of a vector space \(\mathcal{V} \).

We consider functions \(\zeta = \zeta(\varepsilon) : [a, b] \to \mathcal{D} \) such that the composite \(J \circ \zeta \) is differentiable.

Suppose that \(x^* \in \mathcal{D} \) and \(J(x^*) \leq J(x) \) for all \(x \in \mathcal{D} \). In addition, let \(\zeta \) such that \(\zeta(\varepsilon^*) = x^* \) then (necessary conditions):

Interior point: \(\frac{d}{d\varepsilon} J(\zeta(\varepsilon)) \bigg|_{\varepsilon = \varepsilon^*} = 0 \), \(\frac{d^2}{d\varepsilon^2} J(\zeta(\varepsilon)) \bigg|_{\varepsilon = \varepsilon^*} \geq 0 \), and \(a < \varepsilon^* < b \).

Left Boundary: \(\frac{d}{d\varepsilon} J(\zeta(\varepsilon)) \bigg|_{\varepsilon = \varepsilon^*} \geq 0 \) and \(\varepsilon^* = a \).

Right Boundary: \(\frac{d}{d\varepsilon} J(\zeta(\varepsilon)) \bigg|_{\varepsilon = \varepsilon^*} \leq 0 \) and \(\varepsilon^* = b \).

How do we use these necessary conditions to identify “good candidates” for \(x^* \)?
Extremals and Gâteau Variations

Definitions:

Let \((V, \| \cdot \|)\) be a normed linear space and let \(D \subseteq V\).

- We say that a point \(x^* \in D\) is an \textit{extramal point} for a real-valued function \(J\) on \(D\) if
 \[
 J(x^*) \leq J(x) \quad \text{for all } x \in D \quad \lor \quad J(x^*) \geq J(x) \quad \text{for all } x \in D.
 \]

- A point \(x_0 \in D\) is called a \textit{local extremal point} for \(J\) if for some \(\epsilon > 0\), \(x_0\) is an extremal point on \(D_\epsilon(x_0) := \{x \in D : \|x - x_0\| < \epsilon\}\).

- A point \(x \in D\) is an \textit{internal (radial)} point of \(D\) in the direction \(v \in V\) if
 \[
 \exists \epsilon(v) > 0 \text{ such that } x + \epsilon v \in D \text{ for all } |\epsilon| < \epsilon(v) \quad (0 \leq \epsilon < \epsilon(v)).
 \]

- The directional derivative of order \(n\) of \(J\) at \(x\) in the direction \(v\) is denoted by
 \[
 \delta^n J(x; v) = \frac{d^n}{d\epsilon^n} J(x + \epsilon v)|_{\epsilon=0}.
 \]

- \(J\) is \textit{Gâteau-differentiable} at \(x\) if \(x\) is an internal point in the direction \(v\) and \(\delta J(x; v)\) exists for all \(v \in V\).
Theorem: (Necessary Conditions)

Let \((\mathcal{V}; \| \cdot \|)\) be a normed linear space. If \(J\) has a (local) extremal at a point \(x^*\) on \(\mathcal{D}\) then \(\delta J(x^*, v) = 0\) for all \(v \in \mathcal{V}\) such that (i) \(x^*\) is an internal point in the direction \(v\) and (ii) \(\delta J(x^*, v)\) exists.

This result is useful if there is “enough” directions \(v\) so that the condition \(\delta J(x^*, v) = 0\) can determine \(x^*\).

Examples:

- Find the extremal points for

\[
J(y) = \int_{a}^{b} y^2(x) \, dx
\]

on the domain \(\mathcal{D} = \{ y \in C[a, b] : y(a) = \alpha \text{ and } y(b) = \beta \}\).

- Find the extremal for

\[
J(P) = \int_{a}^{b} P(t) D(P(t)) \, dt
\]

on the domain \(\mathcal{D} = \{ P \in C[a, b] : \dot{P}(t) \leq \xi \}\).
Extremal with Constraints

Suppose that in a normed linear space \((\mathcal{V}, \| \cdot \|)\) we want to characterize extremal points for a real-valued function \(J\) on a domain \(\mathcal{D} \subseteq \mathcal{V}\). Suppose that the domain is given by the level set \(\mathcal{D} := \{x \in \mathcal{V} : G(x) = \psi\}\), where \(G\) is a real-valued function on \(\mathcal{V}\) and \(\psi \in \mathbb{R}\).

Let \(x^*\) be a (local) extremal point. We will assume that both \(J\) and \(G\) are defined in a neighborhood of \(x^*\).

We pick an arbitrary pair of directions \(v, w\) and define the mapping

\[
F_{v,w}(r, s) := \begin{pmatrix} \rho(r, s) \\ \sigma(r, s) \end{pmatrix} = \begin{pmatrix} J(x^* + rv + sw) \\ G(x^* + rv + sw) \end{pmatrix}
\]

which is well defined in a neighborhood of the origin.
Suppose F maps a neighborhood of 0 in the (r, s) plane into an neighborhood of $(\rho^*, \sigma^*) := (J(x^*), G(x^*))$ in the (ρ, σ) plane.

Then x^* cannot be an extremal point of J.

This condition is assured if F has an inverse which is continuous at (ρ^*, σ^*).

Theorem: For $\bar{x} \in \mathbb{R}^n$ and a neighborhood $\mathcal{N}(\bar{x})$, if a vector valued function $F : \mathcal{N}(\bar{x}) \to \mathbb{R}^n$ has continuous first partial derivatives in each component with nonvanishing Jacobian determinant at \bar{x}, then F provides a continuously invertible mapping between a neighborhood of \bar{x} and a region containing a full neighborhood of $F'(\bar{x})$.
In our case, \(\bar{x} = 0 \) and the Jacobian matrix of \(F \) is given by

\[
\nabla F(0, 0) = \begin{pmatrix}
\delta J(x^*; v) & \delta J(x^*; w) \\
\delta G(x^*; v) & \delta G(x^*; w)
\end{pmatrix}
\]

Then if \(|\nabla F(0, 0)| \neq 0 \) then \(x^* \) cannot be an extremal point for \(J \) when constraint to the level set defined by \(G(x^*) \).

Definition: In a normed linear space \((\mathcal{V}, \| \cdot \|) \), the Gâteau variations \(\delta J(x, v) \) of a real valued function \(J \) are said to be **weakly continuous** at \(x^* \in \mathcal{V} \) if for each \(v \in \mathcal{V} \) \(\delta J(x; v) \to \delta J(x^*; v) \) as \(x \to x^* \).

Theorem: (Lagrange) In a normed linear space \((\mathcal{V}, \| \cdot \|) \), if a real valued functions \(J \) and \(G \) are defined in a neighborhood of \(x^* \), a (local) extremal point for \(J \) constrained by the level set \(G(x^*) \), and have there weakly continuous Gâteau variations, then either

a) \(\delta G(x^*; w) = 0 \), for all \(w \in \mathcal{V} \), or

b) there exists a constant \(\lambda \in \mathbb{R} \) such that \(\delta J(x^*, v) = \lambda \delta G(x^*; v) \), for all \(v \in \mathcal{V} \).

Example: Find the extremal for

\[
J(P) = \int_0^T P(t) D(P(t)) \, dt
\]

on the domain \(\mathcal{D} = \{ P \in C[0, T] : \int_0^T D(P(t)) \, dt = I \} \).
Classical Calculus of Variations

Historical Background

Johann Bernoulli (1696)- Brachistochrone: Find the planar curve which would provide the faster time of transit to a particle sliding down it under the action of gravity.

Solutions by Jakob Bernoulli, Newton, Euler, Leibniz, and L’Hospital.

Geodesic Problems: Find the shortest path in a given domain connecting two points of it.
The Simplest Problem in Calculus of Variations

\[J(x) = \int_a^b L(t, x(t), \dot{x}(t)) \, dt, \]

where \(\dot{x}(t) = \frac{d}{dt}x(t) \). The variational integrand is assumed to be smooth enough (e.g., at least \(C^2 \)).

Examples:

- Geodesic: \(L = \sqrt{1 + \dot{x}^2} \)
- Brachistochrone: \(L = \sqrt{\frac{1 + \dot{x}^2}{x-\alpha}} \)
- Minimal Surface of Revolution: \(L = x \sqrt{1 + \dot{x}^2} \).

Admissible Solutions:

A function \(x(t) \) is called piecewise \(C^n \) on \([a, b]\), if \(x(t) \) is \(C^{n-1} \) on \([a, b]\) and \(x^{(n)}(t) \) is piecewise continuous on \([a, b] \), i.e., continuous except on a finite number of points. We denote by \(\mathcal{H}[a, b] \) the vector space of all real-valued piecewise \(C^1 \) function on \([a, b]\) and by \(\mathcal{H}_e[a, b] \) the subspace of \(\mathcal{H}[a, b] \) such that \(x(a) = x_a \) and \(x(b) = x_b \) for all \(x \in \mathcal{H}_e[a, b] \).

Problem:

\[\min_{x \in \mathcal{H}_e[a,b]} J(x). \]
Admissible Variations or Test Functions:

Let \(\mathcal{Y}[a, b] \subseteq \mathcal{H}[a, b] \) be the subspace of piecewise \(C^1 \) functions \(y \) such that
\[
y(a) = y(b) = 0.
\]

We note that for \(x \in \mathcal{H}_e[a, b] \), \(y \in \mathcal{Y}[a, b] \), and \(\varepsilon \in \mathbb{R} \), the function \(x + \varepsilon y \in \mathcal{H}_e[a, b] \).

Theorem: Let \(J \) have a minimum on \(\mathcal{H}_e[a, b] \) at \(x^* \). Then
\[
L_\dot{x} - \int_a^t L_x \, d\tau = \text{constant} \quad \text{for all } t \in [a, b].
\] (1)

A function \(x^*(t) \) satisfying (1) is called **extremal**.

Corollary: *(Euler’s Equation)*

Every extremal \(x^* \) satisfies the differential equation
\[
L_x = \frac{d}{dt} L_\dot{x}.
\]
Example: Production-Inventory Control

Consider a firm that operates according to a make-to-stock policy during a planning horizon $[0, T]$. The company faces an exogenous and deterministic demand with intensity $\lambda(t)$. Production is costly; if the firm chooses a production rate μ at time t then the instantaneous production cost rate is $c(t, \mu)$. In addition, there are holding and backordering costs. We denote by $h(t, I)$ the holding/backordering cost rate if the inventory position at time t is I. We suppose that the company starts with an initial inventory I_0 and tries to minimize total operating costs during the planning horizon of length $T > 0$ subject to the requirement that the final inventory position at time T is I_T.

a) Formulate the optimization problem as a calculus of variations problem.

b) What is Euler’s equation?
Sufficient Conditions: Weierstrass Method

Suppose that x^* is an extremal for

$$J(x) = \int_a^b f(t, x(t), \dot{x}(t)) \, dt := \int_a^b f[x(t)] \, dt$$

on $D = \{ x \in C^1[a, b] : x(a) = x^*(a); x(b) = x^*(b) \}$. Let $\tilde{x}(t) \in D$ be an arbitrary feasible solution.

For each $\tau \in (a, b]$ we define the function $\Psi(t; \tau)$ on (a, τ) such that $\Psi(t; \tau)$ is an extremal function for f on (a, τ) whose graph joins $(a, x^*(a))$ to $(\tau, \tilde{x}(\tau))$ and such that $\Psi(t; b) = x^*(t)$.
We define
\[\sigma(\tau) := -\int_a^\tau f[\Psi(t; \tau)] \, dt - \int_\tau^b f[\tilde{x}(t)] \, dt, \]
which has the following properties:
\[\sigma(a) = -\int_a^b f[\tilde{x}(t)] \, dt = -J(\tilde{x}) \quad \text{and} \quad \sigma(b) = -\int_a^b f[\Psi(t, b)] \, dt = -J(x^*). \]

Therefore, we have that
\[J(\tilde{x}) - J(x^*) = \sigma(b) - \sigma(a) = \int_a^b \dot{\sigma}(\tau) \, d\tau, \]
so that a sufficient condition for the optimality of \(x^* \) is \(\dot{\sigma}(\tau) \geq 0 \). That is,
\[
\dot{\sigma}(\tau) := \mathcal{E}(\tau, \tilde{x}(\tau), \dot{\Psi}(\tau; \tau), \dot{\tilde{x}}(\tau)) \\
= f[\tilde{x}(\tau)] - f(\tau, \tilde{x}(\tau), \dot{\Psi}(\tau; \tau)) - f_{\tilde{x}}(\tau, \tilde{x}(\tau), \dot{\Psi}(\tau; \tau)) \cdot (\dot{\tilde{x}}(\tau) - \dot{\Psi}(\tau; \tau)) \geq 0
\]
Weierstrass' formula