Problem 1:

In class, we solved the following deterministic optimal control problem

\[
\min_{\|u\| \leq 1} J(t_0, x_0, u) = \frac{1}{2} (x(\tau))^2
\]

subject to \(\dot{x}(t) = u(t), \quad x(t_0) = x_0 \)

where \(\|u\| = \max_{0 \leq t \leq \tau} \{|u(t)|\} \) using the method of characteristics. In particular, we solved the open-loop HJB PDE equation

\[
W_t(t, x; u) + W_x(t, x; u) u = 0, \quad W(\tau, x; u) = \frac{1}{2} x^2.
\]

for a fixed \(u \) and then find the optimal close-loop control solving

\[
u^*(t, x) = \arg \min_{\|u\| \leq 1} W(t, x; u)\]

and computing the value function as \(V(t, x) = W(t, x; u^*(t, x)) \).

a) Explain why this methodology does not work in general. Provide a counter example.

b) What specific control problems can be solve using this open-loop approach.

c) Propose an algorithm that uses the open-loop solution to approximately solve a general deterministic optimal control problem.

Problem 2: (Dynamic Pricing in Discrete Time)

Assume that we have \(x_0 \) items of a ceratin type that we want to sell over a period of \(N \) days. At each day, we may sell at most one item. At the \(k^{th} \) day, knowing the current number \(x_k \) of remaining unsold items, we can set the selling price \(u_k \) of a unit item to a nonnegative number of our choice; then, the probability \(q_k(u_k) \) of selling an item on the \(k^{th} \) day depends on \(u_k \) as follows:

\[
q_k(u_k) = \alpha \exp(-u_k)
\]

where \(0 < \alpha < 1 \) is a given scalar. The objective is to find the optimal price setting policy so as to maximize the total expected revenue over \(N \) days. Let \(V_k(x_k) \) be the optimal expected cost from day \(k \) to the end if we have \(x_k \) unsold units.

a) Assuming that for all \(k \), the value function \(V_k(x_k) \) is monotonically nondecreasing as a function of \(x_k \), prove that for \(x_k > 0 \), the optimal prices have the form

\[
\mu_k^*(x_k) = 1 + J_{k+1}(x_k) - V_{k+1}(x_k - 1)
\]
and that

\[V_k(x_k) = \alpha \exp(-\mu^*_k(x_k)) + V_{k+1}(x_k). \]

b) Prove simultaneously by induction that, for all \(k \), the value function \(V_k(x_k) \) is indeed monotonically nondecreasing as a function of \(x_k \), that the optimal price \(\mu^*_k(x_k) \) is monotonically nonincreasing as a function of \(x_k \), and that \(V_k(x_k) \) is given in closed form by

\[
V_k(x_k) = \begin{cases}
(N - k) \alpha \exp(-1) & \text{if } x_k \geq N - k, \\
\sum_{i=k}^{N-x_k} \alpha \exp(-\mu^*_i(x_k)) + x_k \alpha \exp(-1) & \text{if } 0 < x_k < N - k, \\
0 & \text{if } x_k = 0.
\end{cases}
\]

Problem 3:

Consider a deterministic optimal control problem in which \(u \) is a scalar control and \(x \) is also scalar. The dynamics are given by

\[f(t, x, u) = a(x) + b(x)u \]

where \(a(x) \) and \(b(x) \) are \(C^2 \) vector functions. If \(P(t) b(x(t)) = 0 \) on a time interval \(\alpha \leq t \leq \beta \), the Hamiltonian does not depend on \(u \) and the problem is *singular*. Show that under these conditions

\[P(t) q(x) = 0, \quad \alpha \leq t \leq \beta, \]

where \(q(x) = b_x(x)a(x) - a_x(x)b(x) \). Show further that if

\[P(t)[q_x(x(t))b(x(t)) - b_x(x(t))q(x(t))] \neq 0 \]

then

\[u(t) = -\frac{P(t)[q_x(x(t))a(x(t)) - a_x(x(t))q(x(t))]}{P(t)[q_x(x(t))b(x(t)) - b_x(x(t))q(x(t))]} . \]

Problem 4: (Optimal Learning).

The objective of this note is to characterize a particular family of *Learning Function*. These learning functions are useful modelling devices for situations where there is an agent that tries to increase his or her level of “knowledge” about a certain phenomenon (such as customers’ preferences or product quality) by applying a certain control or “effort”. To fix ideas, in what follows knowledge will be represented by the variable \(x \) while effort will be represented by the variable \(e \). For simplicity we will assume that knowledge takes values in the \([0, 1]\) interval while effort is a nonnegative real
variable. The family of learning function that we are interested in this note are those than can be derived from a specific subfamily that we called Additive Learning Functions. The formal definition of an Additive Learning Function* is as follows.

Definition 1 Consider a function \(L : \mathbb{R}_+ \times [0,1] \rightarrow [0,1] \). The function \(L \) would be called Additive Learning Function if it satisfies the following properties:

- **Additivity:** \(L(e_2 + e_1, x) = L(e_2, L(e_1, x)) \) for all \(e_1, e_2 \in \mathbb{R}_+ \) and \(x \in [0,1] \).
- **Boundary Condition:** \(L(0, x) = x \) for all \(x \in [0,1] \).
- **Monotonicity:** \(L_e(t, x) = \frac{\partial L}{\partial e} L(e, x) > 0 \) for all \((e, x) \in \mathbb{R} \times [0,1] \).
- **Satiation:** \(\lim_{e \to \infty} L(e, x) = 1 \) for all \(x \in [0,1] \).

a) Prove the following. Suppose that \(L(e, x) \) is a \(C^1 \) additive learning function. Then \(L(e, x) \) satisfies

\[
L_e(e, x) - L_e(0, x) L_x(e, x) = 0
\]

where \(L_e \) and \(L_x \) are the partial derivatives of \(L(e, x) \) with respect to \(e \) and \(x \) respectively.

b) Using the method of characteristics solve the PDE of part a) as a function of

\[
H(x) = \int -\frac{1}{L_e(0, x)} \, dx
\]

and prove that the solution is of the form

\[
L(e, x) := H^{-1}(H(x) - e).
\]

Consider the following optimal control problem.

\[
V(0, x) = \max_{p_t} \int_0^T [p_t \lambda(p_t) x_t] \, dt
\]

subject to \(\dot{x}_t = L_e(0, x_t) \lambda(p_t) \) \(x_0 = x \in [0,1] \) given. (1)

\[
\dot{x}_t = L_e(0, x_t) \lambda(p_t) \quad x_0 = x \in [0,1] \text{ given.} \quad (2)
\]

Where \(L_e(0, x) \) is the partial derivative of the learning function \(L(e, x) \) with respect to \(e \) evaluated at \((0, x)\). This problem corresponds to the case of a seller that tries to maximize cumulative revenue during the period \([0, T] \). Potential demand rate at time \(t \) is given by \(\lambda(p_t) \) where \(p_t \) is the price set by the seller at time \(t \). However, only a fraction \(x_t \in [0,1] \) of the potential customers buy the product at time \(t \). The dynamics of \(x_t \) are given by (2).

c) Show that equation (2) can be rewritten as

\[
x_t = L(y_t, x) \quad \text{where } y_t := \int_0^t \lambda_s \, ds.
\]

*This name is probably not standard since I do not know the relevant literature well enough.
and use this fact to reformulate your control problem as follows

$$ \max_{y_t} \int_0^T p(\dot{y}_t) \dot{y}_t L(y_t, x) \, dt \quad \text{subject to } y_0 = 0. \tag{3} $$

d) Deduce that the optimality conditions in this case are given by

$$ \dot{y}_t^2 p'(\dot{y}_t) L(y_t, x) = \text{constant}. \tag{4} $$

e) Solve the optimality condition for the case

$$ \lambda(p) = \lambda_0 \exp(-\alpha p) \quad \text{and} \quad L(e, x) = 1 + (x - 1) \exp(-\beta e), \quad \alpha, \beta > 0. $$

Problem 5:

a) Let M_t be a \mathcal{F}_t martingale and let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function such that for all t $E[|\phi(X_t)|] < \infty$. Then $\phi(M_t)$ is a \mathcal{F}_t-submartingale.

b) Let T_n be a point process with corresponding counting process N_t. Show that if N_t is integrable, that is, $E[N_t] < \infty$ for all $t \geq 0$ then the point process is nonexplosive.

c) Let N_t be a point process with \mathcal{F}_t-intensity λ_t. Prove that the following two conditions are equivalent.

- $N_\infty = \infty$ a.s.
- $\int_0^\infty \lambda_s \, ds = \infty$, a.s.