Yield Calculations for Treasury Bills

William L. Silber

Question

Suppose you could buy a 91-day T-bill at an asked price of $98 per $100 face value and you could sell to the dealer at a bid price of $97.95 per $100 face value. What are the quotation conventions on this bill and how is the yield calculated? What is the best measure of the yield on a T-bill?

Answer

1) This T-bill would be listed in a table as follows:

<table>
<thead>
<tr>
<th>Days to Maturity</th>
<th>Bid</th>
<th>Ask</th>
<th>Ask Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>8.11</td>
<td>7.91</td>
<td>8.186</td>
</tr>
</tbody>
</table>

2) The ask yield in the last column is the bond yield equivalent (b.y.e) of this T-bill. This is the yield (assuming simple interest) if you bought the bill at the ask price of 98 per 100 face value and held it for the full 91 days.

\[
B.Y.E. = \left(\frac{F - P}{P} \right) / t
\]

F = Face Value (=$100)
P = Price Paid
\(t \) = Fraction of a year

In our case,

\[
B.Y.E. = \frac{100 - 98}{98} \left(\frac{91}{365} \right)
\]

\[= .08186 = 8.186\%
\]

NB: This formula is simple interest because it comes from:

\[P(1 + rt) = F \]
which can be solved for \(r \) as

\[
r = \left(\frac{F - P}{P} \right) / t
\]

3. The 7.91 under the word Ask in the table comes from the discount rate calculated on the bill. The discount rate is defined as:

\[
discount\ rate = \left(\frac{F - P}{F} \right) / \left(\frac{X}{360} \right)
\]

where \(X = \text{days to maturity} \)

In our case (using the ask price):

\[
(\text{ask})\ discount\ rate = \left(\frac{100 - 98}{100} \right) / \left(\frac{91}{360} \right)
\]

\[= .0791 = 7.91\%
\]

4) The 8.11 in the table under the word bid uses the same discount rate calculation as above except it uses the bid price (=97.95) in the formula

\[
(bid)\ discount\ rate = \left(\frac{100 - 97.95}{100} \right) / \left(\frac{91}{360} \right)
\]

\[= .0811 = 8.11\%
\]

5) Note that the (ask) discount rate will always be lower than the ask yield based on the b.y.e. formula because \(F \) appears in the denominator of the discount rate formula while \(P \) is in the denominator of the b.y.e. formula (and \(F>P \) as long as yields are positive). In addition, \(360<365 \) in the year part of the formulas and those numbers wind up in the numerator.

6) Of these calculations, the best measure of yield earned when buying a T-bill is the b.y.e. since it uses \(P \) as the base rather than \(F \) (and because 365 is correct). Why does the discount rate calculation exist? Because it is a shorthand calculation that was easier before hand calculators existed. It allowed people to translate price into yield quickly. In fact, this tradition is perpetuated by dealers who quote T-bills in discount
rates rather than prices. Thus our T-bill in the table is quoted as 8.11 bid, offered at 7.91.

7) The effective annual rate on this bill would annualize the b.y.e. of 8.18% (which uses simple interest) using the familiar formula:

\[EAR = \left(1 + \frac{\text{quoted rate}}{n}\right)^n - 1 \]

where \(n \) = number of compounding periods per year.

\[
EAR = \left(1 + \frac{.08186}{365/91}\right)^{365/91} - 1
\]

\[= .0844 = 8.44\% \]