
Paper for Presentation next week: Graddy, The
Fulton Fish market, Journal of Economic Perspec-
tives. Pay particular attention to the regression
analysis, and the identification issues that are con-
fronted and (one would hope) solved.

Intro Comments:∗

The purpose of this lecture is to run through basic
econometrics with a more applied commentary than
is normally the case in a econometrics course.

For the rest of the course I recommend reading
Manski’s ”Identification Problems in the Social Sci-
ences”. In fact if you do nothing else in this course,
read this book. It is short and awesome. It also
provides the conceptual basis for almost everything
that happens from now on.

Another book I ecourage you to have a look at is
Hayashi’s ”Econometrics”. I find it is the best ex-
position of basic econometric tools avaliable in a
textbook. It is exceptionally modern, insofar as ev-
erything is hung off a GMM structure. This struc-
ture is how many younger applied researchers think
(Allan and I included).

∗Co-written by Allan Collard-Wexler and John Asker
using Joerg Stoye’s notes quite closely.
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Regression

The definition of a regression is finding the probabil-
ity distribution of dependent variable y conditional
on independent (or covariates) x:

P (y|x)

Note that this includes linear and non-linear models
we will look at, finding expectation or quantiles and
so on.

Often we will be interested in the expectation: E(y|x),
I will give Savage’s motivation for this.
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Statistics is Decision Theory

1. Suppose I am drilling for Oil. Output of oil
y given geological features x is given by the
probability distribution P (y|x). If the firm I
am working for is risk-neutral, what features of
P (y|x) do I need to know to make my decision?

The firm is going to solve the problem:

max
x

π(x) =

∫ ∞
0

yP (y|x)dy

and the left hand side is just E(y|x), which is a
sufficient statistics in order to choose the best
site x.

2. Define the Loss Function L that the decision
maker is using as a function of the difference
between θ and y. For instance, the decision
maker may have a minmax loss function (he
cares about minimizing the worse possible out-
come):

L(θ) = (max |y − θ|)

What is the best way to pick θ in this case given
x?

min
θ|x

L(θ) = min
θ

(max |y − θ|)
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From here it is clear that if the support of
P (y|x) is bounded by y and ȳ, then θ = y +
1
2
(ȳ − y), i.e. the middle of the support.

3. What about a loss function of L(θ) = |y − θ|.
This is equivalent to minimizing∫ θ

−∞
(θ − y)P (y|x)dy +

∫ ∞
θ

(y − θ)P (y|x)dy

So the first order condition of L, ∂L
∂θ

= 0 is :

0 =

∫ θ

−∞
P (y|x)dy + (θ − y) +−

∫ ∞
θ

P (y|x)dy + (y − θ)

0 =

∫ θ

−∞
P (y|x)dy −

∫ ∞
θ

P (y|x)dy

Or ∫ θ

−∞
P (y|x)dy =

∫ ∞
θ

P (y|x)dy

Here it is clear that θ(x) = Med[y|x].

4. Finally, what about the loss function L(θ) =
(y − θ)2?

We want to find θ(x) = argmin
∫
y
(y−θ)2P (y|x)dy.



Taking the first derivative with respect to θ and
setting it to zero, we get:∫

y

−2(y − θ)P (y|x)dy = 0∫
y

yP (y|x)dy − θ
∫
y

P (y|x)dy = 0

E(y|x) = θ

So this is a reason to focus on the expected
value.



OLS and Variations

OLS: Definition and Finite Sample Properties

We model the relation between a dependent vari-
able y and regressors x. Realizations of these will
be denoted by subscripts i, i.e. (yi, xi). xi may be a
vector xi = (xi1, . . . xiK). A model specifies the rela-
tion between these random variables up to some un-
known components. These components specifically
include parameters of interest. We will attempt to
estimate the parameters of interest by means of a
size n sample of realizations (yi,xi).

In this first section only, we will review finite sample
analysis.

It can be helpful to think in terms of data matrices

y =

 y1
...
yn

 ,X =

 x11 · · · x1K
... . . . ...
xn1 · · · xnK

 , ε =

 ε1
...
εn


that stack sample realizations.
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Assume that the true relationship between x and y
is linear:

Assumption 1: Linearity

yi = xiβ + εi

or equivalently,

y = Xβ + ε.

Of course, this assumption is restrictive only in con-
junction with some assumption on the random vari-
able εi; else it could be read as definition of εi. Note
that the assumption captures all models that can be
transformed into linear ones. A well known example
is Cobb-Douglas production functions:

yi = AiL
β
iK

1−β
i
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To begin, we furthermore assume that xi is strictly
exogenous:

Assumption 2: Strict Exogeneity

E(εi|X) = 0

or equivalently

E(ε|X) = 0.

Notice that in the presence of a constant regressor,
setting the expectation equal to zero is a normaliza-
tion. Strict exogeneity is a very strong assumption
that we will relax later on. For one example, it can-
not be fulfilled when the regressors include lagged
dependent variables.
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Assumption 3: Rank Condition

rank(X) = K a.s.

If this assumption is violated, one regressor is lin-
early dependent on the others (at least with posi-
tive probability). It is intuitively clear that in this
case, we cannot disentangle the regressors’ individ-
ual effects on y. Indeed, we will later think of this
assumption as an identification condition.
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Assumption 4: Spherical Error

E(ε2
i |X) = σ2 > 0

E(εiεj|X) = 0

or equivalently,

E
(
εε′|X

)
= σ2In, σ

2 > 0.

Thus we assume the error process to be condition-
ally independent and homoskedastic.
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Our setup treats xi as a random variable. This
leads to us conditioning statements on xi which is
a feature you might not have seen this before. This
is because the early (and some textbooks’) devel-
opment of OLS assumes that regressors are fixed.
This assumption makes life very slightly easier but
is generally inappropriate for nonexperimental data.
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The OLS estimate of β is derived as

b ≡ arg min
β

∑
i

(yi − x′iβ)2

= arg min
β

(y −Xβ)′ (y −Xβ)

where the sum to be minimized is known as sum of
squared residuals.

We can solve for b in closed form:

(y −Xβ)′ (y −Xβ) = y′y − (Xβ)′ y − y′Xβ + β′X′Xβ

= y′y − 2y′Xβ + β′X′Xβ

=⇒
d

dβ
(y −Xβ)′ (y −Xβ) = −2X′y + 2X′Xβ

leading to

b =
(
X′X

)−1
X′y

where (X′X)−1 exists (a.s.) because of our full rank
assumption.

We will later follow Hayashi and express similar es-
timators in sample moment notation, here: b =
S−1

xx sxy, where Sxx = 1
n

∑
i xix

′
i and sxy = 1

n

∑
i xiyi.

This notation is helpful for deriving large sample
results.

Some quantities of interest are the fitted value ŷi =
x′ib and the residual ε̂i = yi − ŷi.
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We are now ready to state some important proper-
ties of b.

Theorem

(i) E(b|X) = β.

(ii) V ar(b|X) = σ2(X′X)−1

(iii) b is efficient among linear unbiased estimators,

that is, E(b̃|X) = β implies V ar(b̃|X) ≥ σ2 (X′X)−1

for any data-dependent b̃.

In particular, the same statements are implied but
without conditioning on X. This is the form in
which you may know them and is more relevant for
economics, but it is implied here. Notice, though,
that stating the results unconditionally is sometimes
a symptom of considering X fixed.

It is important to note that these are finite sample
properties. In fact, we have not introduced asymp-
totic analysis yet. Furthermore, the theorem does
not use a normality assumption – indeed, we have
yet to make such an assumption.

Proof

See Hayashi’s textbook for a proof based on this notation and
assumptions.
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We finally note that if we assume normality of errors, we can
construct exact hypothesis tests. Specifically, assume:

Assumption 5: Normality

ε|X ∼ N(0, σ2In).

Strictly speaking, the only new aspect of the assumption is
that ε is normal. The assumption implies immediately that

(b− β)|X ∼ N(0, σ2(X′X)−1),

which inspires our test statistics. Specifically, we state without
proof the following:

Theorem: Finite Sample Hypothesis Tests

Let βk denote the kth component of β. Then if H0 : βk = βk is
true, one has

t-ratio = t ≡
bk − βk

[s2 ((X′X)−1)kk]
1/2
∼ tn−K,

the (Student) t-distribution. Here, s2 ≡ (y−Xb)′(y−Xb)
n−K is the

usual standard error.

Let H0 : Rβ = r hold, where R has full rank #r, then

F-statistic = F ≡
(Rb− r)′

(
R(X′X)−1R′

)−1
(Rb− r)

s2 ·#r
∼ F#r,n−K,

the F-distribution.

Both distributions can be looked up in books. We will not
really use these exact distributions because we will only rarely
impose normality. However, both test statistics will recur (with
normal approximations to their distributions) under large sam-
ple analysis, and you should certainly be aware what the t- and
F-distributions are about.
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Large Sample Properties of OLS

We now change our focus and consider situations
in which we cannot compute finite sample distribu-
tions. Specifically, we will drop Normality as well
as i.i.d. assumptions (assumption 5 above was such
an assumption). The price is that beyond unbiased-
ness and Gauss-Markov, we can only make state-
ments about limits of sample distributions. We are,
strictly speaking, not saying anything about finite
sample performance. Of course, the idea is that
approximations will work reasonably well in finite
samples. In modern econometrics, it is standard to
corroborate this by simulation exercises.

Introductory treatments typically assume that sam-
ples are i.i.d. We can generalize this assumption
at very limited cost in terms of difficulty, because
much weaker assumptions are sufficient to generate
laws of large numbers and central limit theorems,
the two main tools we need for asymptotic analysis.
Our standard setting will be characterized by the
following concepts:
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Definition: {wi} is (strictly) stationary if for any
finite set of integers {j1, j2, . . . , jn}, the distribution
of (

wi+j1
,wi+j2

, . . . ,wi+jn

)
does not depend on i.

Definition: Let Rw denote the range of wi. A
stationary random process {wi} is ergodic if, for
any two bounded functions f : Rk+1

w → R and g :
Rl+1

w → R and any i,

lim
n→∞

|Ef(wi, . . . , wi+k)g(wi+n, . . . , wi+n+l)|

= |Ef(wi, . . . , wi+k)| |Eg(wi, . . . , wi+l)| .

Intuitively, this says that as two realizations move
away from each other in the sequence, they ap-
proach independence.

Stationarity and ergodicity are weaker than i.i.d. In
particular, neighboring observations need not be in-
dependent.

14



Example: AR(1)

Let the process {xi} be

xi = α+ ρxi−1 + εi,

where εi is i.i.d and |ρ| < 1. This process is station-
ary and ergodic but not i.i.d.

Why do we get away with “only” imposing these
two things? Because they suffice to invoke a law of
large numbers.

Ergodic Theorem

Let the process {wi} be stationary and ergodic with
Ewi = µ. Then

1

n

n∑
i=1

wi
a.s.→ µ.

15



Now we consider Assymptotic Normaility: For this
we need a CLT

Definition: A scalar random process {xi} is a mar-
tingale with respect to {wi} if

E(xi|wi−1, . . . ,w1) = xi−1.

It is just called a martingale if it is a martingale with
respect to itself.

Definition: A random process {wi} with E(wi) = 0
is a martingale difference sequence if

E(wi|wi−1, . . . ,w1) = 0.

Every martingale difference sequence is the differ-
ence sequence of a martingale (hence the name).

All in all, the requirement that a process is a mar-
tingale difference sequence is again a weakening of
i.i.d. requirements. Intuitively, it requires that there
is no memory in the variable’s first moment, but
there might be memory in the higher moments. So
for example, the process might be conditionally het-
eroskedastic but in a way that has memory.
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Example: ARCH(1)

Let the process {xi} be

xi = −
√
α+ ρx2

i−1 · εi,

where εi is i.i.d. standard normal (say). Under regu-
larity conditions, this process is ergodic, stationary,
and a martingale difference sequence, yet it is not
i.i.d.

Why will we get away with “only” imposing ergodic
stationarity and m.d.s.? Because they suffice to
invoke a central limit theorem.

Ergodic Stationary Martingale Difference Se-
quence CLT:

Let {wi} be stationary, ergodic, and a martingale
difference sequence with finite second moments E(wiw′i) ≡
Σ. Then

1
√
n

n∑
i=1

wi
d→ N(0,Σ).
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We are now in a position to reconsider Ordinary
Least Squares. We will mostly use sample moment
notation; recall that in this notation, b = S−1

xx sxy,
where Sxx = 1

n

∑
i xix

′
i and sxy = 1

n

∑
i xiyi. Impose

the following assumptions:

Assumption 1: Linearity

yi = x′iβ + εi.

Assumption 2: Ergodic Stationarity

The process {yi,xi} is jointly stationary and ergodic.

This implies that {εi} is stationary and hence that
the error term is unconditionally homoskedastic. How-
ever, assumption 2 is consistent with conditional
heteroskedasticity, i.e. the possibility that V ar(εi|xi)
varies with xi.
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Assumption 3: Predetermined Regressors

E(xiεi) = 0.

Notice that 0 is a vector here. Obviously this as-
sumption is quite a bit weaker than the strict ex-
ogeneity assumption from the previous subsection;
εi may now comove with past or future regressors.
Also, we get away with merely restricting the ex-
pectation of xiεi – and hence the correlation be-
tween the two – because the model is linear (look
carefully through the consistency proof to see why).
Estimation of nonlinear models will typically require
stronger independence assumptions.

Also, we cast this in terms of a time series appli-
cation (ie. past or future observations), but there
may be some other natural ordering of observations
coming from physical distance, position in some so-
cietal structure, or similar. The indexing is with
respect to this natural ordering (if one exists).

Assumption 4: Rank Condition (Identification)

Σxx ≡ E(xix
′
i) is nonsingular.
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Assumption 5: Error Process

{xiεi} is a martingale difference sequence, and S ≡
E
(
xiεi (xiεi)

′) is nonsingular.

Assumption 5 implies assumption 3; we list them
separately because assumption 5 is invoked only for
parts of the analysis. In particular, assumption 5
excludes correlation of εi with past (in addition to
contemporaneous) regressors.
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Theorem

(i) Under assumptions 1-4, b is consistent:

b
p→ β.

(ii) Under assumptions 1-5, b is asymptotically nor-
mal:

√
n (b− β)

d→ N
(
0,Σ−1

xx SΣ−1
xx

)
.

(iii) Let Ŝ→ S and presume assumption 2, then

S−1
xx ŜS−1

xx
p→ Σ−1

xx SΣ−1
xx .

(iv) Let Eε2
i <∞, then under assumptions 1-4,

s2 ≡
1

n−K

∑
i

(yi − x′ib)2 p→ Eε2
i .

The point of (iii) and (iv) is that we will need these
estimators to construct hypothesis tests and confi-
dence regions.
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Proof

Here I give the proof for parts 1 and 2 only.

(i) The object of interest is really (b− β). We will first show
that it vanishes under assumptions 1-4. Write

b− β =

(
1

n

∑
i

xix
′
i

)−1

1

n

∑
i

xiyi − β

=

(
1

n

∑
i

xix
′
i

)−1

1

n

∑
i

xi(x′iβ + εi)− β

=

(
1

n

∑
i

xix
′
i

)−1

1

n

∑
i

xiεi.

But now notice that
(

1
n

∑
i
xix′i
)−1 p→ Σ−1

xx because 1
n

∑
i
xix′i

p→
Σxx by the Ergodic Theorem (using assumption 2), preserva-
tion of convergence in probability under continuous transfor-
mation, and nonsingularity of Σxx (assumption 4). Again by

the Ergodic Theorem, 1
n

∑
i
xiεi

p→ Exiεi, which is zero by as-
sumption. Again by standard results for convergence in prob-

ability, it follows that b− β p→ Σ−1
xx · 0 = 0.

(ii) Write

√
n (b− β) =

(
1

n

∑
i

xix
′
i

)−1

1
√
n

∑
i

xiεi.

Assumption 5 and the ergodic stationary martingale CLT im-

ply that 1√
n

∑
i
xiεi

d→ N(0,S). Also,
(

1
n

∑
i
xix′i
)−1 p→ Σ−1

xx as

before. The claim then follows by standard facts about weak
convergence.
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We now reconsider hypothesis testing. The fol-
lowing result is near immediate from what we just
proved.

Theorem

(i) Let H0 : βk = β
k

hold, then

t ≡
√
n
(
bk − βk

)√(
S−1

xx ŜS−1
xx

)
kk

d→ N(0,1).

Proof

(i) Recall from the previous theorem that
√
n (b− β)

d→
N
(
0,Σ−1

xx SΣ−1
xx

)
and S−1

xx ŜS−1
xx

p→ Σ−1
xx SΣ−1

xx . Restrict-

ing attention to the kth component, it follows that
√
n (bk − βk)

d→ N
(
0,
(
Σ−1

xx SΣ−1
xx

)
kk

)
and

(
S−1

xx ŜS−1
xx

)
kk

p→(
Σ−1

xx SΣ−1
xx

)
kk

. The claim then follows by standard
facts.

Notice that the above test statistic is not quite a
straightforward generalizations of the statistics we
saw in the previous chapter. Specifically, we pre-
viously assumed conditional homoskedasticity, but
we did not so here. As a result, variance-covariance
matrices got more complicated, and the test statis-
tics we derived are in fact the robust (or White)
test statistics that you can find in the output of
any OLS program. If we assume homoskedasticity,
some expressions accordingly simplify:
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Proposition: How things change with condi-
tional homoskedasticity

Let E(ε2
i |xi) = σ2, then:

(i)
√
n (b− β)

d→ N
(
0, σ2Σ−1

xx

)
.

(ii) s2S−1
xx

p→ σ2Σ−1
xx .

(iii) The hypothesis tests can be asymptotically
conducted using the finite-sample t-ratio respec-
tively #r times the finite sample F-statistic.

Here, part (ii) follows from the Ergodic Theorem.
We therefore see that under conditional homoskedas-
ticity, large sample analysis of OLS leads to the
same practical conclusions as finite sample analysis.

Part (ii) of the proposition shows that under ho-
moskedasticity, estimation of S is not an issue. In
contrast, we have not yet provided an estimator os
S for the general case. Indeed, this requires an ad-
ditional assumption.
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Assumption 6: Finite Fourth Moments

E(xikxij)2 exists and is finite for all k, j.

Proposition

Let assumption 6 hold, then Ŝ ≡ 1
n

∑
i(yi − x′ib)2xix′i

is consistent for S.

Assumption 6 is needed because the variance of Ŝ
comes from the fourth moment of xi, hence this
moment must be finite.



Endogenous Variables and Identifi-
cation

OLS critically relies on the assumption that regres-
sors are in some sense exogenous, the weakest such
sense being predeterminedness. There are many
contexts in which this fails. For example, imagine
a researcher who wants to figure out the returns to
schooling by estimating a wage equation

lnwagei = α+ β ln schoolingi + εi.

Is the assumption that E(schoolingiεi) = 0 com-
pelling? It would be if members of the population
were assigned to schooling at random, but this is
clearly not the case. More realistically, schooling
selects for ability, i.e. people with higher ability also
tend to have more schooling. As a result, we expect
schooling and ability to exhibit positive correlation.
Assuming that ability posively impacts wages, then
with ability not ”controlled for,” the schooling vari-
able will pick up some of its effect, and β will be
overestimated. This problem is known as endogene-
ity bias. In the specific example, it can also be seen
as omitted variable bias, caused by the omission of
ability (which we cannot usually observe) from the
equation.

25



Imagine now that we also observe a random vari-
able xi with the properties that E(xischoolingi) 6= 0
but E(xiεi) = 0. Intuitively, xi can be thought of
as shifting schoolingi without affecting εi and there-
fore inducing exogenous variation in schoolingi. xi is
called an instrument. In the specific example, it has
been argued that the Vietnam draft number is an
instrument: The number was allocated at random,
and citizens with low draft numbers tended to enrol
in college to avoid the draft.

Given xi, we can consistently estimate β by

bIV ≡

(
1

n

∑
i

xischoolingi

)−1
1

n

∑
i

xiwagei,

the instrumental variables estimator. An intuition
for bIV is that we estimate β using only the variation
in schooling that is attributable to variation in x and,
therefore, exogeneous.

We will not develop the theory of IV in any detail
because it is a special case of the immediate next
section. It is helpful, though, to remind ourselves
of some other classic examples of endogeneity that
may be amenable to IV analysis. Both are elabo-
rated algebraically by Hayashi.
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Probably the most classic example is the problem of
simultaneously estimating supply and demand func-
tions:

qi = qdi = α0 + α1pi + εi
qi = qsi = β0 + β1pi + ηi.

This problem goes back to the 1920’s. If εi has a
positive realization, then demand is shifted upward,
hence equilibrium price goes up. As a consequence,
pi and εi are positively correlated. This problem
is also known as simultaneity bias. It is potentially
solved by observable supply shifters, which could act
as instruments.
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The point is that you have to think about the struc-
ture of the error term every time you run a regres-
sion. Ask the following questions:

1. What is the data generating process? (aka, what kind
of model do you have in mind for how these data are
generated?)

2. What parts of it do I observe and what do I not observe?

3. The unobserved stuff is what econometricians call the
error. What is the interpretation of the error in this
context?

4. Given that I now know what my observed and unobserved
stuff is, are they correlated?

5. If so, why? If not, why not?

6. if a problem exists, how do I solve it? (The best answer is
always to make unobserved stuff observed, ie. get better
data if possible. Econometric tricks to get around having
crappy data are always less desirable than just having
good data)

If you can’t answer these question (at least the first
5) by the time you defend your proposal then I will
likely want to fail you. That said, if you can’t deal
with these questions after this course, Allan and I
will want to fail you well before that point.

As an aside, 50 per cent of the questions I ask in
seminars are basically variants of this list.
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Generalized Method of Moments
The Generalized Method of Moments (GMM) or-
ganizes many tools that you will have seen before,
including anything preceding in this lecture, and
many more that you will encounter elsewhere. Many
econometricians think of it as major unifying prin-
ciple of modern econometrics. Its name is due to a
famous paper by Hansen (1982).

GMM starts by postulating moment conditions which
are supposed to be true about the population. The
reason for the word ‘generalized’ is that there may
be more moment conditions than free parameters.

Reminder: Method of Moments

Let wi be a vector of random variables of interest,
and let θ denote the parameter we are after, then a
moment condition looks like this:

E(g(wi, θ)) = 0.

Here, g is some function of w and θ, and the fact
that its expectation is zero reflects something that
we know or assume about the model.

The methods of moments estimator is constructed
by solving the sample analogs of the moment con-
ditions, i.e. by setting

1

n

n∑
i=1

g(wi, θ̂) = 0.

(Thus, MM estimators are special cases of analog
estimators.)
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Example 1

Let

wi = (yi, zi),

where yi is a scalar that we want to predict/explain
and zi is a vector of regressors.

We believe that yi is generated by a linear process:

yi = z′iθ + εi

and also that zi is exogenous, i.e. the error term εi
is uncorrelated with zi:

Eziεi = 0.

This can be written as a moment condition. Set
g(wi, θ) = zi

(
yi − z′iθ

)
, then the moment condition

is that

E
(
zi
(
yi − z′iθ

))
= 0.

Of course, these are some of the assumption under-
lying OLS. If we solve the above equation’s sample
analog for θ, then we reconstruct OLS. So OLS is
a method of moments estimator.
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Example 2

Let

wi = (yi,xi, zi),

where yi is again a scalar and xi and zi are vectors of
regressors, not necessarily disjoint. We still impose
that

yi = z′iθ + εi,

but zi might be endogenous, i.e. correlated with
the errors. However, we are willing to believe that
xi is exogenous:

Exiεi = 0.

This can again be written as a moment condition:

E
(
xi
(
yi − z′iθ

))
= 0.

If xi correlates with zi, then the model is identified.

These are the assumptions behind linear IV esti-
mation, e.g. estimation of linear supply/demand
systems. If zi and xi have the same number of
components, solving the sample analog for θ will
reconstruct the IV estimator. But the GMM esti-
mator is also defined if there are more instruments
than regressors. Thus, we can in principle, use all
instruments that we can think of (although see weak
instruments in subsequent section).
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Example 3

Let wi as before but now consider a Poisson regres-
sion,

yi = exp(z′iθ) + εi,

then one could write down a moment condition

E
(
xi
(
yi − exp(z′iθ)

))
= 0.

GMM immediately handles this case as well. If zi
and xi have the same number of components, it
will among other things reconstruct Nonlinear Least
Squares. We will not look closely at this case (at
least for the moment) because we will restrict our-
selves to linear moment conditions. But I mention
it here to illustrate the flexibility of the GMM ap-
proach.
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Linear GMM: An Overview

We want to estimate a linear equation.

yi = z′iθ + εi.

We assume that the random variables

wi = (yi,xi, zi)

are jointly stationary and ergodic.

We have the moment conditions

E
(
xi
(
yi − z′iθ

))
= 0.

The aim is to estimate θ. The idea will be to do this
by evaluating the sample analogs of the moment
conditions.

Notice in particular that we will not assume exact
identification, i.e. that xi and zi have the same
number of components. Also, we will henceforth
think of

xi = zi

as the special case in which all regressors are their
own instruments.
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Identification

Let

K = number of moment conditions
L = number of parameters,

and also impose the following rank assumption:

Σxz ≡ Exiz
′
i

K×L
has full column rank, i.e. rank L.

Intuitively, this says that no instrument/moment
condition is redundant.

Then the above model is

underidentified if K < L,
just identified if K = L,
overidentified if K > L.

“Underidentified” we already know. It plainly means
there are more unknowns than equations, so even if
we knew the distribution of w, we could not solve
for the parameters. Underidentification continues
to be an insurmountable problem, and we will not
further think about it at this point.

“Just identified” is what we have been dealing with
so far. It will here emerge as special case.

The new aspect is that GMM is able to deal with
“overidentified.”
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The Case of Overidentification

K > L means that there are more linear equations
than unknowns. Such a system of equations has
generically no solution.

Of course, if our moment conditions are true, then
the system is not generic in this sense. If we knew
the true distribution of wi, the system would turn
out to have a solution at the true parameter point.
As a result, we could also test our conditions: If
no solution exists, some of the moment conditions
must be wrong.

The remaining problem is estimation. The sampling
distribution of w will not be the population distri-
bution, and thus, attempting to solve the moment
conditions’ sample analogs will generically lead to a
contradiction.
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So how can we estimate θ? While we will not have

1

n

n∑
i=1

(
xi
(
yi − z′iθ

))
= 0

even for large n, we would expect some law of large
numbers to yield

1

n

n∑
i=1

(
xi
(
yi − z′iθ

))
−→ 0.

If θ is identified, we will furthermore find

Exi
(
yi − z′iθ̃

)
6= 0

and consequently

1

n

n∑
i=1

xi
(
yi − z′iθ̃

)
→ E

(
xi
(
yi − z′iθ̃

))
6= 0

for any θ̃ 6= θ.

Thus, a natural estimator for θ is

θ̂ ≡ arg min
θ∈Θ

(
1

n

n∑
i=1

xi
(
yi − z′iθ

))′(1

n

n∑
i=1

xi
(
yi − z′iθ

))
.

Under our maintained assumptions, θ̂n → θ.
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The core thing we overlooked is that by just squar-

ing 1
n

∑n
i=1 xi

(
yi − z′iθ̂n

)
, we weighted all the mo-

ment conditions equally. But some of them might
be more informative than others, for example by
relating to random variables with a smaller sam-
pling variation. We will therefore allow for a gen-
eral weighting scheme. This immediately raises the
question of optimal weighting, which we shall dis-
cuss.
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Linear GMM: Formal Statement

Define the sample analog of E(g(θ,wi)) by

gn(θ) ≡
1

n

n∑
i=1

g(wi, θ).

Also fix any symmetric and positive definite weight-
ing matrix W and let Ŵ be an estimator of W, i.e.
Ŵ →p W as n grows large. (This allows for Ŵ
to be data-dependent, but a constant pre-assigned
Ŵ = W is a possibility too.)

The GMM estimator θ̂(Ŵ) is

θ̂(Ŵ) ≡ arg min
θ∈Θ

J(θ,Ŵ),

J(θ,Ŵ) ≡ n · gn(θ)′Ŵgn(θ).
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Specialization to Linear Moment Conditions

With a linear model, we can solve for the GMM
estimator in closed form.

Define the sample moments

sxy ≡
1

n

n∑
i=1

xiyi,

Sxz ≡
1

n

n∑
i=1

xiz
′
i.

Then we can write

gn(θ) =
1

n

n∑
i=1

g(wi, θ)

=
1

n

n∑
i=1

xi(yi − z′iθ)

=
1

n

n∑
i=1

xiyi−

(
1

n

n∑
i=1

xiz
′
i

)
θ

= sxy − Sxzθ

= 0.

The GMM objective function becomes

J(θ,Ŵ) = n · (sxy − Sxzθ)′Ŵ(sxy − Sxzθ).

39



The GMM objective function becomes

J(θ,Ŵ) = n · (sxy − Sxzθ)′Ŵ(sxy − Sxzθ).

Minimizing this with respect to θ leads to a first-
order condition as follows:

2(sxy − Sxzθ)′ŴSxz = 0

=⇒ s′xyŴSxz = (Sxzθ)′ŴSxz

=⇒ S′xzŴsxy = S′xzŴSxzθ.

For this to have a unique solution, we need Sxz to be
of full column rank. But this is given (eventually)
since Sxz

a.s.→ Σxz by the ergodic theorem, and Σxz

has full column rank by assumption. Since also Ŵ is
(eventually) positive definite by the same argument,

S′xzŴSxz is invertible. Hence the GMM estimator is

θ̂(Ŵ) =
(
S′xzŴSxz

)−1
S′xzŴsxy.

40



We will now look at this estimator’s asymptotic
properties.

Assumptions

Assumption 1: Linear Model

yi = z′iθ + εi.

Assumption 2: Ergodic Stationarity

wi = (yi, zi,xi) is jointly stationary and ergodic.

Assumption 3: Moment Conditions

E
(
xi(yi − z′iθ)

)
= 0.

Assumption 4: Rank Condition

Σxz ≡ E(xiz
′
i) is of full column rank.

Assumption 5: Regularity Conditions on Errors

{xiεi} is a martingale difference sequence.
S ≡E

(
xiεi (xiεi)

′) is nonsingular.

εi being distributed i.i.d. and independent of xi is
sufficient for this to hold.
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Theorem: Limiting Distribution of the GMM
Estimator

(i)

θ̂(Ŵ)
p→ θ.

(ii)

√
n
(
θ̂(Ŵ)− θ

)
d−→ N

(
0, Avar

(
θ̂(Ŵ)

))
Avar

(
θ̂(Ŵ)

)
=
(
Σ′xzWΣxz

)−1
Σ′xzWSWΣxz

(
Σ′xzWΣxz

)−1
.

(iii) Let Ŝ
p→ S, then

V̂ ≡
(
S′xzŴSxz

)−1
S′xzŴŜŴSxz

(
S′xzŴSxz

)−1 p→ Avar
(
θ̂(Ŵ)

)
.
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Efficient GMM

If the model is just identified, the sample moment
conditions can be solved, and this should yield the
same estimator for any weighting matrix. Indeed, if
K = L, then Sxz is square and hence (by the rank
condition) invertible, and we can write

θ̂(Ŵ) =
(
S′xzŴSxz

)−1
S′xzŴsxy

= S−1
xz Ŵ−1S′−1

xz S′xzŴsxy

= S−1
xz sxy,

the usual IV estimator, which you may also know as
β̂IV ≡ (X′Z)−1X′y or similar (keeping in mind that
many texts use X and Z the other way round from
these notes).

But in an overidentified model, θ̂(Ŵ) will nontriv-

ially depend on Ŵ. The obvious question is whether
some Ŵ is optimal in a well-defined sense. As you
can prove, any symmetric, positive definite matrix
Ŵ would ensure consistency. But an intuition is
to give more weight to moment conditions that are
“less noisy” in the data generating process.
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Recalling that

1
√
n

n∑
i=1

xiεi −→ N(0,E
(
xiεi (xiεi)

′)) ≡ N(0,S),

one might conjecture that an estimator of S−1 would
make for a good weighting matrix.

This is indeed the case.

Proposition: Efficient GMM

The GMM estimator’s asymptotic variance is bounded
as follows:

Avar
(
θ̂(Ŵ)

)
≥
(
Σ′xzS

−1Σxz

)−1
,

and this bound is achieved whenever Ŵ is a consis-
tent estimator of S−1.
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This raises the question of how to estimate S. As
before, impose:

Assumption 6: Finite Fourth Moments

The matrix

E

 (xi1zi1)2 · · · (xi1ziL)2

... . . . ...
(xiKzi1)2 · · · (xiKziL)2


exists and is finite.

Proposition: Estimator of S

Let the above assumption hold and let θ̂ be a con-
sistent estimator of θ. Then

Ŝ ≡
1

n

n∑
i=1

ε̂2
i xix

′
i

ε̂i ≡ yi − z′iθ̂

is a consistent estimator of S.
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Thus we find that if all of the above assumptions
hold, then an efficient GMM estimator is

θ̂
(
Ŝ−1

)
≡
(
S′xzŜ

−1Sxz

)−1
S′xzŜ

−1sxy

with asymptotic variance

Avar
(
θ̂
(
Ŝ−1

))
=
(
Σ′xzS

−1Σxz

)−1

that can be estimated by

V̂ ≡
(
S′xzŜ

−1Sxz

)−1
.
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From the above, one example of an efficient GMM
estimator is the optimal/two-step GMM estimator
that can be constructed as follows:

θ̂ ≡ θ̂(S−1
xx )

ε̂i ≡ yi − z′iθ̂

Ŝ ≡
1

n

n∑
i=1

ε̂2
i xix

′
i

θ̂2SGMM ≡ θ̂
(
Ŝ−1

)
.

The first stage estimator effectively presumes ho-
moskedasticity. Indeed, it has an interpretation of
its own; as we will see below, it is the 2SLS estima-
tor.
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As might be expected, the efficient GMM estima-
tor also makes for the asymptotically most powerful
tests. However, this does not prove that the 2SIV
(or another efficient) estimator should be used in
small samples. In fact, one might be worried about
finite sample performance because Ŝ uses sample
information about second moments. This question
has been examined in Monte-Carlo studies (e.g., Al-
tonji/Segal, 1996). The upshot is that in small
samples, one-step procedures may lead to more ef-
ficient point estimators. Also, tests may be well
below their nominal levels in small samples.

I’ve seen examples where efficient GMM in finite
samples greates horrific amounts of noise...

Recall that we tend to hope and pray that assymp-
totic properties approximate finite sample properties
(for a ‘big enough’ sample size)

As an aside, much of the testing/inference theory
requires efficient GMM. In particular Liklihood ratio
tests require efficient GMM whereas Wald Stats do
not. Given the above, I prefer Wald stats.
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GMM with Conditional Homoskedas-
ticity

Up to this point, we did not impose homoskedas-
ticity. This is important because you will very often
want to allow for heteroskedasticity. But GMM spe-
cializes in interesting ways when homoskedasticity is
imposed.

Assumption 7: Conditional Homoskedasticity

E(ε2
i |xi) = σ2.

It immediately follows that

S = σ2E(xix
′
i) ≡ σ2Σxx.

As a result of this, we do not need assumption 6
(finite fourth moments) any more. Let σ̂2 be a con-
sistent estimator of σ2, then by the ergodic theorem
and limit theorems for continuous functions,

Ŝ ≡ σ̂21

n

n∑
i=1

xix
′
i ≡ σ̂2Sxx

is a consistent estimator for S.
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The efficient GMM estimator now becomes

θ̂
(
Ŝ−1

)
≡

(
S′xz

(
σ̂2Sxx

)−1
Sxz

)−1
S′xz

(
σ̂2Sxx

)−1
sxy

=
(
S′xzS

−1
xx Sxz

)−1
S′xzS

−1
xx sxy

= θ̂
(
S−1

xx

)
≡ θ̂2SLS.

In short, the first step of the two-step estimation
process that generated efficient GMM is redundant.
We call this estimator θ̂2SLS because it historically
predates GMM under the name of ”two-step least
squares estimator.” (We also encountered it before,
namely as the first step in the two-step estimation.)

We notice that if E(ziz′i) exists and is finite, then

σ̂2 ≡
1

n

n∑
i=1

(yi − z′iθ̂2SLS)2

is a consistent estimator.

We now find the following simplifications:

Avar
(
θ̂2SLS

)
= σ2 ·

(
Σ′xzΣ

−1
xx Σxz

)−1
,

which can be estimated by

V̂ = σ̂2 ·
(
S′xzS

−1
xx Sxz

)−1
.



Remarks on Weak Instruments

Since GMM allows us to use as many instruments
as we like, we could be tempted to use all instru-
ments we can think of. And while a naive asymp-
totic analysis would indeed come to this conclusion,
it is intutively clear that there must be a cost to
instruments as well. The cost lies in the fact that
they introduce noise.

Mathematically, imagine the extreme case of zi and
xi being unrelated, then Σxz will not have full rank,
and we will lose identification. On the other hand,
whenever Σxz has full rank, our results go through.
This looks like near-singular Σxz and singular Σxz are
two different worlds, but reality is smoother than
that. As Σxz approaches singularity, convergence
will become extremely slow; for any fixed sample
size, standard errors will diverge. Mathematically
speaking, the problem is that IV estimation is con-
sistent over the entire set of nonsingular Σxz, but
not uniformly so, as can be seen from inspecting
the efficient GMM estimator’s asymptotic variance:(
Σ′xzS

−1Σxz

)−1
.

Analysis of weak instruments is the subject of on-
going research, but some signs of weak instruments
are well known. Two things we should always look
out for are: Do the instruments predict the regres-
sors only badly, e.g. in terms of F -statistics and R2?
Do the IV estimates come with dramatically higher
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standard errors than the OLS estimates? If the an-
swer to either question is ”yes,” our instruments
are probably weak. In papers using IV techniques,
it is good practice to report answers to these ques-
tions. Also, appropriate techniques for estimation
and inference with weak instruments were recently
developed, but we will not get into them.

Summary

We studied the general idea of GMM and analyzed
in detail the case of linear single-equation GMM.

In this rather specific form, GMM is equivalent to
generalizing instrumental variables estimation in two
directions: Firstly, by allowing for more instruments
than regressors; secondly, by allowing for heteroskedas-
ticity. The first of these generalizations had been
considered before GMM was recognized as organiz-
ing principle, and hence, the specialization of GMM
to homoskedastic errors reconstructed the two-step
least squares method.

But it is also important to remember the gener-
ality: Many of the techniques predating GMM as-
sumed homoskedasticity to keep things manageable.
In GMM, there is no difficulty in allowing for het-
eroskedasticity, and similarly, we never used i.i.d.
assumptions. Moreover, the restriction to linear
moment conditions is really for simplicity.



A More Formal Take on Identification

As a prelude tothe rest of the course, we take a
more formal look at identification. In linear models,
identification is usually verified by checking some
rank and order conditions. But not all models work
like this. We will therefore take a brief look at what
identification is substantively about.

The core intuition for identification can be phrased
in the following ways:

“If a model is identified, the mapping from param-
eters of interest to distributions of observables is
invertible.”

“In an identified GMM model, if I know the popula-
tion moment conditions, I know the parameters of
interest.”

“The parameter θ is identified if no two values θ 6=
θ0 are observationally equivalent.”

These are related to a statement that one frequently
reads:

“If a model is not identified, parameters cannot be
estimated consistently.”

This latter statement is correct, but its converse
isn’t.
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Identification from Moment Conditions

Say a model is defined by orthogonality conditions
of the form

E(g(wi, θ0)) = 0.

Here we changed notation a little, identifying θ0 with
the true value of θ. The symbol θ without decora-
tions will henceforth refer to an arbitrary parameter
value. (Hayashi changes the notation analogously
at the beginning of chapter 7.)

This model is identified if knowledge of the popula-
tion distribution F0(wi) would imply knowledge of θ.
In general, this is equivalent to saying that the im-
plicit function F (wi) 7→ θ characterized by the above
moment conditions exists and is single-valued at θ0.
More straightforwardly, the model is identified only
if

E(g(wi, θ)) = 0 =⇒ θ = θ0,

i.e. the moment conditions have θ0 as unique solu-
tion.

In nonlinear GMM, one usually has to impose just
that. If g is linear, the condition is equivalent to
more primitive restrictions. Consider the case of
OLS, then

ΣZZθ = σzy

is solved by a unique θ0 iff ΣZZ is nonsingular.
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Identification when Likelihoods are Specified

Many models other than moment-based ones have
the feature that the probability distribution of ob-
servables as function of parameters (the “likelihood
function”)

f(wi; θ)

is specified. For example, this is true in an OLS
setup with normal errors, but also in setups that do
not easily lend themselves to GMM treatment and
also in Bayesian econometrics.

In this case, θ0 is identified iff no other parameter
value θ induces the same likelihood function. More
technically, we have:

Definition: Likelihood Identification

Consider a model that specifies f(wi; θ). Then θ0 is
identified within Θ iff for all θ ∈ Θ with θ 6= θ0,

[wi ∈ A⇒ f(wi; θ) 6= f(wi; θ0)] , some event A with Pr(A) > 0

or equivalently,

Pr(f(wi; θ) 6= f(wi; θ0)) 6= 0,

where the probability is with respect to sampling
under the true parameter value.
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We will now use a salient example to practise the
most general proof technique for establishing iden-
tification (when you want to do it formally - which,
be warned, is not the focus of this course).

Example: Nonparametric Regression

Consider the model

yi = m(xi) + εi

with the regularity conditions that xi is supported on Rk, that
m is continuous, and that ε is independent of xi.

This model is not identified. To see this, let Fε denote the
c.d.f. of εi and denote the true values of (m,Fε) by (m0, Fε0).
Also define

F
ε̃
(e) = Fε0(e− 1)

m̃(x) = m0(x)− 1.

In plain English, m(x) decreases by 1, but ε̃ is distributed as

ε + 1. Then it is intuitively clear that (m0, Fε0) and (m̃0, F̃ε0)
are observationally equivalent. Formally, write

Pr (yi ≤ y|x = xi) = Pr (m0(xi) + εi ≤ y)

= Pr(εi ≤ y −m0(xi))

= Fε0(y −m0(xi))

= Fε0(y − (m0(xi)− 1)− 1)

= F
ε̃
(y − m̃(x))

= Pr
(
m̃(x) + ε̃i ≤ y

)
,

hence identification fails.
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Assume now the additional condition that E(ε|xi) = 0. Is the
model then identified? Yes. This is easily seen by observing
that

E(yi|xi) = E(m0(xi) + εi|xi) = m0(xi) + E(εi|xi) = m0(xi),

hence m0 is pinned down by the distribution of (xi, yi).

A more general proof technique for identification goes by as-
suming that θ 6= θ0 and concluding that Pr(f(wi; θ) 6= f(wi; θ0)) >
0. In the present example, the argument goes as follows:

Let m̃ 6= m0 and fix any random variable ε̃i s.t. E(ε̃i|xi) =
0. Then there exists x∗ s.t. m̃ (x∗) 6= m0 (x∗), say (w.l.o.g.)
m̃ (x∗) > m0 (x∗). Since attention is restricted to continuous
functions, there exists a neighborhood B(x∗, ε) s.t. m̃ (x) >
m0 (y) for any x,y ∈ B(x∗, ε). It follows that

E(m0(xi) + εi|xi ∈ B(x∗, ε)) < E(m̃(xi) + εi|xi ∈ B(x∗, ε))

= E(m̃(xi) + ε̃i|xi ∈ B(x∗, ε)),

where the last equality uses E(εi|xi) = E(ε̃i|xi) = 0. (Notice
that independence of εi and xi was not used; it is not needed
to get identification.) But since xi is supposed to have full
support, B(x∗, ε) is an event of nonzero probability.



The Most General Identification Condition

The moment-based identification condition can be
seen as a case of likelihood identification: θ is not
mapped onto a single distribution f(wi; θ), but onto
a set of distributions that is characterized by the
moment conditions:

θ 7→ Γ(θ) ≡ {f(wi) : Eg(wi, θ) = 0} = {f(wi) : ΣZZθ = σzy}

(the last expression is the specialization to linear
GMM). To accommodate this case, the definition
of likelihood identification can be generalized to the
requirement that

θ 6= θ0 =⇒ Γ(θ) ∩ Γ(θ0) =,

where Γ(θ) is the set of distributions f(wi) that are
consistent with parameter value θ. The condition
says that the mapping Γ may be set-valued but that
its inverse must be a function. In the example,
identification then obtains iff ΣZZ is nonsingular, just
as before.

This generalization of likelihood identification nests
identification from moment conditions. Indeed, it is
the most general identification criterion in that any
identification condition can be seen as appropriate
specialization of it.

55


