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Abstract

Horizontal mergers have a large impact by inducing a long-lasting change in market
structure. Only in an industry with substantial entry barriers, such as sunk entry costs, is
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the effects of a merger, I use the model of Abbring and Campbell (2010) to estimated a
simple “reduced-form” specification of demand thresholds for entry and for exit. These
thresholds, along with the process for demand, are estimated using data from the ready-
mix concrete industry, which is subject to fierce local competition. Simulations using
estimates from the model predict that a merger from duopoly to monopoly generates
between 9 and 10 years of monopoly in the market.
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1 Introduction

Antitrust is valuable because in some cases it can achieve results more

rapidly than can market forces. We need not suffer loses while waiting for

the market to erode cartels and monopolistic mergers.

Bork (1978) The Antitrust Paradox p.311

In an industry without sunk costs or other entry barriers, merger policy has no role.

Since the free-entry condition holds at all points in time, whenever two firms merge,

another firm will enter the market. However, when there are substantial sunk costs or

adjustment costs in general, it takes time for the effects of a merger to die out.

I look at the effect of mergers in the ready-mix concrete industry, that has fierce com-

petition between firms, and very local markets due to high transportation costs. Ready-

mix concrete plants have substantial sunk entry costs. Moreover, horizontal mergers are

a recurrent issue.

The question I address in this paper is the speed that a market which has had a merger

to monopoly reverts to competition.1 Using data on 449 isolated ready-mix concrete

markets, I estimate the demand thresholds required for a new firm to enter, and the

level of demand required for an incumbent to continue operating. Using these demand

thresholds, as well as the process for demand, my simulations find that a merger from

duopoly to monopoly will induce between 9 and 10 years of monopoly in the market.

Merger Policy

In an industry without sunk costs, the analysis of merger policy is irrelevant since

the number of firms is wholly pinned down by the free-entry condition. Indeed, the

possibility of post-merger entry is well understood since at least the earlier literature on

barriers to entry (Demsetz, 1982; Bain, 1956).

Antitrust authorities recognize the problem of entry quite overtly, allowing potential

entry to influence decisions on proposed mergers. Section 3 of the Horizontal Merger

Guidelines (U.S. Department of Justice and Federal Trade Commission, 1997) states:

In markets where entry is that easy (i.e., where entry passes these tests of

timeliness, likelihood, and sufficiency), the merger raises no antitrust con-

cern and ordinarily requires no further analysis. ... Firms considering entry

1In previous work using data on concrete prices (Collard-Wexler, 2013), I find a large decrease in prices
from monopoly to duopoly markets, and little subsequent decrease in prices with additional competitors. Since
ready-mix concrete is essentially a homogeneous good, competition within a local market can be thought of as
approximately Bertrand.
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that requires significant sunk costs must evaluate the profitability of the en-

try on the basis of long term participation in the market...

However, the literature that evaluates the effects of a merger has focused primarily

on the static exercise of market power, such as the effect a merger on prices (see, for

instance the summary of this literature in Davis and Garcés (2009)). Thus, there is

virtually no guidance as to empirical evidence on the persistence of the effect of a merger

on market structure.

Ready-mix concrete is one of the most active domestic industries as far as mergers

are concerned. Local markets mean that even mergers of two ready-mix concrete firms

in a small city raise antitrust concerns. Moreover, the two largest domestic price-fixing

fines in Europe (Bundeskartellamt, 2001) and in the United States (US Department of

Justice, 2005) were for ready-mix concrete firms, indicating the importance of competi-

tion for this industry. Hortacsu and Syverson (2007) and Syverson (2008) document the

extent of vertical and horizontal mergers in the ready-mix concrete and cement indus-

tries. In contrast, this paper looks at the effect of horizontal mergers within a market,

rather than at mergers between firms that own plants in many geographically distinct

markets.

Overview of the approach

To justify the empirical approach in this paper, I use Abbring and Campbell (2010)’s

model of oligopoly industry dynamics. They show conditions under which entry and

exit decisions can be expressed in terms of demand thresholds for entry and continu-

ation. Similarly to Bresnahan and Reiss (1994), I estimate these demand thresholds,

which are a “reduced-form” characteristic of the entry and exit model. Sunk entry costs

create a wedge between the level of demand that is required to induce N firms to enter

the market and the level of demand that is sufficient to keep these N incumbents in the

market. In the absence of sunk costs there is no reason why incumbency should matter,

and these demand levels are identical.

These demand thresholds are simple to estimate: they reduce to the problem of es-

timating an ordered response model. Moreover, I allow for serial correlation of the

unobserved components of demand, so that there can be persistent unobserved differ-

ences between markets. Ultimately, I estimate a multivariate ordered probit using the

GHK algorithm.

The data on entry and exit patterns in the ready-mix concrete sector comes from the

U.S. Census Bureau’s Zip Business Pattern database for 1994 to 2006. I define a market

as the zip codes surrounding “isolated” towns, that is towns that are more than 20 miles

from any other town.
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I find a large differences in the entry and continuation thresholds.2 This gap between

these thresholds will slow the response of an industry to mergers, reducing the number

of competitors for a long time. Using estimates of these demand thresholds as well as

the process for demand, I simulate the evolution of market structure following a merger.

I find that a merger from duopoly to monopoly will induce between 9 and 10 years of

monopoly in the market.3

Related Literature

By far the most related paper is the work of Benkard, Bodoh-Creed and Lazarev

(2009), who look at the long-run effects of airline mergers. Recognizing that the effects

of a merger do not require the computation of equilibrium policies, since these policies

can be recovered directly from the data, Benkard, Bodoh-Creed and Lazarev (2009)

simulate the dynamic effects of several proposed mergers in the airline industry. Indeed,

I will also show results using their Conditional Choice Probability (henceforth CCP)-

based approach.

In prior work (Collard-Wexler, 2013), I have structurally estimated a dynamic entry

and exit model of the ready-mix concrete industry using a CCP approach. These esti-

mates show large sunk costs and important effects of competition on the profitability of

the firm. I use the reduced-form demand thresholds in this paper, since this approach

allows for serially correlated unobservables. This is critical for the counterfactual of

looking at the effect of changes of market structure, since the demand shock process

– both observed and unobserved – is essential to evaluating the speed of post merger

entry. I do not want to conflate unobserved fixed differences between markets, with

unobserved changes in the profitability within a market.

Section 2 discusses the importance of merger policy to ready-mix concrete. Section

3 presents the model, Section 4 illustrates the construction of the data. Section 5 dis-

cusses the econometric model, which is estimated in Section 6. These results are used

to perform counterfactual experiments in Section 7. Section 8 concludes. Some details

of the construction of the data as well as certain derivations and robustness checks are

collected in the appendix.

2While in the absence of these sunk costs, there is not reason why the these thresholds should differ, for a
given level of sunk costs, the gap between entry and exit thresholds can be amplified by other factors such as
the option value generated by demand uncertainty.

3I use simulations to assess the duration of the effects of a merger on market structure. This effect cannot
be directly estimated by following markets after a merger, since mergers to monopoly are prohibited in the
very industries where entry is not guaranteed within a two-year period, and where market power may impose
substantial damage to consumers.
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2 Ready-Mix Concrete

Ready-mix concrete is a mixture of cement, sand, gravel, water, and chemical admix-

tures. After about an hour or so, the mixture hardens into a material with very high

strength; its primary use is as a building material. Because concrete is very perishable,

average delivery times are about 20 minutes, and markets are local oligopolies. As well,

there are few substitutes for ready-mix concrete, so if there are no plants near a con-

struction site, either a mobile plant will be used to produce concrete, or concrete will

be mixed by hand. Overall demand for concrete is therefore relatively inelastic, even

though concrete itself is close to a commodity, generating fierce competition between

plants within a market. For both of these reasons the profitability of a ready-mix con-

crete plant is closely tied to the number of competitors in a local area.

According to the U.S. Census Bureau (2004) there are 5500 ready-mix concrete

plants in the country, which ship on average 3.8 million dollars of concrete, of which

1.9 million is value added. These plants employ an average of 18 workers and have

assets worth 1.7 million as well as large amounts of rented machinery. Plants can be

built very quickly, but except for trucks most of their capital assets are sunk, and it is

common to see abandoned ready-mix concrete plants in the countryside.4

I will use information on 449 markets for ready-mix concrete for 1994 to 2006. On

average, these markets have a single ready-mix concrete plant.

The importance of local competition and the potential for exercising market power

means that horizontal mergers may be blocked for anti-competitive reasons. The orga-

nization and control file in the Research Data Program at the Census bureau provides

information on the number of mergers in the industry from 1972 to 1997. Out of about

5000 plants in the industry, 654 are acquired by other firms during the period. Most of

these acquiring firms are in the ready-mix concrete industry, as the acquiring firms own

on average 7.5 ready-mix concrete plants. Furthermore the industry is highly concen-

trated at the local level, since acquired plants have a 41% share of payroll at the county

level pre-acquisition.

3 Model

I use the Last-In First-Out (henceforth LIFO) equilibrium model developed by Abbring

and Campbell (2010). The unique equilibrium to the entry-exit game will be charac-

terized by demand thresholds. These demand thresholds will form the basis for my

4For instance, Concrete Plant Park in New York City is an abandoned concrete plant turned into a park.
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estimation strategy, so a reader interested in the details of these estimates can skip to

Section 5.

3.1 Model Setup

In each period t, the market is characterized by a demand levelDt, and the set of firms in

the market. Each firm j = 1, · · · , J may either be a potential entrant – call these poten-

tial entrants Et – or incumbents denoted by Ct. I will refer to the number of incumbent

firms as simply Nt. Thus, the state of market st is st ≡ {Et, Ct, Dt}.

The timing of the game in period t is as follows, starting in state st−1:

1. Demand Dt evolves following a first-order markov process Q(·|Dt−1).

2. Firms earn period profits Π(Dt, Nt−1), which are determined by the number of

firms in the market, and the size of the market. I require that variable profits

are multiplicatively separable in market size: Π(Dt, Nt−1) = Dt
Nt−1

π(Nt−1)− κ,

which depend on profits per consumer π(N) – that is a function of the number of

firms in the market, but not on market size – and the number of consumers served

by each firm D
N , and fixed costs κ. This form of the profit function is satisfied by

many models of competition in industrial organization with identical firms.

3. Firm j = 1, · · · , J move sequentially, with firm j = 1 moving first, j = 2

moving second, and so on. If a firm is an incumbent, then they choose to exit or

not, denoted χj ∈ {0, 1}, and receive a scrap value of ψ if they exit. If a firm is

a potential entrant, then they can choose to enter, denoted χEj ∈ {0, 1}, and pay

entry fee φ. These entry and exit decisions yield a new set of incumbents Ct and

potential entrants Et.5

Firm j’s value function V Cj , if j is an incumbent firm, is given by the usual Bellman

equation:

V Cj (st) =

∫
Dt+1

[π(Dt+1, Nt)+

β max
χj∈{0,1}

Eχj
(
φ+ V Ej (st+1)

)
+ (1− χj)

(
V Cj (st+1)

)
]Q(Dt+1|Dt)dDt+1

(1)

where the expectation operator E is particular, since at time t, firm j knows both

5Through the paper, entry and exit will refer to denovo entry and permanent exit. In the ready-mix concrete
industry there is no conversion of plants from other industries and very little mothballing of plants.
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demand Dt+1 and the entry and exit choices of firms 1, · · · , j − 1 that have moved

before it.

Likewise potential entrants have the value function:

V Ej (st) = β

∫
Dt+1

[ max
χEj ∈{0,1}

E(1−χEj )V Ej (st+1)+χ
E
j

(
−ψ + V Cj (st+1)

)
]Q(Dt+1|Dt)dDt+1

(2)

3.2 Demand Thresholds

The AC model requires assumptions both on strategies and on the process for demand

to characterize the equilibrium policies in this game:

A1. Firms use LIFO strategies which default to inactivity: the firms that enter the

earliest are the firms that exit last.

A2. Stochastic monotonicity: to ensure higher demand today implies a higher distri-

bution of demand tomorrow, expected demand E[Dt|Dt−1] must be increasing in

Dt−1,

A3. The innovation error in demand, ut ≡ Dt − E[Dt|Dt−1] must be independent of

Dt−1.

A4. The demand process Q(·|Dt) must be continuous.

A5. The innovation u in the demand process must be drawn from a concave distribu-

tion.

LIFO Equilibrium

If assumption A1 holds, firms use LIFO strategies which default to inactivity; firms

that enter the earliest are the firms that exit last. In the ready-mix concrete industry I

find that older plants tend to exit less often than younger plants: a one year old plant

has an exit rate of about 7%, while a 15-year-old plant has an exit rate of about 4%.6

Furthermore, the absence of firm-level shocks also rules out simultaneous entry and exit.

With yearly data, and markets with on average less than 3 incumbents, in only 5% of

market-years is there simultaneous entry and exit. Moreover, dropping market-year with

simultaneous entry and exit does not significantly change my estimates.

Given the LIFO assumption, Proposition 1 of Abbring and Campbell (2010) shows

that the markov-perfect equilibrium of the entry and exit game will be unique. This

means that – in contrast to the rest of the literature on dynamic oligopoly (see Be-

sanko et al. (2010) for instance) – the model generates a unique prediction, considerably

6See Collard-Wexler (2013) for a discussion of the measurement of entry and exit in this industry.
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simplifying counterfactual experiments, and allowing for estimation techniques such as

maximum likelihood, which requires that each parameter vector is associated with a sin-

gle prediction of the entry-and-exit model. Moreover, since the ordering of moves – by

either continuers or entrants – does not change over time, this combined with the LIFO

assumption, ensures that the number of plants in the market Nt is a sufficient statistics

to describe the set of entrants Et and continuers Ct. Thus under these LIFO strategies,

the state at the end of the period can be expressed as st = {Dt, Nt}.

Demand Thresholds

There is a strong intuition that entry and exit decisions will be in demand thresholds;

i.e., there is a level of demand above which a single firm enters, and a higher level

of demand above which a second firms enters and so on. Likewise for continuation,

there will be a level of demand below which an nth firm will exit. Formally, given

the LIFO strategies employed by firms, one can label j such that j = 1 indicates the

oldest incumbent, j = 2 the second oldest incumbent, and so on. Exit decisions are

in thresholds if χj(Dt+1, Nt) = 1(Dt+1 ≤ DC
j ), i.e. a N th incumbent continues if

and only if D > DC
N . Likewise entry decisions are in thresholds if χEj (Dt+1, Nt) =

1(Dt+1 > DE
j ).

Notice that this means that I can characterize the stochastic process for market struc-

ture as coming from the process for demand, Dt+1 ∼ Q(·|Dt), and the following con-

ditions on the number of firms N :

Dt+1 > DE
Nt+1 , entry

Dt+1 ≤ DC
Nt , exit

DE
Nt+1 ≥ Dt+1 > DC

Nt , stasis

(3)

Figure 1 encapsulates the predictions of the model by presenting the transition dy-

namics for the industry, along with the entry and continuation thresholds. The band

between the continuation and entry threshold, which indicates level of demand where

there will be no change in the number of firms, is the stasis zone. In section 5, I will

estimate these entry and continuation thresholds.

Without sunk costs, the entry and continuation thresholds are the same: DE
N = DC

N .

Thus, the gap between entry and exit thresholds indicates the difference in the level of

demand required to induce a firm to exit a market and the level of demand required to

have this firm enter in the first place. Notice that the larger the stasis zone, the more

likely a merger will have long lasting effects, since when a merger knocks a firm out of

the market, it is more probable that the market remains in the stasis zone.
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Note: DE
1 represents the level of demand required for 1 firm to enter, and DC

2 represents the
level of demand required to keep two existing firms in the market.

Figure 1: Entry and Continuation Thresholds

Conditions for Entry and Exit Decisions in Demand Thresholds

Under assumptions A2, A3, A4, and A5 on the process for demand Q(·|Dt−1),

Proposition 4 in Abbring and Campbell (2010) states that entry and exit decisions will be

in demand thresholds. Monotonicity of the demand process, which will be construction

employment, is easily satisfied. Indeed, the number of construction employees in the

past year predicts higher construction employment this year. However, the conditions

on concavity is more difficult to check. As well, larger markets have a larger variance

of the innovation error, which is to expected as changes in demand are proportional

to current demand. For the task at hand, what these conditions are ruling out is the

following case: a first firm enters above 500 construction employees, but would not

enter between 750 and 1,000 construction employees because in these markets are more

likely to see duopoly in the future. In other words, the entry policy is not monotonic

with respect to demand. These policies are ruled out by Proposition 4.
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4 Data

I construct data on entry and exit patterns in isolated markets for the ready-mix concrete

sector. I use the area around isolated towns as my markets since they allow for clean

identification of the role of competition. Then I use the Zip Business Patterns to harvest

data on entry and exit patterns in the ready-mix concrete sector, as well as employment

data for the construction sector, which will be my measure of demand.

4.1 Isolated Towns

I construct markets using the concept of isolated towns in Bresnahan and Reiss (1991).

These towns are far enough away from other towns so that concrete cannot be shipped

from outside. This allows me to abstract from competitors that are located in neighbor-

ing towns.

Concrete is well suited to the isolated market approach as concrete does not travel

between adjacent markets. This is because concrete is a very particular construction

material in that it sets within about an hour or two. Moreover, concrete is quite cheap

for its weight, as a truck-full of 8 cubic yards of concrete is worth around $600. Thus,

shipping times in this industry are 20 minutes on average.

I locate “places” (as defined by the Census Bureau) in the United States that have

more than 2000 inhabitants.7 Many of these towns are “twins”: they are adjacent to

another place. I treat both of these municipalities as if they composed a single city.

Isolated towns are the 449 places out of more than 10, 000 that are at least 20 miles

away from any other town, which I identify using GIS software. Figure 2 shows a typical

isolated town: Scottsbluff, Nebraska. Scottbluff is “twinned” with Gerring, Nebraska.

The nearest town of at least 2000 inhabitants is Torrington, Wyoming, which is 32 miles

or 40 minutes away by car.

Since the data on establishments that I use is based on zip-codes, I find the zip codes

that are less than 5 miles from the town. Appendix A discusses the construction of the

isolated town dataset in more detail.

4.2 Concrete and Construction Data

The data on concrete plants and construction are pulled from the Zip Business Patterns

(henceforth ZBP) database that is produced by the Census Bureau (US Census Bureau,

7A place is defined by the Census as “cities, boroughs, towns, and villages” as well as “settled concentra-
tions of population that are identifiable by name but are not legally incorporated”. The interested reader can
find exact definition in http://www.census.gov/geo/www/cob/pl_metadata.html.
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Figure 2: Typical Isolated Town and Zip Codes: Scottsbluff/Gering, Nebraska, and Zip codes
69357, 69341, 69356, 69361.

2009). For confidentiality reasons, the ZBP contains only the total count of plants in

a zip code, as well as coarse information on the number of employees at each plant. I

can observe the number of plants in a market, but not the number of firms in the market.

However, using confidential data from the Census RDC, it turns out that very few plants

within a market have the same owner. Thus, I use plant and firm interchangeably. More-

over, in small towns multi-plant firms typically own plants in several adjacent markets,

rather than multiple plants in the same market.

I pull data on establishments in the construction sector (NAICS 23) and the concrete

sector (NAICS 327320) for 1994 to 2006. I use data from the construction sector since

almost all demand for concrete emanates from the construction sector, and so construc-

tion employment will be my primary demand shifter.8

Table 1 presents summary statistics for the 449 isolated towns in the data over a

twelve year period. Towns have an average population of 12,000 inhabitants, with very

large skewness in this distribution as it varies from 4,000 to 176,000. There are consid-

erably more inhabitants living in the zip codes within 5 miles of this town, on average

29,000 inhabitants living in 12,000 housing units. One reason for the larger population

in surrounding zip codes is the fact that the land area covered by these zip codes differs

considerably, from 26 and 6500 square miles.

8See Syverson (2008) for more detail on the role of construction in determining demand for concrete.
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I use construction employment as a measure of demand, and there are on average

500 employees at construction establishments in zip codes within 5 miles of the town,

and this varies from 3 employees to 7500. Moreover, Figure A.1 in the Appendix shows

more detailed distributional graphs of town size measured by either population, housing

units, construction employment and land area.

There are between zero and six concrete plants in a market, with an average of 0.94.

There is also considerable time series variation in construction employment and con-

crete plants. The standard deviation of the difference between the number of plants and

the market mean is 0.37. This is a fairly large, as the cross-sectional standard deviation

of the number of plants is 0.92. As well log construction employment has consider-

able variability, with a standard deviation within the market of 0.22, again compared

to a cross-sectional standard deviation of 1.11, indicating that demand for concrete is

volatile.

Table 2 shows summary statistics of the data decomposed by the number of plants

within a market. Notice that 45% of markets are monopoly markets, 35% have no

plants at all, while the balance of markets (20%) have more than one plant. Population

and employment in the construction sector are higher in markets that are served by

multiple ready-mix concrete plants. A market served by a single ready-mix plant has

employment in the construction sector of under 400 people, while a market served by

four plants has employment of about 1600. The average size of establishments does not

increase with market size. In monopoly markets, 44% of plants employ more than 20

workers, while a market with 4 plants 33% of plant employee more than 20 workers.

To illustrate changes in market structure, Table 3 shows the transition probabilities

of the number of firms in a market on a one and ten-year horizon. About 20% of markets

have a change in the number of firms that serve them each year: these markets are fairly

dynamic. Furthermore the ten-year transition probabilities show, for instance, that a

duopoly market has a 55% probability of being a monopoly market ten years later and a

35% probability of having two or more plants ten years later.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max.
Highway within 5 miles of place 0.28 0.45 0 1
Land area in square miles of zip codes† 861 825 26 6573
Population of place∗ 12006 14332 4019 176576
Population in zip codes∗ 28526 24625 3538 190759
Housing units in zip codes∗ 12279 9784 989 64331
Log of population in place∗ 9.10 0.67 8.29 12.08
Log of zip Population in zip codes∗ 9.99 0.71 8.17 12.16
Construction employment in zip codes 502 606 3 7529
Log construction employment 5.69 1.11 0.92 8.93
within 10 miles 5.89 1.11 0.92 8.94
within 20 miles 6.05 1.09 0.92 9.84
Concrete establishments in zip codes 0.94 0.92 0 6
Standard deviation of
log construction employment within market� 0.22 0.15 0 1.43
Standard deviation of
number of concrete plants within market� 0.37 0.32 0 1.56

The data is a fully balanced panel of 449 markets over a 12 year period. † Zip codes refers to the
zip codes within 5 miles of the isolated town (or place). ∗Denotes a measure in the year 2000. �The
standard deviation within a market is the standard deviation of ym,t − ȳm.

Table 2: Summary Statistics by Market Structure
Number of Count Mean Mean Construction Share of plants with
Plants Population Employment at least 20 employees
0 2,078 11138 382 n.a.
1 2,553 10791 467 44%
2 811 14266 595 42%
3 300 17998 946 37%
4 77 23402 1676 33%
5 and more 18 42252 7306 52%
All 5,837 12031 516 43%
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Table 3: Transition of the number of plants on a one and ten year horizon.
Panel A: One Year Transition Probabilities

Plants this year
Plants Last year 0 1 2 3 4 5+ Total

0 0.86 0.13 0.01 0.00 0.00 0.00 849
1 0.09 0.83 0.08 0.00 0.00 0.00 1293
2 0.01 0.20 0.71 0.08 0.00 0.00 606
3 0.00 0.03 0.24 0.65 0.07 0.01 197
4 0.00 0.05 0.10 0.22 0.58 0.05 59

5 and more 0.00 0.00 0.00 0.36 0.09 0.55 11

Panel B: Ten Year Transition Probabilities

Plants this year
Plants Ten years ago 0 1 2 3 4 5+ Total

0 0.30 0.58 0.09 0.01 0.01 0.00 160
1 0.39 0.36 0.21 0.03 0.00 0.00 243
2 0.10 0.55 0.23 0.10 0.01 0.00 134
3 0.05 0.29 0.29 0.26 0.12 0.00 42
4 0.00 0.24 0.59 0.12 0.06 0.00 17

5 and more 0.00 0.00 0.00 0.00 0.80 0.20 5
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5 Econometric Model

In this section, I will estimate the entry and continuation thresholds, and the process for

demand Q(·|Dt), using maximum likelihood.

Certain components of demand will be mismeasured. For instance, the demand for

concrete is higher in Texas since the high summer temperatures there make asphalt melt.

Thus roads in Texas are more frequently paved with concrete. More generally there will

be differences in the demand for concrete across markets that are difficult to capture

with observable demand shifters. True demand D∗t , which is the demand in the model

that I discussed in section 3, is equal to D∗t = Dt + εt, where εt is the unobserved

component of demand andDt is the observed components of demand. Notice, however,

that for every market to have the same underlying demand thresholds DE
N , and DC

N , the

process for demand Q(·|Dt−1) must the same in every market.

The number of firms in a market m at time t, denoted Nm,t, must lie between the

entry and continuation thresholds. Thus,

Dm,t + εm,t > DE
Nm,t1(Nm,t > Nm,t−1) +DC

Nm,t1(Nm,t ≤ Nm,t−1)

Dm,t + εm,t ≤ DE
(1+Nm,t)

1(Nm,t ≥ Nm,t−1) +DC
(1+Nm,t)

1(Nm,t < Nm,t−1).

I define the gap between entry and continuation thresholds as γS(N) ≡ DE
N −

DC
N . As well, I re-express DE

N ≡
∑N

k=1 h(k), where h(k) represents the increment in

demand thresholds between k − 1 and k firms.9

To reduce the number of parameters that I need to estimate, and will I present esti-

mates where the difference between entry and exit thresholds is either a) constant, i.e.

γS(N) = γS0 , or b) linearly varying with demand γS(N) = γS0 + γS1N . To accommo-

date multiple components of demand, such as population and construction employment,

I use a single index of demand Dm,t = Xm,tβ.

Thus the thresholds become:

εm,t ≥ −Xm,tβ + 1(Nm,t > Nm,t−1)γ
S(Nm,t) +

Nm,t∑
k=1

h(k) ≡ π̄(Nm,t, Nm,t−1, Xm,t, θ)

εm,t < −Xm,tβ + 1(Nm,t ≥ Nm,t−1)γ
S(Nm,t) +

1+Nm,t∑
k=1

h(k) ≡ π(Nm,t, Nm,t−1, Xm,t, θ)

(4)

where the vector of parameters is denoted θ ≡ {β, γS(·), h(·)}. This means that my

9This change in variables in mainly done because there is larger variance in the demand thresholds, but the
increments of these demand thresholds are precisely estimated.
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estimating equations will compute the probability that εm,t is in between π̄ and π:

Pr(Nm,t, Nm,t−1, Xm,t, θ)

=

Pr (π(Nm,t, Nm,t−1, Xm,t, θ) ≤ εm,t < π̄(Nm,t, Nm,t−1, Xm,t, θ)) if Nm,t > 0

Pr (εm,t < π̄(Nm,t, Nm,t−1, Xm,t, θ)) if Nm,t = 0

(5)

In what follows, it will be convenient to assign π(Nm,t, Nm,t−1, Xm,t, θ) ≡ −∞ if

Nm,t = 0, so that I not need to keep track two separate cases, and just look at Pr(π ≤
εm,t < π̄).

5.1 Serially Correlated Unobservables

If one assumes εm,t is and i.i.d. variable which is distributed as a N (0, 1), then this

model can be estimated by maximum likelihood almost as if it were an ordered probit.

Indeed, equation (5) differs from an ordered probit such as in used in Bresnahan and

Reiss (1991) only in the inclusion of the γS(·) term.

I have a panel of markets, so the assumption that εm,t is independent of εm,t−1 is hard

to believe given that the unobserved components of demand, such as how intensively

concrete is used in construction, are most likely similar from one year to the next.

Instead, I assume that εm,t follows an autoregressive process with i.i.d shocks of the

form:

εm,t = µm,t + ηm,t

µm,t = ρµm,t−1 + ζm,t
(6)

where ηm,t ∼ N (0, 1), and ζm ∼ N (0, σζ).10

The likelihood will be based on the probability of a sequence of εm ≡ {εm,t}Tt=0’s:

Pr({Nm,t}Tt=0|{Xm,t}Tt=0, θ) =∫
µm,0

Pr({Nm,t}Tt=1|µm,0, {Xm,t}Tt=1, Nm,0, θ) Pr(µm,0|Nm,0, Xm,0, θ)︸ ︷︷ ︸
Initial Conditions

dµm,0

(7)

where Pr({Nm,t}Tt=1|µm,0, {Xm,t}Tt=1, Nm,0, θ), which I will refer to as the “ordered

10Note that it is possible to estimate the model without ηm,t, but it will computationally attractive later in the
paper to do it this way in order to generate a full support probability of observing Nm,0 firms given a persistent
effect µm,0.
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probit” component, is given by:

Pr[π(Nm,1, Nm,0, Xm,1, θ) ≤ εm,1 < π̄(Nm,1, Nm,0, Xm,1, θ), · · · ,

π(Nm,T , Nm,T−1, Xm,T , θ) ≤ εm,T < π̄(Nm,T , Nm,T−1, Xm,T , θ)|µm,0]
(8)

Notice that equation (7) incorporates both the ordered probit components in equation

(8), and the initial conditions distribution Pr(µm,0|Nm,0, Xm,0, θ) – the probability of

the initial unobservable µm,0 given the initial demand level and number of firms.

5.2 Initial Conditions

I assume that the number of firms observed at time zero, Nm,0, is drawn from the sta-

tionary distribution generated by the model. Stationarity is a plausible assumption the

ready-mix concrete market, since this industry has been in operation for over eighty

years, and there is little fluctuation in the aggregate number of concrete plants in the

United States from 1963 to 2002.

The stationary distribution of µm,0 is given by the usual AR(1) formula ofN (0,
σζ√
1−ρ2

).

However, conditionally on observing Nm,0 firms in a market with demand Xm,0, the

distribution Pr(µm,0|Nm,0, Xm,0, θ), is not necessarily a normal.

I compute the stationary distribution by simulation. To do so, I need: i) the process

for the unobservables ε, ii) the demand process for Xm,t – estimated in the next subsec-

tion, and iii) the entry and exit model in equation (4). Since there is no closed form for

this initial conditions distribution, I approximate it numerically. Appendix C shows the

algorithm used to simulate Pr(µm,0|Nm,0, Xm,0, θ).

5.3 Demand Process

I estimate the demand process for observable demand Q[Dm,t|Dm,t−1] from the data,

using dm,t = log(Dm,t) (log construction employment):

dm,t = β0 + β1dm,t−1 + ηdm,t, (9)

where ηdm,t ∼ N (0, σ0 + σ1dm,t). Q is estimated by maximum likelihood and Table 4

presents estimates of the demand process. Columns I and II show that the coefficient on

lagged demand is essentially 1, i.e. a unit root process for demand. There is substantial

variation in demand from year to year since the estimated variance is 0.21, but this vari-

ation is more important in small markets since log construction employment reduces the

variance of η. For the counterfactual, and to simulate the initial conditions distribution,
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Table 4: Estimated Demand Transition Process

Dependent Variable: Log Construction Employment I II
Last Year Log Construction Employment 0.98 0.99

(0.00) (0.00)
Constant 0.12 0.04

(0.02) (0.02)
Variance ση Constant 0.23 0.49

(0.01) (0.03)
Log Construction -0.05
Employment (0.00)

Observations 5312 5312
Log-Likelihood 162 694

Note: Standard Errors Clustered by Market.

I use the demand process estimated in Column I.

5.4 Likelihood and GHK

The likelihood for this model is given by L(θ) =
∏M
m=1 Pr({Nm,t}Tt=1|{Xm,t}Tt=1, θ).

Given the AR(1) process with i.i.d shocks in equation (6), the sequence of εm =

{εm,t}Tt=1 has aN (0,Σ) distribution.11 Thus I can approximate the probability in equa-

tion (7) using the GHK algorithm, as this is a truncated multivariate normal.12 More-

over, I modify the GHK algorithm so that it incorporates the initial conditions problem.

I provide additional details on the implementation of this procedure in Appendix C.

6 Results

Table 5 present the primary results of the entry-exit model. To make these results more

informative about demand thresholds, I normalize the coefficient on construction em-

ployment to 1, which allows me to show entry and exit thresholds in terms of construc-

tion employment, and Panel B presents the implied entry and continuation thresholds

11Where Σ2 = Σ2
AR + I and Σ2

AR =


1 ρ ρ2 · · · ρT

ρ 1 ρ · · · ρT−1

· · · · · · · · · · · · · · ·
ρT ρT−1 ρT−2 · · · 1

.

12While GHK is most commonly used for correlated binary probit models, the logic behind the procedure is
applicable to any multivariate normal that is truncated, such as an ordered probit.
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Table 5: Sunk-Cost Bresnahan-Reiss Model Main Estimates

Panel A: Estimates
Dependent Variable I II III IV
Number of Plants in a Market BR Base AR(1)
Entry Parameter (h(1)) 0.62 -4.41 -0.66 -1.00

(0.00) (0.00) (0.00) (0.00)
First Competitor (h(2)) -3.59 -3.14 -5.67 -6.91

(0.00) (0.01) (0.00) (0.00)
Second Competitor (h(3)) -2.09 -2.63 -4.98 -4.60

(0.00) (0.01) (0.00) (0.00)
Third Competitor (h(4)) -2.14 -2.46 -3.88 -2.62

(0.01) (0.02) (0.07) (0.10)
Fourth Competitor (h(5)) -2.54 -2.85 -4.00 -1.73

(0.04) (0.08) (0.32) (0.23)
Competitors above 4 (h(6)) -2.59 -3.76 -2.24 -0.47

(0.09) (0.18) (0.19) (0.08)
Gap Entry-Continuation γS1 10.82 7.38 11.31

(0.01) (0.00) (0.00)
Gap Entry-Continuation γS2 -1.93
× Number of Firms (0.01)

Unobservables
ση 2.96 3.04 0.77 0.92
(i.i.d. shock ) 0.00 (0.00) (0.00) (0.00)
σζ 1.24 1.23
(AR(1) shock) (0.00) (0.00)
ρ 0.96 0.96

(0.00) (0.00)

Observations 5321 5321 5321 5321
Markets 445 445 445 445
Log Likelihood 6486 1832 1065 1006

Panel B: Implied Entry and Continuation Thresholds
Entry Threshold
One Firm -620 4410 660 1000
Two Firm 2970 7550 6330 7910
Three Firm 5060 10180 11310 12510
Four Firms 7200 12640 15190 15130
Five Firms 9740 15490 19190 16860

Continuation Threshold
One Firm -6410 -6720 -10310
Two Firm -3270 -1050 -3400
Three Firm -640 3930 -1470
Four Firms 1820 7810 2390
Five Firms 4670 11810 8180

Note: Column I and II show estimates with an i.i.d. process for ε, while Columns III and IV show an AR(1)
– with i.i.d. shocks – process for ε. The coefficient on construction employment in thousands normalized
to 1. Thus, using Column III’s estimates, an entry parameter h(1) of 0.66 implies that the entry threshold is
660 construction employees. In addition, ση = 0.77 would imply that the i.i.d. shock has variance of 770
construction employees.
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for construction employment.13

Column I shows estimates where I set γS(N) = 0 and therefore are comparable

to Bresnahan and Reiss (1991) (henceforth BR). The BR estimates highlight the differ-

ences between the BR model, which predict market structure, versus the SBR model

(in Column II), which predicts changes in market structure. Column III and IV shows

estimates with an AR(1) process for the unobservable. In order, I will discuss the esti-

mates of entry thresholds, the gap between entry and exit thresholds and the magnitude

of unobservable shocks.

The entry threshold for a monopolist, h(1), in Column III is 0.66. In other words, it

takes 660 construction employees in order for a first firm to enter the market. However,

to induce the next firm to enter, 5660 more construction employees are required. Thus

the level of demand necessary to induce two firms to enter the market is much more

than twice the level of demand needed to support a single entrant. In a static model of

competition, this finding would be rationalized by profits per consumer falling quickly

from monopoly to duopoly, and are consistent the Bertrand-like nature of competition

in the ready-mix concrete industry. To induce a third and fourth firm, construction

employment must rise by an additional 4980 and 3880 employees respectively.

Comparing the entry threshold estimates between Column II and III, I find that the

increments to the demand thresholds h(k) are about 80% higher in Column III’s AR(1)

estimates with serially correlated unobservable than in Column II’s estimates with an

i.i.d. unobservable. To the extent that more firms enter more profitable markets, there

will be positive correlation between the number of firms in a market and unobserved

demand. Specifically, the estimated continuation and entry thresholds DC
N and DE

N will

rise too slowly with N ; or, in other words, the effect of competition measured by h(k)

will be underestimated.

The magnitude of the stasis zone has a direct impact on the persistence of the effects

of a merger. If the stasis zone is zero, then a merger only has an impact for a single pe-

riod, and likewise, if the stasis zone is infinite, then a merger permanently alters market

structure. In Column III, I estimate the magnitude of the stasis zone at 7,400 construc-

tion employees. This means that the level of demand required to induce a monopoly

entrantDE
1 = 660 is in between the level of demand needed to maintain 2 or 3 competi-

tors (since DC
2 = −1050 and DC

3 = 3930 ). These large estimated stasis zone are not

too surprising since there is evidence for large sunk entry costs in the ready-mix con-

crete industry. Indeed, in interviews that I have done with ready-mix concrete producers

13The estimated model is akin to an ordered probit, and thus is identified up to a scaling factor. Instead
of normalizing the variance of the unobservable to one, as is commonly done, I normalize the coefficient on
construction employment.
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in Illinois, I reckon sunk costs of entry at 2 million dollars. In comparison, average

sales of concrete are about 3 million dollars per year, and both markups and fixed costs

are quite low. Moreover, work by Foster, Haltiwanger and Syverson (2008) finds that

the prices that ready-mix concrete producers receive increase over the plant’s lifetime,

indicating building up a reputation in the market. This type of reputational capital is

also entirely sunk.

This gap between entry and exit thresholds falls from 10,800 employees in Column

II to 7,400 in Column III. The stasis zone, as measured by γS , is 30 percent larger in

the i.i.d. model than in the AR(1) model. To understand this difference, suppose that

we observe two markets with the same level of demand D, but one market has 1 firm

in it while the other market has 3 firms. To accommodate this fact, the i.i.d. model

needs a very large stasis zone, and in particular requires DE
2 > D and DC

3 < D. In

contrast, the AR(1) model can explain this pattern with resorting to a stasis zone, since

the 3 firm market might have a much higher persistent unobserved demand µ than the 1

firm market.

Notice that the estimates in Column IV, which allow for the gap between entry and

continuation thresholds to vary with the number of firms, show that this gap is larger for

one firm (i.e. DE
1 − DC

1 ), and falls for an additional number of firms. Thus there is a

larger stasis zone for a single plant market, than a multiple plant market.

The i.i.d. unobservable η is quite large in Column II, at 3,000 thousand construc-

tion employees. However, once serial correlation is incorporated in Column III and IV,

this number falls to 770. Indeed, the majority of the unobservable is serially correlated,

not i.i.d., as the stationary standard deviation of µ, given by the AR(1) formula σζ√
1−ρ2

,

is 4,400. This serially correlated unobservable is quite persistent as well, with an es-

timated autocorrelation coefficient of 0.96. Two examples of these highly persistent

differences are the size of the road network, which uses a large amount of concrete, and

the prevalence of basements in houses in a market.

To perform the merger counterfactual I will need to simulate the evolution ofD over

time which includes the evolution of both observable and unobservable demand. Thus

getting the right time-series process for unobserved demand ε is key.

6.1 Robustness

In Appendix B, I also present diagnostic regressions on demand covariates and market

definition similar to Table 5, but which assume that the unobservable ε is an i.i.d. normal.

In Table B.1 I find that using construction employment as a demand measure yields

better results than other measures of demand for ready-mix concrete, such as population,
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housing, or land area. There does not appear to be a strong aggregate component to

demand, as including year dummies as a demand covariate do not change the results.

I also investigate alternative market definitions in Table B.2. I find that construction

activity in zip codes that are within 10 and 20 miles of an isolated town – versus the 5

miles I use for the main results – have no additional impact on entry and exit of ready-

mix concrete plants. As well, excluding markets which have unusually large zip codes

(over of 850 square miles in surface area), or markets near cities or major highways, do

not substantially change the estimates.

6.2 Marginal Effects

To illustrate the model’s estimates I present a table of mean “marginal effects”, i.e.

predictions for the estimates in Column II (henceforth, the i.i.d. model) and Column III

(henceforth, the AR(1) model). Specifically, given construction employment Dm,t, the

number of firms last year Nm,t−1, and a draw of εrm,t, I compute the predicted number

of firms N r
m,t. Table 6 present the mean of the predicted number of firms, entry and exit

rates, as well as the effect of changing Dm,t, ε, µ, and Nm,t−1 on the number of plants

per market. Note that to compute the model’s prediction I need to draw η fromN (0, 1),

and draw µ, which I do using the initial conditions distribution Pr(µm,0|Nm,0, Xm,0, θ).

Table 6: Model “Marginal Effects”

Variable i.i.d. Model AR(1) Model

Mean Number of 0.94 0.91

Plants (Baseline)
1 Log point demand increase 0.97 1.03

10th percentile η (i.i.d. component) 0.77 0.88

90th percentile η (i.i.d. component) 1.08 1.03

10th percentile µ (persistent component) - 0.66

90th percentile µ (persistent component) - 1.31

Removing all firms† 0.13 0.40

Filling the market†† 2.84 1.66

† Removing all firms refers to the the one year prediction when Nt−1 = 0, and †† Filling the market refers to

the prediction where 5 plants are in the market (adding more has no effect), i.e. Nt−1 = 5. The process for the

unobservable is εm,t = µm,t + ηm,t where ηm,t ∼ N (0, 1) and µm,t = ρµm,t + ζm,t where ζm,t ∼ N (0, ζ).
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In the data, there are 0.91 plants per market (on average), while the i.i.d. model

predicts 0.94 plants per market and the AR(1) model predicts 0.92 plants per market.

The effect of increasing construction employment by one log point is to raise the number

of firms by 4% in the i.i.d. model and 5% in the AR(1) model. Thus construction

employment has a somewhat small effect on the number of firms in the market, even if

the computed effect only shows the one-year response of a change in demand.14

Raising the i.i.d. component of unobserved demand η to the 90th percentile of the

distribution, increases the number of firms by 12% in the i.i.d. model versus 8% in

the AR(1) model. This shows that unobserved shocks account for a large proportion of

demand, and these shocks are far larger for the i.i.d. model than for the AR(1) model.15

Raising the persistent market unobservable µ to its 90th percentile has a far greater

effect, as the predicted number of firms increases from 0.92 to 1.31. Indeed, there are

large persistent differences in market structure that cannot be accounted for by construc-

tion employment.

Removing all firms from the market; i.e., setting Nm,t−1 = 0, would yield a pre-

dicted number of firms today of 0.13 for the i.i.d. model and 0.40 for the AR(1) model.

Likewise, the effect of filling up the market with firms, i.e. setting Nm,t−1 = 5 (choos-

ing a number larger than 5 has little effect) would raise the number of firms today to 2.84

in the i.i.d. model and 1.66 in the AR(1) model. Thus the effect of past market structure

on the current number of firms is substantial, and we should see a slow response of mar-

ket structure after a firm exits the market. As well, the AR(1) model predicts a much

faster reversion of market structure than i.i.d. model.

6.3 Goodness of Fit

I examine the fit of the SBR model on several different metrics to explore the appro-

priateness of the approach used in the paper. Moreover, I also include an alternatative

approach based on conditional choice probabilities (CCP). These CCPs are compatible

with the model of industry dynamics of Ericson and Pakes (1995), which most impor-

14There is a small response of the number of firms in a market to changes in log construction employment.
Indeed, the correlation between log construction employment and concrete plants is an order of magnitude
smaller in the time-series than the cross-section, as a regression of the number of firms on log construction
employment yields a coefficient of 0.29, but falls to 0.03 when market fixed effects are included.

15The importance of the i.i.d. component of unobserved demand η’s echoes a main findings of the industry
dynamics literature, that idiosyncratic shocks are responsible much of turnover. Evidence for the importance
of idiosyncratic shocks can be deduced from entry and exit coexisting in narrowly defined markets which
experience either large increases or decreases in demand (Dunne, Roberts and Samuelson, 1988; Bresnahan
and Raff, 1991). Moreover, these idiosyncratic factors are present in both large productivity dispersion, and the
volatility of productivity from year to year (Foster, Haltiwanger and Syverson, 2008; Collard-Wexler, 2009).
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tantly allows for firm levels shocks generating entry and exit decisions. In Section 7.3 I

will discuss this approach in model detail.

Table 7 compares the predictions of the SBR and CCP models with the data. The

entry and exit rates in the data are 7.3% and 6.5% respectively, the i.i.d. model predicts

entry and exit rates of 3.8% and 4.8%, and the AR(1) model predicts a 5.0% entry

rate and a 3.8% exit rate. Thus, both specifications of the SBR models under-predict

entry and exit rates. This is not surprising as the AC model rules out firm-level or

idiosyncratic shocks, which is necessary to obtain a unique equilibrium. Thus the main

driver of turnover in most models of industry dynamics is absent. In contrast, the CCP

model predicts much higher entry and exit rates, with an entry rate in the first year of

18.6%.

Table 7: Goodness of Fit

Variable Data i.i.d. Model AR(1) Model CCP

Mean Number of 0.91 0.94 0.91 0.96

Entry Rate 7.3% 3.8% 5.0% 18.6%

Exit Rate 6.5% 4.8% 3.8% 6.4%

To understand the model’s long-run forecast for market structure, starting with the

number of firms in 1996, I simulate the evolution of markets for the next twelve years.

This is an important check for the merger counterfactual, since it is important to check

that the model accurately predicts the path of a market absent a merger. Figure 3 plots

the evolution of the number of firms in the market in the data (shown in solid blue),

and compares this to the forecast from the AR(1) model (shown in dotted red). This

evolution is broken out by the number of firms in the initial period, the year 1996.

Notice that over a twelve year period, there is a large amount of variation in the

number of firms in a market. For instance, a market with no plants in 1996, has 0.5 plants

in it, on average, in 2006. Moreover, the AR(1) model does a good job a replicating the

time series pattern of the number of firms in the market, as evidenced by the proximity

of the model’s prediction to the path in the data.

However, the SBR model does a middling job of matching the transition matrix of

market structure. Table 8 shows the ten-year transitions of market structure, for the

data, the i.i.d. specification, and the AR(1) specification respectively. Both the AR(1)

and i.i.d. specifications predict less volatility of market structure that what is observed in

the data. As well, both of these specification predict mean reversion in market structure,
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The graph shows the average number of plants in a market starting with 0, 1, 2, 3, and 4 plant markets in 1996
respectively from the top panel to the bottom one, both for the actual number of plants in a market (solid blue),
and the predicted number of plants by the model (dotted red) using the average of 10,000 simulation draws.

Figure 3: Matching the path of market structure
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to the mean in the data of one firm per market, but at a faster rate for the i.i.d. model

than the AR(1) model.

Table 8: Ten Year Predicted Transitions of Market Structure

Data
Plants this year

Plants Ten years ago 0 1 2 3 4
0 0.30 0.58 0.09 0.01 0.01
1 0.39 0.36 0.21 0.03 0.00
2 0.10 0.55 0.23 0.10 0.01
3 0.05 0.29 0.29 0.26 0.12
4 0.00 0.24 0.59 0.12 0.06

IID Model
Predicted Plants this year

Plants Ten years ago 0 1 2 3 4
0 0.45 0.49 0.06 0 0
1 0.08 0.86 0.06 0 0
2 0.07 0.53 0.40 0 0
3 0.06 0.51 0.36 0.06 0
4 0.05 0.38 0.34 0.11 0.12

AR(1) Model
Predicted Plants this year

Plants Ten years ago 0 1 2 3 4
0 0.55 0.44 0.01 0 0
1 0.06 0.84 0.10 0 0
2 0 0.36 0.63 0.01 0
3 0 0.06 0.68 0.26 0
4 0 0.01 0.25 0.58 0.16

7 Counterfactual

Suppose that a merger from duopoly to monopoly is proposed, and the antitrust authority

wants to evaluate the long-run effects of this merger on market structure. I perform the

following counterfactual experiment: I simulate the evolution of the market in the world

where the merger occurred and the world where the merger did not happen. I choose to

focus on a merger from duopoly to monopoly, since in the ready-mix concrete industry,
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a merger to monopoly is the most important concern, but later I will also consider the

effects of three-to-two mergers.

This counterfactual assumes that the effect of a merger between two firms is exactly

the same as eliminating a plant.16 Moreover, this counterfactual abstract from the issue

of merger selection, i.e. are markets that have a merger systematically different from

those that do not. In section 7.3, I discuss the effect of firms choosing to merge only if

the merger keeps them inside the stasis band. Finally, this counterfactual only considers

a “one-time” merger as it does not deal with future mergers.17 As such, one can think

of this counterfactual as mimicking the “marginal effect” of permitting one additional

merger.

7.1 Dynamic Merger Simulation Algorithm

To perform this counterfactual, I need to use the estimates of the entry and continuation

thresholds from the previous section as well as a model for the evolution of demand,

both observed and unobserved. I run the following simulation of market structure both

following a merger, and absent a merger:

Dynamic Merger Simulation Algorithm

1. Set the initial number of firms in the market as NNM,r
m,0 = 2 if the merger does

not happen and NM,r
m,0 = 1 if it does happen, where r = 1, · · · , R indicates the

simulation draw. Start at demand D0,m, the level of demand in the data at the

initial period.

2. Draw a persistent unobservable µrm ∼ Pr(µm,0|Nm,0, Xm,0, θ̂) from the initial

conditions distribution given the estimated parameters θ̂.

3. For t = 1 to 50:

(a) Draw next period’s demand Dr
m,t ∼ Q(·|Dr

m,t−1).

(b) Draw next period’s unobserved demand shifter εrm,t, by drawing an i.i.d.

shock ηrm,t ∼ N (0, 1) and drawing a new persistent shock µrm,t = ρµrm,t−1+

ζrm,t where ζrm,t ∼ N (0, σζ).

16This only true if there is very little spatial differentiation between plants and if there are no capacity
constraints from running a single plant. In the case where the merged firm operates two plants, this will lower
the value of entering the market for a potential entrant, which will increase the number of years before an
additional firm enters the market beyond what I find in my counterfactual.

17The issue of the dynamic effect of future mergers, such as is modeled in Gowrisankaran (1999) and Nocke
and Whinston (2010); Nocke, Whinston and Satterthwaite (2012), is difficult to handle in this context as the
possibility of future mergers will alter the equilibrium of the dynamic entry and exit game, and it’s underlying
demand thresholds for continuation and entry.
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The solid line indicates the mean number of plants in the no-merger simulation, i.e. where NNM
0m = 2, while

the dashed line shows the mean number of plants in the merger simulation where NM
0m = 1.

Figure 4: Effect of a Merger on the expected number of firms in the industry.

(c) Both NNM,r
m,t and NM,r

m,t satisfy the entry and continuation conditions esti-

mated in equation (4).

To select initial levels of construction employment Dm,t and µm,t that are typical

of a market that can support two firms in it, I pick markets and time periods with two

firms; i.e. (m, t) such that Nm,t = 2.18

7.2 Counterfactual Results

Figure 4 plots the effect of the merger on the expected number of firms in the industry

over time, and the evolution of the number of firms absent the merger, using the dynamic

merger simulation algorithm with the AR(1) estimates of the model. Notice that it takes

35 years for the market that had a merger to become indistinguishable from the market

where the merger did not occur.

18Specifically, I use the set of markets and time periods C = {(m, t)s.t.Nm,t = 2}, which is a way of weight-
ing the sample by the frequency with which a market finds itself in a two firm state. For observations in C I draw
this market’s persistent unobservable µm,t from the initial conditions distribution Pr(µm,t|Nm,t, Xm,t, θ̂). If I
do not condition on the fact that a market is in a two firm state, then the number of firms in the market quickly
falls to the mode in the sample of one firm per market.
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To summarize the effect of a merger on market structure, I compute the discounted

years of each particular market structure, where I use a 5% discount rate. The preferred

AR(1) model finds that after a merger, over for 0.33 discounted years, there are no firms,

14.42 discounted years have one firm, 3.53 discounted years have two firms, and 0.26

discounted years have three or more firms. Without a merger, discounted years of market

structure would be 0.33 for no firms, 6.51 for one firm, 11.43 for two firms, and 0.26

for three or more firms. Interestingly, only the difference between the merger and no-

merger cases is that a merger will cause 7.91 additional discounted years of monopoly:

there is no effect on the probability of either zero or more than two firms. The AC model

has an s-S structure whereby market structure in the merger and no-merger worlds are

identical as soon as the number of firms leaves the monopoly or duopoly region in either

of them.

Table 9 shows the effect of a merger on discounted additional years of monopoly for

a variety of different specifications, many of which I will discuss in subsequent sections.

Table 9: Counterfactual: Merger and No-Merger Comparison

Model Discounted Additional Years
of Monopoly

Baseline
AR(1) model 7.9
I.I.D. model 4.2
Demand-weighted AR(1) model 7.2
Three-to-two Merger 4.4♠

SBR: Alternative Specifications
AR(1) with No Constant Thresholds∗ 11.5
AR(1) with a multiplicative ε ∗∗ 7.8

SBR: Merger Process
AR(1) Omitting mergers outside the stasis zone † 9.2

Conditional Choice Probability Model
CCP’s 3.2

♠ Number of additional years of duopoly. ∗ Uses estimates in Column IV in Table 5, ∗∗ uses a model
with a multiplicative unobservable: D∗m,t = εDm,t but is identical to the AR(1) model used in the
paper. † Only considers states in which a second entrant does not enter immediately after the merger.

The i.i.d. specification predicts monopoly for 13.6 years in discounted year after

the merger versus 9.4 discounted years without the merger, a net effect of 4.2 dis-
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counted years (equivalent to 4 to 5 years). This small effect of a merger is driven by

the prediction that even in the absence of a merger, the market would quickly become

a monopoly. In contrast, the AR(1) model predicts 7.9 additional discounted years of

monopoly –between 9 and 10 actual years. However, the fast reversion of market struc-

ture in the i.i.d. simulation is generated by the prediction that the market’s steady state

is a monopoly regardless of the merger. This is incredible given that the AR(1) model

accurately predicts the number of firms in the market absent a merger in Figure 3.

I also compute the additional discounted year of monopoly due to a merger, but

weighting these effects by market size – construction employment in this case. This

process essentially weights the effect of a merger by the size of the market. The demand-

weighted computation of the effect of a merger show a faster response of market struc-

ture to a merger. While the merger causes monopoly for an additional 7.9 years, the

average consumer only sees monopoly for only 7.2 more years. The largest markets

account for the vast majority of consumers, and in these high demand markets there is

a faster entry response after the merger. Thus the exact markets where we might worry

about mergers the most: large and growing markets, are those where the entry response

is fastest.

Table 9 also shows the effect of a merger between two firms in a three firm market: a

three to two merger. In this case, the merger will lead to 4.4 additional years of duopoly.

To understand why the response to a merger of a market with three firms in it is faster

than for a two firm market, there is a faster reversion from three to two firms, than

from two to one firm. Thus, in the absence of a merger, exit is more likely in a three

firm market than a two firm market, and this blunts the long-run effects of a merger.

Thus, mergers in markets with many firms are less damaging not only because the loss

in consumer surplus from duopoly is presumably lower than from monopoly, but also

because these markets are more likely to see exit in the absence of a merger.

7.3 Robustness

In this section I explore the robustness of my results. First, I consider different specifi-

cations for the SBR model. Second, I discuss how moving away from my assumptions

on the merger process affects my results. Third, I consider an alternative estimation

strategy based on an Ericson and Pakes (1995) model of industry dynamics.

7.3.1 Alternative SBR Specifications

The second panel of Table 9 considers two alternative specifications of the SBR model.

First, I consider estimates that allow the gap between the continuation and entry thresh-
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old, γS(N) ≡ DE
N −DC

N , to vary with the number of firms in the market. This speci-

fication was estimated in Column IV in Table 5. Note that these estimates showed that

the gap shrinks with the number of firms in the market. This specification predicts that

a merger would induce monopoly for an additional 11.5 discounted years, versus 7.9 in

the main specification used in this paper that does not allow γS to vary with N . The

reason for this difference is that Column IV’s estimates showed a largest stasis zone, as

measured by γS(N), for one firm than Column III’s estimates, at 9,400 versus 7,400

construction employees.

Second, I look at a multiplicative specification for unobserved demand, given by

D∗m,t = εm,tDm,t, which yields a log additive structure log(D∗m,t) = log(Dm,t) +

log(εm,t). I then make the same assumptions on ε̃ ≡ log(εm,t), an AR(1) process with

i.i.d. shocks, that was made in the rest of the paper. This alternative specification pre-

dicts 7.8 additional discounted years of monopoly, which is almost the same prediction

as the additive model considered in the paper of 7.9.

7.3.2 Alternative Merger Model

The third panel of Table 9 considers an alternative processes for mergers. If firms only

choose mergers where they do not expect immediate post-merger entry, then the effect

of mergers is raised from 7.9 to 9.2 additional discounted years of monopoly. This is

to be expected, as a significant fraction of markets experience entry in the first year

following a merger.

7.3.3 Ericson-Pakes Models

A natural question is the robustness of the estimated persistence of monopoly post-

merger to how one models dynamic oligopoly games. This paper uses an AC model

which rules out idiosyncratic firm shocks, and does not allow any heterogeneity among

firms. I investigate an alternative based on the Ericson and Pakes (1995) model, specifi-

cally the one suggested by Benkard, Bodoh-Creed and Lazarev (2009), who use a CCP

model to recover the transition dynamics of an oligopoly game. To use this CCP based

approach, I use confidential data from Longitudinal Business Database in the Census

RDC program which allows me to use individual firm identifiers for the same markets

and time period studied in the rest of the paper.19 These conditional choice probabili-

ties are estimated using a multinomial logit on firm’s state in the next period given log

19The Zip Business Patterns (ZBP) is based on the same Business Register that is used to construct the
Longitudinal Business Database (LBD). Thus the ZBP is an aggregated version of the LBD.
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construction employment, competition, and the firm’s past size (binned into three cate-

gories, big, medium, and small based on employment), and shown in Table D.1 in the

appendix. I use these estimated policies to simulate the evolution of the market with and

without a merger, and more details of the CPP model are in appendix D.20

The CCP model predicts a faster convergence of the merger and no-merger worlds,

with an estimated additional periods of either monopoly or zero firms of 3.6 discounted

years, or about 4 years. Thus these predictions are closer the predictions of the SBR

model with i.i.d. unobservables of 4.1 additional discounted years, than the predictions

of the AR(1) SBR model, which predicted 7.9 additional discounted years.

To make sense of these difference, notice that the CCP model has idiosyncratic

shocks, and thus predicts a higher turnover rate that the SBR model. On the hand, the

SBR AR(1) model accurately forecasts the mean number of firms in the future and does

not rule serially correlated unobservables. Since each model does better at matching a

particular moment in the data, this accounts for the difference in the predictions of these

models.

8 Conclusion

This paper discusses the role of entry in blunting the long-run damages from merg-

ers. Using data on isolated ready-mix concrete markets, I estimate a simple dynamic

model of entry and exit. The estimates of this model exhibit a large stasis zone; i.e.,

a gap between the demand threshold for entry and the demand threshold for continua-

tion. However the magnitude of this stasis zone is substantially reduced when I allow

for serial correlation of the unobservable, indicating the importance of controlling for

unobserved market heterogeneity.

Because of this large stasis zone, the preferred specification indicates that merger

from duopoly to monopoly inflicts monopoly for between 9 and 10 years, generating

damages that are 7.9 times the damages from one year of monopoly. These results are

robust, as an range of different specifications yield between 7 and 11 times the damages

from one year of monopoly.

When we evaluate horizontal merger policy, we should be aware that we are not

comparing the static costs of market power with the static benefits of efficiency, as in

Williamson (1968), but the costs of 9 years of market power with a long-term flow of

efficiency gains. For the ready-mix concrete industry entry is not nearly quick enough

20 It is important to notice is that, unlike an AC model, the CCP model’s effect cannot be reduced the
discounted years of additional periods of monopoly. A merger will lead to fewer periods with either two, three,
or four firms in the market. Table D.2 in the appendix discusses this in more detail.
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to obviate scrutiny from the antitrust authority, and the need to quantify the effect of

post-merger market power on consumer surplus.
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A Constructing Isolated Markets
I choose a market to be the area surrounding a town in the Continental United States.
The data on these towns, or more accurately Census “places” comes from the U.S.
Census bureau and can be found at http://www.census.gov/geo/www/cob/
pl_metadata.html#gad. However, to limit the issue of competitors in other towns
affecting the pricing behavior in the central place, I need to find towns that are isolated:
towns for which there is no other place located nearby.

First, I drop places in my dataset that fall below a certain population threshold. In
the continental U.S. there are many very small towns, such as Western Grove, Arizona,
which had 415 inhabitants as of 1990. These small towns are unlikely to support most
types of construction activity (such as the operation of a ready-mix concrete plant).
Thus, small towns should not be considered as potential sources of competition for
establishments in larger towns. When I verify that any particular town is isolated, I
do not consider any place in the United States with fewer than either 2000 or 4000
inhabitants in 1990 as potential neighbor for an isolated town. To be consistent with
this definition of a neighbor, an isolated town must have more than either 2000 or 4000
inhabitants. Otherwise, for a hypothetical area populated with towns with fewer than
2000 inhabitants, each town in this area would be an isolated town.

Second, I need to check if a town is isolated. To do this I have coded a routine in
ARCVIEW that counts the number of towns that are located within a specific distance
from the central place. Thus, if for instance there are no towns located within a 20 miles
from Tuba City, Arizona, then I can conclude that Tuba City is an isolated town. A town
is isolated if there are no other towns located within 20, 30, or 40 miles away from it.
Table A.1 presents the number of isolated towns in the Continental United States. As
a robustness check, I have re-run the estimates of the SBR model using these different
criteria for the degree of isolation of a town.

Third, several towns are adjacent to each other. An analogy to this situation is the
Minneapolis-Saint Paul MSA, that is composed of two adjacent cities: Minneapolis
and Saint-Paul. If I do not consider Minneapolis and Saint-Paul as a single city, then
I automatically count this agglomeration as having at least one neighboring town. To
eliminate the problem of a single town which is split up into two municipalities, a town
that is located within 1 mile of the central place is not counted as a neighbor. There
are 374 towns that have no other city within 1 mile, while 75 cities do have a “twin”:
another town within 1 mile.

Table A.1: Isolated Towns
No neighboring cities of a least Number Mean Mean Mean
2000 inhabitants within of Towns Population Houseunits Land Area
20 miles 371 21395 8946 32
30 miles 100 8429 3402 17
40 miles 103 6682 2914 10

Other Cities 9,685 19305 7851 10
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A.1 Zip Codes
To make this dataset more useful to researchers, I also select zip codes within a certain
distance of the isolated towns. Zip codes can be used, for instance, to count the number
of establishments that are within 5 miles of the central place, since ready-mix concrete
plants frequently locate outside the boundaries of the municipality, and thus will not be
part of the municipality proper, but will belong to a zip code that is located within a
small distance from the central town. Again, the data on zip codes come from the U.S.
Census Bureau. I include all zip codes within 5, 10, and 20 miles of an isolated town.
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Note: Place refers to the isolated town itself, while Zip refers to the zip codes within a 5 mile
distance of the town.

Figure A.1: Distribution of Town Size
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B Robustness
Table B.1 shows estimates of the SBR model, with and i.i.d. unobservable, which inves-
tigate demand covariates. For the estimates in this section, I normalize the coefficient on
the variance of the i.i.d. term, σε = 1. I do this instead of normalizing the coefficient on
construction employment as in the body of the paper, since it is difficult to compare esti-
mates that use different measures of demand than just construction employment. Thus,
these estimates are essentially an ordered probit of the number of firms in the market
on demand shifters, which also includes dependence on the lagged number of firms.
Thus the coefficients cannot be interpreted directly, but the sign and the ratios between
coefficients are meaningful.

First, the coefficient on construction employment in thousands is 0.38 for the column
I (henceforth the Base model), and this coefficient is reasonably similar in columns II,
III, VI, and V. Thus construction employment is a large part of total demand D. Other
measures of demand estimated in column III- such as population, land area, and the
presence of an interstate highway – are not significant and have a fairly small magnitude
in any case. Including year dummies also does not change the estimates substantially,
indicating that aggregate fluctuations in demand are a secondary issue. Furthermore,
Table B.3 shows the SBR model estimated with different demand measures such as
housing units and population. Thus, I use construction employment as my primary
measure of demand.

To check for how hermetic my isolated markets really are, I look at the effect of
construction activity and concrete plants located near my isolated market. Column IV
shows that estimates of the effect of demand within 10 or 20 miles are much smaller
than the effect of demand within a 5 miles. Table B.2 shows estimates using different
selections of markets, namely, markets whose zip codes within 5 miles are less than 850
squares miles of area (i.e. less than the mean), towns without an interstate highway,
markets where more than 70% of the population in zip codes within 5 miles lives in
the town per se, and towns without a neighboring town within 40 miles. While the
estimates differ, only Column VI shows a substantially larger effect of demand, at the
cost of reducing the sample of markets from 449 to 88. Thus, I conclude that cleaning
up my market definition has a secondary effect for the merger counterfactual.

In Column V, I look at the role of past and future demand to gauge the expectations
of firms about the future. In particular, do firms anticipate future changes in demand?
I find that firms react significantly to past demand, and have a large negative (but not
significant) response to the construction activity that will occur over the next 3 years.
All I infer from this effect is that it suggests that firms are not informed about future
construction projects.

To illustrate how I will detect serial correlation in the unobservable, Column VI
includes the number of plants in a market ten years ago as a demand covariate, and
finds a strong effect. This is a surprise, as the AC model predicts that the number of
plants in a market Nm,t is only a function of demand Dm,t and the number of plants last
year Nm,t−1. The predictive ability of the lagged number of plants indicates that there
must be a serially correlated unobserved components of demand to induce a correlation
between Nm,t and Nm,t−10 conditional on Nm,t−1.
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Second, turning to the effect of competition, the coefficients show both the entry
threshold for the first firm, h(1) = DE

1 , and the marginal effect of each additional
competitor on the demand thresholds; h(k) = DX

k − DX
k−1 for X = {C,E}. The

threshold for the first firm to enter is -1.46, while the increase in this threshold to go from
monopoly to duopoly is -1.04. These effects decline for each subsequent competitor,
reaching -0.72 for the effect of each competitor above four.

Third, the coefficient γS1 shows the gap between entry and continuation thresholds;
i.e., γS ≡ DE

k − DC
k . It is estimated at 3.6 in columns I-V. To put these numbers into

context, note that the estimates in column I indicate that the demand threshold that is
required to induce a monopoly entrant (DE

1 =-1.46) is similar to the demand threshold
that is required to sustain 4 incumbents (DC

4 =-1.46-1.04-0.87-0.82+3.6=-0.56).

Table B.2: SBR Model Estimates Market Definition
Dependent Variable: I II III IV V VI
Number of Plants in a Market
Market Selection
All X
Zip area below 850 square miles X X
No Highway X
More than 70% population of zip codes X X
(within 5 miles) in place
No cities of 2000 people within 40 miles X

Construction Employment 0.38*** 0.48*** 0.39*** 0.30 -0.09 1.51***
in Thousands (0.09) (0.12) (0.11) (0.21) (0.15) (0.27)
Entry Term h(1) -1.46*** -1.43*** -1.45*** -1.62*** -1.63*** -1.74***

(0.06) (0.08) (0.08) (0.13) (0.14) (0.17)
First Competitor h(2) -1.04*** -1.03*** -1.06*** -1.15*** -1.22*** -1.24***

(0.06) (0.07) (0.07) (0.13) (0.21) (0.15)
Second Competitor h(3) -0.87*** -0.94*** -0.89*** -1.20*** -0.96*** -1.63***

(0.07) (0.09) (0.09) (0.18) (0.21) (0.20)
Third Competitor h(4) -0.82*** -0.95*** -0.84*** -0.73** -1.08*

(0.10) (0.14) (0.13) (0.27) (0.45)
Fourth Competitor h(5) -0.93*** -1.05** -0.36 -0.42*

(0.21) (0.33) (0.21) (0.19)
More than four Competitors h(6) -0.72*** -0.59*** -1.65*** -0.59*** -1.12*** -1.21***

(0.10) (0.09) (0.38) (0.16) (0.22) (0.23)
Gap Entry-Continuation γS 3.56*** 3.52*** 3.60*** 3.85*** 4.02*** 3.84***

(0.07) (0.07) (0.07) (0.14) (0.19) (0.16)

Log-Likelihood -1814.1 -1339.1 -1269.8 -439.2 -284.1 -272.6
Observations 5321 3814 3821 1668 1220 1056
Markets 445 319 320 139 102 88
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Table B.1: Sunk-Cost Bresnahan-Reiss Model Estimates: Demand Diagnostics

Dependent Variable I II III IV V VI
Number of Plants in a Market

Construction Employment (in ’000s) 0.38*** 0.38*** 0.34** 0.42*** 0.36 0.11
(0.09) (0.09) (0.10) (0.11) (0.28) (0.12)

Year FE X
Population (in ’000s) 0.00

(0.01)
Land Area (in ’000s) -0.19

(0.17)
Interstate Highway dummy -0.12

(0.11)
Construction Employment (in ’000s) -0.02
in Zip codes within 10 miles (0.09)
Construction Employment (in ’000s) -0.09*
in Zip codes within 20 miles (0.04)
Next 3 years of -0.65*
Construction Employment (in ’000s) (0.29)
Previous 3 years of 0.73*
Construction Employment (in ’000s) (0.35)
Number of Plants Ten years ago 0.70***

(0.11)

Entry Parameter (h(1)) -1.46*** -1.46*** -1.46*** -1.41*** -1.49*** -2.01***
(0.06) (0.06) (0.07) (0.07) (0.07) (0.16)

1 competitor (h(2)) -1.04*** -1.05*** -1.05*** -1.05*** -1.00*** -1.34***
(0.06) (0.06) (0.06) (0.06) (0.08) (0.17)

2 competitor (h(3)) -0.87*** -0.87*** -0.87*** -0.89*** -0.81*** -1.32***
(0.07) (0.07) (0.08) (0.07) (0.09) (0.22)

3 competitor (h(4)) -0.82*** -0.82** -0.83*** -0.83*** -0.91*** -0.55**
(0.10) (0.10) (0.10) (0.11) (0.15) (0.17)

4 competitor (h(5)) -0.93*** -0.93*** -0.93*** -0.94*** -0.91* -1.60***
(0.21) (0.21) (0.19) (0.21) (0.39) (0.39)

Competitors above 4 -0.72*** -0.72*** -0.75*** -0.74*** -0.71*** -0.99***
(0.10) (0.10) (0.12) (0.10) (0.16) (0.17)

Gap Entry-Continuation γS1 3.56*** 3.57*** 3.56*** 3.57*** 3.53*** 3.97***
(0.07) (0.07) (0.07) (0.06) (0.08) (0.19)

Log-Likelihood -1814.1 -1809.2 -1809.2 -1806.6 -890.0 -225.0
Observations 5321 5321 5321 5321 661 884
Markets 445 445 445 445 445 444

Note: Standard Errors Clustered by Market. The entry threshold for 3 firms DE
3 is given by DE

3 = h(1) +

h(2) + h(3), while the continuation threshold for 3 firms would be DC
2 = h(1) + h(2) + h(3) + γS1 . Year FE

indicates year dummies are included.
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Table B.3: SBR Model Estimates: Different Measures of Demand
Dependent Variable I II III IV V VI VII
Number of Plants in a Market
Construction Employment 0.379*** 0.329** 0.143
(in 000’s) (0.09) (0.11) (0.11)
Housing units in Place 0.026*
(in 000’s) (0.01)
Housing units in zip codes 0.027*** -0.002
within 5 miles (in 000’s) (0.01) (0.03)
Population in Place 0.010** 0.004
(in 000’s) (0.00) (0.01)
Population in zip codes 0.011*** 0.009
within 5 miles (in 000’s) (0.00) (0.01)
Land Area of Place -0.191
(in 000’s) (0.16)
Entry Term h(1) -1.464*** -1.415*** -1.617*** -1.408*** -1.592*** -1.481*** -1.587***

(0.06) (0.07) (0.08) (0.07) (0.08) (0.07) (0.08)
First Competitor h(2) -1.045*** -1.012*** -1.049*** -1.013*** -1.046*** -1.045*** -1.054***

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Second Competitor h(3) -0.872*** -0.841*** -0.898*** -0.844*** -0.898*** -0.872*** -0.899***

(0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08)
Third Competitor h(4) -0.820*** -0.800*** -0.841*** -0.807*** -0.850*** -0.828*** -0.852***

(0.10) (0.10) (0.11) (0.10) (0.11) (0.10) (0.11)
Fourth Competitor h(5) -0.929*** -0.884*** -1.003*** -0.898*** -1.028*** -0.942*** -1.026***

(0.21) (0.20) (0.21) (0.20) (0.21) (0.20) (0.19)
More than 4 Competitors h(6) -0.723*** -0.710*** -0.831*** -0.745*** -0.892*** -0.753*** -0.874***

(0.10) (0.12) (0.12) (0.14) (0.12) (0.12) (0.14)
Gap Entry-Continuation γS 3.555*** 3.545*** 3.569*** 3.549*** 3.572*** 3.558*** 3.571***

(0.07) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
χ2 17.79 5.44 21.83 7.58 24.04 19.83 23.67
Log-Likelihood -1814.1 -1841.3 -1798.2 -1837.8 -1796.9 -1811.2 -1793.5
Observations 5321 5321 5321 5321 5321 5321 5321
Markets 445 445 445 445 445 445 445

Standard Errors Clustered by market.
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C GHK-Initial Conditions Algorithm

C.1 Initial Conditions Simulator
I compute the initial conditions distribution Pr(µm,0|Nm,0, Xm,0, θ) generated by the
stationary distribution of the model. This is done numerically by simulating the model
for demand and entry/exit starting from a large number of periods in the past.

Algorithm 1 Stationary Initial Conditions Distribution Simulation (SICDS)
This algorithm computes the initial conditions distribution Pr(µm,0|Nm,0, Xm,0, θ)

by backward simulation. The algorithm starts in a period t = −T̂ , which is far enough
the past so that by period t = 0, the system has reached a stationary distribution. I
choose T̂ = 100, but choosing a larger number of periods in the past, such as 500, has
little effect on the estimates and simulations.

1. Backward Simulate Demand
Given the following demand process:

dm,t = β0 + β1dm,t−1 + εdm,t (C.1)

where εdm,t ∼ N (0, σd), one can derive the reverse demand process:

dm,t−1 = −β0
β1

+
dm,t
β1

+
εdm,t
β1

(C.2)

Using this reverse demand process, I back-simulate the distribution of demand
starting with initial demand dm,0. Denote draws r = 1, · · · , R, I draw εd,rm,t ∼
N (0, σd) for t = (−T̂ , · · · , 0). Using the initial demand dm,0, draws on εd,rm,t , and
the reverse demand process in equation (C.2), I generate the simulated demand
seriesDr ≡ (Dr

m−T̂ , · · · , D
r
m−1, Dm,0)

2. Forward Simulate ε
I forward simulate both the persistent component of the unobservable µ, and
the i.i.d. component of the unobservable η. For r = 1, · · · , R, I draw ζrm,t ∼
N (0, σζ), and ηrm,t ∼ N (0, 1). Using these draws, I simulate the series εr =
(εrm,−T , · · · , εrm,−2, εrm,−1), and µr = (µrm,−T , · · · , µrm,−1, µrm,0) via equation
(6).

3. Predict Number of Firms
I initialize the number of firms at the initial period t = −T̂ as zero, i.e. Nm,−T̂ =

0.21 Given the demand series dr, and the series on the unobservable εr, I generate
the series N r = (N r

m,−T+1, N
r
m,−T+2, · · · , N r

m,−1) which satisfy the entry, exit
and stasis thresholds in equation (4).

4. Compute Probability Weights wrm

21The choice of Nm,−T̂ should be immaterial as long as T̂ is far enough in the past.
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Given the distribution µrm,0, the last year’s number of plants N r
m,−1, and current

demand dm,0, I compute the probability of observing the actual number of plants
Nm,0, which is generated by the i.i.d. component ηm,0. This probability is given
by:

Pr(µrm,0|N r
m,−1, Nm,0, dm,0) =

Φ

−µrm,0 −Dm,0β + 1(Nm,0 ≥ N r
m−1)γ

S(Nm,0) +

Nm,0+1∑
k=1

h(k)


−Φ

−µrm,0 −Dm,0β + 1(Nm,0 > N r
m−1)γ

S(Nm,0) +

Nm,0∑
k=1

h(k)

 1(Nm,0 > 0)

(C.3)

where Φ(·) is the cdf of the normal distribution.
The weights for µrm,0 are thus:

wrm,0 ≡
Pr(µrm,0|N r

m,−1, Nm,0, dm,0)∑R
r̂=1 Pr(µr̂m,0|N r̂

m,−1, Nm,0, dm,0)
(C.4)

Notice that a useful aspect of these weights is that they are non-zero, and a smooth
function of the parameters θ.

To illustrate the outcome of this procedure, Figure C.1 shows the initial conditions
distribution computed using the SICDS algorithm with the estimated parameters. Notice
that the distribution of µm,0 depends quite dramatically on the initial number of plants
in the market Nm,0, and on the initial level of demand Dm,0.

42



−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Persistent Unobservable µ

D
en

si
ty

Initial Conditions Distribution: 0 Plants and 4, 5 Plants

−20 −15 −10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Persistent Unobservable µ

D
en

si
ty

Initial Conditions Distribution: 0 and Low−High Initial Demand

No Plants
 

Unconditional 
Distribution

4 Plants
5 Plants

High
 Demand

Low
 Demand

Top panel shows the distribution Pr[µm,0|Nm,0, Dm,0] for different choices of Nm,0 and
also presents the unconditional distribution of Pr[µm,0], while the bottom panel shows
Pr[µm,0|Nm,0, dDm, 0] for different choices of dm,0 and Nm,0 = 0, specifically for demand
in the 10th and 90th percentile of the distribution.

Figure C.1: Initial Conditions Distribution Pr[µm,0|Nm,0, Dm,0]

C.2 GHK Procedure
The likelihood for the model computes the probability Pr({Nm,t}Tt=1|µm,0, {Xm,t}Tt=1, Nm,0, θ)
of observing a sequence of ε ≡ {εm,1, · · · , εm,T } which is ε ∼ N (0,Σ). Since this is
a multivariate normal of dimension T = 12, there is no closed form for this expression.
The most natural approach to compute this probability would be to simulate a large
number of εr sequences, where r = 1, · · · , R indexes draws, and count the number of
such sequences that replicate the number of firms observed in the data {Nm,t}Tt=1.

This will not work. The log-likelihood for the model with serially correlated unob-
servable is difficult to compute using this approach, which is an accept-reject simulator.
Even when using ten million draws, for some markets, I cannot find a single draw of εr
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that rationalize the data. Instead I will use the GHK simulator discussed in Train (2003)
(and the references to the literature therein) on page 126.

Moreover, this GHK algorithm needs to account for the initial conditions distri-
bution, the fact that the initial value of µm,0 is not necessarily a normally distributed
variable with mean zero.

The likelihood for this model is given byL(θ) =
∏M
m=1 Pr({Nm,t}Tt=1|{Xm,t}Tt=1, θ).

As well ε ∼ N (0,Σ). I adapt the GHK procedure for the case where there are initial
conditions, i.e. the initial distribution of εm,0 cannot be expressed as a Normal random
variable. As well, this version of the GHK algorithm is for normal distribution that is
truncated from above and below, essentially a serially correlated ordered probit.

Algorithm 2 Initial Conditions-GHK Procedure

1. Choleski Factorization of Σ, denoted Γ (i.e. ΓΓ′ = Σ and Γ is lower triangular).

2. Draw {µr0m}Rr=1 and compute the weights {wrm,0}Rr=1 for these draws, using the
algorithm described in the previous section. Call ηr1 = µr.

3. For t = 1, · · · , T :

(a) p̃rt = Φ(a)− Φ(b) where

a = −
∑t−1

τ=1 Γt,τη
r
τ + π(Nm,t, Nm,t−1, Xm,t, θ)

Γt,t

b = −
∑t−1

τ=1 Γt,τη
r
τ + π̄(Nm,t, Nm,t−1, Xm,t, θ)

Γt,t

(b) Draw ηrt ∼ TNa,b(0, 1) (truncated normal from a to b).

4. Compute the log-likelihood:

L(θ) =
M∑
m=1

log

(
R∑
r=1

wrm,0

T∏
t=1

p̃rt

)
(C.5)
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D Conditional Choice Probability Simulation
An alternative approach suggested by Benkard, Bodoh-Creed and Lazarev (2009) is to
bypass the estimation of a structural model of oligopoly dynamics, and instead use the
policy functions employed by firms in equilibrium. This approach has several advan-
tages, most notably, it is simple and avoids the issue of equilibrium selection, and is
consistent with an Ericson-Pakes style model of industry dynamics with idiosyncratic
shocks.

Following Collard-Wexler (2013), I will consider of model of competition and size
choices. At the start of each period t in market m, each firm i = 1, · · · , N can choose
an action ai,m,t; the choice of a plant to exit, have less than 7 employees (henceforth
small), between 7 and 17 employees (henceforth medium), and more than 17 employees
(henceforth large). A firm’s state si,m,t is it’s size in the past period, thus si,m,t =
ai,m,t−1. The state of the market sm,t = {s1,m,t, · · · , sN,m,t, Dm,t}, is the collection of
the state of each firm in the market, as well as the market’s demand level Dm,t, which
is construction employment. A firm’s conditional choice probability or CCP, denoted
Ψ[ai,m,t|si,m,t], as the probability that firm i chooses an action ai,m,t in state si,m,t.

To estimate these CCP’s, I use a multinomial logit on the choice of a plant to exit,
have less than 7 employees (henceforth small), between 7 and 17 employees (henceforth
medium), and more than 17 employees (henceforth large), based on the plant’s previous
size, log construction employment and the number of competitors in the market. I pick
the number of firms in the market, both potential entrants, and incumbents, at N = 10.
This multinomial logit is presented in Table D.1.

To simulate the effect of a merger via these CCPs, use the following algorithm:
CCP Merger Simulation Algorithm

1. Take the initial markets and time period C = {m, t} as those with two firms in the
market, i.e. m and t such that Nm,t = 2

2. Set the number of firms in the merger world to NM
m,t = 1, and the number of firms

in the no merger world to NNM
m,t = 2. Thus the initial state absent the merger is

sNMm,t = {s1,m,t, s2,m,t, Dm,t} where si,m,t, and the initial state after the merger is
sMm,t = {s1,m,t, Dm,t} where s1,m,t is the largest firm in the market.

3. For t = 1 to 50 starting in either state sNMm,0 or sMm,0.

(a) For each firm in the market draw their action (entry, exit and size) ai,m,t+1 ∼
Ψ̂[ai|sm,t] from the estimated policy function Ψ̂.

(b) Draw demand Dm,t+1 ∼ Q[·|Dm,t].
(c) Update the state sm,t+1 = {a1,m,t+1, · · · , aN,m,t+1, Dm,t+1}.

I perform this merger simulation 10,000 times, and in Figure D.1 I present the aver-
age number of firms predicted in both the merger and no-merger worlds. Notice that the
model yields a faster convergence of the merger and no-merger cases.

Table D.2 presents the predicted effect of a merger on market structure for the CCP
based merger simulation, along with the predictions from the SBR model. First, no-
tice that the CCP model’s effect cannot be reduced the discounted years of additional
periods of monopoly, unlike an AC model. A merger will lead to fewer periods with
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Figure D.1: Effects of a Merger using a CCP Model.

either two, three, or four firms in the market. Second, the CCP model predicts a faster
convergence of the merger and no-merger worlds, with an estimated additional periods
of either monopoly or zero firms of 3.6 discounted years, or about 4 years. Thus these
predictions are closer the predictions of the SBR model with i.i.d. unobservables of
4.1 additional discounted years, than the predictions of the AR(1) SBR model, which
predicted 7.8 additional discounted years.

To make sense of these difference, notice that the CCP model has idiosyncratic
shocks, and thus predicts a higher turnover rate that the SBR model. On the hand, the
SBR AR(1) model accurately forecasts the mean number of firms in the future and does
not rule serially correlated unobservables. Since each model does better at matching a
particular moment in the data, this accounts for the difference in the predictions of these
models.
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Table D.1: Multinomial Logit.
Dependent Variable: Independent Variable
Small in t+ 1 Small in t 6.14

(0.09)
Medium in t 5.60

(0.11)
Large in t 4.43

(0.23)
Log Construction Employment -0.06

(0.03)
One Competitor -0.14

(0.12)
Log Competitors Above One -0.10

(0.19)
Constant -3.02

(0.23)
Medium in t+ 1 Small in t 6.59

(0.15)
Medium in t 9.18

(0.17)
Large in t 7.90

(0.21)
Log Construction Employment -0.13

(0.05)
One Competitor -0.41

(0.15)
Log Competitors Above One -0.62

(0.31)
Constant -5.94

(0.31)
Large in t+ 1 Small in t 5.24

(0.32)
Medium in t 8.45

(0.32)
Large in t 10.96

(0.38)
Log Construction Employment 0.43

(0.06)
One Competitor -0.55

(0.16)
Log Competitors Above One -0.38

(0.26)
Constant -8.97

(0.53)

Log-Likelihood -11081
Markets 449
Observations 34718
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Table D.2: CCP and SBR Merger Predictions

Discounted Years of Plants CCP Model
in market Merger No Merger Difference
0 1.30 1.70 0.40
1 5.68 8.89 3.22
2 7.89 5.27 -2.01
3 2.78 2.01 -0.77
4 0.69 0.49 -0.20

AR(1)
Merger No Merger Difference

0 0.33 0.33 0.00
1 14.42 6.51 7.91
2 3.53 11.43 -7.91
3+ 0.26 0.26 0.00
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