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Abstract

Sunk Costs are key in to determining the ease of entry into a
market and understanding market structure.

I find that dynamic and static models give essentially the same
measurement of sunk costs.

If the profitability of markets is mismeasured, this introduces an
positive correlation between unobserved components of profitability
and the number of firms in a market. Using data on entry and exit
patterns in the Ready-Mix Concrete Industry from 1976-1999, I show
that using market-level fixed effects in a Bresnahan-Reiss entry model
reduces the coefficient on demand by 50% and increases the coefficient
on competition by 100% compared to the no fixed-effect benchmark.
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1 Introduction

A key question in industrial economics is the relationship between market
structure and competitive outcomes in the product market such as innova-
tion and consumer welfare. For instance, when the Departement of Justice
evaluates the impact of a proposed merger between two firms, they evalu-
ate if the merger will lead to an increase in prices. But market structure is
itself the result of firms deciding to enter or exit a market. So a complete
evaluation of the merger would also take into account both the fact that
reduced competition will raise consumers prices and if higher concentration
will induce new firms to enter the market.

The goal of this paper is to measure the sunk cost of entry for ready-mix
concrete firms. These costs are important since they determine the ease of
entry into a market. For instance, in Collard-Wexler| (2006b)) I find that large
sunk costs are principally responsible for the dispersion of productivity in the
ready-mix concrete industry. Likewise, in|Collard-Wexler| (2006a) I show that
sunk costs are so large that firms choose not to respond to demand shocks
by either entering or exiting a market. Moreover, this paper contributes
to a growing literature on the estimation of the sunk costs of entry and
discusses methodological issues with the measurement of sunk costs. For
instance, Sweeting (2006|) estimates the sunk costs of format switching in the
radio market to understand the effect of mergers on station repositioning.
Ryan| (2006 shows that environmental regulations substantially increased
sunk costs in the cement industry. Finally [Dunne, Klimek, Roberts, and
Xu (2006]) show that most of the difference in turnover rates between dental
offices and chiropractors can be explained by higher sunk costs for dentists
than chiropractors.

I estimate sunk costs using static models of entry la Bresnahan and
Reiss| (1991) and dynamic models of entry in the Ericson and Pakes (1995)
tradition using the methods of |Aguirregabiria and Mira (2006). Both static

and dynamic models estimate sunk costs to be about $ 2 million, which



is quite reasonable for the ready-mix concrete industry. Moreover, both
static and dynamic models find that the first competitor has a much greater
impact on profits than subsequent competitors. Static models, such as those
developed by Bresnahan and Reiss (1994), can be used to investigate the
presence of sunk costs in the ready-mix concrete industry. These models
does not compute the value function from period profits. Instead, the value
function is directly estimated, without reference to what will happen in the
future, from the current configuration of firms in a market. This “reduced
form” model is used to investigate a number of empirical issues, such as which
variables best capture demand or different assumptions on the shocks to firms
profits. In constrast dynamic models can estimate firm’s period profits and
be used to perform a much broader set of counterfactual policy experiments.

I believe that dynamic models in the tradition of Bajari, Benkard, and
Levin| (2006) and static models in the tradition of Bresnahan and Reiss| (1991)
are complements for understanding entry and exit decisions. A dynamic
model can be used to perform a very broad range of policy counterfactu-
als. For instance in |Collard-Wexler| (2006a)), I look at the effect of demand
fluctuations on industry turnover and plant size. For this type of policy coun-
terfactual it is impossible to use a static model since these models cannot
envisage changes in the process for demand. On the other hand, static mod-
els can be used to evaluate if there are differences in the sunk costs of entry
in two different countries, or if a business licensing regulation has increased
the sunk cost of entry over time. Moreover, a static model can be coded
up within a single day and estimated in under 5 minutes and incorporate
many different demand side variables at once. This allows the researcher to
perform an exhaustive specification search to examine the robustness of the
model to incorporating either market or time controls.

In any particular dataset, the econometrician will observe many com-
ponents of profitability, such as market population, total number of con-

struction workers and average income within the market. However, certain



components of profitability will be neccesarily unobserved, either unobsersed
demand shocks such as a taste for concrete construction or unobservables
cost shocks such as higher land prices or wages for specialized workers. In
Texas concrete is often used to pave roads instead of asphalt, since asphalt
will melt in Texas’s scorching summer heat. If I do not include a “Texas”
control in my specification it will turn up as an unobserved variable. Firms
will react to these unobservable components of profitability by entering in
greater numbers in more profitable markets. Thus the estimated effect of
competition will combine both the true effect of competition on profitability
and the correlation between the number of firms in the market and unob-
served components of profitability. I correct for the presence of unobserved
market heterogeneity by introducing market level “fixed-effect” style estima-
tors for both static and dynamic models of entry. I find that these unobserved
components of profitabilty are large for my data on the ready-mix concrete
market. Correcting for persistent market heteregeneity increases the effect
of competition on firm’s profits by more than 50 %.

In section 2|1 present the dynamic model of entry and exit and the estima-
tion of the parameters of this model via either static or dynamic structural
models. Section |3|discusses the issue of unobserved components of profitabil-
ity and how to correct for these with market fixed effects. Section || presents

the data used to estimates the models of entry shown in section [3}

2 Model

In this section, I build a dynamic model of entry and exit in oligopoly mar-
kets. Later on, I will discuss the specific assumptions used to estimate this
model using either a static, pseudo-static and dyanamic structure.

Each market has N firms competing repeatedly, indexed as i € [ =
{1,2,..., N}. Some of these firms currently have active plants in the market,

others are potential entrants. Denote the state of the firm as s!, which can be



decomposed in the components that the econometrician observes (denoted
xt), such as the fact that a firm runs a ready-mix concrete plant, and com-
ponents that are unmeasured by the econometrician but known to the firm
(denoted !) such the competence of the manager running the plant. In the
empirical specifications I use the observed state ! is simply the presence of a
plant in the market. The state of the market (denoted s) is the composition

of the states of all firms and total demand for ready-mix concrete:

st ={st,sh, ...,sh, D'} (1)

Demand

The demand state D! affects all firms in the market and evolves exogenously
following a first-order Markov Process PP (D!|D'1).

At the start of each period, firms choose actions a! € {in,out}, either
to operate a ready-mix concrete plant or to stay out of the market. Again,
denote the action profile in a market as a' = {a}, d}, ..., aly }, the composition
of actions chosen by each firm. Firms then receive period rewards r(s') which
depend on the state of the market and pay transition costs 7(at,al ") such
as a sunk cost of entry if a previously inactive firm enters the market. Thus
the firm’s value the net present value of rewards the firm will receive, net of

transition costs:

V(s®) =Y B (s") + 7(af, a)] (2)

In my empirical work I use a simple Bresnahan and Reiss| (1991)) style
reduced-form for the reward function, endowed with parameters 6. It is
easily interpreted and separable in dynamic parameters. Specifically, the

entry/exit model, in which a! = 1 corresponds to activity and af = 0 to



inactivity, has the reward function:

r(at, ') = a! 0, +0.MT 59

Fixed Cost Demand

Z ati] (3)

—1

Competition

where g(+) is a non-parametric function of the number of competitors in a

market. Transition costs are:

7(a;, 73]0) = Oa1(x; = 0,0; = 1) (4)

Sunk Costs

where 6, is the sunk cost of entry.

To make their entry and exit decisions, I assume that firms use symmetric
Markovian strategies 0;(.5), i.e. their strategies map the state space S defined
in equation into mixtures over actions, i.e. 0;(S) : S — AA. Define the
strategy profile o as the composition of a strategies for all firms in the market,
ie. 0 ={01,09,...,0n}. A Markov Perfect Equilibrium is a set of strategies
o* such that all players are weakly better off playing o} given that all other

players are using strategies o* ,, i.e.:
V(slo®) 2 V(s{oi,0",}) ()

for any strategy o}, for all players i and states s.

2.1 Static Model

In constrast to the dynamic model I develloped above, the models entry
developed by Bresnahan and Reiss| (1991) and Berry| (1992) are two-period
models. In the first stage, firms make their entry decision. In the second

stage they compete in the product market.



There are two interpretations for the static model. The first interpretation
proposed by Pakes (2007) is that a two period model is strictly correct only
if the state does not change over time, due to either changes in demand or
entry and exit of competitors. Thus if the state s' does not vary over time

then the firm’s continuation value is proportional to it’s period rewards:

r(s%)

1-p

V() = 3 Br(s") =

Alternatively, we can think of a two period model as a “reduced-form” for
the dynamic model of entry and exit. I will discuss this interpretation when
we investigate the sunk-cost model of entry and exit.

The original Bresnahan and Reiss (1991) model requires the following

assumption on the unobserved firm state &l

Assumption 1 (CS) The unobserved state €t is common to all firms, i.e.

et =&t for all i. Moreover, the market level shock €' is i.i.d. across time.

Assumption CS along with the assumption that the firm level state is just
x; € {in,out}, considerably simplifies the state: there are two groups of firms,
those that are in the market, and those that remain out of the market. Firms
are identical within the group. To bring this model to the data, the firm’s
value is assumed to be additively separable in the observed state z' and the

unobserved state et:

Assumption 2 (AS) The firm’s value V(s') is additively separable in the

observed state x* and the unobserved state €', i.e. V(s') = V(x!) + &l

The equilibrium number of firms N in a market can be characterized by

two inequalities:

1. Firms that Enter make Positive Profits

V(N, X)) +em > 0 (6)



2. If an extra firm entered it would make negative profits:
VIN+ 1, X)) +en < 0 (7)

where V' (N, X,,) is the observable component of the firm’s value depend-
ing on demand factors X,, and the number of symmetric competitors in a
market N, while €, are unobserved components of profitability common to
all firms in a market.

Assume market level shocks ¢,,, have a normal distribution with zero mean
and unit variance. The probability of observing a market X,, with N plants

is the following:
Pr(N =n|X,) =®[-V(n+ 1, X)) — [V (n, X,n)]1(n > 0)

where ®(.) is the cumulative distribution function of the standard normal.

I parameterize the value function as:

V(0,N,X,,) = 0iat + 0,M"al + 0sa! Z a', +0,1(at =1,a1 =0) (8)

—1

Note that while this parameterization looks quite similar to the parameteri-
zation in equation [d] T fact the parameters that I estimate are quite different,
since say 03 is the effect of the number of competitors on the firm’s contin-
uation value, not the effect on period profits. Parameters can be estimated

via Maximum Likelihood, where the likelihood is the following:

£0) = [ [[Pr(V, = niXL,.0) (9)

m=1 t=1

where m indexes markets and ¢ indexes time periods.



2.2 Pseudo-Dynamic Model

An alternate interpretation for two-period models is that they are a “reduced-
form” for the fully dynamic model of entry and exit. In the first period
firms make their entry decision and receive their continuation value in the
second period. To relate the static model to the structure of the dynamic
oligopoly game presented above, I use the foundations provided by |Campbell
and Abbring| (2006, who develop a model of oligopoly dynamics in which
firms enter and exit using demand threholds, exactly as in |Bresnahan and
Reiss| (1991)).

Campbell and Abbring| (2006) impose three assumptions to generate their
model of demand thresholds. First, as in the Bresnahan and Reiss (1991)
model, unobserved component of profitability ! are common to all firms in
the market[] Assumption CS is necessary to generate a pattern of demand
thresholds for entry and exit. In particular, this assumption rules out simul-
taneous entry and exit if one firm obtains a very negative profitability shock
causing it to exit, while another firm may have obtained a very large positive

shock which caused it to enter

Assumption 3 (LIFO) Firms follow LIFO (Last-In, First-Out) strategies,

i.e. younger firms always exit before older firms do.

The LIFO assumption is neccessary to break the problem of multiple
equilibria. For instance, firms may expect other firms to exit first, or they
may expect themselves to exit first. To obtain a unique equilibria we need
to find some way of ordering which firms will either enter or exit first. Thus

the LIFO assumption assumes that firms which enter earlier will also be the

1 In fact |Campbell and Abbring (2006) can allow for firms within a single market
to differ in their profitability. However, the |Campbell and Abbring| (2006) cannot allow
for the profitability ranking of firms to switch over time. Thus firm level differences in
profitability are almost completly persistent.

ZDunne, Roberts, and Samuelson| (1988) document that simultaneous entry and exit is
ubiquitous in the manufacturing sector (and the ready-mix concrete sector in particular).



firms that exit later on. In the ready-mix concrete industry I find that older
plants tend to exit less often than younger plants. A 1 year old plant has an

exit rate of about 7%, while a 15 year old plant has a exit rate of about 4%.

Assumption 4 (MKP) The Markov process for demand (PP[D'|D?) can

be represented as a mixture of uniform auto regressions with bounded growth.

The MKP assumption is less transparent than the previous assumptions
in this model. What assumption MPK rules out is the case where an in-
crease in demand makes a firm more pessimistic about demand in the future.
Suppose that this was not the case, then a firm might decide to enter at de-
mand state 1, exit at demand state 2 and reenter in demand state 3 if there
is a high probability of transiting to demand state 10 from states 1 and 3,
but a low probability of entering demand state 10 from state 2. To avoid this
situation, we need to impose structure on the transition process of demand
PP(D1|DY).

Under assumptions AS, CS, LIFO and MKP, Proposition 4 in |(Camp-
bell and Abbring| (2006) states that we can characterize the entry and exit
policies of firms in terms of demand thresholdsﬂ An exit policy is in de-
mand thresholds if a firm exits if demand fall below a certain level, i.e.
X(N,D) = 1(D < Dy). Likewise, an entry policy is in demand thresholds if
a firm enters if demand is above a certain level, i.e. e(N,D) = 1(D > D%).
Figure (1| shows that we can decompose demand into entry and exit thresh-
olds. Note that that if firms make unrecoverable sunk costs upon entry, then
the exit threshold for N firms will be below the entry threshold for N firms,

since firms require higher profits to enter a market than to stay in operation.

3Page 11 of Campbell and Abbring| (2006) states:

Proposition 4: Let (Ag, Ag) be the unique symmetric Markov-perfect equi-
librium in a LIFO strategy that defaults to inactivity. Assume that Q(:|C) is
a mixture of uniform autoregressions with bounded growth. Then, firms with
all ranks follow threshold policies.
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Figure 1: Entry and Exit Thresholds for Demand

Firms make sunk, unrecoverable investments when they enter a market.
The decision of an incumbent firm to remain in a market differs from the
decision of an entrant to build a new plant. The Bresnahan and Reiss| (1994)
model of exit distinguishes between two types of firms: firms which are al-
ready active and firms which are deciding to enter the market. Entrants and
incumbents have the same profits, and hence the same continuation values.
However, entrants always have lower values than incumbents, since they pay
an entry cost that incumbents do not, as is shown by Figure . This implies
that there cannot be simultaneous entry and exit: either firms exit, enter,
or nothing happens. This is a feature of all models which do not have firm
specific shocks and where firms are symmetric: they cannot rationalize the
same type of plant in the same market making different choices. I drop
market-years in which there is both entry and exit are dropped. With yearly
data and markets with on average less than 3 incumbents there is very little
simultaneous entry and exit, less than 5% of markets need to be dropped.
Moreover, including these markets in the data does not significantly change
estimated parameters. So the selection caused by this procedure does not
seem to be of great import for this data. Three regimes need to be considered:

entry, exit and stasis.

10
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Figure 2: Entry Threshold ¢ and Exit Threshold ¢ based on static
profits.

1. Net Entry: Nt > N1

V(N , XL)+e, > o
V(IN'+1,X.) +e, < o

2. Net FExit: Nt < Nt1

V(N', X!)+¢e, > ¢
VIN*+1,X! )+, < ¢

3. No Net Change: Nt = N1

V(N, X!)+e, > ¢
V(IN'+1,X.) +e, < o

where ¢ is the entry fee that an existing firm pays to enter the market and

1 is the scrappage value of a firm. Entry fees and scrap value are not iden-

tified from fixed costs, since it is always possible to increase fixed costs and

decrease entry/exit fees by the same amount without changing the likelihood

of observing a particular market configuration. Yet, the difference between

entry and exit fees is identified and can be compared to other quantities such

as the effect of an extra competitor.

11



These equations can be combined into:

V(N', XE)+¢el, > 1(N'> Ny + 1(N' < N e (10)

V(N '+ 1, X))+, < I(N' > NNy + 1(N' < N o (11)

The probability of observing a market X,, with Nt plants today and Nt~!

plants in the last period is:

Pr(n' = N'n' ' = N"HX!) = ®[-V(n'+1, X))+ 1(n' +1>n"Hy+1(n' +1 < n'1)g]
—®[-V(n', X!)+1(n" > n'"Hp+1(n' < n'He)1(n' > 0)

which is used to form a maximum likelihood estimatoif

M T
) = [ [[Pr(»' = N',n'" = N X}, 0)

m=1 t=2

2.3 Dynamic Model

An alternative strategy is to estimate the model of entry and exit using a fully
dynamic model. Applying this framework to data has proven difficult due to
the complexity of computing a solution to the dynamic game, which requires
at a minimum several minutes of computer time. Hotz and Miller| (1993)) and
Hotz, Miller, Sanders, and Smith| (1994) bypass the computation of equi-
librium strategies (the approach followed in Rust| (1987)’s study of a single
agent’s dynamic optimization problem) by estimating strategies directly from
the choices that firms make. Strategies of rival firms are substituted into the
value function of the firm, collapsing the problem into a single-agent problem.
This solution only requires that firms play best-responses to their perception

of the strategies employed by their rivals, a much weaker assumption than

41 drop markets with more than 20 firms at any point in time since the maximum
likelihood estimator becomes difficult to estimate with too many firms.

12



the requirement that firms play equilibrium strategies. The Hotz and Miller
approach has been adapted by several recent papers in Industrial Organiza-
tion such as Bajari, Benkard, and Levin| (2006)), |Pakes, Berry, and Ostrovsky
(2006)), [Pesendorfer and Schmidt-Dengler| (2003)), Ryan| (2006) and [Dunne,
Klimek, Roberts, and Xu (2006). I employ a refinement of this approach
proposed by [Aguirregabiria and Mira/ (2006 (henceforth AM). They start
with an initial guess at the strategies employed by firms recovered from the
data, and produce an estimate of the parameter value of the firm’s payoff
functions and the transition probabilities of this system given this guess.
Conditioning on the estimated value of the parameters, the initial guess is
updated by requiring that all firms play best responses. This procedure is
repeated until the strategies used by firms converge, implying that these
best responses are in fact equilibrium strategies given estimated parameters.
While Aguirregabiria and Mira impose more assumptions than Hotz and
Miller, AM delivers more precise parameter estimates in small samples. The
first step of the AM technique yields the Hotz and Miller estimates, and thus
this algorithm encompasses Hotz and Miller.

Each market has N firms competing repeatedly, indexed as i € I = {1,2
.., N}, and N is set to 6 in my empirical work. I have chosen a maximum
of 6 plants per market, since it allows me to pick up most counties in the
U.S. (note that 6 plants is the 95th percentile of the number of plants in
a county in Table @, and keeps the size of the state space manageable. In
contrast, for the Bresnahan and Reiss (1994) model, adding many firms to
the model does not slow estimation considerably. A county with more than
6 active plants at some point its history is dropped from the sample, since
the model does not allow firms to envisage an environment with more than
) competitorsﬂ

Firms also react to market-level demand, M?, which is assumed to be

5To allay the potential for selection bias this procedure entails, counties with more than
3000 construction employees at any point between 1976 and 1999 are also dropped.
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observable and equals one of a finite number of possible values. I use the
number of construction workers in the county as my demand measure. I need
to reduce the number of demand side variables in order to limit the number
of states in the model, unlike the model of Bresnahan and Reiss (1991) or a
purely Hotz and Miller type estimation procedure such as |[Bajari, Benkard,
and Levin (2006). Demand evolves following a Markov Process of the first
order with transition probabilities given by D(M'™|M*). Demand is placed
into 10 discrete bins B; = [b;, biy1), where the b;’s are chosen so that each
bin contains the same number of demand observations. The level of demand
within each bin is set to the mean demand for observations in this bin, i.e.

L .
Meanb(i) = w, where L indexes observations in the data, and the

it LMiEBy) »
Bi,M}€B;
D matrix is estimated using a bin estimator D[i|j] = 20 t)ZE )I(EteB,l)E )
It 1 &5;5

The econometrician cannot directly observe strategies, since these depend

not only on the vector of observable state characteristics, x!, but also on
the vector of unobserved state characteristics, e!. However, I can observe
conditional choice probabilities, the probability that firms in observable state
x' choose action profile a' denoted as p: X x A — [0, 1]. These probabilities

are related to strategies as:

pla']a) /Haz (2", ¢}, at) g (1) de' (12)

where ¢°(.) is the probability density function of e. Without adding more
structure to the model, it is impossible to relate the observables in this model,
the choice probabilities p(a’|z!), to the underlying parameters of the reward
function. Denote the set of conditional choice probability associated with an
equilibrium as P = {p(a’|z")}.stex.atea, the collection of conditional choice
probabilities for all states and action profiles. To identify the parameters,
I place restrictions on unobserved states, similar to those used in the |Rust
(1987) framework for dynamic single-agent discrete choice, and these as-

sumptions also overlap considerably with the Bresnahan and Reiss (1991)

14



assumptions as well.
First, as in the Bresnahan and Reiss| (1991)) model, I assume that rewards
are additively separable (AS) in observed and unobserved states. As well, I

assume assume that the unobserved state is serially uncorrelated:

Assumption 5 (SI) Unobserved states are serially independent , i.e. Pr(e|e*) =
Pr(e') for k #t.

Serial independence allows the conditional choice probabilities to be ex-
pressed as a function of the current observed state, x!, and action profile,
a', without loss of information due to omission of past and future states and

actions. Formally:
Pr(a'|z") = Pr(a'|ot, {1, 2'2, ..., 2"}, {a" 1, a2, ..., a"}) (13)

for any k # t, any state x!, and action profile, a’, since no information is
added to equation that would change the value of the integral over €.

Assumption 6 (SI) Each firm privately observes €t before choosing its ac-

‘ t
tion, a;.

Combined with the assumption of serial independence of the €’s, private
information implies that firms make their decisions based on today’s ob-

servable state, x', and their private draw, ef. In particular, they form an

expectation over the private draws of other firms, ', exactly as the econo-
metrician: by integrating over its distribution. This leads to the following

form for the conditional choice probabilities:

pla'la") = Hpi(aﬁlfﬂt) (14)

The assumption that unobservables for the econometrician are also un-

observed by other firms in the market is a strong one. Firms typically have

15



detailed information on the operations of their competitors, which is why in
the models Bresnahan and Reiss (1991) or [Mazzeo| (2002)) the unobserved
state (¢) is assumed to be common knowledge for all firms in the market []
The fact that I obtain similar results from the both the static and dynamic
models with these very different assumptions is surprising, and suggests that
empirical estimates are robust to tweaking the informational assumptions of

the game.

Assumption 7 (Logit) €; is generated from independent draws from a type

1 extreme value distributionl’]

These assumptions allow the conditional ex-ante value function (before

private information is revealed) to be expressed as:

V(z|P6) =7 {r(a:’|9) + Y rla wilf)pi(aile) + E(e| P) + BV (2'| P, 9)} F*(a/|x)

!

T a;

(15)

where E(e|P) = y+3_, c4. In(pi(ai|z)) (where v is Euler’s Constant). For
the logit distribution, E(e|P) is the expected value of ¢ given that agents are
behaving optimally using conditional choice probabilities P. State-to-state
transition probabilities conditional on the choice probability set P, F¥(z'|z),

are computed as:

F*(a'|z) = (HM(%H%)) D[M* | M"] (16)

It is convenient to develop a formulation for the value function conditional

6The model of Seim! (2005) uses a combination of common and private unobbservables
which can be incorporated into both static and dynamic models. However, adding both
types of unobservables complicates estimation.

"For the Bresnahan and Reiss| (1994) estimates I assumed that ¢ was normally dis-
tributed. I have estimated the dynamic model using normally distributed shocks (which is
very straighforward in the case where there are only two actions) and find similar results
to those using the logit distribution.
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on taking action a; today, but using conditional choices probabilities P in
the future:

V(z|aj, P,0) = Z {r(0,2") +7(0,75,a;) + BV (2'|0, P)} F¥ (2|2, a;) + ¢,

(17)
where F¥(2'|z,a;) is the state to state transition probability given that

firm 4 took action a; today:

FP (2|, a;) (sz ) |7) ) T = aj)D[M$/|M°T] (18)

k#i

This allow us to write the conditional choice probability function ¥ as:

exp [f/(x]aj, P, 9)}

> aea, €XD [f/(:ﬂah, P, 6’)]

U(a;|z, P,0) = (19)

where f/(x|aj, P, 0) is the non-stochastic component of the value function,
i.e. V(zla;, P,0) = V(x|a;, P,0) —¢;. Note that I normalize the variance of
to 1, since this is a standard discrete choice model which does not separately

identify the variance of € from the coefficients on rewards.

2.4 Nested Pseudo Likelihoods Algorithm

An equilibrium to a dynamic game is determined by two objects: value
functions and policies. A set of policies P generate value functions V', since
these policies govern the evolution of the state across time. But policies must
also be optimal actions given the values V' that they generate.

Suppose I form the likelihood following |Rust| (1987)’s nested fixed point
algorithm, in which the set of conditional choice probabilities P used to eval-

uate the likelihood at parameter § must be an equilibrium to the dynamic
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game, which I denote as P*(#). To estimate parameters, the following likeli-
hood will be maximized: £7(9) =[]/, ¥(ai|z!, P*(d),0). However, each
time I evaluate the likelihood for a given parameter 6, I need to compute
an equilibrium to the dynamic game P*(). Even the best practice for solv-
ing these problems, the stochastic algorithms of [Pakes and McGuire, (2001)),
leads to solution times in the order of several minutes, which is impractical
for the thousands of likelihood evaluations typically required for estimation.

To cut through this difficult dynamic programming problem, Aguirre-
gabiria and Mira (2006) propose a clever algorithm:

Algorithm Nested Pseudo-Likelihoods Algorithm

1. Compute a guess for the set of conditional choice probabilities that play-
ers are using via a consistent estimate of conditional choices po(j, x),
where the index on P, denoted by k, is initially 0. I estimate P° using

a simple non-parametric bin estimator, i.e.:
ﬁo(a"x) — Zm,t,i l(afm = aj,xfm, — :L")
’ Zm,t,i 1('Tt i = x)

m

(20)

which is a consistent estimator of conditional choice probabilities.

2. Given parameter estimate 0% and an guess at player’s conditional choices,
P* values V(x| P¥, %) are computed according to equation . Thus

optimal conditional choice probabilities can be generated as:
exp [‘N/(ZE‘CLJ', Pk,ék)}

ZaheAi eXp |:‘~/<x’ah7 ]ADk’ ék)]

U(a;|z, PF,0F) = (21)

3. Use the conditional choice probabilities ¥(aj|z, P¥,0%) to estimate the

model via maximum likelihood:

L
jh+1 _ Pk
6" = arg meaxlll U(ay|z, P*,0) (22)
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where a; is the action taken by a firm in state z; where [ indexes ob-
servations from 1 to L. The Hotz and Miller estimator corresponds is
6!, the specific case where the likelihood of equation (22]) is maximized

conditional on choice probabilities P°.

4. Update the guess at the equilibrium strategy as:
P (aylz) = (aylw, P05 (23)

for all actions a; € A; and observable states z € X.

Note that pF*! is not only a best response to what other players were
using last iteration(p*), but also a best-response given that my future
incarnations will use strategy p*. I have problems with oscillating strate-
gies in this model, i.e. P¥s that cycle around several values without
converging. To counter this problem, a moving average update proce-

dure is used (with moving average length M A), where:

MA-1
~ 1 Dk ) ~k—ma
P (ag|x) = VAT U(a;|z, PF, 0" + W;O P aglx) | (24)

is the weighted sum of this step’s conditional choice probabilities and
those used in previous iterations.

5. Repeat steps 2-4 until 5, 4 .cx 9"+ (a;]x) — p*(aj|z)| < 8, where § is

a maximum tolerance parameter, at which point p*(a;|z) = ¥(a;|x, Pk, ék“)
for all states x, and actions j. Hence, P* are conditional choice proba-

bilities associated with a Markov Perfect Equilibrium given parameters
Pr+1.

2.5 Auxiliary Assumptions

While the Nested Pseudo-Likelihoods algorithm speeds estimation of dy-

namic games, two techniques speed up this process even more: symmetry
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and linearity in parameters.

[ impose symmetry (or exchangeability in [Pakes and McGuire| (2001) and
Gowrisankaran| (1999)’s terminology) between players, so that only the vector
of firm states matter, not the firm identities. Encoding this restriction into
the representation of the state space allows for a considerable reduction in
the number of states. For instance, an entry-exit model with 12 firms and
10 demand states entails 40960 states, while its symmetric counterpart only
uses 240.

As suggested by Bajari, Benkard, and Levin| (2006), and also noted by
Aguirregabiria and Mira| (2006)), the Separability in Dynamic Parameters as-
sumption (henceforth SSP) is incorporated to speed estimation by maximum
likelihood. A model has a separable in dynamic parameters representation
if period payoff r(z'|0)+ 7(a;, ;|0) can be rewritten as 6 - p(z’, a;, x;) for all
states o/, € X and actions a; € A, where p(2’, a;, x;) is a vector function
with the same dimension as the parameter vector. While this representation
may seem unduly restrictive, it is satisfied by many models used in Indus-
trial Organization such as the entry-exit model of equations and .
Using SSP, period profits can be expressed as 0 - p(2’, a;, z;). Value functions
conditional on conditional choice probabilities P are also linear in dynamic

parameters, since:

V(lP,6) = > 84> | D 0oa™ alal)pi(aila’) | FF (" |2") + B(e|P)

zteX |aleA

= 038 Y |3 pat alapiallet) | P
t=1

zteX afreA

"‘Zﬁt Z Z'yln (pi(a t|m )

rteX ateA

Denote by 6.J(z|P) = V(z|P,0) the premultiplied value function where
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0 = {0, 1} is extended to allow for components which do not vary with the

parameter vector. The value of taking action a; is thus:

V(z|a;, P,0) _ez ' aj, ;) + BJ(2'|P)) FY (' |z, a;) (25)

Let Q(aj,x, P) =Y, [p(a', a;,z;) + 3J(x, P)] F(2'|z,a;). Conditional Choice
Probabilities are given by:

exp [é@(aj,ac, P)]
ZheAi exXp [éQ<ah7 L, P):|

U(aj|z, P,0) = (26)

Maximizing the likelihood of this model is equivalent to a simple linear
discrete choice model. In particular, the optimization problem is globally
concave, which simplifies estimation. This is not generally the case for the
likelihood problem where P is not held constant, i.e. £F%!(f) but required

to be an equilibrium given the current parameters.

3 Unobserved Profitability

The assumption that the epsillon’s are serially uncorrelated within markets
is heroic. Characteristics of the market that are not observed in the first
period, such as a vast road network requiring a large amount of concrete, are
the same in each subsequent period. Serial correlation of € per se only affects
standard errors from maximum likelihood. Presumably, I could correct these
standard errors using a clustering procedure for observations in the same
market. However, the pattern of correlation of unobservables can also be
used to identify, and remove, bias from the Bresnahan-Reiss model. In the
next section I discuss the impact of unmeasured

The canonical entry model estimates the profit functions for firms in

different markets, where I impose the following functional form:
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Vi= X580 + g(N,) + e (27)
Demand ~ Competition ~ Unobservables

where £f is a mean-zero stochastic term which is uncorrelated with both
demand (X!) and number of firms (N/), and g(.) is decreasing. The as-
sumption that e; is uncorrelated with regressors is frequently violated in
the context of entry models. The econometrician may not observe certain
components of profitability, but firms most certainly do. They will react by
entering in greater numbers in more profitable markets, leading to a positive
correlation between € and N. Likewise, suppose demand in large markets is
qualitatively different than in small markets. For instance, multistory build-
ings are constructed in greater proportion in large markets relative to small
markets, and this type of construction consumes a large amount of concrete.

Thus, market size and consumption of concrete are positively correlated.
Unobserved profitability can be statistically decomposed into its corre-

lated components:

e =5 Xt +y Nt 4 ¢t (28)
~—~ ~—~
observed demand firms

where (! is an uncorrelated, mean zero shock.

If measured and unmeasured demand are positively correlated, say be-
cause areas with large numbers of construction workers and projects also
have other features which make demand high, then § > 0. Similarly, if firms
react to unmeasured demand shocks by entering, I expect v > 0. Note that
both of these statements refer to the correlation between ¢ and X} or N},
while the values of ¢ or 7y are related to the conditional correlation E(X|N)
or E(eN|X) for which it is more difficult to make a statement about from
intuition. In the case where the conditional correlation has the same sign as

the unconditional correlation, I can sign the bias in this model:
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The Bresnahan-Reiss model can be expressed as the following inequalities:

X, B+e, > —g(N;,) (29)
Xt B3+e < —g(NE +1)

Substituting expression , these inequalities become:

XL(B+06)+¢, > —g(N.) =Ny,
XL (B+0)+¢, < —g(N,+1)—~N},

The estimated demand coefficient (3 + §) will be biased upward. Like-
wise, since the effect of competition is negative, the competitive effects of
entry —[g(N) + 7] will be biased downwards. If fact, this is what I find in
empirical estimates in Table 2. When I correct for unobserved components
of profitability (using a market fixed effects strategy described in the next
section) I find the ratio of the effect of the first competitor versus 1000 con-
struction employees goes from —1.3 without fixed effects (i.e. —0.910/0.706)
to —8.2 (i.e. —2.31/0.280) with fixed effects. This indicates that competition
plays a much greater role in firm’s profitability than demand compared to

what the standard Bresnahan-Reiss would suggest.

3.1 Panel Data Solution

The panel structure of data can be used to eliminate bias in entry models.
Decomposed the unobserved shocks to profitability into:

el = a,,(market effect) + y*(year effect) + vf,

m

a component which remains constant over a market’s life(c,,), a compo-
nent which represents aggregate shocks common to all markets in a year (y")
while remaining unobserved profits are grouped into a mean zero shock vf .

Estimates remain biased to the extent that v! is correlated with demand
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and number of firms:

vf, = 0XE + AN + ¢

This correlation is likely much smaller than before. Ultimately, the most
convincing solution to this problem is to use an instrumental variable strat-
egy. Find a variable 2!, which is uncorrelated with unobserved profitability
g, but correlated with demand and number of plants, such that E[ez] = 0. Tt
is then possible to use GMM to estimate an consistent, if not efficient, model

of entry.

3.2 Computational Details

Fixed effects are commonly introduced into discrete choice models with con-
ditioning techniques such as |(Chamberlain| (1980)’s fixed effect logit. In the
case of the ordered probit model with groups of 20 observations (representing
the number of periods observed for each market), conditioning is computa-
tionally difficult. Instead, a dummy variable for each market is added to the
model, and estimated using maximum likelihood as another demand param-

eter:

T

M 5
Vi XL NL) = XEB+> " agl(k=m)+> y"1(t = h)+Y _ 8;1(N}, > j)+d max(N},—5,0)
k=1 h=1 j=1

(30)

where oy, is the market effect fixed.

To estimate parameters, I need to maximize the likelihood over more than
3000 parameters, given the number of markets in the data. Fortunately, the
linear objective function of equation (30) along with the structure of an
ordered probit yields a globally concave likelihood function. This makes
this problem computationally feasible since globally concavebally concave
function are straightforward to maximize. I calculate the gradient of the

likelihood analytically, bypassing the computation of a rather large number
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of numerical derivatives. Finally, the market level fixed effect parameters are
“incidental” in the sense that their values are not of interest, just the effect
they have on economically important parameters such sunk costs and the
effects of competitors. The termination criteria reflects this, requiring only
that the likelihood to converge |L(6") — L(6°')| < e rather than the full
vector of parameters: ||§° — 0°1|| < §, where i denotes the iteration number.
The number of iterations required to compute the solution of the model
is reduced from 50 to about 5 without changing the value of economically
relevant parameters. On a UNIX server, estimating the fixed effect maximum
likelihood parameters takes approximately a day, but this operation would

be much faster for a sample of markets.

4 Data

Data on Ready-Mix Concrete plants is drawn from three different data sets
provided by the Center for Economics Studies at the United States Cen-
sus Bureau. Table [ illustrates the datasets used. The first is the Census
of Manufacturing (henceforth CMF), a complete census of manufacturing
plants, every five years from 1963 through 1997. The second is the Annual
Survey of Manufacturers (henceforth ASM) sent to a sample of manufactur-
ing plants (about a third for ready-mix) every non-Census year since 1973.
Both the ASM and the CMF involve questionnaires that collect detailed
information on a plant’s inputs and outputs. The third data set is the Longi-
tudinal Business Database (henceforth LBD) compiled from data used by the
Internal Revenue Service to maintain business tax records. The LBD covers
all private employers on a yearly basis since 1976. The LBD only contains
employment and salary data, along with sectoral coding and certain types
of business organization data such as firm identification. Construction data
is obtained by selecting all establishments from the LBD in the construction

sector (SIC 15-16-17) and aggregating them to the county level.
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CMF ASM LBD

Data Set Census of Manufacturing Annual Survey of Manufacturing Longitudinal Business Database

Collection Questionnaire Questionnaire IRS Tax Data

Years 1963, 67, 72, 77, 82, 87, 92, 97 1972-2000 1976-1999

Coverage All Manufacturing Firms 30% of Manufacturing Firms All Private Sector Firms

Variables Input and Output Data including Input and Output Data Employment and Payroll
materials and product trailers and Birth/Death data

Plant Identifiers PPN, CFN PPN, CFN LBDNUM, CFN

Table 1: Description of Census Data Sources

4.1 Industry Selection

Production of ready-mix concrete for delivery predominantly takes place at
establishments in the ready-mix sector. Hence, establishments in the ready-
mix sector are chosen, corresponding to either NAICS (North American In-
dustrial Classification) code 327300 or SIC (Standard Industrial Classifica-
tion) code 3273, a sector whose definition has not changed since 1963. The
criterion for being included in the sample is: an establishment that has been
in the Ready-Mix Sector (NAICS 327300 or SIC 3273) at any point of its
life, in any of the 3 data sources (LBD,ASM,CMF). To create my sample,
plants need to be linked across time, since plants can switch sectors at some

point in their lives.

4.2 Longitudinal Linkages

To construct longitudinal linkages, I use three different identifiers: Perma-
nent Plant Numbers (PPN), Census File Numbers (CFN) and Longitudinal
Business Database Numbers (LBDNUM). Census File Numbers (CFN) are
the basic identification scheme used by Census for its establishment data. A
plant’s CFN may change for many reasons, including a change of ownership,
and hence they are not well suited as a longitudinal identifier. Permanent
Plant Numbers (PPN) is the Census Bureau’s first attempt at a longitudi-
nal identifier, as they are assigned to a plant for its entire life-span. These
tend to be reliable, but are only available in the CMF and ASM. Moreover,

PPNs are missing for a large fraction of observations, leading to the incor-
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rect conclusion that many plants have dropped out of the industry. The
third identification scheme is the Longitudinal Business Database Number,
as developed by ?. This identifier is constructed from CFN, employer 1D
and name and address matches of all plant in the LBD. Since the LBD is the
basis for mailing Census questionnaires to establishments, virtually all plants
present in the ASM/CMF are also in the LBD (starting in 1976), allowing
a uniform basis for longitudinal matching. I use LBDNUM as my basic lon-
gitudinal identifier, which I supplement with PPN and CFN linkages when
the LBDNUM is missing, in particular for the period before 1976 for which
there are no LBDNUMs.

To identify plant entry and exit, I use ?’s plant birth and death measures.
Jarmin and Miranda identify entry and exit based on the presence of a plant
in the I.R.S.’s tax records. They take special care to flag cases where plants
simply change owners or name by matching the address of plants across time.
The measurement of turnover is problematic, since firms do not themselves
report that they are exiting or that they have just entered. Instead, entry
and exit data must be constructed from the presence and absence of plants
in the data over time. Specifically entry and exit are defined as: A plant
has entered at time t if it is not in the LBD before time t, but it is present
at time t. A plant has exited at time t if it is not in the LBD after time
t, but it is present at time t. E| Proper longitudinal matches are important
for constructing turnover statistics, since measurement error tends to break
longitudinal linkages, creating artificial entry and exit, raising the implied
turnover rate above its true value. Each year, about 40 plants (or about 1.6%
of plants) are temporarily shut down. I do not treat temporary shutdown

as exit, since the cost of reactivating a plant is far smaller than building one

8If I a plant changes ownership, I do not treat this as an exit event since the cost of
changing the management at a plant should be much lower than the cost of building a
plant from scratch.
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from scratch. P[]

4.3 Panel

I select all plants that have belonged to the ready-mix sector at some point
in their lives. The entire history of a plant’s sectoral coding must be investi-
gated, since a plant can enter and exit the ready-mix sector many times. For
instance, many ready-mix concrete plants are located next to gravel pits, to
lower their material costs. If a plant’s concrete operations are not separated
from gravel mining when reporting to Census, then the plant can be classi-
fied as a gravel pit (NAICS 212321) or a ready-mix plant. This classification
can change from year to year, and differ between data collected by the IRS
(LBD) versus data collected by Census (ASM/CMF). Treating these sector
switches as exits would confuse shutting down a plant and a change in its
product mix. I assume a plant is either in the ready-mix concrete sector for
its entire life, or not. I select plants using the following algorithm: 1) Select
all CFN’s, PPN and LBDNUM’s which are in NAICS 327300 or SIC 32730.
Call this file the master index file; 2) Add all plants that have the same CFN,
PPN or LBDNUM as a plant in the master index file. Add these to the new
master index file.

Measurement error in any year that incorrectly labels a plant as part of the
ready-mix concrete sector introduces this plant into the sample for its entire
life. In particular, sectoral coding data from the LBD is of poorer quality
than sector data from the CMF/ASM. These coding errors introduce large

9In empirical work with multiple plant states, temporary inactive plants have been
found to be more similar to plants with less than 15 employees than to potential entrants. A
potential entrant has a very low probability of entering, while the probability of observing
a temporarily inactive plant reentering is at least 80%.

10 Tf a plant is inactive for more than 2 years, then the IRS will reassign a tax code to
this establishment, breaking longitudinal linkages, creating an exit and the potential for a
future entry event. I can construct an upper bound on the number of plant births that are
in fact old plants being reactivated. If two plants enter in the same 9 digit zip code (an
area smaller than a city block) at different dates, assume the latter birth is a reactivation.
Under this assumption, less than 1% of births are reactivated plants.
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manufacturers, such as cement producers, with different internal organization
and markets than concrete producers, into the ready-mix sample. I delete
plants from the sample if in either the LBD or the ASM/CMF they are coded
in the ready-mix concrete sector for less than half their lives. If a plant is
only in the ready-mix sector for one year out of twenty, it is safe to conclude
that coding error led to its inclusion into the ready-mix sector. Table 77
offers confirmation, since ready-mix concrete represents 95% of output for
plants in my sample. Moreover, when I collect all plants that produce ready-
mix concrete, based on their response to the product trailer of the Census of
Manufacturing (which collects detailed information on the output of plants),
I find that 94% percent of ready-mix concrete is produced by plants in my
sample versus only 6% produced by plants outside the sample. Hence, the
assumption that ready-mix plants do not switch sectors and produce only
ready-mix does little violence to the data.

Table 7?7 shows that over the sample period there are about 350 plants
births and 350 plants deaths each year compared to 5000 continuers. Turnover
rates and the total number of plants in the industry are fairly stable over the
last 30 years. Indeed, Figure 7?7 shows annual entry and exit rates hovering
around 6% for the period 1976 to 1999, which similar to previous work on
the manufacturing sector such as [Dunne, Roberts, and Samuelson! (1988),
with net entry during the booms of the late 1980’s and late 1990’s, and net
exit otherwise. Table 7?7 and Table 7?7 in section ?? display characteristics of
ready-mix concrete plants: they employ 26 workers on average, and each sold
about 3.2 million dollars of concrete in 1997, split evenly between material
costs and value added. However, these averages mask substantial differences
between plants. Most notably, the distribution of plant size is heavily skewed,
with few large plants and many small ones, indicated by the fact that more
than 5% of plants have 1 employee, while less than 5% of plants have more
than 82 employees. Moreover, Table 7?7 shows continuing firms are twice as

large as either entrants(births) or exitors(deaths), measured by capitaliza-
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tion, salaries or shipments. I aggregate plant data by county to form market
level data, for which Table [0] in section ?? presents summary statistics. No-
tice that the average number of plants per county is fairly small, equal to
1.86, while the 95th percentile of firms per county is only 6. Hence most

ready-mix concrete markets are best characterized as local oligopolies.

5 Sunk Cost Estimates

Table [2] presents estimates for the Bresnahan-Reiss Entry model and Table
for the Sunk-Cost Bresnahan-Reiss Estimator. Note that the coefficient on
demand is more than halved and the coefficient on number of competitors

becomes twice as negative when fixed effects are added to the model.
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Demand Variables in Thousands ‘ County Fixed Effect S.E  No Effect S.E.
County

Construction Employment 0.280 (0.045) 0.706  (0.018)
County

Construction Payroll -0.003 (0.001)  -0.008 (0.001)
Concrete Intensity adjusted

Construction Employment -0.672  (0.316) -0.230  (0.209)
Concrete Intensity adjusted

Construction Payroll 0.027 (0.012) 0.008 (0.008)
Adjacent County

Construction Employment -0.028  (0.009) 0.002  (0.002)
Within 10 miles

Construction Employment -0.003  (0.011) 0.010 (0.002)
Within 20 miles County

Construction Employment 0.025 (0.006) 0.004 (0.001)
Adjacent County

Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 10 miles County

Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 20 miles County

Construction Employment 0.000 (0.000) 0.000 (0.000)
Year Effects Yes Yes
Competitive Variables

1 competitor -2.339  (0.030) -0.910 (0.011)
2 competitors -1.452  (0.023) -0.700 (0.011)
3 competitors -1.109  (0.026) -0.560 (0.014)
4 competitors -0.891 (0.031) -0.700 (0.011)
5 competitors -0.797  (0.036) -0.560 (0.014)
6 competitors -0.617  (0.039) -0.472  (0.017)
More than 6 competitors -0.696  (0.029) -0.560 (0.014)
Log Likelihood -13575 -25536

Wald 13021 6678

Number of Observations 18025 18025

Table 2: Bresnahan-Reiss Estimates with and without county fixed

effects
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Demand Variables in Thousands ‘ County Fixed Effect S.E No Effect S.E.
County

Construction Employment 0.142  (0.057) 0.520 (0.022)
County

Construction Payroll -0.001  (0.001) -0.005 (0.001)
Concrete Intensity adjusted

Construction Employment -0.385 (0.444) -0.184 (0.278)
Concrete Intensity adjusted

Construction Payroll 0.021 (0.017) 0.012 (0.011)
Adjacent County

Construction Employment -0.012 (0.013) 0.005 (0.002)
Within 10 miles

Construction Employment -0.035 (0.016) 0.012 (0.003)
Within 20 miles County

Construction Employment 0.031 (0.009) -0.002  (0.001)
Adjacent County

Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 10 miles County

Construction Payroll -0.001  (0.000) 0.000  (0.000)
Within 20 miles County

Construction Payroll 0.000 (0.000) 0.000 (0.000)
Year Effects Yes Yes
Competitive Variables

1 competitor -2.195  (0.054) -0.645 (0.020)
2 competitors -1.671  (0.045) -0.683  (0.021)
3 competitors -1.258  (0.046) -0.554  (0.023)
4 competitors -1.048 (0.052) -0.458  (0.025)
5 competitors -0.898  (0.058) -0.419  (0.029)
6 competitors -0.745 (0.061) -0.395 (0.034)
More than 6 competitors -0.897  (0.040) -0.471  (0.022)
Exit Threshold 1.364  (0.317) -1.555  (0.058)
Entry Threshold 4.743 (0.319) 1.665 (0.058)
Log Likelihood -5021 -9154

Wald 5261.9 2598

Number of Observations 18025 18025

Table 3: Standard and Fixed Effect Sunk Cost Bresnahan-Reiss Esti-

mates for County Markets
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