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Abstract

Sunk Costs are key in to determining the ease of entry into a
market and understanding market structure.

I find that dynamic and static models give essentially the same
measurement of sunk costs.

If the profitability of markets is mismeasured, this introduces an
positive correlation between unobserved components of profitability
and the number of firms in a market. Using data on entry and exit
patterns in the Ready-Mix Concrete Industry from 1976-1999, I show
that using market-level fixed effects in a Bresnahan-Reiss entry model
reduces the coefficient on demand by 50% and increases the coefficient
on competition by 100% compared to the no fixed-effect benchmark.
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1 Introduction

A key question in industrial economics is the relationship between market

structure and competitive outcomes in the product market such as innova-

tion and consumer welfare. For instance, when the Departement of Justice

evaluates the impact of a proposed merger between two firms, they evalu-

ate if the merger will lead to an increase in prices. But market structure is

itself the result of firms deciding to enter or exit a market. So a complete

evaluation of the merger would also take into account both the fact that

reduced competition will raise consumers prices and if higher concentration

will induce new firms to enter the market.

The goal of this paper is to measure the sunk cost of entry for ready-mix

concrete firms. These costs are important since they determine the ease of

entry into a market. For instance, in Collard-Wexler (2006b) I find that large

sunk costs are principally responsible for the dispersion of productivity in the

ready-mix concrete industry. Likewise, in Collard-Wexler (2006a) I show that

sunk costs are so large that firms choose not to respond to demand shocks

by either entering or exiting a market. Moreover, this paper contributes

to a growing literature on the estimation of the sunk costs of entry and

discusses methodological issues with the measurement of sunk costs. For

instance, Sweeting (2006) estimates the sunk costs of format switching in the

radio market to understand the effect of mergers on station repositioning.

Ryan (2006) shows that environmental regulations substantially increased

sunk costs in the cement industry. Finally Dunne, Klimek, Roberts, and

Xu (2006) show that most of the difference in turnover rates between dental

offices and chiropractors can be explained by higher sunk costs for dentists

than chiropractors.

I estimate sunk costs using static models of entry la Bresnahan and

Reiss (1991) and dynamic models of entry in the Ericson and Pakes (1995)

tradition using the methods of Aguirregabiria and Mira (2006). Both static

and dynamic models estimate sunk costs to be about $ 2 million, which

1



is quite reasonable for the ready-mix concrete industry. Moreover, both

static and dynamic models find that the first competitor has a much greater

impact on profits than subsequent competitors. Static models, such as those

developed by Bresnahan and Reiss (1994), can be used to investigate the

presence of sunk costs in the ready-mix concrete industry. These models

does not compute the value function from period profits. Instead, the value

function is directly estimated, without reference to what will happen in the

future, from the current configuration of firms in a market. This “reduced

form” model is used to investigate a number of empirical issues, such as which

variables best capture demand or different assumptions on the shocks to firms

profits. In constrast dynamic models can estimate firm’s period profits and

be used to perform a much broader set of counterfactual policy experiments.

I believe that dynamic models in the tradition of Bajari, Benkard, and

Levin (2006) and static models in the tradition of Bresnahan and Reiss (1991)

are complements for understanding entry and exit decisions. A dynamic

model can be used to perform a very broad range of policy counterfactu-

als. For instance in Collard-Wexler (2006a), I look at the effect of demand

fluctuations on industry turnover and plant size. For this type of policy coun-

terfactual it is impossible to use a static model since these models cannot

envisage changes in the process for demand. On the other hand, static mod-

els can be used to evaluate if there are differences in the sunk costs of entry

in two different countries, or if a business licensing regulation has increased

the sunk cost of entry over time. Moreover, a static model can be coded

up within a single day and estimated in under 5 minutes and incorporate

many different demand side variables at once. This allows the researcher to

perform an exhaustive specification search to examine the robustness of the

model to incorporating either market or time controls.

In any particular dataset, the econometrician will observe many com-

ponents of profitability, such as market population, total number of con-

struction workers and average income within the market. However, certain
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components of profitability will be neccesarily unobserved, either unobsersed

demand shocks such as a taste for concrete construction or unobservables

cost shocks such as higher land prices or wages for specialized workers. In

Texas concrete is often used to pave roads instead of asphalt, since asphalt

will melt in Texas’s scorching summer heat. If I do not include a “Texas”

control in my specification it will turn up as an unobserved variable. Firms

will react to these unobservable components of profitability by entering in

greater numbers in more profitable markets. Thus the estimated effect of

competition will combine both the true effect of competition on profitability

and the correlation between the number of firms in the market and unob-

served components of profitability. I correct for the presence of unobserved

market heterogeneity by introducing market level “fixed-effect” style estima-

tors for both static and dynamic models of entry. I find that these unobserved

components of profitabilty are large for my data on the ready-mix concrete

market. Correcting for persistent market heteregeneity increases the effect

of competition on firm’s profits by more than 50 %.

In section 2 I present the dynamic model of entry and exit and the estima-

tion of the parameters of this model via either static or dynamic structural

models. Section 3 discusses the issue of unobserved components of profitabil-

ity and how to correct for these with market fixed effects. Section 4 presents

the data used to estimates the models of entry shown in section 5.

2 Model

In this section, I build a dynamic model of entry and exit in oligopoly mar-

kets. Later on, I will discuss the specific assumptions used to estimate this

model using either a static, pseudo-static and dyanamic structure.

Each market has N firms competing repeatedly, indexed as i ∈ I =

{1, 2, ..., N}. Some of these firms currently have active plants in the market,

others are potential entrants. Denote the state of the firm as st
i, which can be
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decomposed in the components that the econometrician observes (denoted

xt
i), such as the fact that a firm runs a ready-mix concrete plant, and com-

ponents that are unmeasured by the econometrician but known to the firm

(denoted εt
i) such the competence of the manager running the plant. In the

empirical specifications I use the observed state xt
i is simply the presence of a

plant in the market. The state of the market (denoted st) is the composition

of the states of all firms and total demand for ready-mix concrete:

st = {st
1, s

t
2, ..., s

t
N , Dt︸︷︷︸

Demand

} (1)

The demand state Dt affects all firms in the market and evolves exogenously

following a first-order Markov Process PD(Dt|Dt−1).

At the start of each period, firms choose actions at
i ∈ {in, out}, either

to operate a ready-mix concrete plant or to stay out of the market. Again,

denote the action profile in a market as at = {at
1, a

t
2, ..., a

t
N}, the composition

of actions chosen by each firm. Firms then receive period rewards r(st) which

depend on the state of the market and pay transition costs τ(at
i, a

t−1
i ) such

as a sunk cost of entry if a previously inactive firm enters the market. Thus

the firm’s value the net present value of rewards the firm will receive, net of

transition costs:

V (s0) =
∞∑

t=0

βt[r(st) + τ(at
i, a

t−1
i )] (2)

In my empirical work I use a simple Bresnahan and Reiss (1991) style

reduced-form for the reward function, endowed with parameters θ. It is

easily interpreted and separable in dynamic parameters. Specifically, the

entry/exit model, in which at
i = 1 corresponds to activity and at

i = 0 to
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inactivity, has the reward function:

r(at
i, x

t|θ) = at
i

 θ1︸︷︷︸
Fixed Cost

+ θ2M
t+1︸ ︷︷ ︸

Demand

+ θ3g

[∑
−i

at
−i

]
︸ ︷︷ ︸

Competition

 (3)

where g(·) is a non-parametric function of the number of competitors in a

market. Transition costs are:

τ(at
i, x

t
i|θ) = θ41(xt

i = 0, at
i = 1)︸ ︷︷ ︸

Sunk Costs

(4)

where θ4 is the sunk cost of entry.

To make their entry and exit decisions, I assume that firms use symmetric

Markovian strategies σi(S), i.e. their strategies map the state space S defined

in equation (1) into mixtures over actions, i.e. σi(S) : S → ∆A. Define the

strategy profile σ as the composition of a strategies for all firms in the market,

i.e. σ = {σ1, σ2, ..., σN}. A Markov Perfect Equilibrium is a set of strategies

σ∗ such that all players are weakly better off playing σ∗i given that all other

players are using strategies σ∗−i, i.e.:

V (s|σ∗) ≥ V (s|{σ′i, σ∗−i}) (5)

for any strategy σ′i, for all players i and states s.

2.1 Static Model

In constrast to the dynamic model I develloped above, the models entry

developed by Bresnahan and Reiss (1991) and Berry (1992) are two-period

models. In the first stage, firms make their entry decision. In the second

stage they compete in the product market.
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There are two interpretations for the static model. The first interpretation

proposed by Pakes (2007) is that a two period model is strictly correct only

if the state does not change over time, due to either changes in demand or

entry and exit of competitors. Thus if the state st does not vary over time

then the firm’s continuation value is proportional to it’s period rewards:

V (s0) =
∞∑

t=0

βtr(s0) =
r(s0)

1− β

Alternatively, we can think of a two period model as a “reduced-form” for

the dynamic model of entry and exit. I will discuss this interpretation when

we investigate the sunk-cost model of entry and exit.

The original Bresnahan and Reiss (1991) model requires the following

assumption on the unobserved firm state εt
i:

Assumption 1 (CS) The unobserved state εt
i is common to all firms, i.e.

εt
i = εt for all i. Moreover, the market level shock εt is i.i.d. across time.

Assumption CS along with the assumption that the firm level state is just

xi ∈ {in, out}, considerably simplifies the state: there are two groups of firms,

those that are in the market, and those that remain out of the market. Firms

are identical within the group. To bring this model to the data, the firm’s

value is assumed to be additively separable in the observed state xt and the

unobserved state εt:

Assumption 2 (AS) The firm’s value V (st) is additively separable in the

observed state xt and the unobserved state εt, i.e. V (st) = V (xt) + εt
i.

The equilibrium number of firms N in a market can be characterized by

two inequalities:

1. Firms that Enter make Positive Profits

V (N,Xm) + εm > 0 (6)
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2. If an extra firm entered it would make negative profits:

V (N + 1, Xm) + εm < 0 (7)

where V (N,Xm) is the observable component of the firm’s value depend-

ing on demand factors Xm and the number of symmetric competitors in a

market N , while εm are unobserved components of profitability common to

all firms in a market.

Assume market level shocks εm have a normal distribution with zero mean

and unit variance. The probability of observing a market Xm with N plants

is the following:

Pr(N = n|Xm) = Φ[−V (n+ 1, Xm)]− Φ[−V (n,Xm)]1(n > 0)

where Φ(.) is the cumulative distribution function of the standard normal.

I parameterize the value function as:

V (θ,N,Xm) = θ1a
t
i + θ2M

t+1at
i + θ3a

t
i

∑
−i

at
−i + θ41(at

i = 1, at−1
i = 0) (8)

Note that while this parameterization looks quite similar to the parameteri-

zation in equation 4, I fact the parameters that I estimate are quite different,

since say θ3 is the effect of the number of competitors on the firm’s contin-

uation value, not the effect on period profits. Parameters can be estimated

via Maximum Likelihood, where the likelihood is the following:

L(θ) =
M∏

m=1

T∏
t=1

Pr(N t
m = n|X t

m, θ) (9)

where m indexes markets and t indexes time periods.
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2.2 Pseudo-Dynamic Model

An alternate interpretation for two-period models is that they are a “reduced-

form” for the fully dynamic model of entry and exit. In the first period

firms make their entry decision and receive their continuation value in the

second period. To relate the static model to the structure of the dynamic

oligopoly game presented above, I use the foundations provided by Campbell

and Abbring (2006), who develop a model of oligopoly dynamics in which

firms enter and exit using demand threholds, exactly as in Bresnahan and

Reiss (1991).

Campbell and Abbring (2006) impose three assumptions to generate their

model of demand thresholds. First, as in the Bresnahan and Reiss (1991)

model, unobserved component of profitability εt
i are common to all firms in

the market.1 Assumption CS is necessary to generate a pattern of demand

thresholds for entry and exit. In particular, this assumption rules out simul-

taneous entry and exit if one firm obtains a very negative profitability shock

causing it to exit, while another firm may have obtained a very large positive

shock which caused it to enter.2

Assumption 3 (LIFO) Firms follow LIFO (Last-In, First-Out) strategies,

i.e. younger firms always exit before older firms do.

The LIFO assumption is neccessary to break the problem of multiple

equilibria. For instance, firms may expect other firms to exit first, or they

may expect themselves to exit first. To obtain a unique equilibria we need

to find some way of ordering which firms will either enter or exit first. Thus

the LIFO assumption assumes that firms which enter earlier will also be the

1 In fact Campbell and Abbring (2006) can allow for firms within a single market
to differ in their profitability. However, the Campbell and Abbring (2006) cannot allow
for the profitability ranking of firms to switch over time. Thus firm level differences in
profitability are almost completly persistent.

2Dunne, Roberts, and Samuelson (1988) document that simultaneous entry and exit is
ubiquitous in the manufacturing sector (and the ready-mix concrete sector in particular).
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firms that exit later on. In the ready-mix concrete industry I find that older

plants tend to exit less often than younger plants. A 1 year old plant has an

exit rate of about 7%, while a 15 year old plant has a exit rate of about 4%.

Assumption 4 (MKP) The Markov process for demand (PD[Dt+1|Dt) can

be represented as a mixture of uniform auto regressions with bounded growth.

The MKP assumption is less transparent than the previous assumptions

in this model. What assumption MPK rules out is the case where an in-

crease in demand makes a firm more pessimistic about demand in the future.

Suppose that this was not the case, then a firm might decide to enter at de-

mand state 1, exit at demand state 2 and reenter in demand state 3 if there

is a high probability of transiting to demand state 10 from states 1 and 3,

but a low probability of entering demand state 10 from state 2. To avoid this

situation, we need to impose structure on the transition process of demand

PD(Dt+1|Dt).

Under assumptions AS, CS, LIFO and MKP, Proposition 4 in Camp-

bell and Abbring (2006) states that we can characterize the entry and exit

policies of firms in terms of demand thresholds.3 An exit policy is in de-

mand thresholds if a firm exits if demand fall below a certain level, i.e.

χ(N,D) = 1(D < Dχ
N). Likewise, an entry policy is in demand thresholds if

a firm enters if demand is above a certain level, i.e. e(N,D) = 1(D > De
N).

Figure 1 shows that we can decompose demand into entry and exit thresh-

olds. Note that that if firms make unrecoverable sunk costs upon entry, then

the exit threshold for N firms will be below the entry threshold for N firms,

since firms require higher profits to enter a market than to stay in operation.

3Page 11 of Campbell and Abbring (2006) states:

Proposition 4: Let (AS , AE) be the unique symmetric Markov-perfect equi-
librium in a LIFO strategy that defaults to inactivity. Assume that Q(·|C) is
a mixture of uniform autoregressions with bounded growth. Then, firms with
all ranks follow threshold policies.
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Figure 1: Entry and Exit Thresholds for Demand

Firms make sunk, unrecoverable investments when they enter a market.

The decision of an incumbent firm to remain in a market differs from the

decision of an entrant to build a new plant. The Bresnahan and Reiss (1994)

model of exit distinguishes between two types of firms: firms which are al-

ready active and firms which are deciding to enter the market. Entrants and

incumbents have the same profits, and hence the same continuation values.

However, entrants always have lower values than incumbents, since they pay

an entry cost that incumbents do not, as is shown by Figure . This implies

that there cannot be simultaneous entry and exit: either firms exit, enter,

or nothing happens. This is a feature of all models which do not have firm

specific shocks and where firms are symmetric: they cannot rationalize the

same type of plant in the same market making different choices. I drop

market-years in which there is both entry and exit are dropped. With yearly

data and markets with on average less than 3 incumbents there is very little

simultaneous entry and exit, less than 5% of markets need to be dropped.

Moreover, including these markets in the data does not significantly change

estimated parameters. So the selection caused by this procedure does not

seem to be of great import for this data. Three regimes need to be considered:

entry, exit and stasis.
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Stasis Exit Entry 

φ ψ 

( , )m m mN Xπ ε+  

Figure 2: Entry Threshold ψ and Exit Threshold φ based on static
profits.

1. Net Entry : N t > N t−1

V (N t, X t
m) + εt

m > ψ

V (N t + 1, X t
m) + εt

m < ψ

2. Net Exit : N t < N t−1

V (N t, X t
m) + εt

m > φ

V (N t + 1, X t
m) + εt

m < φ

3. No Net Change: N t = N t−1

V (N t, X t
m) + εt

m > φ

V (N t + 1, X t
m) + εt

m < ψ

where φ is the entry fee that an existing firm pays to enter the market and

ψ is the scrappage value of a firm. Entry fees and scrap value are not iden-

tified from fixed costs, since it is always possible to increase fixed costs and

decrease entry/exit fees by the same amount without changing the likelihood

of observing a particular market configuration. Yet, the difference between

entry and exit fees is identified and can be compared to other quantities such

as the effect of an extra competitor.
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These equations can be combined into:

V (N t, X t
m) + εt

m > 1(N t > N t−1)ψ + 1(N t ≤ N t−1)φ (10)

V (N t + 1, X t
m) + εt

m < 1(N t ≥ N t−1)ψ + 1(N t < N t−1)φ (11)

The probability of observing a market Xm with N t plants today and N t−1

plants in the last period is:

Pr(nt = N t, nt−1 = N t−1|X t
m) = Φ[−V (nt + 1, X t

m) + 1(nt + 1 ≥ nt−1)ψ + 1(nt + 1 < nt−1)φ]

−Φ[−V (nt, X t
m) + 1(nt > nt−1)ψ + 1(nt ≤ nt−1)φ]1(nt > 0)

which is used to form a maximum likelihood estimator4:

L(θ) =
M∏

m=1

T∏
t=2

Pr(nt = N t, nt−1 = N t−1|X t
m, θ)

2.3 Dynamic Model

An alternative strategy is to estimate the model of entry and exit using a fully

dynamic model. Applying this framework to data has proven difficult due to

the complexity of computing a solution to the dynamic game, which requires

at a minimum several minutes of computer time. Hotz and Miller (1993) and

Hotz, Miller, Sanders, and Smith (1994) bypass the computation of equi-

librium strategies (the approach followed in Rust (1987)’s study of a single

agent’s dynamic optimization problem) by estimating strategies directly from

the choices that firms make. Strategies of rival firms are substituted into the

value function of the firm, collapsing the problem into a single-agent problem.

This solution only requires that firms play best-responses to their perception

of the strategies employed by their rivals, a much weaker assumption than

4I drop markets with more than 20 firms at any point in time since the maximum
likelihood estimator becomes difficult to estimate with too many firms.
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the requirement that firms play equilibrium strategies. The Hotz and Miller

approach has been adapted by several recent papers in Industrial Organiza-

tion such as Bajari, Benkard, and Levin (2006), Pakes, Berry, and Ostrovsky

(2006), Pesendorfer and Schmidt-Dengler (2003), Ryan (2006) and Dunne,

Klimek, Roberts, and Xu (2006). I employ a refinement of this approach

proposed by Aguirregabiria and Mira (2006) (henceforth AM). They start

with an initial guess at the strategies employed by firms recovered from the

data, and produce an estimate of the parameter value of the firm’s payoff

functions and the transition probabilities of this system given this guess.

Conditioning on the estimated value of the parameters, the initial guess is

updated by requiring that all firms play best responses. This procedure is

repeated until the strategies used by firms converge, implying that these

best responses are in fact equilibrium strategies given estimated parameters.

While Aguirregabiria and Mira impose more assumptions than Hotz and

Miller, AM delivers more precise parameter estimates in small samples. The

first step of the AM technique yields the Hotz and Miller estimates, and thus

this algorithm encompasses Hotz and Miller.

Each market has N firms competing repeatedly, indexed as i ∈ I = {1, 2
, ..., N}, and N is set to 6 in my empirical work. I have chosen a maximum

of 6 plants per market, since it allows me to pick up most counties in the

U.S. (note that 6 plants is the 95th percentile of the number of plants in

a county in Table 6), and keeps the size of the state space manageable. In

contrast, for the Bresnahan and Reiss (1994) model, adding many firms to

the model does not slow estimation considerably. A county with more than

6 active plants at some point its history is dropped from the sample, since

the model does not allow firms to envisage an environment with more than

5 competitors.5

Firms also react to market-level demand, M t, which is assumed to be

5To allay the potential for selection bias this procedure entails, counties with more than
3000 construction employees at any point between 1976 and 1999 are also dropped.
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observable and equals one of a finite number of possible values. I use the

number of construction workers in the county as my demand measure. I need

to reduce the number of demand side variables in order to limit the number

of states in the model, unlike the model of Bresnahan and Reiss (1991) or a

purely Hotz and Miller type estimation procedure such as Bajari, Benkard,

and Levin (2006). Demand evolves following a Markov Process of the first

order with transition probabilities given by D(M t+1|M t). Demand is placed

into 10 discrete bins Bi = [bi, bi+1), where the bi’s are chosen so that each

bin contains the same number of demand observations. The level of demand

within each bin is set to the mean demand for observations in this bin, i.e.

Meanb(i) =
PL

l=1 Ml1(Ml∈Bi)
PL

l=1 1(Ml∈Bi)
, where L indexes observations in the data, and the

D matrix is estimated using a bin estimator D̂[i|j] =
P

(l,t) 1(Mt+1
l ∈Bi,M

t
l ∈Bj)

P
(l,t) 1(Mt

l ∈Bj)
.

The econometrician cannot directly observe strategies, since these depend

not only on the vector of observable state characteristics, xt, but also on

the vector of unobserved state characteristics, εt. However, I can observe

conditional choice probabilities, the probability that firms in observable state

xt choose action profile at denoted as p : X×A→ [0, 1]. These probabilities

are related to strategies as:

p(at|xt) =

∫
εt

N∏
i=1

σi({xt, εt}, at
i)g

ε(εt)dεt (12)

where gε(.) is the probability density function of ε. Without adding more

structure to the model, it is impossible to relate the observables in this model,

the choice probabilities p(at|xt), to the underlying parameters of the reward

function. Denote the set of conditional choice probability associated with an

equilibrium as P = {p(at|xt)}xt∈X,at∈A, the collection of conditional choice

probabilities for all states and action profiles. To identify the parameters,

I place restrictions on unobserved states, similar to those used in the Rust

(1987) framework for dynamic single-agent discrete choice, and these as-

sumptions also overlap considerably with the Bresnahan and Reiss (1991)

14



assumptions as well.

First, as in the Bresnahan and Reiss (1991) model, I assume that rewards

are additively separable (AS) in observed and unobserved states. As well, I

assume assume that the unobserved state is serially uncorrelated:

Assumption 5 (SI) Unobserved states are serially independent , i.e. Pr(εt|εk) =

Pr(εt) for k 6= t.

Serial independence allows the conditional choice probabilities to be ex-

pressed as a function of the current observed state, xt, and action profile,

at, without loss of information due to omission of past and future states and

actions. Formally:

Pr(at|xt) = Pr(at|xt, {xt−1, xt−2, ..., x0}, {at−1, at−2, ..., a0}) (13)

for any k 6= t, any state xt, and action profile, at, since no information is

added to equation (12) that would change the value of the integral over ε.

Assumption 6 (SI) Each firm privately observes εt
i before choosing its ac-

tion, at
i.

Combined with the assumption of serial independence of the ε’s, private

information implies that firms make their decisions based on today’s ob-

servable state, xt, and their private draw, εt
i. In particular, they form an

expectation over the private draws of other firms, εt
−i, exactly as the econo-

metrician: by integrating over its distribution. This leads to the following

form for the conditional choice probabilities:

p(at|xt) =
N∏

i=1

pi(a
t
i|xt) (14)

The assumption that unobservables for the econometrician are also un-

observed by other firms in the market is a strong one. Firms typically have
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detailed information on the operations of their competitors, which is why in

the models Bresnahan and Reiss (1991) or Mazzeo (2002) the unobserved

state (ε) is assumed to be common knowledge for all firms in the market.6

The fact that I obtain similar results from the both the static and dynamic

models with these very different assumptions is surprising, and suggests that

empirical estimates are robust to tweaking the informational assumptions of

the game.

Assumption 7 (Logit) εi is generated from independent draws from a type

1 extreme value distribution.7

These assumptions allow the conditional ex-ante value function (before

private information is revealed) to be expressed as:

V (x|P, θ) =
∑
x′

{
r(x′|θ) +

∑
ai

τ(ai, xi|θ)pi(ai|x) + E(ε|P ) + βV (x′|P, θ)

}
F P (x′|x)

(15)

where E(ε|P ) = γ+
∑

ai∈Ai
ln(pi(ai|x)) (where γ is Euler’s Constant). For

the logit distribution, E(ε|P ) is the expected value of ε given that agents are

behaving optimally using conditional choice probabilities P. State-to-state

transition probabilities conditional on the choice probability set P , F P (x′|x),
are computed as:

F P (x′|x) =

(
N∏

i=1

pi(x
′
i|x)

)
D[Mx′|Mx] (16)

It is convenient to develop a formulation for the value function conditional

6The model of Seim (2005) uses a combination of common and private unobbservables
which can be incorporated into both static and dynamic models. However, adding both
types of unobservables complicates estimation.

7For the Bresnahan and Reiss (1994) estimates I assumed that ε was normally dis-
tributed. I have estimated the dynamic model using normally distributed shocks (which is
very straighforward in the case where there are only two actions) and find similar results
to those using the logit distribution.
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on taking action aj today, but using conditional choices probabilities P in

the future:

V (x|aj, P, θ) =
∑
x′

{r(θ, x′) + τ(θ, xi, aj) + βV (x′|θ, P )}F P (x′|x, aj) + εj

(17)

where F P (x′|x, aj) is the state to state transition probability given that

firm i took action aj today:

F P (x′|x, aj) =

(∏
k 6=i

pi(x
′
k|x)

)
1(x′i = aj)D[Mx′|Mx] (18)

This allow us to write the conditional choice probability function Ψ as:

Ψ(aj|x, P, θ) =
exp

[
Ṽ (x|aj, P, θ)

]
∑

ah∈Ai
exp

[
Ṽ (x|ah, P, θ)

] (19)

where Ṽ (x|aj, P, θ) is the non-stochastic component of the value function,

i.e. Ṽ (x|aj, P, θ) = V (x|aj, P, θ)−εj. Note that I normalize the variance of ε

to 1, since this is a standard discrete choice model which does not separately

identify the variance of ε from the coefficients on rewards.

2.4 Nested Pseudo Likelihoods Algorithm

An equilibrium to a dynamic game is determined by two objects: value

functions and policies. A set of policies P generate value functions V , since

these policies govern the evolution of the state across time. But policies must

also be optimal actions given the values V that they generate.

Suppose I form the likelihood following Rust (1987)’s nested fixed point

algorithm, in which the set of conditional choice probabilities P used to eval-

uate the likelihood at parameter θ must be an equilibrium to the dynamic
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game, which I denote as P ∗(θ). To estimate parameters, the following likeli-

hood will be maximized: LRust(θ) =
∏L

l=1 Ψ(at
l |xt

l , P
∗(θ), θ). However, each

time I evaluate the likelihood for a given parameter θ, I need to compute

an equilibrium to the dynamic game P ∗(θ). Even the best practice for solv-

ing these problems, the stochastic algorithms of Pakes and McGuire (2001),

leads to solution times in the order of several minutes, which is impractical

for the thousands of likelihood evaluations typically required for estimation.

To cut through this difficult dynamic programming problem, Aguirre-

gabiria and Mira (2006) propose a clever algorithm:

Algorithm Nested Pseudo-Likelihoods Algorithm

1. Compute a guess for the set of conditional choice probabilities that play-

ers are using via a consistent estimate of conditional choices P̂ 0(j, x),

where the index on P̂ , denoted by k, is initially 0. I estimate P̂ 0 using

a simple non-parametric bin estimator, i.e.:

p̂0(aj|x) =

∑
m,t,i 1(at

mi = aj, x
t
mi = x)∑

m,t,i 1(xt
mi = x)

(20)

which is a consistent estimator of conditional choice probabilities.

2. Given parameter estimate θ̂k and an guess at player’s conditional choices,

P̂ k, values V (x|P̂ k, θ̂k) are computed according to equation (15). Thus

optimal conditional choice probabilities can be generated as:

Ψ(aj|x, P̂ k, θ̂k) =
exp

[
Ṽ (x|aj, P̂

k, θ̂k)
]

∑
ah∈Ai

exp
[
Ṽ (x|ah, P̂ k, θ̂k)

] (21)

3. Use the conditional choice probabilities Ψ(aj|x, P̂ k, θ̂k) to estimate the

model via maximum likelihood:

θ̂k+1 = arg max
θ

L∏
l=1

Ψ(al|xl, P̂
k, θ) (22)
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where al is the action taken by a firm in state xl where l indexes ob-

servations from 1 to L. The Hotz and Miller estimator corresponds is

θ1, the specific case where the likelihood of equation (22) is maximized

conditional on choice probabilities P̂ 0.

4. Update the guess at the equilibrium strategy as:

p̂k+1(aj|x) = Ψ(aj|x, P̂ k, θ̂k+1) (23)

for all actions aj ∈ Ai and observable states x ∈ X.

Note that p̂k+1 is not only a best response to what other players were

using last iteration(p̂k), but also a best-response given that my future

incarnations will use strategy p̂k. I have problems with oscillating strate-

gies in this model, i.e. P̂ k’s that cycle around several values without

converging. To counter this problem, a moving average update proce-

dure is used (with moving average length MA), where:

p̂k+1(aj|x) =
1

MA+ 1

[
Ψ(aj|x, P̂ k, θ̂k+1) +

MA−1∑
ma=0

p̂k−ma(aj|x)

]
(24)

is the weighted sum of this step’s conditional choice probabilities and

those used in previous iterations.

5. Repeat steps 2-4 until
∑

aj∈Ai,x∈X

∣∣p̂k+1(aj|x)− p̂k(aj|x)
∣∣ < δ, where δ is

a maximum tolerance parameter, at which point p̂k(aj|x) = Ψ(aj|x, P̂ k, θ̂k+1)

for all states x, and actions j. Hence, P̂ k are conditional choice proba-

bilities associated with a Markov Perfect Equilibrium given parameters

θ̂k+1.

2.5 Auxiliary Assumptions

While the Nested Pseudo-Likelihoods algorithm speeds estimation of dy-

namic games, two techniques speed up this process even more: symmetry
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and linearity in parameters.

I impose symmetry (or exchangeability in Pakes and McGuire (2001) and

Gowrisankaran (1999)’s terminology) between players, so that only the vector

of firm states matter, not the firm identities. Encoding this restriction into

the representation of the state space allows for a considerable reduction in

the number of states. For instance, an entry-exit model with 12 firms and

10 demand states entails 40960 states, while its symmetric counterpart only

uses 240.

As suggested by Bajari, Benkard, and Levin (2006), and also noted by

Aguirregabiria and Mira (2006), the Separability in Dynamic Parameters as-

sumption (henceforth SSP) is incorporated to speed estimation by maximum

likelihood. A model has a separable in dynamic parameters representation

if period payoff r(x′|θ)+ τ(ai, xi|θ) can be rewritten as θ · ρ(x′, ai, xi) for all

states x′, x ∈ X and actions ai ∈ A, where ρ(x′, ai, xi) is a vector function

with the same dimension as the parameter vector. While this representation

may seem unduly restrictive, it is satisfied by many models used in Indus-

trial Organization such as the entry-exit model of equations (3) and (4).

Using SSP, period profits can be expressed as θ · ρ(x′, ai, xi). Value functions

conditional on conditional choice probabilities P are also linear in dynamic

parameters, since:

V (x|P, θ) =
∞∑

t=1

βt

∑
xt∈X

∑
at

i∈A

θρ(xt+1, at
i, x

t
i)pi(a

t
i|xt)

F P (xt+1|xt) + E(ε|P )


= θ

∞∑
t=1

βt
∑
xt∈X

∑
at

i∈A

ρ(xt+1, at
i, x

t
i)pi(a

t
i|xt)

F P (xt+1|xt)

+
∞∑

t=1

βt
∑
xt∈X

∑
at

i∈A

γ ln(pi(a
t
i|xt))

Denote by θ̃J(x|P ) ≡ V (x|P, θ) the premultiplied value function where

20



θ̃ = {θ, 1} is extended to allow for components which do not vary with the

parameter vector. The value of taking action aj is thus:

V (x|aj, P, θ) = θ̃
∑
x′

[ρ(x′, aj, xi) + βJ(x′|P )]F P (x′|x, aj) (25)

LetQ(aj, x, P ) =
∑

x′ [ρ(x′, aj, xi) + βJ(x, P )]F P (x′|x, aj). Conditional Choice

Probabilities are given by:

Ψ(aj|x, P, θ̃) =
exp

[
θ̃Q(aj, x, P )

]
∑

h∈Ai
exp

[
θ̃Q(ah, x, P )

] (26)

Maximizing the likelihood of this model is equivalent to a simple linear

discrete choice model. In particular, the optimization problem is globally

concave, which simplifies estimation. This is not generally the case for the

likelihood problem where P is not held constant, i.e. LRust(θ) but required

to be an equilibrium given the current parameters.

3 Unobserved Profitability

The assumption that the epsillon’s are serially uncorrelated within markets

is heroic. Characteristics of the market that are not observed in the first

period, such as a vast road network requiring a large amount of concrete, are

the same in each subsequent period. Serial correlation of ε per se only affects

standard errors from maximum likelihood. Presumably, I could correct these

standard errors using a clustering procedure for observations in the same

market. However, the pattern of correlation of unobservables can also be

used to identify, and remove, bias from the Bresnahan-Reiss model. In the

next section I discuss the impact of unmeasured

The canonical entry model estimates the profit functions for firms in

different markets, where I impose the following functional form:
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Vit = X t
mβ︸ ︷︷ ︸

Demand

+ g(N t
m)︸ ︷︷ ︸

Competition

+ εt
m︸︷︷︸

Unobservables

(27)

where εt
m is a mean-zero stochastic term which is uncorrelated with both

demand (X t
m) and number of firms (N t

m), and g(.) is decreasing. The as-

sumption that εit is uncorrelated with regressors is frequently violated in

the context of entry models. The econometrician may not observe certain

components of profitability, but firms most certainly do. They will react by

entering in greater numbers in more profitable markets, leading to a positive

correlation between ε and N . Likewise, suppose demand in large markets is

qualitatively different than in small markets. For instance, multistory build-

ings are constructed in greater proportion in large markets relative to small

markets, and this type of construction consumes a large amount of concrete.

Thus, market size and consumption of concrete are positively correlated.

Unobserved profitability can be statistically decomposed into its corre-

lated components:

εt
m = δ X t

m︸︷︷︸
observed demand

+ γ N t
m︸︷︷︸

firms

+ ζt
m (28)

where ζt
m is an uncorrelated, mean zero shock.

If measured and unmeasured demand are positively correlated, say be-

cause areas with large numbers of construction workers and projects also

have other features which make demand high, then δ > 0. Similarly, if firms

react to unmeasured demand shocks by entering, I expect γ > 0. Note that

both of these statements refer to the correlation between ε and X t
i or N t

i ,

while the values of δ or γ are related to the conditional correlation E(εX|N)

or E(εN |X) for which it is more difficult to make a statement about from

intuition. In the case where the conditional correlation has the same sign as

the unconditional correlation, I can sign the bias in this model:
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The Bresnahan-Reiss model can be expressed as the following inequalities:

X t
mβ + εt

m > −g(N t
m) (29)

X t
mβ + εt

m < −g(N t
m + 1)

Substituting expression (28), these inequalities become:

X t
m(β + δ) + ζt

m > −g(N t
m)− γN t

m

X t
m(β + δ) + ζt

m < −g(N t
m + 1)− γN t

m

The estimated demand coefficient (β + δ) will be biased upward. Like-

wise, since the effect of competition is negative, the competitive effects of

entry −[g(N) + γ] will be biased downwards. If fact, this is what I find in

empirical estimates in Table 2. When I correct for unobserved components

of profitability (using a market fixed effects strategy described in the next

section) I find the ratio of the effect of the first competitor versus 1000 con-

struction employees goes from −1.3 without fixed effects (i.e. −0.910/0.706)

to −8.2 (i.e. −2.31/0.280) with fixed effects. This indicates that competition

plays a much greater role in firm’s profitability than demand compared to

what the standard Bresnahan-Reiss would suggest.

3.1 Panel Data Solution

The panel structure of data can be used to eliminate bias in entry models.

Decomposed the unobserved shocks to profitability into:

εt
m = αm(market effect) + yt(year effect) + υt

m

a component which remains constant over a market’s life(αm), a compo-

nent which represents aggregate shocks common to all markets in a year (yt)

while remaining unobserved profits are grouped into a mean zero shock υt
m.

Estimates remain biased to the extent that υt
m is correlated with demand
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and number of firms:

υt
m = δ̂X t

m + γ̂N t
m + ζ̂t

m

This correlation is likely much smaller than before. Ultimately, the most

convincing solution to this problem is to use an instrumental variable strat-

egy. Find a variable zt
m which is uncorrelated with unobserved profitability

ε, but correlated with demand and number of plants, such that E[εz] = 0. It

is then possible to use GMM to estimate an consistent, if not efficient, model

of entry.

3.2 Computational Details

Fixed effects are commonly introduced into discrete choice models with con-

ditioning techniques such as Chamberlain (1980)’s fixed effect logit. In the

case of the ordered probit model with groups of 20 observations (representing

the number of periods observed for each market), conditioning is computa-

tionally difficult. Instead, a dummy variable for each market is added to the

model, and estimated using maximum likelihood as another demand param-

eter:

Vit(X
t
m, N

t
m) = X t

mβ+
M∑

k=1

αk1(k = m)+
T∑

h=1

yh1(t = h)+
5∑

j=1

δj1(N t
m > j)+δ6 max(N t

m−5, 0)

(30)

where αk is the market effect fixed.

To estimate parameters, I need to maximize the likelihood over more than

3000 parameters, given the number of markets in the data. Fortunately, the

linear objective function of equation (30) along with the structure of an

ordered probit yields a globally concave likelihood function. This makes

this problem computationally feasible since globally concavebally concave

function are straightforward to maximize. I calculate the gradient of the

likelihood analytically, bypassing the computation of a rather large number
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of numerical derivatives. Finally, the market level fixed effect parameters are

“incidental” in the sense that their values are not of interest, just the effect

they have on economically important parameters such sunk costs and the

effects of competitors. The termination criteria reflects this, requiring only

that the likelihood to converge |L(θi)− L(θi−1)| < ε rather than the full

vector of parameters: ‖θi − θi−1‖ < δ, where i denotes the iteration number.

The number of iterations required to compute the solution of the model

is reduced from 50 to about 5 without changing the value of economically

relevant parameters. On a UNIX server, estimating the fixed effect maximum

likelihood parameters takes approximately a day, but this operation would

be much faster for a sample of markets.

4 Data

Data on Ready-Mix Concrete plants is drawn from three different data sets

provided by the Center for Economics Studies at the United States Cen-

sus Bureau. Table 1 illustrates the datasets used. The first is the Census

of Manufacturing (henceforth CMF), a complete census of manufacturing

plants, every five years from 1963 through 1997. The second is the Annual

Survey of Manufacturers (henceforth ASM) sent to a sample of manufactur-

ing plants (about a third for ready-mix) every non-Census year since 1973.

Both the ASM and the CMF involve questionnaires that collect detailed

information on a plant’s inputs and outputs. The third data set is the Longi-

tudinal Business Database (henceforth LBD) compiled from data used by the

Internal Revenue Service to maintain business tax records. The LBD covers

all private employers on a yearly basis since 1976. The LBD only contains

employment and salary data, along with sectoral coding and certain types

of business organization data such as firm identification. Construction data

is obtained by selecting all establishments from the LBD in the construction

sector (SIC 15-16-17) and aggregating them to the county level.
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CMF ASM LBD
Data Set Census of Manufacturing Annual Survey of Manufacturing Longitudinal Business Database
Collection Questionnaire Questionnaire IRS Tax Data
Years 1963, 67, 72, 77, 82, 87, 92, 97 1972-2000 1976-1999
Coverage All Manufacturing Firms 30% of Manufacturing Firms All Private Sector Firms
Variables Input and Output Data including Input and Output Data Employment and Payroll

materials and product trailers and Birth/Death data
Plant Identifiers PPN, CFN PPN, CFN LBDNUM, CFN

Table 1: Description of Census Data Sources

4.1 Industry Selection

Production of ready-mix concrete for delivery predominantly takes place at

establishments in the ready-mix sector. Hence, establishments in the ready-

mix sector are chosen, corresponding to either NAICS (North American In-

dustrial Classification) code 327300 or SIC (Standard Industrial Classifica-

tion) code 3273, a sector whose definition has not changed since 1963. The

criterion for being included in the sample is: an establishment that has been

in the Ready-Mix Sector (NAICS 327300 or SIC 3273) at any point of its

life, in any of the 3 data sources (LBD,ASM,CMF). To create my sample,

plants need to be linked across time, since plants can switch sectors at some

point in their lives.

4.2 Longitudinal Linkages

To construct longitudinal linkages, I use three different identifiers: Perma-

nent Plant Numbers (PPN), Census File Numbers (CFN) and Longitudinal

Business Database Numbers (LBDNUM). Census File Numbers (CFN) are

the basic identification scheme used by Census for its establishment data. A

plant’s CFN may change for many reasons, including a change of ownership,

and hence they are not well suited as a longitudinal identifier. Permanent

Plant Numbers (PPN) is the Census Bureau’s first attempt at a longitudi-

nal identifier, as they are assigned to a plant for its entire life-span. These

tend to be reliable, but are only available in the CMF and ASM. Moreover,

PPNs are missing for a large fraction of observations, leading to the incor-
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rect conclusion that many plants have dropped out of the industry. The

third identification scheme is the Longitudinal Business Database Number,

as developed by ?. This identifier is constructed from CFN, employer ID

and name and address matches of all plant in the LBD. Since the LBD is the

basis for mailing Census questionnaires to establishments, virtually all plants

present in the ASM/CMF are also in the LBD (starting in 1976), allowing

a uniform basis for longitudinal matching. I use LBDNUM as my basic lon-

gitudinal identifier, which I supplement with PPN and CFN linkages when

the LBDNUM is missing, in particular for the period before 1976 for which

there are no LBDNUMs.

To identify plant entry and exit, I use ?’s plant birth and death measures.

Jarmin and Miranda identify entry and exit based on the presence of a plant

in the I.R.S.’s tax records. They take special care to flag cases where plants

simply change owners or name by matching the address of plants across time.

The measurement of turnover is problematic, since firms do not themselves

report that they are exiting or that they have just entered. Instead, entry

and exit data must be constructed from the presence and absence of plants

in the data over time. Specifically entry and exit are defined as: A plant

has entered at time t if it is not in the LBD before time t, but it is present

at time t. A plant has exited at time t if it is not in the LBD after time

t, but it is present at time t. 8 Proper longitudinal matches are important

for constructing turnover statistics, since measurement error tends to break

longitudinal linkages, creating artificial entry and exit, raising the implied

turnover rate above its true value. Each year, about 40 plants (or about 1.6%

of plants) are temporarily shut down. I do not treat temporary shutdown

as exit, since the cost of reactivating a plant is far smaller than building one

8If I a plant changes ownership, I do not treat this as an exit event since the cost of
changing the management at a plant should be much lower than the cost of building a
plant from scratch.
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from scratch. 9 10

4.3 Panel

I select all plants that have belonged to the ready-mix sector at some point

in their lives. The entire history of a plant’s sectoral coding must be investi-

gated, since a plant can enter and exit the ready-mix sector many times. For

instance, many ready-mix concrete plants are located next to gravel pits, to

lower their material costs. If a plant’s concrete operations are not separated

from gravel mining when reporting to Census, then the plant can be classi-

fied as a gravel pit (NAICS 212321) or a ready-mix plant. This classification

can change from year to year, and differ between data collected by the IRS

(LBD) versus data collected by Census (ASM/CMF). Treating these sector

switches as exits would confuse shutting down a plant and a change in its

product mix. I assume a plant is either in the ready-mix concrete sector for

its entire life, or not. I select plants using the following algorithm: 1) Select

all CFN’s, PPN and LBDNUM’s which are in NAICS 327300 or SIC 32730.

Call this file the master index file; 2) Add all plants that have the same CFN,

PPN or LBDNUM as a plant in the master index file. Add these to the new

master index file.

Measurement error in any year that incorrectly labels a plant as part of the

ready-mix concrete sector introduces this plant into the sample for its entire

life. In particular, sectoral coding data from the LBD is of poorer quality

than sector data from the CMF/ASM. These coding errors introduce large

9In empirical work with multiple plant states, temporary inactive plants have been
found to be more similar to plants with less than 15 employees than to potential entrants. A
potential entrant has a very low probability of entering, while the probability of observing
a temporarily inactive plant reentering is at least 80%.

10 If a plant is inactive for more than 2 years, then the IRS will reassign a tax code to
this establishment, breaking longitudinal linkages, creating an exit and the potential for a
future entry event. I can construct an upper bound on the number of plant births that are
in fact old plants being reactivated. If two plants enter in the same 9 digit zip code (an
area smaller than a city block) at different dates, assume the latter birth is a reactivation.
Under this assumption, less than 1% of births are reactivated plants.
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manufacturers, such as cement producers, with different internal organization

and markets than concrete producers, into the ready-mix sample. I delete

plants from the sample if in either the LBD or the ASM/CMF they are coded

in the ready-mix concrete sector for less than half their lives. If a plant is

only in the ready-mix sector for one year out of twenty, it is safe to conclude

that coding error led to its inclusion into the ready-mix sector. Table ??

offers confirmation, since ready-mix concrete represents 95% of output for

plants in my sample. Moreover, when I collect all plants that produce ready-

mix concrete, based on their response to the product trailer of the Census of

Manufacturing (which collects detailed information on the output of plants),

I find that 94% percent of ready-mix concrete is produced by plants in my

sample versus only 6% produced by plants outside the sample. Hence, the

assumption that ready-mix plants do not switch sectors and produce only

ready-mix does little violence to the data.

Table ?? shows that over the sample period there are about 350 plants

births and 350 plants deaths each year compared to 5000 continuers. Turnover

rates and the total number of plants in the industry are fairly stable over the

last 30 years. Indeed, Figure ?? shows annual entry and exit rates hovering

around 6% for the period 1976 to 1999, which similar to previous work on

the manufacturing sector such as Dunne, Roberts, and Samuelson (1988),

with net entry during the booms of the late 1980’s and late 1990’s, and net

exit otherwise. Table ?? and Table ?? in section ?? display characteristics of

ready-mix concrete plants: they employ 26 workers on average, and each sold

about 3.2 million dollars of concrete in 1997, split evenly between material

costs and value added. However, these averages mask substantial differences

between plants. Most notably, the distribution of plant size is heavily skewed,

with few large plants and many small ones, indicated by the fact that more

than 5% of plants have 1 employee, while less than 5% of plants have more

than 82 employees. Moreover, Table ?? shows continuing firms are twice as

large as either entrants(births) or exitors(deaths), measured by capitaliza-
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tion, salaries or shipments. I aggregate plant data by county to form market

level data, for which Table 6 in section ?? presents summary statistics. No-

tice that the average number of plants per county is fairly small, equal to

1.86, while the 95th percentile of firms per county is only 6. Hence most

ready-mix concrete markets are best characterized as local oligopolies.

5 Sunk Cost Estimates

Table 2 presents estimates for the Bresnahan-Reiss Entry model and Table 3

for the Sunk-Cost Bresnahan-Reiss Estimator. Note that the coefficient on

demand is more than halved and the coefficient on number of competitors

becomes twice as negative when fixed effects are added to the model.
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Demand Variables in Thousands County Fixed Effect S.E No Effect S.E.
County
Construction Employment 0.280 (0.045) 0.706 (0.018)
County
Construction Payroll -0.003 (0.001) -0.008 (0.001)
Concrete Intensity adjusted
Construction Employment -0.672 (0.316) -0.230 (0.209)
Concrete Intensity adjusted
Construction Payroll 0.027 (0.012) 0.008 (0.008)
Adjacent County
Construction Employment -0.028 (0.009) 0.002 (0.002)
Within 10 miles
Construction Employment -0.003 (0.011) 0.010 (0.002)
Within 20 miles County
Construction Employment 0.025 (0.006) 0.004 (0.001)
Adjacent County
Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 10 miles County
Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 20 miles County
Construction Employment 0.000 (0.000) 0.000 (0.000)
Year Effects Yes Yes

Competitive Variables
1 competitor -2.339 (0.030) -0.910 (0.011)
2 competitors -1.452 (0.023) -0.700 (0.011)
3 competitors -1.109 (0.026) -0.560 (0.014)
4 competitors -0.891 (0.031) -0.700 (0.011)
5 competitors -0.797 (0.036) -0.560 (0.014)
6 competitors -0.617 (0.039) -0.472 (0.017)
More than 6 competitors -0.696 (0.029) -0.560 (0.014)

Log Likelihood -13575 -25536
Wald 13021 6678
Number of Observations 18025 18025

Table 2: Bresnahan-Reiss Estimates with and without county fixed
effects
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Demand Variables in Thousands County Fixed Effect S.E No Effect S.E.
County
Construction Employment 0.142 (0.057) 0.520 (0.022)
County
Construction Payroll -0.001 (0.001) -0.005 (0.001)
Concrete Intensity adjusted
Construction Employment -0.385 (0.444) -0.184 (0.278)
Concrete Intensity adjusted
Construction Payroll 0.021 (0.017) 0.012 (0.011)
Adjacent County
Construction Employment -0.012 (0.013) 0.005 (0.002)
Within 10 miles
Construction Employment -0.035 (0.016) 0.012 (0.003)
Within 20 miles County
Construction Employment 0.031 (0.009) -0.002 (0.001)
Adjacent County
Construction Payroll 0.000 (0.000) 0.000 (0.000)
Within 10 miles County
Construction Payroll -0.001 (0.000) 0.000 (0.000)
Within 20 miles County
Construction Payroll 0.000 (0.000) 0.000 (0.000)
Year Effects Yes Yes

Competitive Variables
1 competitor -2.195 (0.054) -0.645 (0.020)
2 competitors -1.671 (0.045) -0.683 (0.021)
3 competitors -1.258 (0.046) -0.554 (0.023)
4 competitors -1.048 (0.052) -0.458 (0.025)
5 competitors -0.898 (0.058) -0.419 (0.029)
6 competitors -0.745 (0.061) -0.395 (0.034)
More than 6 competitors -0.897 (0.040) -0.471 (0.022)

Exit Threshold 1.364 (0.317) -1.555 (0.058)
Entry Threshold 4.743 (0.319) 1.665 (0.058)

Log Likelihood -5021 -9154
Wald 5261.9 2598
Number of Observations 18025 18025

Table 3: Standard and Fixed Effect Sunk Cost Bresnahan-Reiss Esti-
mates for County Markets
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