Paper for Presentation next week: For next week,
I will ask you to present: Black, S., (1999), Do
Better Schools Matter? Parental Valuation of Ele-
mentary Education, Quarterly Journal of Economics
114, 577-599. Pay close attention not only to the
econometrics of the paper, but also to the theory
that would allow us to interpret the results.

Intro Comments:

We are going to do Regression Discontinuity today.
A lot of the papers on the econometrics are fairly
straightforward, the real problem is how to run the
estimates.



Regression Discontinuity Theory

Let's start this off with pictures (best way this is
done in the literature).

Suppose we are looking at the effect of mergers on
prices (my own pet project). We have two treat-
ments T;; € {0,1} where T;; = 1 is merge and T;; = 0O
is not merge, and the FTC / DOJ uses the follow-
ing rule to assign treatment of allowing or blocking
the merger:

1ifCy > C
T = . =
QifCy < C

where C is the herfindahl at which the merger is
challenged.

As well the effect of mergers on prices is:

Yie(Tit) = [XuCil B+ Tt + uir

and let’s assume that X;; L Cj just to make things
a bit easier.

The treatment effect looks like:



No-Treatment Group

Treated Group

Treatment Threshold

But we only see the following since there a threshold
at which the treatment is applied:

Treated Group

-
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Note the the difference between Y (T;; = 1|X;) —
Y (T;; = 0|X;) can be identified at the treatment
cutoff C by comparing observations very close to
each side of the cutoff. Moreover, there may be
other variables that also change near the cutoff that



generate a problem as well, but as long as they don't
change discontinuously, we will be okay (asymptot-
ically).

Now let’s look at this in a bit more detail. There
are two types of RD designs:

1. Sharp RD.

2. Fuzzy RD.



Sharp RD

S_uppose the treatment is assigned as T;; = 1(Cji >
C), which is know as sharp RD. Then the MTE
(treatment effect at the cutoff) is:

lim E[Yy|Xa = 2] — lim E[Yy| Xy = o] =
clC clC

lim E[Y (1)| Xy = 2] — lim E[Y(0)| Xy = 2] = (1)
clC clC

E[Y(1) =Y (0)|Xy = z] = 7P (Xy)

In order to use the limit result above we need to
assume continuity of the underlying conditional ex-
pectations:

Assumptions: Continuity of Conditional Expecta-
tions: Assume that E[Yy|Xy = =, Ty] is continuous
in x.



Fuzzy RD

Now let’'s assume instead that there is a discontinu-
ity in the probability of treatment at a cutoff value:

limPr|T; = 1|X;; = lim Pr|T; = 1| X;; =
ClTC [ ¢ | t w]#cllc [ t | t x]

So there is at least one factor where the probability
changes discontinuously at the cutoff C. We need
the following assumption to make this work:

Assumptions: Continuity of Conditional Expecta-
tions: Assume that E[Yy| Xy = =, Ty] is continuous
in x.
So the treatment effect is:
Iich(-j ElTy = 1| Xy = x] — Iimcl(—j E[T; = 0| X = «]
= E[Y(1) = Y(0)| Xy = z,c=C] = P (Xy)
(2)




Lee on House Election Rules

Question: What is the advantage of incumbency in
House Elections?

The problem with the regression:

Yii = o1 + X3 + €t

where Y;; is the probability of winning the elec-
tion, X, are characteristics of the county and of
the politicians running for office, and T;; is an indi-
cator for having won the election in the last elec-
toral cycle. The issue is that there are factors that
effect the probability of winning the election, like
having a famous candidate, or being in a district
where people drive their Prius'es to pick up food
at the farmer’s market, or drive pick-up trucks to
the NASCAR race. So the assumption of uncon-
foundness, i.e. Ty 1 €| X is hard to swallow with-
out some very high quality X;'s. Since we expect
E[Tyiei] > 0 things that made the candidate win
in the last election are correlated with things that
make the candidate win the current election (like a
panel data problem). So we would overestimate the
advantages of incumbency.

Okay, here is the paper in pictures (the rest is unim-
portant):
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Fig. 2. (a) Candidate’s probability of winning election ¢+ 1, by margin of victory in election #: local averages and parametric fit. (b)
Candidate’s accumulated number of past election victories, by margin of victory in election #: local averages and parametric fit.
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Fig. 3. (a) Candidate’s probability of candidacy in election ¢ + 1, by margin of victory in election #: local averages and parametric fit. (b)
Candidate’s accumulated number of past election attempts, by margin of victory in election ¢: local averages and parametric fit.
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Fig. 4. (a) Democrat party’s vote share in election 7+ 1, by margin of victory in election #: local averages and parametric fit. (b)
Democratic party vote share in election ¢ — 1, by margin of victory in election ¢: local averages and parametric fit.
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Fig. 5. (a) Democratic party probability victory in election ¢ + 1, by margin of victory in election #: local averages and parametric fit. (b)
Democratic probability of victory in election # — 1, by margin of victory in election f: local averages and parametric fit.

So the results in the paper are that we still find a
large incumbency effect, though smaller than with
naive estimator.

There are 2 ways to estimate this effect, using either
a kernel regression on the right and left side of the
cutoff point, or some local regression on both sides
of the cutoff:

1. Kernel Regression



1 1
MTE = — . — —— -
N. _ Z _y” N _ Z _y”
C—-o<e<C CH+o>c>C

where we need to choose a bandwidth 6.

2. Bin Regressions:

N

Np =) 1z € C(k))

1=1

K 1 N

it =) A Zyzfl(wit € C(k))
k=1 =1

where we need to choose a bandwidth § and we

look for a discontinuity in the bin average near

I = C.

3. Local Regression

yit = XuB+ al(c>C) + e
or

Yit — Xitﬁ+1(c > é)+X®t6_1(C < C_')—|—ozl(c > C’)—'—E@'t

4. Fuzzy RD Local Regression using squared se-
ries approximation



(@,,B,) =argmin > (yi— oy — By (Xi— )

C—d<c<C

(@, Bf) =argmin 3" (yi —of — BF(Xi— )’
C+6>c>C

and likewise for the probability of treatment:

(@7, B87) =argmin Y (Ty —ar — B7(X; — 0))”
C—6r<c<C

. . 2
(&35,655) =argmin ) (yu—a;— ;f(Xz-—c))
C+5T>C>C

So the MTE for the fuzzy design is:

/\_l_ o —~_

FRD __ %y — &y
T =5
Op — Qp

Note that there is a key question of bandwidth
choice 4,07 given that there is a bias versus
variance tradeoff that needs to be made.



Issues

e While mergers rules state Herfindahl guidelines
for challenging mergers, these guidelines are
loose in the sense that there are other factors
that guide the DOJ/FTC in blocking mergers.
I believe that most policies, when examined
carefully, have this type of discretion embed-
ded into them. So we need bureaucratic rules
which are enforced exactly to make RD work.

e Sometimes we don’'t know what the cutoff is.

e You need a bunch of data to estimate the ef-
fects at the thresholds.



The next graph show the delinquency rate for mort-
gages with low documentation. The thing that
you need to know is that above a FICO score of
620, the loans can be resold to Fannie May and
Freddy Mac (government purchasers in the mort-
gage market). This means that you can identify the
effect of moral hazard (the effect of banks having to
check an applicant versus not) on delinquency rates.
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Figure 5B: Annual Delinquencies for Low Documentation Loans in 2002

Figure 5B presents the data for actual percent of low documentation loans that became delinquent in 2002. We
plot the dollar weighted fraction of the pool that becomes delinquent for one-point FICO bins between score of
500 and 750. The vertical line denotes the 620 cutoff, and a seventh order polynomial is fit to the data on either

side of the threshold. Delinquencies are reported between 10-15 months for loans originated in the year.



Angrist and Lavy on Maimonides’s Rule

Question: What is the effect of class size on stu-
dent achievement? Note that the key question in
education economics is the returns of inputs in the
education production function, so we need to have
some idea if educational investments are worth the
cost.

The problem is that class size is correlated with
other things, and in Israel the problem is that large
classes are correlated with large urban areas with
better schools on average.

Idea behind Maimonides Rule (from the Talmudic
Scholar Moses Maimonides, one of the more famous
ones),

Limit the class size at 40. This means that the
average class size at a school with enrollment of
76 has a class size of 37, while a school with 84
students has a class size of 28. So we get plausibly
exogenous variation in class size for schools with
enrollment near 40, 80, 120 and so on. This is
what we are going to use.



TABLE I
UNWEIGHTED DESCRIPTIVE STATISTICS

Quantiles

Variable Mean S.D. 0.10 0.25 0.50 0.75 0.90
A. Full sample
5th grade (2019 classes, 1002 schools, tested in 1991)
Class size 299 65 21 26 31 35 38
Enrollment 77.7 38.8 31 50 72 100 128
Percent disadvantaged 14.1 13.5 2 4 10 20 35
Reading size 27.3 6.6 19 23 28 32 36
Math size 27.7 6.6 19 23 28 33 36
Average verbal 74.4 77 642 699 754 79.8 83.3
Average math 67.3 9.6 548 61.1 67.8 74.1 79.4

4th grade (2049 classes, 1013 schools, tested in 1991)

Class size 30.3 63 22 26 31 35 38
Enrollment 78.3 37.7 30 51 74 101 127
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 27.7 65 19 24 28 32 36
Math size 28.1 65 19 24 29 33 36
Average verbal 72.5 8.0 62.1 677 733 78.2 82.0
Average math 68.9 8.8 575 636 693 75.0 79.4

3rd grade (2111 classes, 1011 schools, tested in 1992)

Class size 30.5 62 22 26 31 35 38
Enrollment 79.6 373 34 52 74 104 129
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 24.5 54 17 21 25 29 31
Math size 24.7 54 18 21 25 29 31
Average verbal 86.3 6.1 784 83.0 87.2 90.7 93.1
Average math 84.1 6. 75.0 80.2 84.7 89.0 91.9

B. +/— 5 Discontinuity sample (enrollment 36-45, 7685, 116—-124)

5th grade 4th grade 3rd grade

Mean S.D. Mean S.D. Mean S.D.

(471 classes, (415 classes, (441 classes,

224 schools) 195 schools 206 schools)
Class size 30.8 7.4 31.1 7.2 30.6 7.4
Enrollment 76.4 29.5 78.5 30.0 75.7 28.2
Percent disadvantaged 13.6 13.2 12.9 12.3 14.5 14.6
Reading size 28.1 7.3 28.3 7.7 24.6 6.2
Math size 28.5 7.4 28.7 7.7 24.8 6.3
Average verbal 74.5 8.2 72.5 7.8 86.2 6.3
Average math 67.0 10.2 68.7 9.1 84.2 7.0

Variable definitions are as follows: Class size = number of students in class in the spring, Enrollment =
September grade enrollment, Percent disadvantaged = percent of students in the school from “disadvantaged
backgrounds,” Reading size = number of students who took the reading test, Math size = number of students
who took the math test, Average verbal = average composite reading score in the class, Average math =
average composite math score in the class.



The next graph shows the effect of Maimonides rule
on class size.
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of class size on educational outcomes.

Note that

the test scores are increasing with test scores. This
effect is mainly due to the changing demographics
in larger school districts.
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Reading score residual Reading score residual

Math score residual
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Now for the IV treatment of RD design. The re-
gression is:

Yit = anciy + XS + €

But we worry that E[ncieir] > 0 due to the effect
of changing demographics in larger schools. As well
there are other factors, in particular the PD variable
(Percent Disadvantaged) that changes test scores
quite a bit.

The instrument is therefore:
nci = mod(ej, 40)

which is correlated with nc;; (the first stage of nc;y =
~o + y1mod(e;+,40) , but plausibly uncorrelated with

G/Lt .



First the reduced form evidence
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The the IV regressions:
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