
Data Appendix for “Child-Adoption Matching:

Preferences for Gender and Race”

Mariagiovanna Baccara Allan Collard-Wexler
Leonardo Felli Alistair Wilson Leeat Yariv

July 2013

Abstract

We document the construction of the data used in “Child-Adoption
Matching: Preferences for Gender and Race.”

1 Data Construction

1.1 Data Sources

The data were collected from the adoption facilitator’s website. On this
website, there are two linked pages that we utilized (both publicly acces-
sible):

• “List of Currently Available Children” (CA hereafter), containing
the list of children currently available on the website.

• “Archive,” containing the list of children who have been placed on
the website in the past.

The data used in this project originate from four separate collection
efforts:

1. Perlscript Data correspond to CA and archive data harvested via
HTML on a daily basis. These data refer to the period from Septem-
ber 2008 to December 2009.

2. PDF Data correspond to data harvested from the same sources as
above (the CA and archive pages), but transcribed from screen grabs
in pdf using an external company. These data refer to the period
from May 2008 to September 2008.

3. RA data contain CA data only. They were assembled by a research
assistant who manually uploaded a spreadsheet with daily observa-
tions. These data were gathered from May 2007 to January 2008.

4. Archive Data contain CA data only and were put together using
an Internet archive (“Wayback”). We used that source to generate
data between June 2004 and September 2007.

Table 1 specifies the distribution of our data across these sources, and
Figure 1 depicts the data collection efforts across time.

1



Data Source Frequency Percent
PerlScript data 383,802 22
PDF data 37,076 2
Interpolated PDF data 59,494 3
RA Data 9,819 1
Archive data 295,020 17
Interpolated from Archive data 977,032 56
Total 1,752,424 100

Table 1: Origins of CA Data

0

500

1000

1500

Fr
eq

ue
nc

y

01jan2004 01jan2006 01jan2008 01jan2010
File Date

Perlscript
PDF
Spreadsheet
Wayback

Source: Grid Data

Figure 1: Data Collection over Time.

2



1.2 PAP Activity

The activity period of individual PAPs on the site is defined using two
dates: the first time that an individual PAP appears in our records (i.e.,
the first application for a child, which is conditional on the PAP having
paid an initial fee to the facilitator), and the last time that same PAP
submits an application for a child. We assume that PAPs are actively
checking the website and are aware of each child available on each day
between these two end-points. Moreover, for some results in the paper,
we define a PAP as ‘active’ up to either 10 or 90 days following their last
application. If a PAP is eventually matched to a BMO on the website,
we consider the PAP inactive since the last application they submitted
(possibly a few days before the match appears on the website). This
is justified by the fact that as soon as the BMO makes her choice, the
facilitator prevents the chosen PAP from applying to other children.

1.3 Interpolation

Some of our data (in particular, the PDF and Archive Data) have res-
olution smaller than one day. In these cases, the data are filled via a
one-sided interpolation: If an observation on a given day is missing, the
data are assumed identical to the data on the day before (that includes
available children, outstanding applications for children, etc.). That is, if
we observed data A on day 1, data B on day 5, and data C on day 7, our
filled data set was constructed as A,A,A,A,B,B,C. Additionally, we
coded the resolution of each element in our data as the time lag between
actual observations, so the resolution for the example above would be:
0, 4, 4, 4, 0, 2, 0.

1.4 BMOs’ Attributes and Restrictions

BMO data were entered using the text produced by the HTML files in the
CA data. Exploiting the consistency of the organization of the website,
we searched for specific strings within specific columns of the data table.
For instance the string ‘lesbian’ in the column of the CA data detailing
the PAPs types acceptable to the BMO was used to code BMOs open
to lesbian PAPs (note that all restrictions are worded in the direction of
acceptance; e.g., ‘BMO wants a married couple or a single woman,’ ‘BMO
will consider all families including lesbians, gay, single,’ etc.). Race per-
centages were coded using a similar method, utilizing a database of words
used in referring to ethnicities within the BMO characteristics column
(e.g., ‘3/4 Caucasian, 1/4 African-American,’ etc.).

The BMO’s due date and the date on which the case was presented to
the facilitator were captured searching for several alternative date formats
and accuracies, as well as performing a local search in nearby lines for
explanatory strings. For example, ‘Due Date: 08-Feb’ in a data point
with date 25 December 2008 would translate into a coded due date of
02-08-2009. ‘Presented on 08-05-09’ would force the presentation date to
be coded as 08-05-2009.

3



Finally, to code the adoption finalization costs, a research assistant
went through the raw data determining the final monetary costs associated
with every BMO.1

1.5 PAPs’ Attributes

1.5.1 Single and Same-Sex Classification

The website refers to PAPs reporting their first names or initials only.
Thus, PAPs are coded in the data via strings such as ‘jack&jill,’ ‘mary,’
or ‘a&b.’2 We used this information to determine the sexual orientation of
a PAP, as well as whether the PAP is a couple or a single woman. When
the names or initials did not indicate a couple, we assigned a value of 1
to the “Single PAP” variable. We classified PAPs’ sexual preferences as
follows:

1. We determined the gender of each name according to the classifica-
tion ‘male,’ ‘female,’ and ‘unisex.’ In particular:

(a) For well-known anglo and foreign names, coding was automatic.

(b) For obscure names that were unknown to the coders, we checked
with online child name databases to determine the classification
of the name.

(c) If a name’s gender specificity could not be determined, or the
PAP couple was identified only through its initials, each name
was assumed to be ‘unisex.’

2. If the couple was identified by one ‘male’ and one ‘female’ name, we
assigned a value of 1 to the “straight couple” variable. Similarly,
if the couple were identified by two ‘male’ names or two ‘female’
names, we assigned a value of 1 to the “Gay PAP” or “Lesbian
PAP” variable, respectively. If one of the names was ‘unisex,’ the
PAP was classified as PAP with ambiguous name, and not used in
some of the analysis in the paper.

2 Data and Program Glossary

The code for making the dataset and producing the tables and statistics
in the paper is in the shell script make data adoption.sh.

2.1 Data Glossary

case data all.dta: data from the archive webpage.

ChoicePanel.dta: combination of PAP choices for each child on each day.

grid data.dta: data from the CA webpage.

1We discarded four cases in which the BMO’s ID name changed over the period in which
the case was posted on the website.

2Names were sorted alphabetically to make sure their reversal on the website was not coded
as identifying a separate PAP unit.

4



2.2 Statistical Program Glossary

grid hedonic regression1.do: runs the finalization cost regressions.

Matching Regression Match-Not.do: runs the regression on finding a match or not.

Matching Regression.do: runs the regressions on the BMO’s choice of a PAP.

ChoicePanel Sum9.do: creates all the tables and figures in the paper, except for those
describing matching, finalization cost, and the determinants of a
BMO’s choice.

2.3 Data Construction Programs

HTMLdata.m: reads in data on archive from html and pdf files and imports them;
general purpose script file calling the main functions, and getting
data into matlab through the outdata cell variable.

generate PAP file.do: generates the data set file ChoicePanel.dta from the data. Uses
pap data.dta and CA data.dta

replacePAPnames.do: changes a long list of misspellings, errors, etc. to the ‘correct’ values,
as coded by hand.

import CA data-AJW.do: imports the csv file generated by FlatFileOutputPAP.m, changes the
names and various details that need correction. Also assigns unique
IDs as necessary and generates a couple of diagnostic values. The
main function is generating the file pap data.dta.

DateEnter.m: finds and codes date information using differing formats and regular
expressions. In particular, ‘mm-dd-yy’ and ‘mm-dd-yyyy’ formats.
Pre-processes the strings to replace words and other formats to cre-
ate richer information. Dates are attributed to events via the strings
on the same or previous lines.

DateEnterCD.m: customized version of DateEnter.m for use with the Cases data.
Changes where the algorithm looks for explanatory strings and dates.

DateExtract.m: similar date extraction routine to DateEnter.m, but used with Cases
data.

GenerateData.m: global Script. Runs the data entry part within MATLAB.

InterestedPersonsVector.m: formats the interested PAPs data from a row of the CA file. Takes
the interested PAPs string and converts to a cell array.

MatchedPersonsVector.m: similar to InterestedPersonsVector.m, but customized for data from
the Cases file.

FlatFileOutputPAPs.m: converts data from cell variable in MATLAB through to csv file for
entry into STATA file for Grid data, where a row is a day-mother-pap
entry.

HTMLtimemachine.m: enters data from the HTML data captured from Internet Archive.

EnterHongData.m: enters data from a customized csv-version of the RA entered data.
Each i entry in outdata (i, ·) represents a BMO, where the second
element represents time on the site.

StripArchive.m: function that saves HTML for targeted website for specified date
ranges.

5



RaceFractionCode.m: For each column entry in the cell given by the coordinate system,
codes the racial fraction and word given in the text. Used to extract
well-specified race data from the HTML.

AgeCode.m: codes ages of children from string data.

CodeLanguage.m: script file that runs the data refinement routines—i.e., those that
convert string data to numeric coded data.

CodeLanguageCD.m retasked version of CodeLanguage.m for the Archive data instead of
the CA data.

CreateMatchInformation.m: tries to match string data near to date information with known
phrases, thereby coding matches, cases closed, missing, etc.

DateReplaceWords.m: pre-formatting for dates; tries to put dates into a systematic format
for subsequent data capture.

MoneyCode.m: extracts monetary amounts from string data, looking for date ranges
and stated amounts. For date ranges, the code is the top limit of
the range. These data are superseded in the final analysis by the
hand-entered amounts for each BMO.

RearrangePAP.m: orders PAP pairs so that the names are listed in alphabetical order.

FlatFileOutputCaseData.m: converts data from cell variable in MATLAB through to csv file for
entry into STATA file for Archive data where a row is a date-mother
entry.

HTMLcaseData.m: enters information from the Archive page html.

FlatFileOutput.m: converts data from cell variable in MATLAB through to csv file for
entry into STATA file for CA data where a row is a date-mother
entry.

2.4 Helper Programs Glossary

The following codes are “helper” functions in that they perform specific
tasks such as manipulating strings and so on.

coderow.m: enters data from a HTML-table tow into MATLAB. Used as an
extraction tool for rows after the gettabledata.m file populates from
the string.

coderowCaseData.m: customized version of coderow.m for use with data from the Archive
data rather than the CA data.

gettabledata.m: finds the first table within an HTML file.

PreviousLine.m: string manipulation utility. Function returns the line above/or below
the current position within the string using custom line delimiters.

LineContents.m: string manipulation utility. Function returns the line above/or below
the current position.

replacestring.m: string manipulation utility. Replaces one string with another.

RenameFiles.m: unused. File manipulation utility. Basic utility for renaming files in
a particular directory.

striptags.m: string manipulation utility. Removes HTML tag information—i.e.,
transforms

\¡a href=“link.htm”\¿link address\¡\/a\¿ to “link address” using
regular expressions.

6


